You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Shenoy A and Blelloch RH: Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol. 15:565–576. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Jonas S and Izaurralde E: Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 16:421–433. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ and Van Der Oost J: The evolutionary journey of argonaute proteins. Nat Struct Mol Biol. 21:743–753. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Friedman RC, Farh KK, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar : | |
|
Kozomara A and Griffiths-Jones S: miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42:D68–D73. 2014. View Article : Google Scholar : | |
|
Otmani K, Rouas R and Lewalle P: OncomiRs as noncoding RNAs having functions in cancer: Their role in immune suppression and clinical implications. Front Immunol. 13:9139512022. View Article : Google Scholar : PubMed/NCBI | |
|
Ali Syeda Z, Langden SSS, Munkhzul C, Lee M and Song SJ: Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 21:17232020. View Article : Google Scholar : PubMed/NCBI | |
|
Otmani K and Lewalle P: Tumor suppressor miRNA in cancer cells and the tumor microenvironment: Mechanism of deregulation and clinical implications. Front Oncol. 11:7087652021. View Article : Google Scholar : PubMed/NCBI | |
|
Yousefnia S and Negahdary M: Role of miRNAs in cancer: Oncogenic and tumor suppressor miRNAs, Their regulation and therapeutic applications. Interdisciplinary Cancer Research. Springer; Cham: pp. 1–27. 2024 | |
|
Siddika T and Heinemann IU: Bringing MicroRNAs to light: Methods for MicroRNA quantification and visualization in live cells. Front Bioeng Biotechnol. 8:6195832021. View Article : Google Scholar : PubMed/NCBI | |
|
Mockly S and Seitz H: Inconsistencies and limitations of current MicroRNA target identification methods. Methods Mol Biol. 1970:291–314. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Koshiol J, Wang E, Zhao Y, Marincola F and Landi MT: Strengths and limitations of laboratory procedures for microRNA detection. Cancer Epidemiol Biomarkers Prev. 19:907–911. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH and Khan AA: Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: An innovative strategy of cancer management. Cancer Commun (Lond). 42:1257–1287. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Allemailem KS, Almatroudi A, Alrumaihi F, Alradhi AE, Theyab A, Algahtani M, Alhawas MO, Dobie G, Moawad AA, Rahmani AH and Khan AA: Current updates of CRISPR/Cas system and anti-CRISPR proteins: Innovative applications to improve the genome editing strategies. Int J Nanomedicine. 19:10185–10212. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Chen Y, Dang L, Liu Y, Huang S, Wu S, Ma P, Jiang H, Li Y, Pan Y, et al: EasyCatch, a convenient, sensitive and specific CRISPR detection system for cancer gene mutations. Mol Cancer. 20:1572021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Z, Fang J, Zhou M, Gong Z and Xiang T: CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms. Front Microbiol. 13:10113992022. View Article : Google Scholar : PubMed/NCBI | |
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, Alwanian WM, Almansour NM, Rahmani AH and Khan AA: Innovative strategies of reprogramming immune system cells by targeting CRISPR/Cas9-based genome-editing tools: A new era of cancer management. Int J Nanomedicine. 18:5531–5559. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Koonin EV and Makarova KS: CRISPR-Cas: An adaptive immunity system in prokaryotes. F1000 Biol Rep. 1:952009. View Article : Google Scholar | |
|
Allemailem KS, Almatroudi A, Rahmani AH, Alrumaihi F, Alradhi AE, Alsubaiyel AM, Algahtani M, Almousa RM, Mahzari A, Sindi AA, et al: Recent updates of the CRISPR/Cas9 genome editing system: Novel approaches to regulate its spatiotemporal control by genetic and physicochemical strategies. Int J Nanomedicine. 19:5335–5363. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DB, Kellner MJ, Regev A, et al: RNA targeting with CRISPR-Cas13. Nature. 550:280–284. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
O'Connell MR: Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR-Cas systems. J Mol Biol. 431:66–87. 2019. View Article : Google Scholar | |
|
Ali Z, Mahas A and Mahfouz M: CRISPR/Cas13 as a tool for RNA interference. Trends Plant Sci. 23:374–378. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang LZ, Wang Y, Li SQ, Yao RW, Luan PF, Wu H, Carmichael GG and Chen LL: Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol Cell. 76:981–997.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Granados-Riveron JT and Aquino-Jarquin G: CRISPR-Cas13 precision transcriptome engineering in cancer. Cancer Res. 78:4107–4113. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Wang Q and Wang Y: Direct and accurate miRNA detection based on CRISPR/Cas13a-triggered exonuclease-iii-assisted colorimetric assay. J Anal Sci Technol. 15:212024. View Article : Google Scholar | |
|
Kim JJ, Hong JS, Kim H, Choi M, Winter U, Lee H and Im H: CRISPR/Cas13a-assisted amplification-free miRNA biosensor via dark-field imaging and magnetic gold nanoparticles. Sens Diagn. 3:1310–1318. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Cai S, Wu Y, Li Q, Wang X, Zhang Y and Zhou N: A lateral flow assay for miRNA-21 based on CRISPR/Cas13a and MnO2 nanosheets-mediated recognition and signal amplification. Anal Bioanal Chem. 416:3401–3413. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Leitão AL and Enguita FJ: A structural view of miRNA biogenesis and function. Noncoding RNA. 8:102022.PubMed/NCBI | |
|
Shang R, Lee S, Senavirathne G and Lai EC: microRNAs in action: Biogenesis, function and regulation. Nat Rev Genet. 24:816–833. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Nishikura K: A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 17:83–96. 2016. View Article : Google Scholar : | |
|
