You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Nguyen HX and Bursac N: Ion channel engineering for modulation and de novo generation of electrical excitability. Curr Opin Biotechnol. 58:100–107. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Capatina AL, Lagos D and Brackenbury WJ: Targeting ion channels for cancer treatment: Current progress and future challenges. Rev Physiol Biochem Pharmacol. 183:1–43. 2022. | |
|
Bulk E, Todesca LM and Schwab A: Ion channels in lung cancer. Rev Physiol Biochem Pharmacol. 181:57–79. 2021. View Article : Google Scholar | |
|
Xiao F, Yu Q, Li J, Johansson ME, Singh AK, Xia W, Riederer B, Engelhardt R, Montrose M, Soleimani M, et al: Slc26a3 deficiency is associated with loss of colonic HCO3 (-) secretion, absence of a firm mucus layer and barrier impairment in mice. Acta Physiol (Oxf). 211:161–175. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zahn A, Moehle C, Langmann T, Ehehalt R, Autschbach F, Stremmel W and Schmitz G: Aquaporin-8 expression is reduced in ileum and induced in colon of patients with ulcerative colitis. World J Gastroenterol. 13:1687–1695. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Zhang B, Li J, Wang C, Chen H and Ghishan FK: Impaired mucin synthesis and bicarbonate secretion in the colon of NHE8 knockout mice. Am J Physiol Gastrointest Liver Physiol. 303:G335–G343. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Singh AK, Sjöblom M, Zheng W, Krabbenhöft A, Riederer B, Rausch B, Manns MP, Soleimani M and Seidler U: CFTR and its key role in in vivo resting and luminal acid-induced duodenal HCO3-secretion. Acta Physiol (Oxf). 193:357–365. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Schultheis PJ, Clarke LL, Meneton P, Harline M, Boivin GP, Stemmermann G, Duffy JJ, Doetschman T, Miller ML and Shull GE: Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion. J Clin Invest. 101:1243–1253. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Wang A, Li J, Zhao Y, Johansson ME, Xu H and Ghishan FK: Loss of NHE8 expression impairs intestinal mucosal integrity. Am J Physiol Gastrointest Liver Physiol. 309:G855–G864. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Boivin GP, Schultheis PJ, Shull GE and Stemmermann GN: Variant form of diffuse corporal gastritis in NHE2 knockout mice. Comp Med. 50:511–515. 2000.PubMed/NCBI | |
|
Ding X, Li D, Li M, Wang H, He Q, Wang Y, Yu H, Tian D and Yu Q: SLC26A3 (DRA) prevents TNF-alpha-induced barrier dysfunction and dextran sulfate sodium-induced acute colitis. Lab Invest. 98:462–476. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Xu Y, Chen Z, Xu Z and Xu H: Knockdown of aquaporin 3 is involved in intestinal barrier integrity impairment. FEBS Lett. 585:3113–3119. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Moeser AJ, Nighot PK, Ryan KA, Simpson JE, Clarke LL and Blikslager AT: Mice lacking the Na+/H+ exchanger 2 have impaired recovery of intestinal barrier function. Am J Physiol Gastrointest Liver Physiol. 295:G791–G797. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar A, Priyamvada S, Ge Y, Jayawardena D, Singhal M, Anbazhagan AN, Chatterjee I, Dayal A, Patel M, Zadeh K, et al: A novel role of SLC26A3 in the maintenance of intestinal epithelial barrier integrity. Gastroenterology. 160:1240–1255.e3. 2021. View Article : Google Scholar | |
|
Doi K, Nagao T, Kawakubo K, Ibayashi S, Aoyagi K, Yano Y, Yamamoto C, Kanamoto K, Iida M, Sadoshima S and Fujishima M: Calcitonin gene-related peptide affords gastric mucosal protection by activating potassium channel in Wistar rat. Gastroenterology. 114:71–76. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Deng Z, Zhao Y, Ma Z, Zhang M, Wang H, Yi Z, Tuo B, Li T and Liu X: Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci. 78:8109–8125. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pallagi P, Hegyi P and Rakonczay Z Jr: The physiology and pathophysiology of pancreatic ductal secretion: The background for clinicians. Pancreas. 44:1211–1233. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ishiguro H, Yamamoto A, Nakakuki M, Yi L, Ishiguro M, Yamaguchi M, Kondo S and Mochimaru Y: Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci. 74:1–18. 2012.PubMed/NCBI | |
|
Novak I, Haanes KA and Wang J: Acid-base transport in pancreas-new challenges. Front Physiol. 4:3802013. View Article : Google Scholar | |
|
Schnipper J, Dhennin-Duthille I, Ahidouch A and Ouadid-Ahidouch H: Ion channel signature in healthy pancreas and pancreatic ductal adenocarcinoma. Front Pharmacol. 11:5689932020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Zhang L, Zheng L and Tuo B: Role of Ca(2+) channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review). Int J Mol Med. 50:1132022. View Article : Google Scholar : PubMed/NCBI | |
