You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Jiang C, Shen C, Ni M, Huang L, Hu H, Dai Q, Zhao H and Zhu Z: Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis. 11:1010632023. View Article : Google Scholar : PubMed/NCBI | |
|
Maioru OV, Radoi VE, Coman MC, Hotinceanu IA, Dan A, Eftenoiu AE, Burtavel LM, Bohiltea LC and Severin EM: Developments in genetics: better management of ovarian cancer patients. Int J Mol Sci. 24:159872023. View Article : Google Scholar : PubMed/NCBI | |
|
Ekmann-Gade AW, Høgdall CK, Seibæk L, Noer MC, Fagö-Olsen CL and Schnack TH: Incidence, treatment, and survival trends in older versus younger women with epithelial ovarian cancer from 2005 to 2018: A nationwide Danish study. Gynecol Oncol. 164:120–128. 2022. View Article : Google Scholar | |
|
Mallen A, Todd S, Robertson SE, Kim J, Sehovic M, Wenham RM, Extermann M and Chon HS: Impact of age, comorbidity, and treatment characteristics on survival in older women with advanced high grade epithelial ovarian cancer. Gynecol Oncol. 161:693–699. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lumish MA, Kohn EC and Tew WP: Top advances of the year: Ovarian cancer. Cancer. 130:837–845. 2024. View Article : Google Scholar | |
|
Wang A, Wang Y, Du C, Yang H, Wang Z, Jin C and Hamblin MR: Pyroptosis and the tumor immune microenvironment: A new battlefield in ovarian cancer treatment. Biochim Biophys Acta Rev Cancer. 1879:1890582024. View Article : Google Scholar | |
|
Wong RW and Cheung ANY: Predictive and prognostic biomarkers in female genital tract tumours: An update highlighting their clinical relevance and practical issues. Pathology. 56:214–227. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Liu L, Jin X and Yu Y: Efficacy and safety of mirvetuximab soravtansine in recurrent ovarian cancer with FRa positive expression: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 194:1042302024. View Article : Google Scholar | |
|
Zhang C, Liu X, Jin S, Chen Y and Guo R: Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol Cancer. 21:472022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang N, Chen M, Wu M, Liao Y, Xia Q, Cai Z, He C, Tang Q, Zhou Y, Zhao L, et al: High-adhesion ovarian cancer cell resistance to ferroptosis: The activation of NRF2/FSP1 pathway by junctional adhesion molecule JAM3. Free Radic Biol Med. 228:1–13. 2025. View Article : Google Scholar | |
|
Teng K, Ma H, Gai P, Zhao X and Qi G: SPHK1 enhances olaparib resistance in ovarian cancer through the NFκB/NRF2/ferroptosis pathway. Cell Death Discov. 11:292025. View Article : Google Scholar | |
|
Yao Y, Wang B, Jiang Y, Guo H and Li Y: The mechanisms crosstalk and therapeutic opportunities between ferroptosis and ovary diseases. Front Endocrinol (Lausanne). 14:11940892023. View Article : Google Scholar : PubMed/NCBI | |
|
Kapper C, Oppelt P, Arbeithuber B, Gyunesh AA, Vilusic I, Stelzl P and Rezk-Füreder M: Targeting ferroptosis in ovarian cancer: Novel strategies to overcome chemotherapy resistance. Life Sci. 349:1227202024. View Article : Google Scholar : PubMed/NCBI | |
|
Guo W, Wang W, Lei F, Zheng R, Zhao X, Gu Y, Yang M, Tong Y and Wang Y: Angelica sinensis polysaccharide combined with cisplatin reverses cisplatin resistance of ovarian cancer by inducing ferroptosis via regulating GPX4. Biomed Pharmacother. 175:1166802024. View Article : Google Scholar : PubMed/NCBI | |
|
Ni M, Zhou J, Zhu Z, Xu Q, Yin Z, Wang Y, Zheng Z and Zhao H: Shikonin and cisplatin synergistically overcome cisplatin resistance of ovarian cancer by inducing ferroptosis via upregulation of HMOX1 to promote Fe2+ accumulation. Phytomedicine. 112:1547012023. View Article : Google Scholar | |
|
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Liu J, Wu S, Xiao J and Zhang Z: Ferroptosis: Opening up potential targets for gastric cancer treatment. Mol Cell Biochem. 479:2863–2874. 2024. View Article : Google Scholar | |
|
Tang D, Kroemer G and Kang R: Ferroptosis in hepatocellular carcinoma: From bench to bedside. Hepatology. 80:721–739. 2024. View Article : Google Scholar | |
|
Qiu X, Bi Q, Wu J, Sun Z and Wang W: Role of ferroptosis in fibrosis: From mechanism to potential therapy. Chin Med J (Engl). 137:806–817. 2024. View Article : Google Scholar | |
|
Hushmandi K, Klionsky DJ, Aref AR, Bonyadi M, Reiter RJ, Nabavi N, Salimimoghadam S and Saadat SH: Ferroptosis contributes to the progression of female-specific neoplasms, from breast cancer to gynecological malignancies in a manner regulated by non-coding RNAs: Mechanistic implications. Noncoding RNA Res. 9:1159–1177. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Jia C, Liu W, Zhan W, Chen Y, Lu J, Bao Y, Wang S, Yu C, Zheng L, et al: Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer. J Adv Res. 65:89–104. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Yang H, Wang Y, Yang S, Jiang Q, Tan J, Zhao X and Zi D: STUB1 suppresses paclitaxel resistance in ovarian cancer through mediating HOXB3 ubiquitination to inhibit PARK7 expression. Commun Biol. 7:14392024. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Chen M, Huang D, Li Z, Chen Y, Huang J, Chen Y, Zhou Z and Yu Z: Inhibition of Selenoprotein I promotes ferroptosis and reverses resistance to platinum chemotherapy by impairing Akt phosphorylation in ovarian cancer. MedComm (2020). 5:e700332024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Guo B, Kong H, Yang L, Yan H, Liu J, Zhou Y, An R and Wang F: Decoding the ferroptosis-related gene signatures and immune infiltration patterns in ovarian cancer: Bioinformatic prediction integrated with experimental validation. J Inflamm Res. 17:10333–10346. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li G, Shi S, Tan J, He L, Liu Q, Fang F, Fu H, Zhong M, Mai Z, Sun R, et al: Highly efficient synergistic chemotherapy and magnetic resonance imaging for targeted ovarian cancer therapy using hyaluronic acid-coated coordination polymer nanoparticles. Adv Sci (Weinh). 11:e23094642024. View Article : Google Scholar : PubMed/NCBI | |