Denli AM, Tops BBJ, Plasterk RHA, Ketting RF and Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 432:231–235. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N and Shiekhattar R: The microprocessor complex mediates the genesis of microRNAs. Nature. 432:235–240. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen TA, Jo MH, Choi YG, Park J, Kwon SC, Hohng S, Kim VN and Woo JS: Functional anatomy of the human microprocessor. Cell. 161:1374–1387. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kwon SC, Nguyen TA, Choi YG, Jo MH, Hohng S, Kim VN and Woo JS: Structure of human DROSHA. Cell. 164:81–90. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kim B, Jeong K and Kim VN: Genome-wide mapping of DROSHA cleavage sites on primary microRNAs and noncanonical substrates. Mol Cell. 66:258–269.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Neilsen CT, Goodall GJ and Bracken CP: IsomiRs-the overlooked repertoire in the dynamic microRNAome. Trends Genet. 28:544–549. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lau NC, Lim LP, Weinstein EG and Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 294:858–862. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Lee RC and Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. Science. 294:862–864. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Nicholson AW: Ribonuclease III mechanisms of double-stranded RNA cleavage. Wiley Interdiscip Rev RNA. 5:31–48. 2014. View Article : Google Scholar | |
|
Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y and Tsukihara T: A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 326:1275–1279. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kim YK, Kim B and Kim VN: Re-evaluation of the roles of DROSHA, export in 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci USA. 113:E1881–E1889. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bernstein E, Caudy AA, Hammond SM and Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G and Mello CC: Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 106:23–34. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Tsutsumi A, Kawamata T, Izumi N, Seitz H and Tomari Y: Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat Struct Mol Biol. 18:1153–1158. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Tian Y, Simanshu DK, Ma JB, Park JE, Heo I, Kim VN and Patel DJ: A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol Cell. 53:606–616. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Matranga C, Tomari Y, Shin C, Bartel DP and Zamore PD: Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell. 123:607–620. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zamore PD, Tuschl T, Sharp PA and Bartel DP: RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 101:25–33. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Suzuki HI, Katsura A, Yasuda T, Ueno T, Mano H, Sugimoto K and Miyazono K: Small-RNA asymmetry is directly driven by mammalian argonautes. Nat Struct Mol Biol. 22:512–521. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Cai X, Hagedorn CH and Cullen BR: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 10:1957–1966. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Berezikov E: Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 12:846–860. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB and Bartel DP: The microRNAs of Caenorhabditis elegans. Genes Dev. 17:991–1008. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Hall TMT: Structure and function of argonaute proteins. Structure. 13:1403–1408. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Cho WC and Zheng Y: Argonaute proteins: Structural features, functions and emerging roles. J Adv Res. 24:317–324. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Schirle NT and MacRae IJ: The crystal structure of human argonaute2. Science. 336:1037–1040. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sheu-Gruttadauria J and MacRae IJ: Structural foundations of RNA silencing by argonaute. J Mol Biol. 429:2619–2639. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Diederichs S and Haber DA: Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell. 131:1097–1108. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L and Hannon GJ: Argonaute2 is the catalytic engine of mammalian RNAi. Science. 305:1437–1441. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Burroughs AM, Ando Y, de Hoon MJL, Tomaru Y, Suzuki H, Hayashizaki Y and Daub CO: Deep-sequencing of human argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Boil. 8:158–177. 2011. View Article : Google Scholar | |
|
Dueck A, Ziegler C, Eichner A, Berezikov E and Meister G: microRNAs associated with the different human argonaute proteins. Nucleic Acids Res. 40:9850–9862. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4:e050052015. View Article : Google Scholar : PubMed/NCBI | |
|
Wong N and Wang X: miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43:D146–D152. 2015. View Article : Google Scholar : | |
|
Gebert LF and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2019. View Article : Google Scholar : | |
|
Schirle NT, Sheu-Gruttadauria J and MacRae IJ: Structural basis for microRNA targeting. Science. 346:608–613. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Schirle NT, Sheu-Gruttadauria J, Chandradoss SD, Joo C and MacRae IJ: Water-mediated recognition of t1-adenosine anchors argonaute2 to microRNA targets. Elife. 4:e076462015. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T and Patel DJ: Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell. 19:405–419. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Li Z, Zhang Y, Zhou L, Xu Q, Li L, Zeng L, Xue J, Niu H, Zhong J, et al: Mammalian PIWI-piRNA-target complexes reveal features for broad and efficient target silencing. Nat Struct Mol Biol. 31:1222–1231. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Guo H, Ingolia NT, Weissman JS and Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Braun JE, Huntzinger E and Izaurralde E: The role of GW182 proteins in miRNA-mediated gene silencing. Adv Exp Med Biol. 768:147–163. 2013. View Article : Google Scholar | |
|
Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R and Filipowicz W: miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol. 18:1218–1226. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Fabian MR, Cieplak MK, Frank F, Morita M, Green J, Srikumar T, Nagar B, Yamamoto T, Raught B, Duchaine TF and Sonenberg N: miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol. 18:1211–1217. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CYA, Zheng D, Xia Z and Shyu AB: Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat Struct Mol Biol. 16:1160–1166. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Braun JE, Truffault V, Boland A, Huntzinger E, Chang CT, Haas G, Weichenrieder O, Coles M and Izaurralde E: A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat Struct Mol Biol. 19:1324–1331. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mathys H, Basquin J, Ozgur S, Czarnocki-Cieciura M, Bonneau F, Aartse A, Dziembowski A, Nowotny M, Conti E and Filipowicz W: Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol Cell. 54:751–765. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fukaya T, Iwakawa HO and Tomari Y: MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila. Mol Cell. 56:67–78. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fukao A, Mishima Y, Takizawa N, Oka S, Imataka H, Pelletier J, Sonenberg N, Thoma C and Fujiwara T: MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans. Mol Cell. 56:79–89. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nishihara T, Zekri L, Braun JE and Izaurralde E: miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res. 41:8692–8705. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jungers CF and Djuranovic S: Modulation of miRISC-mediated gene silencing in eukaryotes. Front Mol Biosci. 9:8329162022. View Article : Google Scholar : PubMed/NCBI | |
|
Kuzuoğlu-Öztürk D, Bhandari D, Huntzinger E, Fauser M, Helms S and Izaurralde E: miRISC and the CCR4-NOT complex silence mRNA targets independently of 43S ribosomal scanning. EMBO J. 35:1186–1203. 2016. View Article : Google Scholar | |
|
Elkayam E, Faehnle CR, Morales M, Sun J, Li H and Joshua-Tor L: Multivalent recruitment of human argonaute by GW182. Mol Cell. 67:646–658.e3. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, Hsu SH, Ghoshal K, Villén J and Bartel DP: mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell. 56:104–115. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bhattacharyya SN, Habermacher R, Martine U, Closs EI and Filipowicz W: Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell. 125:1111–1124. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Uhlmann S, Mannsperger H, Zhang JD, Horvat EÁ, Schmidt C, Küblbeck M, Henjes F, Ward A, Tschulena U, Zweig K, et al: Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Mol Syst Biol. 8:5702012. View Article : Google Scholar : PubMed/NCBI | |
|
He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Mestdagh P, Boström AK, Impens F, Fredlund E, Van Peer G, De Antonellis P, Von Stedingk K, Ghesquière B, Schulte S, Dews M, et al: The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol Cell. 40:762–773. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Saetrom P, Heale BS, Snøve O Jr, Aagaard L, Alluin J and Rossi JJ: Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res. 35:2333–2342. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Broderick JA, Salomon WE, Ryder SP, Aronin N and Zamore PD: Argonaute protein identity and pairing geometry determine cooperativity in mammalian RNA silencing. RNA. 17:1858–1869. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Tsang J, Zhu J and van Oudenaarden A: MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell. 26:753–767. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Ebert MS and Sharp PA: Roles for microRNAs in conferring robustness to biological processes. Cell. 149:515–524. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Peng Y and Croce CM: The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 1:150042016. View Article : Google Scholar : PubMed/NCBI | |
|
Suzuki H, Maruyama R, Yamamoto E and Kai M: Epigenetic alteration and microRNA dysregulation in cancer. Front Genet. 4:2582013. View Article : Google Scholar : PubMed/NCBI | |
|
Calin GA and Croce CM: MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene. 25:6202–6210. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, et al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Tagawa H and Seto M: A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia. 19:2013–2016. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y and Takahashi T: A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65:9628–9632. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Mavrakis KJ, Wolfe AL, Oricchio E, Palomero T, De Keersmaecker K, McJunkin K, Zuber J, James T, Khan AA, Leslie CS, et al: Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Boil. 12:372–379. 2010. View Article : Google Scholar | |
|
Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, et al: microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA. 103:9136–9141. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M and Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Wijnhoven BP, Michael MZ and Watson DI: MicroRNAs and cancer. Br J Surg. 94:23–30. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Qin S, Xu J, Yi Y, Jiang S, Jin P, Xia X and Ma F: Transcription factors and methylation drive prognostic miRNA dysregulation in hepatocellular carcinoma. Front Oncol. 11:6911152021. View Article : Google Scholar : PubMed/NCBI | |
|
Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K and Mo YY: p53 represses c-Myc through induction of the tumor suppressor miR-145. PProc Natl Acad Sci USA. 106:3207–3212. 2009. View Article : Google Scholar | |
|
O'Donnell KA, Wentzel EA, Zeller KI, Dang CV and Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 435:839–843. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A and Mendell JT: Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 40:43–50. 2008. View Article : Google Scholar | |
|
Wang B, Hsu SH, Wang X, Kutay H, Bid HK, Yu J, Ganju RK, Jacob ST, Yuneva M and Ghoshal K: Reciprocal regulation of microRNA-122 and c-Myc in hepatocellular cancer: Role of E2F1 and transcription factor dimerization partner 2. Hepatology. 59:555–566. 2014. View Article : Google Scholar | |
|