|
Stock C: How dysregulated ion channels and transporters take a hand in esophageal, liver, and colorectal cancer. Rev Physiol Biochem Pharmacol. 181:129–222. 2021. View Article : Google Scholar | |
|
Li W, Wang C, Peng X, Zhang H, Huang H and Liu H: CFTR inhibits the invasion and growth of esophageal cancer cells by inhibiting the expression of NF-κB. Cell Biol Int. 42:1680–1687. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Goldman A, Chen H, Khan MR, Roesly H, Hill KA, Shahidullah M, Mandal A, Delamere NA and Dvorak K: The Na+/H+ exchanger controls deoxycholic acid-induced apoptosis by a H+-activated, Na+-dependent ionic shift in esophageal cells. PLoS One. 6:e238352011. View Article : Google Scholar | |
|
Boult J, Roberts K, Brookes MJ, Hughes S, Bury JP, Cross SS, Anderson GJ, Spychal R, Iqbal T and Tselepis C: Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin Cancer Res. 14:379–387. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Gao N, Yang F, Chen S, Wan H, Zhao X and Dong H: The role of TRPV1 ion channels in the suppression of gastric cancer development. Exp Clin Cancer Res. 39:2062020. View Article : Google Scholar | |
|
Chang Y, Roy S and Pan Z: Store-operated calcium channels as drug target in gastroesophageal cancers. Front Pharmacol. 12:6687302021. View Article : Google Scholar : PubMed/NCBI | |
|
Csekő K, Pécsi D, Kajtár B, Hegedűs I, Bollenbach A, Tsikas D, Szabó IL, Szabó S and Helyes Z: Upregulation of the TRPA1 Ion channel in the gastric mucosa after iodoacetamide-induced gastritis in rats: A potential new therapeutic target. Int J Mol Sci. 21:55912020. View Article : Google Scholar | |
|
Capurro MI, Greenfield LK, Prashar A, Xia S, Abdullah M, Wong H, Zhong XZ, Bertaux-Skeirik N, Chakrabarti J, Siddiqui I, et al: VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1. Nat Microbiol. 4:1411–1423. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Zhang Y, Jiang Y, Dou X, Li S, Chai H, Qian Q and Wang M: Upregulated SOCC and IP3R calcium channels and subsequent elevated cytoplasmic calcium signaling promote nonalcoholic fatty liver disease by inhibiting autophagy. Mol Cell Biochem. 476:3163–3175. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Swain SM, Romac JM, Shahid RA, Pandol SJ, Liedtke W, Vigna SR and Liddle RA: TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. J Clin Invest. 130:2527–2541. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin R, Bao X, Wang H, Zhu S, Liu Z, Chen Q, Ai K and Shi B: TRPM2 promotes pancreatic cancer by PKC/MAPK pathway. Cell Death Dis. 12:5852021. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Han J, Guo G, Sun Y, Zhang T, Zhao M, Xu Y, Cui Y, Liu Y and Zhang J: Voltage-gated sodium channels β3 subunit promotes tumorigenesis in hepatocellular carcinoma by facilitating p53 degradation. FEBS Lett. 594:497–508. 2020. View Article : Google Scholar | |
|
Nattramilarasu PK, Bücker R, Lobo de Sá FD, Fromm A, Nagel O, Lee IM, Butkevych E, Mousavi S, Genger C, Kløve S, et al: Campylobacter concisus impairs sodium absorption in colonic epithelium via ENaC dysfunction and claudin-8 disruption. Int J Mol Sci. 21:3732020. View Article : Google Scholar : PubMed/NCBI | |
|
Gao F, Wang D, Liu X, Wu YH, Wang HT and Sun SL: Sodium channel 1 subunit alpha SCNN1A exerts oncogenic function in pancreatic cancer via accelerating cellular growth and metastasis. Arch Biochem Biophys. 727:1093232022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Li C, Peng M, Wang L, Zhao D, Wu T, Yi D, Hou Y and Wu G: N-Acetylcysteine improves intestinal function and attenuates intestinal autophagy in piglets challenged with β-conglycinin. Sci Rep. 11:12612021. View Article : Google Scholar | |
|
Goswami S: Interplay of potassium channel, gastric parietal cell and proton pump in gastrointestinal physiology, pathology and pharmacology. Minerva Gastroenterol (Torino). 68:289–305. 2022. | |
|
Patel SH, Edwards MJ and Ahmad SA: Intracellular ion channels in pancreas cancer. Cell Physiol Biochem. 53:44–51. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R and Jentsch TJ: A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature. 403:196–199. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Ponnalagu D and Singh H: Anion channels of mitochondria. Handb Exp Pharmacol. 240:71–101. 2017. View Article : Google Scholar | |
|
Gururaja Rao S, Ponnalagu D, Patel NJ and Singh H: Three decades of chloride intracellular channel proteins: From organelle to organ physiology. Curr Protoc Pharmacol. 80:11.21.1–11.21.17. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kouyoumdzian NM, Kim G, Rudi MJ, Rukavina Mikusic NL, Fernández BE and Choi MR: Clues and new evidences in arterial hypertension: Unmasking the role of the chloride anion. Pflugers Arch. 474:155–176. 2022. View Article : Google Scholar | |