|
Hetz C, Chevet E and Oakes SA: Proteostasis control by the unfolded protein response. Nat Cell Biol. 17:829–838. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sims SG, Cisney RN, Lipscomb MM and Meares GP: The role of endoplasmic reticulum stress in astrocytes. Glia. 70:5–19. 2022. View Article : Google Scholar : | |
|
Hu H, Tian M, Ding C and Yu S: The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 9:30832019. View Article : Google Scholar : PubMed/NCBI | |
|
Ren J, Bi Y, Sowers JR, Hetz C and Zhang Y: Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol. 18:499–521. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Oakes SA and Papa FR: The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 10:173–194. 2015. View Article : Google Scholar | |
|
Song M and Cubillos-Ruiz JR: Endoplasmic reticulum stress responses in intratumoral immune cells: Implications for cancer immunotherapy. Trends Immunol. 40:128–141. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yan T, Ma X, Guo L and Lu R: Targeting endoplasmic reticulum stress signaling in ovarian cancer therapy. Cancer Biol Med. 20:748–764. 2023.PubMed/NCBI | |
|
Wang L, Ma X, Zhou L, Luo M, Lu Y, Wang Y, Zheng P, Liu H, Liu X, Liu W and Wei S: Dual-targeting TrxR-EGFR Alkynyl-Au(I) gefitinib complex induces ferroptosis in gefitinib-resistant lung cancer via degradation of GPX4. J Med Chem. 68:5275–5291. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong P, Li L, Feng X, Teng C, Cai W, Zheng W, Wei J, Li X, He Y, Chen B, et al: Neuronal ferroptosis and ferroptosismediated endoplasmic reticulum stress: Implications in cognitive dysfunction induced by chronic intermittent hypoxia in mice. Int Immunopharmacol. 138:1125792024. View Article : Google Scholar | |
|
Liu Z, Nan P, Gong Y, Tian L, Zheng Y and Wu Z: Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy. Biomed Pharmacother. 164:1148972023. View Article : Google Scholar : PubMed/NCBI | |
|
Song W, Zhang W, Yue L and Lin W: Revealing the effects of endoplasmic reticulum stress on ferroptosis by two-channel real-time imaging of pH and viscosity. Anal Chem. 94:6557–6565. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ye R, Mao YM, Fei YR, Shang Y, Zhang T, Zhang ZZ, Liu YL, Li JY, Chen SL and He YB: Targeting ferroptosis for the treatment of female reproductive system disorders. J Mol Med (Berl). 103:381–402. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Muckenthaler MU, Rivella S, Hentze MW and Galy B: A red carpet for iron metabolism. Cell. 168:344–361. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Galy B, Conrad M and Muckenthaler M: Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 25:133–155. 2024. View Article : Google Scholar | |
|
Anderson GJ and Frazer DM: Current understanding of iron homeostasis. Am J Clin Nutr. 106(Suppl 6): 1559S–1566S. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gulec S, Anderson GJ and Collins JF: Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol. 307:G397–G409. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Montalbetti N, Simonin A, Kovacs G and Hediger MA: Mammalian iron transporters: Families SLC11 and SLC40. Mol Aspects Med. 34:270–287. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Wang D, Wu H, Shen H, Lv D, Zhang Y, Lu H, Yang J, Tang Y and Li M: SLC46A1 contributes to hepatic iron metabolism by importing heme in hepatocytes. Metabolism. 110:1543062020. View Article : Google Scholar : PubMed/NCBI | |
|
Mayneris-Perxachs J, Moreno-Navarrete JM and Fernández Real JM: The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol. 18:683–698. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Seyoum Y, Baye K and Humblot C: Iron homeostasis in host and gut bacteria-a complex interrelationship. Gut Microbes. 13:1–19. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Tang C, Wang M, Zhao H and Zhu Y: Ferroptosis as an emerging target in rheumatoid arthritis. Front Immunol. 14:12608392023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kajarabille N and Latunde-Dada GO: Programmed cell-death by ferroptosis: Antioxidants as mitigators. Int J Mol Sci. 20:49682019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Rao J, Liu X, Wang X, Wang C, Fu S and Xiao J: Attenuation of sepsis-induced acute kidney injury by exogenous H2S via inhibition of ferroptosis. Molecules. 28:47702023. View Article : Google Scholar | |
|
Deng M, Tang F, Chang X, Zhang Y, Liu P, Ji X, Zhang Y, Yang R, Jiang J, He J and Miao J: A targetable OSGIN1-AMPK-SLC2A3 axis controls the vulnerability of ovarian cancer to ferroptosis. NPJ Precis Oncol. 9:152025. View Article : Google Scholar | |
|
Torti SV and Torti FM: Iron and cancer: more ore to be mined. Nat Rev Cancer. 13:342–355. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Torti SV and Torti FM: Ironing out cancer. Cancer Res. 71:1511–1514. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Toyokuni S: The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol Int. 66:245–259. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y, Ning G, Xian W, McKeon F, Lynch M, Crum CP, et al: Iron addiction: A novel therapeutic target in ovarian cancer. Oncogene. 36:4089–4099. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Liao X, Jing P, Hu L, Yang Z, Yao Y, Liao C and Zhang S: Linoleic acid-glucosamine hybrid for endogenous iron-activated ferroptosis therapy in high-grade serous ovarian cancer. Mol Pharm. 19:3187–3198. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ and Morrison SJ: Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 527:186–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bauckman K, Haller E, Taran N, Rockfield S, Ruiz-Rivera A and Nanjundan M: Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells. Biochem J. 466:401–413. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Xu X, Wang Y, Guo W, Zhou Y, Lv C, Chen X and Liu K: The significance of the alteration of 8-OHdG in serous ovarian carcinoma. J Ovarian Res. 6:742013. View Article : Google Scholar : PubMed/NCBI | |