Han H, Sun D, Li W, Shen H, Zhu Y, Li C, Chen Y, Lu L, Li W, Zhang J, et al: A c-Myc-MicroRNA functional feedback loop affects hepatocarcinogenesis. Hepatology. 57:2378–2389. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
He L, He X, Lim LP, De Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al: A microRNA component of the p53 tumour suppressor network. Nature. 447:1130–1134. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hermeking HJ: The miR-34 family in cancer and apoptosis. Cell Death Differ. 17:193–199. 2010. View Article : Google Scholar | |
|
Xiao J, Lin H, Luo X, Luo X and Wang Z: miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J. 30:524–532. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Liao JM, Zeng SX and Lu H: p53 downregulates Down syndrome-associated DYRK1A through miR-1246. EMBO Rep. 12:811–817. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D and Lowenstein CJ: P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA. 107:6334–6339. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Eyholzer M, Schmid S, Schardt JA, Haefliger S, Mueller BU and Pabst T: Complexity of miR-223 regulation by CEBPA in human AML. Leuk Res. 34:672–676. 2010. View Article : Google Scholar | |
|
Hessam S, Sand M, Skrygan M, Gambichler T and Bechara FG: Inflammation induced changes in the expression levels of components of the microRNA maturation machinery Drosha, Dicer, Drosha co-factor DGRC8 and Exportin-5 in inflammatory lesions of hidradenitis suppurativa patients. J Dermatol Sci. 82:166–174. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Park WJ, Jeong KJ, Kang SH, Kwon SY, Kim S and Park JW: Racial differences in expression levels of miRNA machinery-related genes, dicer, drosha, DGCR8, and AGO2, in Asian Korean papillary thyroid carcinoma and comparative validation using the cancer genome atlas. Int J Genomics. 2017:57897692017. View Article : Google Scholar : PubMed/NCBI | |
|
Yan M, Huang HY, Wang T, Wan Y, Cui SD, Liu ZZ and Fan QX: Dysregulated expression of dicer and drosha in breast cancer. Pathol Oncol Res. 18:343–348. 2012. View Article : Google Scholar | |
|
Zhang Z, Zhang G, Kong C, Bi J, Gong D, Yu X, Shi D, Zhan B and Ye P: EIF2C, Dicer, and Drosha are up-regulated along tumor progression and associated with poor prognosis in bladder carcinoma. Tumour Biol. 36:5071–5079. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T and Hammond SM: Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20:2202–2207. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Walz AL, Ooms A, Gadd S, Gerhard DS, Smith MA, Auvil JMG, Meerzaman D, Chen QR, Hsu CH, Yan C, et al: Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell. 27:286–297. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Iliou MS, da Silva-Diz V, Carmona FJ, Ramalho-Carvalho J, Heyn H, Villanueva A, Muñoz P and Esteller M: Impaired DICER1 function promotes stemness and metastasis in colon cancer. Oncogene. 33:4003–4015. 2014. View Article : Google Scholar : | |
|
Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, Urbauer D, Pennacchio LA, Cheng JF, Nick AM, et al: Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med. 359:2641–2650. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Pampalakis G, Diamandis EP, Katsaros D and Sotiropoulou G: Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem. 43:324–327. 2010. View Article : Google Scholar | |
|
Faggad A, Budczies J, Tchernitsa O, Darb-Esfahani S, Sehouli J, Müller BM, Wirtz R, Chekerov R, Weichert W, Sinn B, et al: Prognostic significance of Dicer expression in ovarian cancer-link to global microRNA changes and oestrogen receptor expression. J Pathol. 220:382–391. 2010. View Article : Google Scholar | |
|
Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, Yatabe Y, Takamizawa J, Miyoshi S, Mitsudomi T and Takahashi T: Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 96:111–115. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Dome JS and Coppes MJ: Recent advances in Wilms tumor genetics. Curr Opin Pediatr. 14:5–11. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Fan XS, Wang CX, Liu B, Li Q and Zhou XJ: Up-regulation of Ago2 expression in gastric carcinoma. Med Oncol. 30:6282013. View Article : Google Scholar : PubMed/NCBI | |
|
Völler D, Reinders J, Meister G and Bosserhoff AK: Strong reduction of AGO2 expression in melanoma and cellular consequences. Br J Cancer. 109:3116–3124. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, Fernandez AF, Davalos V, Villanueva A, Montoya G, et al: A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell. 18:303–315. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chu R, Mo G, Duan Z, Huang M, Chang J, Li X and Liu P: miRNAs affect the development of hepatocellular carcinoma via dysregulation of their biogenesis and expression. CCell Commun Signal. 12:452014. View Article : Google Scholar | |
|
Han L, Witmer PD, Casey E, Valle D and Sukumar S: DNA methylation regulates MicroRNA expression. Cancer Biol Ther. 6:1290–1294. 2007. View Article : Google Scholar | |
|
Saito Y and Jones PM: Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle. 5:2220–2222. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, et al: Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell. 12:457–466. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA and Jones PA: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 9:435–443. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, et al: A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA. 105:13556–13561. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Baharudin R, Rus Bakarurraini NQ, Ismail I, Lee LH and Ab Mutalib NS: MicroRNA methylome signature and their functional roles in colorectal cancer diagnosis, prognosis, and chemoresistance. Int J Mol Sci. 23:72812022. View Article : Google Scholar : PubMed/NCBI | |
|
Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, Länger F and Kreipe H: Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol. 214:17–24. 2008. View Article : Google Scholar | |
|