|
Jentsch TJ and Pusch M: CLC chloride channels and transporters: Structure, function, physiology, and disease. Physiol Rev. 98:1493–1590. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Shi S, Yuan G, Jia Q, Shi S, Zhu X, Zhou Y, Chen T and Hu Y: Bibliometric analysis of chloride channel research (2004-2019). Channels (Austin). 14:393–402. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jentsch TJ, Stein V, Weinreich F and Zdebik AA: Molecular structure and physiological function of chloride channels. Physiol Rev. 82:503–568. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Peng F, Wu Y, Dong X and Huang P: Proton-activated chloride channel: Physiology and disease. Front Biosci (Landmark Ed). 28:112023. View Article : Google Scholar : PubMed/NCBI | |
|
Patil VM and Gupta SP: Studies on chloride channels and their modulators. Curr Top Med Chem. 16:1862–1876. 2016. View Article : Google Scholar | |
|
Accardi A and Miller C: Secondary active transport mediated by a prokaryotic homologue of ClC Cl- hannels. Nature. 427:803–807. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Jentsch TJ: CLC chloride channels and transporters: From genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol. 43:3–36. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, et al: TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 455:1210–1215. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O and Galietta LJ: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 322:590–594. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Gadsby DC, Vergani P and Csanády L: The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature. 440:477–483. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al: Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science. 245:1066–1073. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Ullrich F, Blin S, Lazarow K, Daubitz T, von Kries JP and Jentsch TJ: Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels. Elife. 8:e491872019. View Article : Google Scholar : PubMed/NCBI | |
|
Olsen RW and Sieghart W: International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: Classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev. 60:243–260. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lynch JW: Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 84:1051–1095. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Peng JM, Lin SH, Yu MC and Hsieh SY: CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. J Clin Invest. 131:e1335252021. View Article : Google Scholar : | |
|
Bi MM, Hong S, Zhou HY, Wang HW, Wang LN and Zheng YJ: Chloride channelopathies of ClC-2. Int J Mol Sci. 15:218–249. 2013. View Article : Google Scholar | |
|
Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y and Sabirov RZ: Cell volume-activated and volume-correlated anion channels in mammalian cells: Their biophysical, molecular, and pharmacological properties. Pharmacol Rev. 71:49–88. 2019. View Article : Google Scholar | |
|
Fu D, Cui H and Zhang Y: Lack of ClC-2 alleviates high fat diet-induced insulin resistance and non-alcoholic fatty liver disease. Cell Physiol Biochem. 45:2187–2198. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Blikslager AT, Moeser AJ, Gookin JL, Jones SL and Odle J: Restoration of barrier function in injured intestinal mucosa. Physiol Rev. 87:545–564. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gehren AS, Rocha MR, de Souza WF and Morgado-Díaz JA: Alterations of the apical junctional complex and actin cytoskeleton and their role in colorectal cancer progression. Tissue Barriers. 3:e10176882015. View Article : Google Scholar : PubMed/NCBI | |
|
Nighot PK, Moeser AJ, Ryan KA, Ghashghaei T and Blikslager AT: ClC-2 is required for rapid restoration of epithelial tight junctions in ischemic-injured murine jejunum. Exp Cell Res. 315:110–118. 2009. View Article : Google Scholar | |
|
Jin Y, Ibrahim D, Magness ST and Blikslager AT: Knockout of ClC-2 reveals critical functions of adherens junctions in colonic homeostasis and tumorigenicity. Am J Physiol Gastrointest Liver Physiol. 315:G966–G979. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mrad FCC, Soares SBM, de Menezes Silva LAW, Dos Anjos Menezes PV and Simões-E-Silva AC: Bartter's syndrome: Clinical findings, genetic causes and therapeutic approach. World J Pediatr. 17:31–39. 2021. View Article : Google Scholar | |
|
Andrini O, Eladari D and Picard N: ClC-K kidney chloride channels: From structure to pathology. Handb Exp Pharmacol. 283:35–58. 2024. View Article : Google Scholar | |
|