|
Valavanidis A, Vlachogianni T and Fiotakis C: 8-Hydroxy-2′-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 27:120–139. 2009.PubMed/NCBI | |
|
Prat J, D'Angelo E and Espinosa I: Ovarian carcinomas: At least five different diseases with distinct histological features and molecular genetics. Hum Pathol. 80:11–27. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shen J, Sheng X, Chang Z, Wu Q, Wang S, Xuan Z, Li D, Wu Y, Shang Y, Kong X, et al: Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulation of p53 localization, stability, and function. Cell Rep. 7:180–193. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Deng Z, Manz DH, Torti SV and Torti FM: Effects of ferroportin-mediated iron depletion in cells representative of different histological subtypes of prostate cancer. Antioxid Redox Signal. 30:1043–1061. 2019. View Article : Google Scholar : | |
|
Hann HW, Stahlhut MW and Blumberg BS: Iron nutrition and tumor growth: Decreased tumor growth in iron-deficient mice. Cancer Res. 48:4168–4170. 1988.PubMed/NCBI | |
|
White S, Taetle R, Seligman PA, Rutherford M and Trowbridge IS: Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: Evidence for synergistic antiproliferative effects. Cancer Res. 50:6295–6301. 1990.PubMed/NCBI | |
|
Sandoval-Acuña C, Torrealba N, Tomkova V, Jadhav SB, Blazkova K, Merta L, Lettlova S, Adamcová MK, Rosel D, Brábek J, et al: Targeting mitochondrial iron metabolism suppresses tumor growth and metastasis by inducing mitochondrial dysfunction and mitophagy. Cancer Res. 81:2289–2303. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Moon EJ, Mello SS, Li CG, Chi JT, Thakkar K, Kirkland JG, Lagory EL, Lee IJ, Diep AN, Miao Y, et al: The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling. Nat Commun. 12:43082021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Du ZW, Xu TM, Wang XJ, Li W, Gao JL, Li J and Zhu H: HIF-1α is a rational target for future ovarian cancer therapies. Front Oncol. 11:7851112021. View Article : Google Scholar | |
|
Benyamin B, Esko T, Ried JS, Radhakrishnan A, Vermeulen SH, Traglia M, Gögele M, Anderson D, Broer L, Podmore C, et al: Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat Commun. 5:49262014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Bao L, Zhang Z and Yi X: Nrf2 induces cisplatin resistance via suppressing the iron export related gene SLC40A1 in ovarian cancer cells. Oncotarget. 8:93502–93515. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Szymonik J, Wala K, Górnicki T, Saczko J, Pencakowski B and Kulbacka J: The impact of iron chelators on the biology of cancer stem cells. Int J Mol Sci. 23:892021. View Article : Google Scholar | |
|
Wang L, Li X, Mu Y, Lu C, Tang S, Lu K, Qiu X, Wei A, Cheng Y and Wei W: The iron chelator desferrioxamine synergizes with chemotherapy for cancer treatment. J Trace Elem Med Biol. 56:131–138. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Greenshields AL, Shepherd TG and Hoskin DW: Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol Carcinog. 56:75–93. 2017. View Article : Google Scholar | |
|
Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Tan KS, Wong WS and Shen HM: Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 289:33425–33441. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Qu W, Li J, Jia B, Song Y, Wang L, Rui T, Li Q and Luo C: Ferristatin II, an iron uptake inhibitor, exerts neuroprotection against traumatic brain injury via suppressing ferroptosis. ACS Chem Neurosci. 13:664–675. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, He F, Hu W, Sun J, Zhao H, Cheng Y, Tang Z, He J, Wang X, Liu T, et al: Bortezomib elevates intracellular free Fe2+ by enhancing NCOA4-mediated ferritinophagy and synergizes with RSL-3 to inhibit multiple myeloma cells. Ann Hematol. 103:3627–3637. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma S, Henson ES, Chen Y and Gibson SB: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI | |
|
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mortensen MS, Ruiz J and Watts JL: Polyunsaturated fatty acids drive lipid peroxidation during ferroptosis. Cells. 12:8042023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Yang X, Zheng S, Chen C, Qi L, Xu X and Zhang D: Research progress on the use of traditional Chinese medicine to treat diseases by regulating ferroptosis. Genes Dis. 12:1014512024. View Article : Google Scholar | |
|
Rodencal J and Dixon SJ: A tale of two lipids: Lipid unsaturation commands ferroptosis sensitivity. Proteomics. 23:e21003082023. View Article : Google Scholar | |
|
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar | |
|
Forcina GC and Dixon SJ: GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 19:e18003112019. View Article : Google Scholar : PubMed/NCBI | |
|
Yin H, Xu L and Porter NA: Free radical lipid peroxidation: Mechanisms and analysis. Chem Rev. 111:5944–5972. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar | |
|