Donzelli S, Mori F, Bellissimo T, Sacconi A, Casini B, Frixa T, Roscilli G, Aurisicchio L, Facciolo F, Pompili A, et al: Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget. 6:35183–35201. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Trimarchi JM and Lees JA: Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol. 3:11–20. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Coller HA, Forman JJ and Legesse-Miller A: 'Myc'ed messages': myc induces transcription of E2F1 while inhibiting its translation via a microRNA polycistron. PLoS Genet. 3:e1462007. View Article : Google Scholar | |
|
Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, Ferbeyre G and Chartrand P: An E2F/miR-20a autoregulatory feedback loop. J Biol Chem. 282:2135–2143. 2007. View Article : Google Scholar | |
|
Woods K, Thomson JM and Hammond SM: Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem. 282:2130–2134. 2007. View Article : Google Scholar | |
|
He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ and Hammond SM: A microRNA polycistron as a potential human oncogene. Nature. 435:828–833. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW and Ruohola-Baker H: Stem cell division is regulated by the microRNA pathway. Nature. 435:974–978. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Yu JY, Reynolds SH, Hatfield SD, Shcherbata HR, Fischer KA, Ward EJ, Long D, Ding Y and Ruohola-Baker H: Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells. Development. 136:1497–1507. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Gillies JK and Lorimer IAJ: Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle. 6:2005–2009. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA and Farace MG: miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 282:23716–23724. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafrè SA, et al: Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 26:3699–3708. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, Wang G, Zhang A, Jia Z, Han L and Jiang H: Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol. 34:1653–1660. 2009.PubMed/NCBI | |
|
Carmeliet P: Mechanisms of angiogenesis and arteriogenesis. Nat Med. 6:389–395. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Choudhry H and Harris AL: Advances in hypoxia-inducible factor biology. Cell Metab. 27:281–298. 2018. View Article : Google Scholar | |
|
Ferrara N: VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2:795–803. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Tiwari A, Mukherjee B and Dixit M: MicroRNA key to angiogenesis regulation: MiRNA biology and therapy. Curr Cancer Drug Targets. 18:266–277. 2018. View Article : Google Scholar | |
|
Landskroner-Eiger S, Moneke I and Sessa WC: miRNAs as modulators of angiogenesis. Cold Spring Harb Perspect Med. 3:a0066432013. View Article : Google Scholar | |
|
Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM and Ragoussis J: hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 14:1340–1348. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC and Martelli F: MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 283:15878–15883. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lou YL, Guo F, Liu F, Gao FL, Zhang PQ, Niu X, Guo SC, Yin JH, Wang Y and Deng ZF: miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem. 370:45–51. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, Chandrashekhar YS, Hall JL, Roy S, Zeng Y and Ramakrishnan S: Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Invest. 120:4141–4154. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, Kung HF, Lai L and Jiang BH: MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One. 6:e191392011. View Article : Google Scholar | |
|
Lei Z, Li BO, Yang Z, Fang H, Zhang GM, Feng ZH and Huang B: Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One. 4:e76292009. View Article : Google Scholar : PubMed/NCBI | |
|
Cha ST, Chen PS, Johansson G, Chu CY, Wang MY, Jeng YM, Yu SL, Chen JS, Chang KJ, Jee SH, et al: MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res. 70:2675–2685. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP and Looi CY: The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells. 8:11182019. View Article : Google Scholar : PubMed/NCBI | |
|
Rutnam ZJ, Wight TN and Yang BB: miRNAs regulate expression and function of extracellular matrix molecules. Matrix Biol. 32:74–85. 2013. View Article : Google Scholar | |
|
Raines EW: The extracellular matrix can regulate vascular cell migration, proliferation, and survival: Relationships to vascular disease. Int J Exp Pathol. 81:173–182. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, Prusa R and Kizek R: Matrix metalloproteinases. Curr Med Chem. 17:3751–3768. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chambers AF and Matrisian LM: Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 89:1260–1270. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Wu D, Huang P, Wang L, Zhou Y, Pan H and Qu P: MicroRNA-143 inhibits cell migration and invasion by targeting matrix metalloproteinase 13 in prostate cancer. Mol Med Rep. 8:626–630. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Osaki M, Takeshita F, Sugimoto Y, Kosaka N, Yamamoto Y, Yoshioka Y, Kobayashi E, Yamada T, Kawai A, Inoue T, et al: MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol Ther. 19:1123–1130. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Cao YD, Ye WX and Sun YY: Effect of microRNA-206 on cytoskeleton remodelling by downregulating Cdc42 in MDA-MB-231 cells. Tumori. 96:751–755. 2010. View Article : Google Scholar | |
|
Wu ZS, Wu Q, Wang CQ, Wang XN, Huang J, Zhao JJ, Mao SS, Zhang GH, Xu XC and Zhang N: miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer. 117:2842–2852. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS and Cheng JQ: MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 28:6773–6784. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF and Goodall GJ: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68:7846–7854. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA and Vasconcelos MH: MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer. 47:163–174. 2011. View Article : Google Scholar | |
|