Mu H, Mu L and Gao J: Suppression of CLC-3 reduces the proliferation, invasion and migration of colorectal cancer through Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 533:1240–1246. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gu Z, Li Y, Yang X, Yu M, Chen Z, Zhao C, Chen L and Wang L: Overexpression of CLC-3 is regulated by XRCC5 and is a poor prognostic biomarker for gastric cancer. J Hematol Oncol. 11:1152018. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng W, Zheng S, Li L, Zhou Q, Zhu H, Hu J and Luo H: Chloride channel 3 (CIC-3) predicts the tumor size in hepatocarcinoma. Acta Histochem. 121:284–288. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang LY, Li YJ, Li PP, Li HC and Ma P: Aggravated intestinal apoptosis by ClC-3 deletion is lethal to mice endotoxemia. Cell Biol Int. 42:1445–1453. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Huang LY, He Q, Liang SJ, Su YX, Xiong LX, Wu QQ, Wu QY, Tao J, Wang JP, Tang YB, et al: ClC-3 chloride channel/antiporter defect contributes to inflammatory bowel disease in humans and mice. Gut. 63:1587–1595. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Stauber T, Weinert S and Jentsch TJ: Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol. 2:1701–1744. 2012. View Article : Google Scholar | |
|
Stauber T and Jentsch TJ: Chloride in vesicular trafficking and function. Annu Rev Physiol. 75:453–477. 2013. View Article : Google Scholar | |
|
Wartosch L, Fuhrmann JC, Schweizer M, Stauber T and Jentsch TJ: Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. FASEB J. 23:4056–4068. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Nicoli ER, Weston MR, Hackbarth M, Becerril A, Larson A, Zein WM, Baker PR II, Burke JD, Dorward H, Davids M, et al: Lysosomal storage and albinism due to effects of a de novo CLCN7 variant on lysosomal acidification. Am J Hum Genet. 104:1127–1138. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Polovitskaya MM, Barbini C, Martinelli D, Harms FL, Cole FS, Calligari P, Bocchinfuso G, Stella L, Ciolfi A, Niceta M, et al: A recurrent gain-of-function mutation in CLCN6, encoding the ClC-6 Cl(-)/H(+)-exchanger, causes early-onset neurodegeneration. Am J Hum Genet. 107:1062–1077. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bose S, He H and Stauber T: Neurodegeneration upon dysfunction of endosomal/lysosomal CLC chloride transporters. Front Cell Dev Biol. 9:6392312021. View Article : Google Scholar : PubMed/NCBI | |
|
Locher KP: Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol. 23:487–493. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Csanády L, Vergani P and Gadsby DC: Structure, gating, and regulation of the CFTR anion channel. Physiol Rev. 99:707–738. 2019. View Article : Google Scholar | |
|
Fonseca C, Bicker J, Alves G, Falcão A and Fortuna A: Cystic fibrosis: Physiopathology and the latest pharmacological treatments. Pharmacol Res. 162:1052672020. View Article : Google Scholar : PubMed/NCBI | |
|
Lukasiak A and Zajac M: The distribution and role of the CFTR protein in the intracellular compartments. Membranes (Basel). 11:8042021. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto Y, Shiozaki A, Kosuga T, Kudou M, Shimizu H, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, et al: Expression and role of CFTR in human esophageal squamous cell carcinoma. Ann Surg Oncol. 28:6424–6436. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Liu X, Zeng L and Hu Y: GABRP inhibits the progression of oesophageal cancer by regulating CFTR: Integrating bioinformatics analysis and experimental validation. Int J Exp Pathol. 105:118–132. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Shakir S, Echevarria C, Doe S, Brodlie M, Ward C and Bourke SJ: Elexacaftor-tezacaftor-ivacaftor improve gastro-oesophageal reflux and sinonasal symptoms in advanced cystic fibrosis. J Cyst Fibros. 21:807–810. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Rowe SM, Heltshe SL, Gonska T, Donaldson SH, Borowitz D, Gelfond D, Sagel SD, Khan U, Mayer-Hamblett N, Van Dalfsen JM, et al: Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med. 190:175–184. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Petrov MS and Yadav D: Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 16:175–184. 2019. View Article : Google Scholar : | |
|
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM and Sahin-Tóth M: Genetics, cell biology, and pathophysiology of pancreatitis. Gastroenterology. 156:1951–1968.e1. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hou Y, Guan X, Yang Z and Li C: Emerging role of cystic fibrosis transmembrane conductance regulator-an epithelial chloride channel in gastrointestinal cancers. World J Gastrointest Oncol. 8:282–288. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fűr G, Bálint ER, Orján EM, Balla Z, Kormányos ES, Czira B, Szűcs A, Kovács DP, Pallagi P, Maléth J, et al: Mislocalization of CFTR expression in acute pancreatitis and the beneficial effect of VX-661 + VX-770 treatment on disease severity. J Physiol. 599:4955–4971. 2021. View Article : Google Scholar | |
