Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2025 Volume 55 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 55 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The function of chloride channels in digestive system disease (Review)

  • Authors:
    • Yanxia Hu
    • Biguang Tuo
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
    Copyright: © Hu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 99
    |
    Published online on: April 29, 2025
       https://doi.org/10.3892/ijmm.2025.5540
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cation channels have been extensively studied in the context of digestive disorders, but comparatively little attention has been given to anions and their associated channels. Chloride ions, the most abundant anions in the human body, act as signaling molecules, modulating cellular behavior and playing a key role in regulating multiorgan physiological and pathophysiological mechanisms. The intra‑ and extracellular distributions of chloride ions are primarily controlled by various chloride channels and transporters. Currently, these chloride channels are classified into several groups: The chloride channels family, cystic fibrosis transmembrane conductance regulator, calcium‑activated chloride channels, volume‑regulated anion channels, proton‑activated chloride channels and ligand‑gated anion channels. This review aims to summarize the roles of chloride ion channels and transporter proteins in digestive system diseases, providing a theoretical basis for future research and offering potential new strategies for disease treatment.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Nguyen HX and Bursac N: Ion channel engineering for modulation and de novo generation of electrical excitability. Curr Opin Biotechnol. 58:100–107. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Capatina AL, Lagos D and Brackenbury WJ: Targeting ion channels for cancer treatment: Current progress and future challenges. Rev Physiol Biochem Pharmacol. 183:1–43. 2022.

3 

Bulk E, Todesca LM and Schwab A: Ion channels in lung cancer. Rev Physiol Biochem Pharmacol. 181:57–79. 2021. View Article : Google Scholar

4 

Xiao F, Yu Q, Li J, Johansson ME, Singh AK, Xia W, Riederer B, Engelhardt R, Montrose M, Soleimani M, et al: Slc26a3 deficiency is associated with loss of colonic HCO3 (-) secretion, absence of a firm mucus layer and barrier impairment in mice. Acta Physiol (Oxf). 211:161–175. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Zahn A, Moehle C, Langmann T, Ehehalt R, Autschbach F, Stremmel W and Schmitz G: Aquaporin-8 expression is reduced in ileum and induced in colon of patients with ulcerative colitis. World J Gastroenterol. 13:1687–1695. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Xu H, Zhang B, Li J, Wang C, Chen H and Ghishan FK: Impaired mucin synthesis and bicarbonate secretion in the colon of NHE8 knockout mice. Am J Physiol Gastrointest Liver Physiol. 303:G335–G343. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Singh AK, Sjöblom M, Zheng W, Krabbenhöft A, Riederer B, Rausch B, Manns MP, Soleimani M and Seidler U: CFTR and its key role in in vivo resting and luminal acid-induced duodenal HCO3-secretion. Acta Physiol (Oxf). 193:357–365. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Schultheis PJ, Clarke LL, Meneton P, Harline M, Boivin GP, Stemmermann G, Duffy JJ, Doetschman T, Miller ML and Shull GE: Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion. J Clin Invest. 101:1243–1253. 1998. View Article : Google Scholar : PubMed/NCBI

9 

Wang A, Li J, Zhao Y, Johansson ME, Xu H and Ghishan FK: Loss of NHE8 expression impairs intestinal mucosal integrity. Am J Physiol Gastrointest Liver Physiol. 309:G855–G864. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Boivin GP, Schultheis PJ, Shull GE and Stemmermann GN: Variant form of diffuse corporal gastritis in NHE2 knockout mice. Comp Med. 50:511–515. 2000.PubMed/NCBI

11 

Ding X, Li D, Li M, Wang H, He Q, Wang Y, Yu H, Tian D and Yu Q: SLC26A3 (DRA) prevents TNF-alpha-induced barrier dysfunction and dextran sulfate sodium-induced acute colitis. Lab Invest. 98:462–476. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Zhang W, Xu Y, Chen Z, Xu Z and Xu H: Knockdown of aquaporin 3 is involved in intestinal barrier integrity impairment. FEBS Lett. 585:3113–3119. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Moeser AJ, Nighot PK, Ryan KA, Simpson JE, Clarke LL and Blikslager AT: Mice lacking the Na+/H+ exchanger 2 have impaired recovery of intestinal barrier function. Am J Physiol Gastrointest Liver Physiol. 295:G791–G797. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Kumar A, Priyamvada S, Ge Y, Jayawardena D, Singhal M, Anbazhagan AN, Chatterjee I, Dayal A, Patel M, Zadeh K, et al: A novel role of SLC26A3 in the maintenance of intestinal epithelial barrier integrity. Gastroenterology. 160:1240–1255.e3. 2021. View Article : Google Scholar