Li C, Hashimi SM, Good DA, Cao S, Duan W, Plummer PN, Mellick AS and Wei MQ: Apoptosis and microRNA aberrations in cancer. Clin Exp Pharmacol Physiol. 39:739–146. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Cadwell C and Zambetti GP: The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene. 277:15–30. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
O'Brien MA and Kirby R: Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Care (San Antonio). 18:572–585. 2008. View Article : Google Scholar | |
|
Hermeking H: MicroRNAs in the p53 network: Micromanagement of tumour suppression. Nat Rev Cancer. 12:613–626. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, Zhou W, Benson DM Jr, Hofmainster C, Alder H, et al: RETRACTED: Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell. 18:367–381. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bi C and Chng WJ: MicroRNA: Important player in the pathobiology of multiple myeloma. Biomed Res Int. 2014:5215862014. View Article : Google Scholar : PubMed/NCBI | |
|
Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, Calin GA, Grazi GL, Croce CM, Tavolari S, et al: MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 69:5761–5767. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Burns DM, D'Ambrogio A, Nottrott S and Richter JD: CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature. 473:105–108. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hajizadeh M, Hajizadeh F, Ghaffarei S, Doustvandi MA, Hajizadeh K, Yaghoubi SM, Mohammadnejad F, Khiabani NA, Mousavi P and Baradaran B: MicroRNAs and their vital role in apoptosis in hepatocellular carcinoma: miRNA-based diagnostic and treatment methods. Gene. 888:1478032023. View Article : Google Scholar : PubMed/NCBI | |
|
Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY and Sun SH: Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J. 28:2719–2732. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Liu Y, Zhang G, Lin S, Wu J, Yan X, Ma Y and Ma M: Aloe-emodin induces breast tumor cell apoptosis through upregulation of miR-15a/miR-16-1 that suppresses BCL2. Evid Based Complement Alternat Med. 2020:51082982020. View Article : Google Scholar : PubMed/NCBI | |
|
Sacconi A, Biagioni F, Canu V, Mori F, Di Benedetto A, Lorenzon L, Ercolani C, Di Agostino S, Cambria AM, Germoni S, et al: miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death Dis. 3:e4232012. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Yang Y, Kuang Y, Gan X, Zeng W, Liu Y and Guan H: miR-365 induces hepatocellular carcinoma cell apoptosis through targeting Bcl-2. Exp Ther Med. 13:2279–2285. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Denoyelle C, Lambert B, Meryet-Figuière M, Vigneron N, Brotin E, Lecerf C, Abeilard E, Giffard F, Louis MH, Gauduchon P, et al: miR-491-5p-induced apoptosis in ovarian carcinoma depends on the direct inhibition of both BCL-XL and EGFR leading to BIM activation. Cell Death Dis. 5:e14452014. View Article : Google Scholar : PubMed/NCBI | |
|
Burmistrz M, Krakowski K and Krawczyk-Balska A: RNA-targeting CRISPR-Cas systems and their applications. Int J Mol Sci. 21:11222020. View Article : Google Scholar : PubMed/NCBI | |
|
Donohoue PD, Barrangou R and May AP: Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol. 36:134–146. 2018. View Article : Google Scholar | |
|
Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN and Hsu PD: Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell. 173:665–676 e14. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, Cheng DR and Scott DA: Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell. 70:327–339.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJ, Charpentier E, Cheng D, Haft DH, Horvath P, et al: Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat Rev Microbiol. 18:67–83. 2020. View Article : Google Scholar | |
|
Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, Cao B, Dong X, Bai W, Wang Y, et al: Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods. 18:499–506. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kannan S, Altae-Tran H, Jin X, Madigan VJ, Oshiro R, Makarova KS, Koonin EV and Zhang F: Compact RNA editors with small Cas13 proteins. Nat Biotechnol. 40:194–197. 2022. View Article : Google Scholar : | |
|
Granados-Riveron JT and Aquino-Jarquin G: CRISPR/Cas13-based approaches for ultrasensitive and specific detection of microRNAs. Cells. 10:16552021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, La Russa M and Qi LS: CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 85:227–264. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Li X, Ma J, Li Z, You L, Wang J, Wang M, Zhang X and Wang Y: The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell. 170:714–726.e10. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Watanabe S, Cui B, Kiga K, Aiba Y, Tan XE, Sato'o Y, Kawauchi M, Boonsiri T, Thitiananpakorn K, Taki Y, et al: Composition and diversity of CRISPR-Cas13a systems in the genus Leptotrichia. Front Microbiol. 10:28382019. View Article : Google Scholar | |
|
Jain I: CRISPR Cas adaptive immunity in Leptotrichia shahii type VI-A system. Rutgers University Community Repository. 1132022. | |
|
Liu L, Li X, Wang J, Wang M, Chen P, Yin M, Li J, Sheng G and Wang Y: Two distant catalytic sites are responsible for C2c2 RNase activities. Cell. 168:121–134.e12. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, Shmakov S, Makarova KS, Semenova E, Minakhin L, et al: C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 353:aaf55732016. View Article : Google Scholar : PubMed/NCBI | |
|
Mahas A, Aman R and Mahfouz M: CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Boil. 20:2632019. View Article : Google Scholar | |
|
Yang L and Chen LL: Enhancing the RNA engineering toolkit. Science. 358:996–997. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wessels HH, Méndez-Mancilla A, Guo X, Legut M, Daniloski Z and Sanjana NE: Massively parallel Cas13 screens reveal principles for guide RNA design. Nat Biotechnol. 38:722–727. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