Zheng J and Conrad M: The metabolic underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Duan Z, Deng L, Li L, Li Q, Qu J, Li X and Liu R: Cell membrane-targeting type I/II photodynamic therapy combination with FSP1 inhibition for ferroptosis-enhanced photodynamic immunotherapy. Adv Healthc Mater. 13:e23044362024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Ji H, Hao Y, Jia D, Ma H, Song C, Qi H, Li Z and Zhang C: Illumination of hydroxyl radical generated in cells during ferroptosis, Arabidopsis thaliana, and mice using a new turn-on near-infrared fluorescence probe. Anal Chem. 96:20189–20196. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun M, Chen Q, Ren Y, Zhuo Y, Xu S, Rao H, Wu D, Feng B and Wang Y: CoNiCoNC tumor therapy by two-ways producing H2O2 ferroptosis. J to aggravate energy metabolism, chemokinetics, and Colloid Interface Sci. 678:925–937. 2025. View Article : Google Scholar | |
|
Liang KA, Chih HY, Liu IJ, Yeh NT, Hsu TC, Chin HY, Tzang BS and Chiang WH: Tumor-targeted delivery of hyaluronic acid/polydopamine-coated Fe2+-doped nano-scaled metal-organic frameworks with doxorubicin payload for glutathione depletion-amplified chemodynamic-chemo cancer therapy. J Colloid Interface Sci. 677:400–415. 2025. View Article : Google Scholar | |
|
Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Foret MK, Lincoln R, Do Carmo S, Cuello AC and Cosa G: Connecting the 'Dots': From free radical lipid autoxidation to cell pathology and disease. Chem Rev. 120:12757–12787. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, Jadhav S, Bolevich SB, Kozlov AV, Vladimirov YA, et al: Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic Biol Med. 133:153–161. 2019. View Article : Google Scholar : | |
|
Kuang F, Liu J, Xie Y, Tang D and Kang R: MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem Biol. 28:765–775.e5. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ou Y, Wang SJ, Li D, Chu B and Gu W: Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA. 113:E6806–E6812. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Liu Q, Chang M, Pan Y, Yahaya BH, Liu Y and Lin J: Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis. Cell Death Dis. 14:3402023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu R, Wang W and Zhang W: Ferroptosis and the bidirectional regulatory factor p53. Cell Death Discov. 9:1972023. View Article : Google Scholar : PubMed/NCBI | |
|
Kuang F, Liu J, Tang D and Kang R: Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 8:5865782020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Lu S, Wu LL, Yang L, Yang L and Wang J: The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis. 14:5192023. View Article : Google Scholar : PubMed/NCBI | |
|
Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, et al: The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 18:522–555. 2013. View Article : Google Scholar : | |
|
Hu S, Chu Y, Zhou X and Wang X: Recent advances of ferroptosis in tumor: From biological function to clinical application. Biomed Pharmacother. 166:1154192023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Zhang M and Chao H: Significance of glutathione peroxidase 4 and intracellular iron level in ovarian cancer cells-'utilization' of ferroptosis mechanism. Inflamm Res. 70:1177–1189. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Niu X, Chen R, He W, Chen D, Kang R and Tang D: Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology. 64:488–500. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Guan J, Lo M, Dockery P, Mahon S, Karp CM, Buckley AR, Lam S, Gout PW and Wang YZ: The xc-cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: Use of sulfasalazine. Cancer Chemother Pharmacol. 64:463–472. 2009. View Article : Google Scholar | |
|
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan J, Wang J, Song M, Zhao Y, Shi Y and Zhao L: Brain-targeting biomimetic disguised manganese dioxide nanoparticles via hybridization of tumor cell membrane and bacteria vesicles for synergistic chemotherapy/chemodynamic therapy of glioma. J Colloid Interface Sci. 676:378–395. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Y, Liu X, Chen Y, Tang Q, He C, Ding X, Hu J, Cai Z, Li X, Qiao H and Zou Z: Targeting PAX8 sensitizes ovarian cancer cells to ferroptosis by inhibiting glutathione synthesis. Apoptosis. 29:1499–1514. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG and Gao LC: System Xc -/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol. 13:9102922022. View Article : Google Scholar | |
|
Okuno S, Sato H, Kuriyama-Matsumura K, Tamba M, Wang H, Sohda S, Hamada H, Yoshikawa H, Kondo T and Bannai S: Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br J Cancer. 88:951–956. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Kryczek I, Dostál L, Lin H, Tan L, Zhao L, Lu F, Wei S, Maj T, Peng D, et al: Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell. 165:1092–1105. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tesfay L, Paul BT, Konstorum A, Deng Z, Cox AO, Lee J, Furdui CM, Hegde P, Torti FM and Torti SV: Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. 79:5355–5366. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ and Stockwell BR: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 12:497–503. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang N, Pan X, Zhou X, Liu Z, Yang J, Zhang J, Jia Z and Shen Q: Biomimetic nanoarchitectonics with chitosan nanogels for collaborative induction of ferroptosis and anticancer immunity for cancer therapy. Adv Healthc Mater. 13:e23027522024. View Article : Google Scholar | |
|
Liu MR, Shi C, Song QY, Kang MJ, Jiang X, Liu H and Pei DS: Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma. Hepatol Commun. 7:e02462023. View Article : Google Scholar : PubMed/NCBI | |
|