|
Kim Y, Jun I, Shin DH, Yoon JG, Piao H, Jung J, Park HW, Cheng MH, Bahar I, Whitcomb DC and Lee MG: Regulation of CFTR bicarbonate channel activity by WNK1: Implications for pancreatitis and CFTR-Related disorders. Cell Mol Gastroenterol Hepatol. 9:79–103. 2020. View Article : Google Scholar | |
|
Lee MG, Ohana E, Park HW, Yang D and Muallem S: Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev. 92:39–74. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fong P: CFTR-SLC26 transporter interactions in epithelia. Biophys Rev. 4:107–116. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ and Muallem S: Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol. 6:343–350. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Berg P, Svendsen SL, Sorensen MV, Larsen CK, Andersen JF, Jensen-Fangel S, Jeppesen M, Schreiber R, Cabrita I, Kunzelmann K and Leipziger J: Impaired renal HCO(3)(-) excretion in cystic fibrosis. J Am Soc Nephrol. 31:1711–1727. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ishiguro H, Steward MC, Naruse S, Ko SB, Goto H, Case RM, Kondo T and Yamamoto A: CFTR functions as a bicarbonate channel in pancreatic duct cells. J Gen Physiol. 133:315–326. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH and Lee MG: Dynamic regulation of CFTR bicarbonate permeability by [Cl-]i and its role in pancreatic bicarbonate secretion. Gastroenterology. 139:620–631. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yang CL, Liu X, Paliege A, Zhu X, Bachmann S, Dawson DC and Ellison DH: WNK1 and WNK4 modulate CFTR activity. Biochem Biophys Res Commun. 353:535–540. 2007. View Article : Google Scholar | |
|
Yang D, Li Q, So I, Huang CL, Ando H, Mizutani A, Seki G, Mikoshiba K, Thomas PJ and Muallem S: IRBIT governs epithelial secretion in mice by antagonizing the WNK/SPAK kinase pathway. J Clin Invest. 121:956–965. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shirakabe K, Priori G, Yamada H, Ando H, Horita S, Fujita T, Fujimoto I, Mizutani A, Seki G and Mikoshiba K: IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3-cotransporter 1 (pNBC1). Proc Natl Acad Sci USA. 103:9542–9547. 2006. View Article : Google Scholar | |
|
Park S, Shcheynikov N, Hong JH, Zheng C, Suh SH, Kawaai K, Ando H, Mizutani A, Abe T, Kiyonari H, et al: Irbit mediates synergy between ca(2+) and cAMP signaling pathways during epithelial transport in mice. Gastroenterology. 145:232–241. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pankonien I, Quaresma MC, Rodrigues CS and Amaral MD: CFTR, cell junctions and the cytoskeleton. Int J Mol Sci. 23:2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wen G, Jin H, Deng S, Xu J, Liu X, Xie R and Tuo B: Effects of helicobacter pylori infection on the expressions and functional activities of human duodenal mucosal bicarbonate transport proteins. Helicobacter. 21:536–547. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Reyes EA, Castillo-Azofeifa D, Rispal J, Wald T, Zwick RK, Palikuqi B, Mujukian A, Rabizadeh S, Gupta AR, Gardner JM, et al: Epithelial TNF controls cell differentiation and CFTR activity to maintain intestinal mucin homeostasis. J Clin Invest. 133:e1635912023. View Article : Google Scholar : PubMed/NCBI | |
|
Bhattacharya R, Blankenheim Z, Scott PM and Cormier RT: CFTR and gastrointestinal cancers: An update. J Pers Med. 12:8682022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Wu W, Liu Y, Zhang C and Zhou Z: Predictive value of cystic fibrosis transmembrane conductance regulator (CFTR) in the diagnosis of gastric cancer. Clinical and investigative medicine. Clin Invest Med. 37:E226–E232. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yamada A, Komaki Y, Komaki F, Micic D, Zullow S and Sakuraba A: Risk of gastrointestinal cancers in patients with cystic fibrosis: A systematic review and meta-analysis. Lancet Oncol. 19:758–767. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jakab RL, Collaco AM and Ameen NA: Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol. 300:G82–G98. 2011. View Article : Google Scholar : | |
|
Tse CM, Yin J, Singh V, Sarker R, Lin R, Verkman AS, Turner JR and Donowitz M: cAMP stimulates SLC26A3 activity in human colon by a CFTR-dependent mechanism that does not require CFTR activity. Cell Mol Gastroenterol Hepatol. 7:641–653. 2019. View Article : Google Scholar : | |
|