East-Seletsky A, O'Connell MR, Burstein D, Knott GJ and Doudna JA: RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol Cell. 66:373–383.e3. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Smargon AA, Cox DBT, Pyzocha NK, Zheng K, Slaymaker IM, Gootenberg JS, Abudayyeh OA, Essletzbichler P, Shmakov S, Makarova KS, et al: Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell. 65:618–630. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J and Zhang F: RNA editing with CRISPR-Cas13. Science. 358:1019–1027. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Y, Zhang B, Wei Y, Murashev A, Wang S, Wu Y, Ma W and Liu T: Development of Cas13a-based therapy for cancer treatment. Mol Biol Rep. 51:942024. View Article : Google Scholar : PubMed/NCBI | |
|
Bot JF, van der Oost J and Geijsen N: The double life of CRISPR-Cas13. Curr Opin Biotechnol. 78:1027892022. View Article : Google Scholar : PubMed/NCBI | |
|
Fonfara I, Richter H, Bratovič M, Le Rhun A and Charpentier E: The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. 532:517–521. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Palaz F, Kalkan AK, Can Ö, Demir AN, Tozluyurt A, Özcan A and Ozsoz M: CRISPR-Cas13 system as a promising and versatile tool for cancer diagnosis, therapy, and research. ACS Synth Biol. 10:1245–1267. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Guo R, Li G, Zhang W and Zhang Z: Comparative analysis of similarity measurements in miRNAs with applications to miRNA-disease association predictions. BMC Bioinformatics. 21:1762020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Jiang X, Wan F, Jia S and Si S: A novel detection of MicroRNA based on homogeneous electrochemical sensor with enzyme-assisted signal amplification. Talanta. 256:1242632023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Fan M, Jiang J, Shen Q, Cai C and Shen J: Sensitive electrochemical biosensor for MicroRNAs based on duplex-specific nuclease-assisted target recycling followed with gold nanoparticles and enzymatic signal amplification. Anal Chim Acta. 1064:33–39. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC and Ward DC: Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 19:225–232. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
de la Torre TZG, Mezger A, Herthnek D, Johansson C, Svedlindh P, Nilsson M and Strømme M: Detection of rolling circle amplified DNA molecules using probe-tagged magnetic nanobeads in a portable AC susceptometer. Biosens Bioelectron. 29:195–199. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Liu K, Tong H, Li T, Wang X and Chen Y: Research progress in molecular biology related quantitative methods of MicroRNA. Am J Transl Res. 12:3198–3211. 2020.PubMed/NCBI | |
|
Zhou T, Huang M, Lin J, Huang R and Xing D: High-fidelity CRISPR/Cas13a trans-cleavage-triggered rolling circle amplified DNAzyme for visual profiling of microRNA. Anal Chem. 93:2038–2044. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Albada HB, Golub E and Willner I: Rational design of supramolecular hemin/G-quadruplex-dopamine aptamer nucleoapzyme systems with superior catalytic performance. Chem Sci. 7:3092–3101. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Singh R, Pochampally R, Watabe K, Lu Z and Mo YY: Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol Cancer. 13:2562014. View Article : Google Scholar : PubMed/NCBI | |
|
Yoo B, Kavishwar A, Ross A, Wang P, Tabassum DP, Polyak K, Barteneva N, Petkova V, Pantazopoulos P, Tena A, et al: Combining miR-10b-targeted nanotherapy with low-dose doxorubicin elicits durable regressions of metastatic breast cancer. Cancer Res. 75:4407–4415. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ye J, Xu M, Tian X, Cai S and Zeng S: Research advances in the detection of miRNA. J Pharm Anal. 9:217–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF and Doudna JA: Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 362:839–842. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP and Wang J: CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 28:491–493. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan C, Tian T, Sun J, Hu M, Wang X, Xiong E, Cheng M, Bao Y, Lin W, Jiang J, et al: Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system. Anal Chem. 92:4029–4037. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sha Y, Huang R, Huang M, Yue H, Shan Y, Hu J and Xing D: Cascade CRISPR/cas enables amplification-free microRNA sensing with fM-sensitivity and single-base-specificity. Chem Commun (Camb). 57:247–250. 2021. View Article : Google Scholar | |
|
Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM and Doudna JA: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 360:436–439. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou T, Huang R, Huang M, Shen J, Shan Y and Xing D: CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific MiRNA detection. Adv Sci (Weinh). 7:19036612020. View Article : Google Scholar : PubMed/NCBI | |
|
Shan Y, Zhou X, Huang R and Xing D: High-fidelity and rapid quantification of miRNA combining crRNA programmability and CRISPR/Cas13a trans-cleavage activity. Anal Chem. 91:5278–5285. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Russo G, Zegar C and Giordano A: Advantages and limitations of microarray technology in human cancer. Oncogene. 22:6497–6507. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Tian T, Shu B, Jiang Y, Ye M, Liu L, Guo Z, Han Z, Wang Z and Zhou X: An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano. 15:1167–1178. 2020. View Article : Google Scholar | |
|
Aquino-Jarquin G: Recent progress on rapid SARS-CoV-2/COVID-19 detection by CRISPR-Cas13-based platforms. Drug Discov Today. 26:2025–2035. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sheng Y, Zhang T, Zhang S, Johnston M, Zheng X, Shan Y, Liu T, Huang Z, Qian F, Xie Z, et al: A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. Biosens Bioelectron. 178:1130272021. View Article : Google Scholar : PubMed/NCBI | |
|
Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W, Dincer C and Urban GA: CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv Mater. 31:19053112019. View Article : Google Scholar | |
|
Bruch R, Johnston M, Kling A, Mattmüller T, Baaske J, Partel S, Madlener S, Weber W, Urban GA and Dincer C: CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics. Biosens Bioelectron. 177:1128872021. View Article : Google Scholar : PubMed/NCBI | |