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ge A, Xiang W, Li Y, Zhao D, Chen J, Daga P, Dai CC, Yang K, Yan Y, Hao M, et al: Broadening horizons: The multifaceted role of ferroptosis in breast cancer. Front Immunol. 15:14557412024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Liu J, Yu W, Shao J, Bao Y, Jin M, Huang Q and Huang G: Gambogenic acid suppresses malignant progression of non-small cell lung cancer via GCH1-mediated ferroptosis. Pharmaceuticals (Basel). 18:3742025. View Article : Google Scholar : PubMed/NCBI | |
|
Werner ER, Blau N and Thöny B: Tetrahydrobiopterin: Biochemistry and pathophysiology. Biochem J. 438:397–414. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
NaveenKumar SK, Hemshekhar M, Kemparaju K and Girish KS: Hemin-induced platelet activation and ferroptosis is mediated through ROS-driven proteasomal activity and inflammasome activation: Protection by melatonin. Biochim Biophys Acta Mol Basis Dis. 1865:2303–2316. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Homma T, Kobayashi S, Conrad M, Konno H, Yokoyama C and Fujii J: Nitric oxide protects against ferroptosis by aborting the lipid peroxidation chain reaction. Nitric Oxide. 115:34–43. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang L, Zheng H, Lyu Q, Hayashi S, Sato K, Sekido Y, Nakamura K, Tanaka H, Ishikawa K, Kajiyama H, et al: Lysosomal nitric oxide determines transition from autophagy to ferroptosis after exposure to plasma-activated Ringer's lactate. Redox Biol. 43:1019892021. View Article : Google Scholar : PubMed/NCBI | |
|
Deng G, Li Y, Ma S, Gao Z, Zeng T, Chen L, Ye H, Yang M, Shi H, Yao X, et al: Caveolin-1 dictates ferroptosis in the execution of acute immune-mediated hepatic damage by attenuating nitrogen stress. Free Radic Biol Med. 148:151–161. 2020. View Article : Google Scholar | |
|
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Vasan K, Werner M and Chandel NS: Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 32:341–352. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Wang K, Jin Y and Sheng X: Endoplasmic reticulum proteostasis control and gastric cancer. Cancer Lett. 449:263–271. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hetz C: The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 13:89–102. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kopp MC, Larburu N, Durairaj V, Adams CJ and Ali MMU: UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat Struct Mol Biol. 26:1053–1062. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tabas I and Ron D: Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 13:184–190. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Liang FX and Wang X: A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol Cell. 55:758–770. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Belyy V, Zuazo-Gaztelu I, Alamban A, Ashkenazi A and Walter P: Endoplasmic reticulum stress activates human IRE1α through reversible assembly of inactive dimers into small oligomers. Elife. 11:e743422022. View Article : Google Scholar | |
|
Grandjean JMD, Madhavan A, Cech L, Seguinot BO, Paxman RJ, Smith E, Scampavia L, Powers ET, Cooley CB, Plate L, et al: Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat Chem Biol. 16:1052–1061. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mahdizadeh SJ, Stier M, Carlesso A, Lamy A, Thomas M and Eriksson LA: Multiscale in silico study of the mechanism of activation of the RtcB ligase by the PTP1B phosphatase. J Chem Inf Model. 64:905–917. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Walter P and Ron D: The unfolded protein response: From stress pathway to homeostatic regulation. Science. 334:1081–1086. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Choy KW, Murugan D and Mustafa MR: Natural products targeting ER stress pathway for the treatment of cardiovascular diseases. Pharmacol Res. 132:119–129. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J and Yao S: JNK-Bcl-2/Bcl-xL-Bax/Bak pathway mediates the crosstalk between matrine-induced autophagy and apoptosis via interplay with beclin 1. Int J Mol Sci. 16:25744–25758. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Maurel M, Chevet E, Tavernier J and Gerlo S: Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 39:245–254. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zundell JA, Fukumoto T, Lin J, Fatkhudinov N, Nacarelli T, Kossenkov AV, Liu Q, Cassel J, Hu CA, Wu S and Zhang R: Targeting the IRE1α/XBP1 endoplasmic reticulum stress response pathway in ARID1A-mutant ovarian cancers. Cancer Res. 81:5325–5335. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Song M, Sandoval TA, Chae CS, Chopra S, Tan C, Rutkowski MR, Raundhal M, Chaurio RA, Payne KK, Konrad C, et al: IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 562:423–428. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dong YF, Zhang J, Zhou JH, Xiao YL, Pei WJ and Liu HP: Mitochondrial-associated endoplasmic reticulum membrane interference in ovarian cancer (Review). Oncol Rep. 52:1122024. View Article : Google Scholar | |
|
Cubillos-Ruiz JR, Bettigole SE and Glimcher LH: Molecular pathways: Immunosuppressive roles of IRE1α-XBP1 signaling in dendritic cells of the tumor microenvironment. Clin Cancer Res. 22:2121–2126. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lin J, Liu H, Fukumoto T, Zundell J, Yan Q, Tang CA, Wu S, Zhou W, Guo D, Karakashev S, et al: Targeting the IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nat Commun. 12:53212021. View Article : Google Scholar | |
|