Vernocchi P, Del Chierico F, Russo A, Majo F, Rossitto M, Valerio M, Casadei L, La Storia A, De Filippis F, Rizzo C, et al: Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype. PLoS One. 13:e02081712018. View Article : Google Scholar : PubMed/NCBI | |
|
Burke DG, Fouhy F, Harrison MJ, Rea MC, Cotter PD, O'Sullivan O, Stanton C, Hill C, Shanahan F, Plant BJ and Ross RP: The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol. 17:582017. View Article : Google Scholar : PubMed/NCBI | |
|
De Lisle RC: Disrupted tight junctions in the small intestine of cystic fibrosis mice. Cell Tissue Res. 355:131–142. 2014. View Article : Google Scholar : | |
|
Broadbent D, Ahmadzai MM, Kammala AK, Yang C, Occhiuto C, Das R and Subramanian H: Roles of NHERF family of PDZ-binding proteins in regulating GPCR functions. Adv Immunol. 136:353–385. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Meeker SM, Mears KS, Sangwan N, Brittnacher MJ, Weiss EJ, Treuting PM, Tolley N, Pope CE, Hager KR, Vo AT, et al: CFTR dysregulation drives active selection of the gut microbiome. PLoS Pathog. 16:e10082512020. View Article : Google Scholar : PubMed/NCBI | |
|
Mulcahy EM, Cooley MA, McGuire H, Asad S, Fazekas de St Groth B, Beggs SA and Roddam LF: Widespread alterations in the peripheral blood innate immune cell profile in cystic fibrosis reflect lung pathology. Immunol Cell Biol. 97:416–426. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Trigo Salado C, Leo Carnerero E and de la Cruz Ramírez MD: Crohn's disease and cystic fibrosis: There is still a lot to learn. Rev Esp Enferm Dig. 110:835–836. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gabel ME, Galante GJ and Freedman SD: Gastrointestinal and hepatobiliary disease in cystic fibrosis. Semin Respir Crit Care Med. 40:825–841. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Maisonneuve P, Marshall BC, Knapp EA and Lowenfels AB: Cancer risk in cystic fibrosis: A 20-year nationwide study from the United States. J Natl Cancer Inst. 105:122–129. 2013. View Article : Google Scholar | |
|
Than BL, Linnekamp JF, Starr TK, Largaespada DA, Rod A, Zhang Y, Bruner V, Abrahante J, Schumann A, Luczak T, et al: CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene. 35:4179–4187. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sun TT, Wang Y, Cheng H, Xiao HZ, Xiang JJ, Zhang JT, Yu SB, Martin TA, Ye L, Tsang LL, et al: Disrupted interaction between CFTR and AF-6/afadin aggravates malignant phenotypes of colon cancer. Biochim Biophys Acta. 1843:618–628. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Palma AG, Soares Machado M, Lira MC, Rosa F, Rubio MF, Marino G, Kotsias BA and Costas MA: Functional relationship between CFTR and RAC3 expression for maintaining cancer cell stemness in human colorectal cancer. Cell Oncol (Dordr). 44:627–641. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Strubberg AM, Liu J, Walker NM, Stefanski CD, MacLeod RJ, Magness ST and Clarke LL: Cftr modulates Wnt/β-catenin signaling and stem cell proliferation in murine intestine. Cell Mol Gastroenterol Hepatol. 5:253–271. 2017. View Article : Google Scholar | |
|
Liu C, Song C, Li J and Sun Q: CFTR functions as a tumor suppressor and is regulated by DNA methylation in colorectal cancer. Cancer Manag Res. 12:4261–4270. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Paulino C, Neldner Y, Lam AK, Kalienkova V, Brunner JD, Schenck S and Dutzler R: Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A. Elife. 6:e262322017. View Article : Google Scholar : PubMed/NCBI | |
|
Dang S, Feng S, Tien J, Peters CJ, Bulkley D, Lolicato M, Zhao J, Zuberbühler K, Ye W, Qi L, et al: Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature. 552:426–429. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ji Q, Guo S, Wang X, Pang C, Zhan Y, Chen Y and An H: Recent advances in TMEM16A: Structure, function, and disease. J Cell Physiol. 234:7856–7873. 2019. View Article : Google Scholar | |
|
Liu Y, Liu Z and Wang K: The Ca(2+)-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B. 11:1412–1433. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Crottès D and Jan LY: The multifaceted role of TMEM16A in cancer. Cell Calcium. 82:1020502019. View Article : Google Scholar : PubMed/NCBI | |
|
Jang Y and Oh U: Anoctamin 1 in secretory epithelia. Cell Calcium. 55:355–361. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ji Q, Shi S, Guo S, Zhan Y, Zhang H, Chen Y and An H: Activation of TMEM16A by natural product canthaxanthin promotes gastrointestinal contraction. FASEB J. 34:13430–13444. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J and Zhao H: ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci USA. 106:11776–11781. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Huang WC, Xiao S, Huang F, Harfe BD, Jan YN and Jan LY: Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron. 74:179–192. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ha GE, Lee J, Kwak H, Song K, Kwon J, Jung SY, Hong J, Chang GE, Hwang EM, Shin HS, et al: The Ca(2+)-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nat Commun. 7:137912016. View Article : Google Scholar : PubMed/NCBI | |