15 

Doi K, Nagao T, Kawakubo K, Ibayashi S, Aoyagi K, Yano Y, Yamamoto C, Kanamoto K, Iida M, Sadoshima S and Fujishima M: Calcitonin gene-related peptide affords gastric mucosal protection by activating potassium channel in Wistar rat. Gastroenterology. 114:71–76. 1998. View Article : Google Scholar : PubMed/NCBI

16 

Deng Z, Zhao Y, Ma Z, Zhang M, Wang H, Yi Z, Tuo B, Li T and Liu X: Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci. 78:8109–8125. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Pallagi P, Hegyi P and Rakonczay Z Jr: The physiology and pathophysiology of pancreatic ductal secretion: The background for clinicians. Pancreas. 44:1211–1233. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Ishiguro H, Yamamoto A, Nakakuki M, Yi L, Ishiguro M, Yamaguchi M, Kondo S and Mochimaru Y: Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci. 74:1–18. 2012.PubMed/NCBI

19 

Novak I, Haanes KA and Wang J: Acid-base transport in pancreas-new challenges. Front Physiol. 4:3802013. View Article : Google Scholar

20 

Schnipper J, Dhennin-Duthille I, Ahidouch A and Ouadid-Ahidouch H: Ion channel signature in healthy pancreas and pancreatic ductal adenocarcinoma. Front Pharmacol. 11:5689932020. View Article : Google Scholar : PubMed/NCBI

21 

Chen X, Zhang L, Zheng L and Tuo B: Role of Ca(2+) channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review). Int J Mol Med. 50:1132022. View Article : Google Scholar : PubMed/NCBI

22 

Stock C: How dysregulated ion channels and transporters take a hand in esophageal, liver, and colorectal cancer. Rev Physiol Biochem Pharmacol. 181:129–222. 2021. View Article : Google Scholar

23 

Li W, Wang C, Peng X, Zhang H, Huang H and Liu H: CFTR inhibits the invasion and growth of esophageal cancer cells by inhibiting the expression of NF-κB. Cell Biol Int. 42:1680–1687. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Goldman A, Chen H, Khan MR, Roesly H, Hill KA, Shahidullah M, Mandal A, Delamere NA and Dvorak K: The Na+/H+ exchanger controls deoxycholic acid-induced apoptosis by a H+-activated, Na+-dependent ionic shift in esophageal cells. PLoS One. 6:e238352011. View Article : Google Scholar

25 

Boult J, Roberts K, Brookes MJ, Hughes S, Bury JP, Cross SS, Anderson GJ, Spychal R, Iqbal T and Tselepis C: Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin Cancer Res. 14:379–387. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Gao N, Yang F, Chen S, Wan H, Zhao X and Dong H: The role of TRPV1 ion channels in the suppression of gastric cancer development. Exp Clin Cancer Res. 39:2062020. View Article : Google Scholar

27 

Chang Y, Roy S and Pan Z: Store-operated calcium channels as drug target in gastroesophageal cancers. Front Pharmacol. 12:6687302021. View Article : Google Scholar : PubMed/NCBI

28 

Csekő K, Pécsi D, Kajtár B, Hegedűs I, Bollenbach A, Tsikas D, Szabó IL, Szabó S and Helyes Z: Upregulation of the TRPA1 Ion channel in the gastric mucosa after iodoacetamide-induced gastritis in rats: A potential new therapeutic target. Int J Mol Sci. 21:55912020. View Article : Google Scholar

29 

Capurro MI, Greenfield LK, Prashar A, Xia S, Abdullah M, Wong H, Zhong XZ, Bertaux-Skeirik N, Chakrabarti J, Siddiqui I, et al: VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1. Nat Microbiol. 4:1411–1423. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Zhang L, Zhang Y, Jiang Y, Dou X, Li S, Chai H, Qian Q and Wang M: Upregulated SOCC and IP3R calcium channels and subsequent elevated cytoplasmic calcium signaling promote nonalcoholic fatty liver disease by inhibiting autophagy. Mol Cell Biochem. 476:3163–3175. 2021. View Article : Google Scholar : PubMed/NCBI