|
Kimmel DW, LeBlanc G, Meschievitz ME and Cliffel DE: Electrochemical sensors and biosensors. Anal Chem. 84:685–707. 2012. View Article : Google Scholar : | |
|
Cui Y, Fan S, Yuan Z, Song M, Hu J, Qian D, Zhen D, Li J and Zhu B: Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly. Talanta. 224:1218782021. View Article : Google Scholar : PubMed/NCBI | |
|
Zou L, Wu Q, Zhou Y, Gong X, Liu X and Wang F: A DNAzyme-powered cross-catalytic circuit for amplified intracellular imaging. Chem Commun (Camb). 55:6519–6522. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Park C, Park H, Lee HJ, Lee HS, Park KH, Choi CH and Na S: Double amplified colorimetric detection of DNA using gold nanoparticles, enzymes and a catalytic hairpin assembly. Mikrochim Acta. 186:342018. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Lei P, Ding S, Zhang Y, Yang J, Cheng Q and Yan Y: An enzyme-free surface plasmon resonance biosensor for real-time detecting microRNA based on allosteric effect of mismatched catalytic hairpin assembly. Biosens Bioelectron. 77:435–441. 2016. View Article : Google Scholar | |
|
Zhao RN, Feng Z, Zhao YN, Jia LP, Ma RN, Zhang W, Shang L, Xue QW and Wang HS: A sensitive electrochemical aptasensor for Mucin 1 detection based on catalytic hairpin assembly coupled with PtPdNPs peroxidase-like activity. Talanta. 200:503–510. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu D, Cai Y, Tang L, Han X, Gao F, Cao H, Qi F and Kapranov P: A CRISPR/Cas13-based approach demonstrates biological relevance of vlinc class of long non-coding RNAs in anticancer drug response. Sci Rep. 10:17942020. View Article : Google Scholar : PubMed/NCBI | |
|
Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, et al: Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 356:438–442. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO and Zhang F: SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat Protoc. 14:2986–3012. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Makarova KS, Zhang F and Koonin EV: SnapShot: Class 2 CRISPR-Cas systems. Cell. 168:328–328.e1. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sheedy P and Medarova Z: The fundamental role of miR-10b in metastatic cancer. Am J Cancer Res. 8:1674–1688. 2018.PubMed/NCBI | |
|
Kolenda T, Guglas K, Kopczyńska M, Sobocińska J, Teresiak A, Bliźniak R and Lamperska K: Good or not good: Role of miR-18a in cancer biology. Rep Pract Oncol Radiother. 25:808–819. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Feng YH and Tsao CJ: Emerging role of microRNA-21 in cancer. Biomed Rep. 5:395–402. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Liao Y and Tang L: MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 38:532019. View Article : Google Scholar : PubMed/NCBI | |
|
Mahesh G and Biswas R: MicroRNA-155: A master regulator of inflammation. J Interferon Cytokine Res. 39:321–330. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lam J, van den Bosch M, Wegrzyn J, Parker J, Ibrahim R, Slowski K, Chang L, Martinez-Høyer S, Condorelli G, Boldin M, et al: miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling. Nat Commun. 9:24182018. View Article : Google Scholar | |
|
Cavallari I, Ciccarese F, Sharova E, Urso L, Raimondi V, Silic-Benussi M, D'agostino DM and Ciminale V: The miR-200 family of microRNAs: Fine tuners of epithelial-mesenchymal transition and circulating cancer biomarkers. Cancers (Basel). 13:58742021. View Article : Google Scholar : PubMed/NCBI | |
|
Zaccagnini G, Maimone B, Fuschi P, Maselli D, Spinetti G, Gaetano C and Martelli F: Overexpression of miR-210 and its significance in ischemic tissue damage. Sci Rep. 7:95632017. View Article : Google Scholar : PubMed/NCBI | |
|
Torres-Berrío A, Nouel D, Cuesta S, Parise EM, Restrepo-Lozano JM, Larochelle P, Nestler EJ and Flores C: MiR-218: A molecular switch and potential biomarker of susceptibility to stress. Mol Psychiatry. 25:951–964. 2020. View Article : Google Scholar | |
|
Abak A, Amini S, Sakhinia E and Abhari A: MicroRNA-221: Biogenesis, function and signatures in human cancers. Eur Rev Med Pharmacol Sci. 22:3094–3117. 2018.PubMed/NCBI | |
|
Ahmad W, Gull B, Baby J and Mustafa F: A comprehensive analysis of Northern versus liquid hybridization assays for mRNAs, small RNAs, and miRNAs using a non-radiolabeled approach. Curr Issues Mol Biol. 43:457–484. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gaarz A, Debey-Pascher S, Classen S, Eggle D, Gathof B, Chen J, Fan JB, Voss T, Schultze JL and Staratschek-Jox A: Bead array-based microrna expression profiling of peripheral blood and the impact of different RNA isolation approaches. J Mol Diagn. 12:335–344. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Mehta N: RT-qPCR made simple: A comprehensive guide on the methods, advantages, disadvantages, and everything in between. Undergrad Res Nat Clin Sci Technol J. 6:1–6. 2022. | |
|
Tan M, Liao C, Liang L, Yi X, Zhou Z and Wei G: Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front Cell Infect Microbiol. 12:10190712022. View Article : Google Scholar : PubMed/NCBI | |
|
Pervez MT, Hasnain MJU, Abbas SH, Moustafa MF, Aslam N and Shah SSM: A comprehensive review of performance of next-generation sequencing platforms. Biomed Res Int. 2022:34578062022. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Liao L, Jiang B, Yuan R and Xiang Y: Invader assay-induced catalytic assembly of multi-DNAzyme junctions for sensitive detection of single nucleotide polymorphisms. Anal Chim Acta. 1224:3402252022. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Chen Z, Liu X and Zhou X: Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol Biol. 936:117–127. 2013. View Article : Google Scholar : | |
|
Oh SW, Hwang DW and Lee DS: In vivo monitoring of microRNA biogenesis using reporter gene imaging. Theranostics. 3:1004–1011. 2013. View Article : Google Scholar | |
|
Hwang JY, Kim ST, Kwon J, Lee J, Chun YO, Han JS and Han HS: Ultrasensitive fluorescence monitoring and in vivo live imaging of circulating tumor cell-derived miRNAs using molecular beacon system. ACS Sens. 3:2651–2659. 2018. View Article : Google Scholar : PubMed/NCBI |