Harding HP, Zhang Y and Ron D: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 397:271–274. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M and Ron D: Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 6:1099–1108. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Jackson RJ, Hellen CUT and Pestova TV: The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 11:113–127. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S and Kaufman RJ: Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 7:1165–1176. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Giampietri C, Petrungaro S, Conti S, Facchiano A, Filippini A and Ziparo E: Cancer microenvironment and endoplasmic reticulum stress response. Mediators Inflamm. 2015:4172812015. View Article : Google Scholar : PubMed/NCBI | |
|
Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, et al: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 11:619–633. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ and Diehl JA: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 23:7198–7209. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Dan W, Fan Y, Wang Y, Hou T, Wei Y, Liu B, Li M, Chen J, Fang Q, Que T, et al: The tumor suppressor TPD52-governed endoplasmic reticulum stress is modulated by APCCdc20. Adv Sci (Weinh). 11:e24054412024. View Article : Google Scholar | |
|
Wiseman RL, Mesgarzadeh JS and Hendershot LM: Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell. 82:1477–1491. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Park SJ, Yoon BH, Kim SK and Kim SY: GENT2: An updated gene expression database for normal and tumor tissues. BMC Med Genomics. 12(Suppl 5): S1012019. View Article : Google Scholar | |
|
Cai Y, Arikkath J, Yang L, Guo ML, Periyasamy P and Buch S: Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy. 12:225–244. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Meng J, Liu K, Shao Y, Feng X, Ji Z, Chang B, Wang Y, Xu L and Yang G: ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis. 11:1372020. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu L, Liu H, Chen S, Wu Y and Yan J: Ferroptosis contributed to endoplasmic reticulum stress in preterm birth by targeting LHX1 and IRE-1. Cell Signal. 132:1117772025. View Article : Google Scholar : PubMed/NCBI | |
|
Song T, Li J, Xia Y, Hou S, Zhang X and Wang Y: 1,25-D3 ameliorates ischemic brain injury by alleviating endoplasmic reticulum stress and ferroptosis: Involvement of vitamin D receptor and p53 signaling. Cell Signal. 122:1113312024. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng T, Zhou Y, Yu Y, Wang JW, Wu Y, Wang X, Zhu L, Zhou LM and Wan LH: rmMANF prevents sepsis-associated lung injury via inhibiting endoplasmic reticulum stressinduced ferroptosis in mice. Int Immunopharmacol. 114:1096082023. View Article : Google Scholar | |
|
Chen Y, Li H, Liu J, Ni J, Deng Q, He H, Wu P, Wan Y, Seeram NP, Liu C, et al: Cytotoxicity of natural and synthetic cannabinoids and their synergistic antiproliferative effects with cisplatin in human ovarian cancer cells. Front Pharmacol. 15:14961312024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Liu M, Li GX, Zhang L, Ding KY, Li SQ, Gao BQ, Chen P, Choe HC, Xia LY, et al: A herbal pair of Scutellaria barbata D. Don and Scleromitrion diffusum (Willd.) R.J. Wang induced ferroptosis in ovarian cancer A2780 cells via inducing heme catabolism and ferritinophagy. J Integr Med. 22:665–682. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Li J, Xu J, Long Y, Wang Y, Liu X, Hu J, Wei Q, Luo Q, Luo F, et al: m6A-driven NAT10 translation facilitates fatty acid metabolic rewiring to suppress ferroptosis and promote ovarian tumorigenesis through enhancing ACOT7 mRNA acetylation. Oncogene. 43:3498–3516. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Furutake Y, Yamaguchi K, Yamanoi K, Kitamura S, Takamatsu S, Taki M, Ukita M, Hosoe Y, Murakami R, Abiko K, et al: YAP1 Suppression by ZDHHC7 is associated with ferroptosis resistance and poor prognosis in ovarian clear cell carcinoma. Mol Cancer Ther. 23:1652–1665. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Han Y, Fu L, Kong Y, Jiang C, Huang L and Zhang H: STEAP3 affects ovarian cancer progression by regulating ferroptosis through the p53/SLC7A11 pathway. Mediators Inflamm. 2024:40485272024. View Article : Google Scholar : PubMed/NCBI | |
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH and Lee KB: Nanotechnology approaches for prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors. Small. 20:e23007442024. | |
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y and You J: The application of nanoparticle-based imaging and phototherapy for female reproductive organs diseases. Small. 20:e22076942024. | |
|
Lee J, Jang S, Im J, Han Y, Kim S, Jo H, Wang W, Cho U, Kim SI, Seol A, et al: Stearoyl-CoA desaturase 1 inhibition induces ER stress-mediated apoptosis in ovarian cancer cells. J Ovarian Res. 17:732024. View Article : Google Scholar : PubMed/NCBI | |
|
Yan T, Ma X, Zhou K, Cao J, Tian Y, Zheng H, Tong Y, Xie S, Wang Y, Guo L and Lu R: A novel CSN5/CRT O-GlcNAc/ER stress regulatory axis in platinum resistance of epithelial ovarian cancer. Int J Biol Sci. 20:1279–1296. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kim TW and Lee HG: 6-Shogaol overcomes gefitinib resistance via ER stress in ovarian cancer cells. Int J Mol Sci. 24:26392023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M and Wang Y, Xu S, Huang S, Wu M, Chen G and Wang Y: Endoplasmic reticulum stress-related ten-biomarker risk classifier for survival evaluation in epithelial ovarian cancer and TRPM2: A potential therapeutic target of ovarian cancer. Int J Mol Sci. 24:140102023. View Article : Google Scholar : PubMed/NCBI | |
|