|
Vanoni S, Zeng C, Marella S, Uddin J, Wu D, Arora K, Ptaschinski C, Que J, Noah T, Waggoner L, et al: Identification of anoctamin 1 (ANO1) as a key driver of esophageal epithelial proliferation in eosinophilic esophagitis. J Allergy Clin Immunol. 145:239–254.e2. 2020. View Article : Google Scholar : | |
|
Yu Y, Cao J, Wu W, Zhu Q, Tang Y, Zhu C, Dai J, Li Z, Wang J, Xue L, et al: Genome-wide copy number variation analysis identified ANO1 as a novel oncogene and prognostic biomarker in esophageal squamous cell cancer. Carcinogenesis. 40:1198–1208. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Le SC, Jia Z, Chen J and Yang H: Molecular basis of PIP(2)-dependent regulation of the Ca(2+)-activated chloride channel TMEM16A. Nat Commun. 10:37692019. View Article : Google Scholar : PubMed/NCBI | |
|
Fairfield CJ, Drake TM, Pius R, Bretherick AD, Campbell A, Clark DW, Fallowfield JA, Hayward C, Henderson NC, Iakovliev A, et al: Genome-wide analysis identifies gallstone-susceptibility loci including genes regulating gastrointestinal motility. Hepatology. 75:1081–1094. 2022. View Article : Google Scholar | |
|
Camilleri M, Sandler RS and Peery AF: Etiopathogenetic mechanisms in diverticular disease of the colon. Cell Mol Gastroenterol Hepatol. 9:15–32. 2020. View Article : Google Scholar | |
|
Schafmayer C, Harrison JW, Buch S, Lange C, Reichert MC, Hofer P, Cossais F, Kupcinskas J, von Schönfels W, Schniewind B, et al: Genome-wide association analysis of diverticular disease points towards neuromuscular, connective tissue and epithelial pathomechanisms. Gut. 68:854–865. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng X, Pan D, Wu H, Chen H, Yuan W, Zhou J, Shen Z and Chen S: Transcriptional activation of ANO1 promotes gastric cancer progression. Biochem Biophys Res Commun. 512:131–136. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xie R, Liu L, Lu X and Hu Y: LncRNA OIP5-AS1 facilitates gastric cancer cell growth by targeting the miR-422a/ANO1 axis. Acta Biochim Biophys Sin (Shanghai). 52:430–438. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lu G, Shi W and Zheng H: Inhibition of STAT6/Anoctamin-1 activation suppresses proliferation and invasion of gastric cancer cells. Cancer Biother Radiopharm. 33:3–7. 2018.PubMed/NCBI | |
|
Yan Y, Ding X, Han C, Gao J, Liu Z, Liu Y and Wang K: Involvement of TMEM16A/ANO1 upregulation in the oncogenesis of colorectal cancer. Biochim Biophys Acta Mol Basis Dis. 1868:1663702022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Bai L, Luo S, Wang T, Yang F, Xia J, Wang H, Ma K, Liu M, Wu S, et al: TMEM16A Ca(2+)-activated Cl(-) channel inhibition ameliorates acute pancreatitis via the IP(3) R/Ca(2+)/NFκB/IL-6 signaling pathway. J Adv Res. 23:25–35. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang G, Shu Z, Yu J, Li J, Yi P, Wu B, Deng D, Yan S, Li Y, Ren D, et al: High ANO1 expression is a prognostic factor and correlated with an immunosuppressive tumor microenvironment in pancreatic cancer. Front Immunol. 15:13412092024. View Article : Google Scholar : PubMed/NCBI | |
|
Guo JW, Liu X, Zhang TT, Lin XC, Hong Y, Yu J, Wu QY, Zhang FR, Wu QQ, Shang JY, et al: Hepatocyte TMEM16A deletion retards NAFLD progression by ameliorating hepatic glucose metabolic disorder. Adv Sci (Weinh). 7:19036572020. View Article : Google Scholar : PubMed/NCBI | |
|
Guo J, Song Z, Yu J, Li C, Jin C, Duan W, Liu X, Liu Y, Huang S, Tuo Y, et al: Hepatocyte-specific TMEM16A deficiency alleviates hepatic ischemia/reperfusion injury via suppressing GPX4-mediated ferroptosis. Cell Death Dis. 13:10722022. View Article : Google Scholar : PubMed/NCBI | |
|
Kondo R, Furukawa N, Deguchi A, Kawata N, Suzuki Y, Imaizumi Y and Yamamura H: Downregulation of Ca(2+)-activated Cl(-) channel TMEM16A mediated by angiotensin II in cirrhotic portal hypertensive mice. Front Pharmacol. 13:8313112022. View Article : Google Scholar : PubMed/NCBI | |
|
Deng L, Yang J, Chen H, Ma B, Pan K, Su C, Xu F and Zhang J: Knockdown of TMEM16A suppressed MAPK and inhibited cell proliferation and migration in hepatocellular carcinoma. Onco Targets Ther. 9:325–333. 2016.PubMed/NCBI | |
|