31 

Swain SM, Romac JM, Shahid RA, Pandol SJ, Liedtke W, Vigna SR and Liddle RA: TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. J Clin Invest. 130:2527–2541. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Lin R, Bao X, Wang H, Zhu S, Liu Z, Chen Q, Ai K and Shi B: TRPM2 promotes pancreatic cancer by PKC/MAPK pathway. Cell Death Dis. 12:5852021. View Article : Google Scholar : PubMed/NCBI

33 

Li S, Han J, Guo G, Sun Y, Zhang T, Zhao M, Xu Y, Cui Y, Liu Y and Zhang J: Voltage-gated sodium channels β3 subunit promotes tumorigenesis in hepatocellular carcinoma by facilitating p53 degradation. FEBS Lett. 594:497–508. 2020. View Article : Google Scholar

34 

Nattramilarasu PK, Bücker R, Lobo de Sá FD, Fromm A, Nagel O, Lee IM, Butkevych E, Mousavi S, Genger C, Kløve S, et al: Campylobacter concisus impairs sodium absorption in colonic epithelium via ENaC dysfunction and claudin-8 disruption. Int J Mol Sci. 21:3732020. View Article : Google Scholar : PubMed/NCBI

35 

Gao F, Wang D, Liu X, Wu YH, Wang HT and Sun SL: Sodium channel 1 subunit alpha SCNN1A exerts oncogenic function in pancreatic cancer via accelerating cellular growth and metastasis. Arch Biochem Biophys. 727:1093232022. View Article : Google Scholar : PubMed/NCBI

36 

Wang H, Li C, Peng M, Wang L, Zhao D, Wu T, Yi D, Hou Y and Wu G: N-Acetylcysteine improves intestinal function and attenuates intestinal autophagy in piglets challenged with β-conglycinin. Sci Rep. 11:12612021. View Article : Google Scholar

37 

Goswami S: Interplay of potassium channel, gastric parietal cell and proton pump in gastrointestinal physiology, pathology and pharmacology. Minerva Gastroenterol (Torino). 68:289–305. 2022.

38 

Patel SH, Edwards MJ and Ahmad SA: Intracellular ion channels in pancreas cancer. Cell Physiol Biochem. 53:44–51. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R and Jentsch TJ: A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature. 403:196–199. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Ponnalagu D and Singh H: Anion channels of mitochondria. Handb Exp Pharmacol. 240:71–101. 2017. View Article : Google Scholar

41 

Gururaja Rao S, Ponnalagu D, Patel NJ and Singh H: Three decades of chloride intracellular channel proteins: From organelle to organ physiology. Curr Protoc Pharmacol. 80:11.21.1–11.21.17. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Kouyoumdzian NM, Kim G, Rudi MJ, Rukavina Mikusic NL, Fernández BE and Choi MR: Clues and new evidences in arterial hypertension: Unmasking the role of the chloride anion. Pflugers Arch. 474:155–176. 2022. View Article : Google Scholar

43 

Jentsch TJ and Pusch M: CLC chloride channels and transporters: Structure, function, physiology, and disease. Physiol Rev. 98:1493–1590. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Shi J, Shi S, Yuan G, Jia Q, Shi S, Zhu X, Zhou Y, Chen T and Hu Y: Bibliometric analysis of chloride channel research (2004-2019). Channels (Austin). 14:393–402. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Jentsch TJ, Stein V, Weinreich F and Zdebik AA: Molecular structure and physiological function of chloride channels. Physiol Rev. 82:503–568. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Peng F, Wu Y, Dong X and Huang P: Proton-activated chloride channel: Physiology and disease. Front Biosci (Landmark Ed). 28:112023. View Article : Google Scholar : PubMed/NCBI

47 

Patil VM and Gupta SP: Studies on chloride channels and their modulators. Curr Top Med Chem. 16:1862–1876. 2016. View Article : Google Scholar