Ma X, Zhou W, Zhang R, Zhang C, Yan J, Feng J, Rosenholm JM, Shi T, Shen X and Zhang H: Minimally invasive injection of biomimetic Nano@Microgel for in situ ovarian cancer treatment through enhanced photodynamic reactions and photothermal combined therapy. Mater Today Bio. 20:1006632023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Guo J, Yang N, Huang Y, Hu T and Rao C: Endoplasmic reticulum stress-mediated cell death in liver injury. Cell Death Dis. 13:10512022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng C, Yuan Y, Yuan F and Li X: Acute kidney injury: Exploring endoplasmic reticulum stress-mediated cell death. Front Pharmacol. 15:13087332024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Xu H, Wu W, Huang H, Zhang C, Tang W, Tang Q and Bi F: Ferroptosis signaling promotes the release of misfolded proteins via exosomes to rescue ER stress in hepatocellular carcinoma. Free Radic Biol Med. 202:110–120. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li FJ, Abudureyimu M, Zhang ZH, Tao J, Ceylan AF, Lin J, Yu W, Reiter RJ, Ashrafizadeh M, Guo J and Ren J: Inhibition of ER stress using tauroursodeoxycholic acid rescues obesity-evoked cardiac remodeling and contractile anomalies through regulation of ferroptosis. Chem Biol Interact. 398:1111042024. View Article : Google Scholar : PubMed/NCBI | |
|
Han N, Yang ZY, Xie ZX, Xu HZ, Yu TT, Li QR, Li LG, Peng XC, Yang XX, Hu J, et al: Dihydroartemisinin elicits immunogenic death through ferroptosis-triggered ER stress and DNA damage for lung cancer immunotherapy. Phytomedicine. 112:1546822023. View Article : Google Scholar : PubMed/NCBI | |
|
Han Y, Hao G, Han S, Zhu T, Dong Y, Chen L, Yang X, Li X, Jin H, Liang G, et al: Polydatin ameliorates early brain injury after subarachnoid hemorrhage through up-regulating SIRT1 to suppress endoplasmic reticulum stress. Front Pharmacol. 15:14502382024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Xu F, Liu H, Shen Y, Zhang J, Hu L and Zhu L: Suppressing endoplasmic reticulum stress alleviates LPS-induced acute lung injury via inhibiting inflammation and ferroptosis. Inflammation. 47:1067–1082. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ding H, Xiang Y, Zhu Q, Wu H, Xu T, Huang Z and Ge H: Endoplasmic reticulum stress-mediated ferroptosis in granulosa cells contributes to follicular dysfunction of polycystic ovary syndrome driven by hyperandrogenism. Reprod Biomed Online. 49:1040782024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang D, Guo Y, Wang T, Wang L, Yan Y, Xia L, Bam R, Yang Z, Lee H, Iwawaki T, et al: IRE1α determines ferroptosis sensitivity through regulation of glutathione synthesis. Nat Commun. 15:41142024. View Article : Google Scholar | |
|
Guan Q, Wang Z, Hu K, Cao J, Dong Y and Chen Y: Melatonin ameliorates hepatic ferroptosis in NAFLD by inhibiting ER stress via the MT2/cAMP/PKA/IRE1 signaling pathway. Int J Biol Sci. 19:3937–3950. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Shen P, Feng L, Hao H, He Y, Fan G, Liu Z, Zhu K, Wang Y, Zhang N, et al: Cadmium induces liver dysfunction and ferroptosis through the endoplasmic stress-ferritinophagy axis. Ecotoxicol Environ Saf. 245:1141232022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao C, Yu D, He Z, Bao L, Feng L, Chen L, Liu Z, Hu X, Zhang N, Wang T and Fu Y: Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells. Free Radic Biol Med. 175:236–248. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu M, Tao J, Yang Y, Tan S, Liu H, Jiang J, Zheng F and Wu B: Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis. Cell Death Dis. 11:862020. View Article : Google Scholar : PubMed/NCBI | |
|
Thulasinathan B, Suvilesh KN, Maram S, Grossmann E, Ghouri Y, Teixeiro EP, Chan J, Kaif JT and Rachagani S: The impact of gut microbial short-chain fatty acids on colorectal cancer development and prevention. Gut Microbes. 17:24837802025. View Article : Google Scholar : PubMed/NCBI | |
|
Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, Yang X, Fei J, Hao X, Zhao Y, et al: Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci. 17:2703–2717. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao R, Lv Y, Feng T, Zhang R, Ge L, Pan J, Han B, Song G and Wang L: ATF6α promotes prostate cancer progression by enhancing PLA2G4A-mediated arachidonic acid metabolism and protecting tumor cells against ferroptosis. Prostate. 82:617–629. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tak J, Kim YS, Kim TH, Park GC, Hwang S and Kim SG: Gα12 overexpression in hepatocytes by ER stress exacerbates acute liver injury via ROCK1-mediated miR-15a and ALOX12 dysregulation. Theranostics. 12:1570–1588. 2022. View Article : Google Scholar : | |
|
Ji X, Chen Z, Lin W, Wu Q, Wu Y, Hong Y, Tong H, Wang C and Zhang Y: Esculin induces endoplasmic reticulum stress and drives apoptosis and ferroptosis in colorectal cancer via PERK regulating eIF2α/CHOP and Nrf2/HO-1 cascades. J Ethnopharmacol. 328:1181392024. View Article : Google Scholar | |
|
Guo C, Zhao W, Wang W, Yao Z, Chen W and Feng X: Study on the antitumor mechanism of tanshinone IIA in vivo and in vitro through the regulation of PERK-ATF4-HSPA5 pathway-mediated ferroptosis. Molecules. 29:15572024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Zhao L, Zhang X, Ying K, Zhou R, Cai W, Wu X, Jiang H, Xu Q, Miao D, et al: Salidroside ameliorates acetaminophen-induced acute liver injury through the inhibition of endoplasmic reticulum stress-mediated ferroptosis by activating the AMPK/SIRT1 pathway. Ecotoxicol Environ Saf. 262:1153312023.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Mi Y, Zhang X, Ma Q, Song Y, Zhang L, Wang D, Xing J, Hou B, Li H, et al: Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res. 38:4022019. View Article : Google Scholar : PubMed/NCBI | |
|