König B and Stauber T: Biophysics and structure-function relationships of LRRC8-formed volume-regulated anion channels. Biophys J. 116:1185–1193. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sawicka M and Dutzler R: Regulators of cell volume: The structural and functional properties of anion channels of the LRRC8 family. Curr Opin Struct Biol. 74:1023822022. View Article : Google Scholar : PubMed/NCBI | |
|
Okada Y, Sabirov RZ, Sato-Numata K and Numata T: Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 1: Roles of VSOR/VRAC in cell volume regulation, release of double-edged signals and apoptotic/necrotic cell death. Front Cell Dev Biol. 8:6140402021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, König B, Liu T, Pervaiz S, Razzaque YS and Stauber T: More than just a pressure relief valve: Physiological roles of volume-regulated LRRC8 anion channels. Biol Chem. 400:1481–1496. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Konishi T, Shiozaki A, Kosuga T, Kudou M, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, et al: LRRC8A expression influences growth of esophageal squamous cell carcinoma. Am J Pathol. 189:1973–1985. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kurashima K, Shiozaki A, Kudou M, Shimizu H, Arita T, Kosuga T, Konishi H, Komatsu S, Kubota T, Fujiwara H, et al: LRRC8A influences the growth of gastric cancer cells via the p53 signaling pathway. Gastric Cancer. 24:1063–1075. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu R, Hu Y, Xie Q, Zhang C, Zhao Y, Zhang H, Shi H, Wang X and Shi C: LRRC8A is a promising prognostic biomarker and therapeutic target for pancreatic adenocarcinoma. Cancers (Basel). 14:55262022. View Article : Google Scholar : PubMed/NCBI | |
|
Lu P, Ding Q, Li X, Ji X, Li L, Fan Y, Xia Y, Tian D and Liu M: SWELL1 promotes cell growth and metastasis of hepatocellular carcinoma in vitro and in vivo. EBioMedicine. 48:100–116. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Deng Z, Zhang D, Li H, Zhang L, Niu J, Zuo W, Fu R, Fan L, Ye JH and She J: High expression of leucine-rich repeat-containing 8A is indicative of a worse outcome of colon cancer patients by enhancing cancer cell growth and metastasis. Oncol Rep. 40:1275–1286. 2018.PubMed/NCBI | |
|
Fujii T, Shimizu T, Yamamoto S, Funayama K, Fujita K, Tabuchi Y, Ikari A, Takeshima H and Sakai H: Crosstalk between Na(+),K(+)-ATPase and a volume-regulated anion channel in membrane microdomains of human cancer cells. Biochim Biophys Acta Mol Basis Dis. 1864:3792–3804. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Jing Z, Liu R, Shada Y, Shria S, Cui S, Ren Y, Wei Y, Li L and Peng S: LRRC8A promotes the initial development of oxaliplatin resistance in colon cancer cells. Heliyon. 9:e168722023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Cui S, Jing Z, Fu G, Liu R, Zhao W, Xu L, Yu L, Bai Y, Lv C, et al: LRRC8A is responsible for exosome biogenesis and volume regulation in colon cancer cells. Biochem J. 480:701–713. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang HY, Shimizu T, Numata T and Okada Y: Role of acid-sensitive outwardly rectifying anion channels in acidosis-induced cell death in human epithelial cells. Pflugers Arch. 454:223–233. 2007. View Article : Google Scholar | |
|
Osei-Owusu J, Kots E, Ruan Z, Mihaljević L, Chen KH, Tamhaney A, Ye X, Lü W, Weinstein H and Qiu Z: Molecular determinants of pH sensing in the proton-activated chloride channel. Proc Natl Acad Sci USA. 119:e22007271192022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao J, Zhu D, Zhang X, Zhang Y, Zhou J and Dong M: TMEM206 promotes the malignancy of colorectal cancer cells by interacting with AKT and extracellular signal-regulated kinase signaling pathways. J Cell Physiol. 234:10888–10898. 2019. View Article : Google Scholar | |
|
Zhang L, Liu SY, Yang X, Wang YQ and Cheng YX: TMEM206 is a potential prognostic marker of hepatocellular carcinoma. Oncol Lett. 20:1742020.PubMed/NCBI | |
|
Huang X, Chen H, Michelsen K, Schneider S and Shaffer PL: Crystal structure of human glycine receptor-α3 bound to antagonist strychnine. Nature. 526:277–280. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Clar DT and Maani CV: Physiology, Ligand Gated Chloride Channel. StatPearls. StatPearls Publishing; Treasure Island, FL: 2024 | |
|
Sanjari Moghaddam H, Zare-Shahabadi A, Rahmani F and Rezaei N: Neurotransmission systems in Parkinson's disease. Rev Neurosci. 28:509–536. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu YT, Chang YG and Chern Y: Insights into GABA(A)ergic system alteration in Huntington's disease. Open Biol. 8:1801652018. View Article : Google Scholar : PubMed/NCBI | |
|
Govindpani K, Calvo-Flores Guzmán B, Vinnakota C, Waldvogel HJ, Faull RL and Kwakowsky A: Towards a better understanding of GABAergic remodeling in Alzheimer's disease. Int J Mol Sci. 18:18132017. View Article : Google Scholar : PubMed/NCBI |