Kuang H, Sun X, Liu Y, Tang M, Wei Y, Shi Y, Li R, Xiao G, Kang J, Wang F, et al: Palmitic acid-induced ferroptosis via CD36 activates ER stress to break calcium-iron balance in colon cancer cells. FEBS J. 290:3664–3687. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fu F, Wang W, Wu L, Wang W, Huang Z, Huang Y, Wu C and Pan X: Inhalable biomineralized liposomes for cyclic Ca2+-burst-centered endoplasmic reticulum stress enhanced lung cancer ferroptosis therapy. ACS Nano. 17:5486–5502. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY and Savaskan N: ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. 36:5593–5608. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Gao Y, Zhang X, Guo H and Gao H: Nanoparticles in precision medicine for ovarian cancer: From chemotherapy to immunotherapy. Int J Pharm. 591:1199862020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu M and Zhou S: Harnessing tumor immunogenomics: Tumor neoantigens in ovarian cancer and beyond. Biochim Biophys Acta Rev Cancer. 1878:1890172023. View Article : Google Scholar : PubMed/NCBI | |
|
Dahlmanns M, Yakubov E and Dahlmanns JK: Genetic profiles of ferroptosis in malignant brain tumors and off-target effects of ferroptosis induction. Front Oncol. 11:7830672021. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Su J, Lan B, Gao Y and Zhao J: Targeting off-target effects: Endoplasmic reticulum stress and autophagy as effective strategies to enhance temozolomide treatment. Onco Targets Ther. 12:1857–1865. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sassetti E, Clausen MH and Laraia L: Small-molecule inhibitors of reactive oxygen species production. J Med Chem. 64:5252–5275. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu YS, Wu J and Zhi F: Advances in conjugate drug delivery system: Opportunities and challenges. Int J Pharm. 667:1248672024. View Article : Google Scholar : PubMed/NCBI | |
|
Agrawal SS, Baliga V and Londhe VY: Liposomal formulations: A recent update. Pharmaceutics. 17:362024. View Article : Google Scholar | |
|
Liu Z, Xiang C, Zhao X, Aizawa T, Niu R, Zhao J, Guo F, Li Y, Luo W, Liu W and Gu R: Regulation of dynamic spatiotemporal inflammation by nanomaterials in spinal cord injury. J Nanobiotechnology. 22:7672024. View Article : Google Scholar : PubMed/NCBI | |
|
Tang S and Chen L: The recent advancements of ferroptosis of gynecological cancer. Cancer Cell Int. 24:3512024. View Article : Google Scholar : PubMed/NCBI | |
|
Ying Y, Zhang J, Ren D, Zhao P, Zhang W and Lu X: ERP29 regulates the proliferation of endometrial carcinoma via M6A modification. Life Sci. 354:1229762024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Lu L, Chen X and Yin Q: Natural compounds targeting ferroptosis in ovarian cancer: Research progress and application potential. Pharmacol Res. 215:1077292025. View Article : Google Scholar : PubMed/NCBI | |
|
Jin N, Qian YY, Jiao XF, Wang Z, Li X, Pan W, Jiang JK, Huang P, Wang SY, Jin P, et al: Niraparib restricts intraperitoneal metastases of ovarian cancer by eliciting CD36-dependent ferroptosis. Redox Biol. 80:1035282025. View Article : Google Scholar : PubMed/NCBI | |
|
Miglietta S, Sollazzo M, Gherardi I, Milioni S, Cavina B, Marchio L, De Luise M, Coada CA, Fiorillo M, Perrone AM, et al: Mitochondrial chaperonin DNAJC15 promotes vulnerability to ferroptosis of chemoresistant ovarian cancer cells. Open Biol. 15:2401512025. View Article : Google Scholar : PubMed/NCBI | |
|
Yin ZY, He SM, Zhang XY, Yu XC, Sheng KX, Fu T, Jiang YX, Xu L, Hu BX, Zhang JB, et al: Apolipoprotein B100 acts as a tumor suppressor in ovarian cancer via lipid/ER stress axis-induced blockade of autophagy. Acta Pharmacol Sin. Jan 29–2025.Epub ahead of print. View Article : Google Scholar | |
|
Li D, Geng D and Wang M: Advances in natural products modulating autophagy influenced by cellular stress conditions and their anticancer roles in the treatment of ovarian cancer. FASEB J. 38:e700752024. View Article : Google Scholar : PubMed/NCBI | |
|
Chan DW, Yung MM, Chan YS, Xuan Y, Yang H, Xu D, Zhan JB, Chan KK, Ng TB and Ngan HY: MAP30 protein from Momordica charantia is therapeutic and has synergic activity with cisplatin against ovarian cancer in vivo by altering metabolism and inducing ferroptosis. Pharmacol Res. 161:1051572020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang GH, Kai JY, Chen MM, Ma Q, Zhong AL, Xie SH, Zheng H, Wang YC, Tong Y, Tian Y, et al: Downregulation of XBP1 decreases serous ovarian cancer cell viability and enhances sensitivity to oxidative stress by increasing intracellular ROS levels. Oncol Lett. 18:4194–4202. 2019.PubMed/NCBI | |
|
Janczar S, Nautiyal J, Xiao Y, Curry E, Sun M, Zanini E, Paige AJ and Gabra H: WWOX sensitises ovarian cancer cells to paclitaxel via modulation of the ER stress response. Cell Death Dis. 8:e29552017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Q, Wang Y, Yue T, Wei H, Li S and Dong B: Fluorescence imaging of intracellular glutathione levels in the endoplasmic reticulum to reveal the inhibition effect of rutin on ferroptosis. Anal Chem. January 9–2023.Epub ahead of print. | |
|
Huang M, Wang Y, Wu X and Li W: Crosstalk between endoplasmic reticulum stress and ferroptosis in liver diseases. Front Biosci (Landmark Ed). 29:2212024. View Article : Google Scholar : PubMed/NCBI | |
|
Ao Q, Hu H and Huang Y: Ferroptosis and endoplasmic reticulum stress in rheumatoid arthritis. Front Immunol. 15:14388032024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Li M, Feng S, Xu Q, Zhang X, Xiong X and Gu L: Ferroptosis and endoplasmic reticulum stress in ischemic stroke. Neural Regen Res. 19:611–618. 2024. View Article : Google Scholar | |
|
Zhang YG, Yan XF, Liu F, Hao WZ, Cai Y, Liu Y, Liu LL and Li XJ: Astragalus polysaccharides induces ferroptosis in ovarian adenocarcinoma cells through Nrf2/SLC7A11/GPX4 signaling pathway. Zhongguo Zhong Yao Za Zhi. 49:6459–6467. 2024.In Chinese. |