48 

Accardi A and Miller C: Secondary active transport mediated by a prokaryotic homologue of ClC Cl- hannels. Nature. 427:803–807. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Jentsch TJ: CLC chloride channels and transporters: From genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol. 43:3–36. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, et al: TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 455:1210–1215. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O and Galietta LJ: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 322:590–594. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Gadsby DC, Vergani P and Csanády L: The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature. 440:477–483. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al: Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science. 245:1066–1073. 1989. View Article : Google Scholar : PubMed/NCBI

54 

Ullrich F, Blin S, Lazarow K, Daubitz T, von Kries JP and Jentsch TJ: Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels. Elife. 8:e491872019. View Article : Google Scholar : PubMed/NCBI

55 

Olsen RW and Sieghart W: International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: Classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev. 60:243–260. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Lynch JW: Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 84:1051–1095. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Peng JM, Lin SH, Yu MC and Hsieh SY: CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. J Clin Invest. 131:e1335252021. View Article : Google Scholar :

58 

Bi MM, Hong S, Zhou HY, Wang HW, Wang LN and Zheng YJ: Chloride channelopathies of ClC-2. Int J Mol Sci. 15:218–249. 2013. View Article : Google Scholar

59 

Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y and Sabirov RZ: Cell volume-activated and volume-correlated anion channels in mammalian cells: Their biophysical, molecular, and pharmacological properties. Pharmacol Rev. 71:49–88. 2019. View Article : Google Scholar

60 

Fu D, Cui H and Zhang Y: Lack of ClC-2 alleviates high fat diet-induced insulin resistance and non-alcoholic fatty liver disease. Cell Physiol Biochem. 45:2187–2198. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Blikslager AT, Moeser AJ, Gookin JL, Jones SL and Odle J: Restoration of barrier function in injured intestinal mucosa. Physiol Rev. 87:545–564. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Gehren AS, Rocha MR, de Souza WF and Morgado-Díaz JA: Alterations of the apical junctional complex and actin cytoskeleton and their role in colorectal cancer progression. Tissue Barriers. 3:e10176882015. View Article : Google Scholar : PubMed/NCBI

63 

Nighot PK, Moeser AJ, Ryan KA, Ghashghaei T and Blikslager AT: ClC-2 is required for rapid restoration of epithelial tight junctions in ischemic-injured murine jejunum. Exp Cell Res. 315:110–118. 2009. View Article : Google Scholar

64 

Jin Y, Ibrahim D, Magness ST and Blikslager AT: Knockout of ClC-2 reveals critical functions of adherens junctions in colonic homeostasis and tumorigenicity. Am J Physiol Gastrointest Liver Physiol. 315:G966–G979. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Mrad FCC, Soares SBM, de Menezes Silva LAW, Dos Anjos Menezes PV and Simões-E-Silva AC: Bartter's syndrome: Clinical findings, genetic causes and therapeutic approach. World J Pediatr. 17:31–39. 2021. View Article : Google Scholar

66 

Andrini O, Eladari D and Picard N: ClC-K kidney chloride channels: From structure to pathology. Handb Exp Pharmacol. 283:35–58. 2024. View Article : Google Scholar

67 

Mu H, Mu L and Gao J: Suppression of CLC-3 reduces the proliferation, invasion and migration of colorectal cancer through Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 533:1240–1246. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Gu Z, Li Y, Yang X, Yu M, Chen Z, Zhao C, Chen L and Wang L: Overexpression of CLC-3 is regulated by XRCC5 and is a poor prognostic biomarker for gastric cancer. J Hematol Oncol. 11:1152018. View Article : Google Scholar : PubMed/NCBI

69 

Cheng W, Zheng S, Li L, Zhou Q, Zhu H, Hu J and Luo H: Chloride channel 3 (CIC-3) predicts the tumor size in hepatocarcinoma. Acta Histochem. 121:284–288. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Huang LY, Li YJ, Li PP, Li HC and Ma P: Aggravated intestinal apoptosis by ClC-3 deletion is lethal to mice endotoxemia. Cell Biol Int. 42:1445–1453. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Huang LY, He Q, Liang SJ, Su YX, Xiong LX, Wu QQ, Wu QY, Tao J, Wang JP, Tang YB, et al: ClC-3 chloride channel/antiporter defect contributes to inflammatory bowel disease in humans and mice. Gut. 63:1587–1595. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Stauber T, Weinert S and Jentsch TJ: Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol. 2:1701–1744. 2012. View Article : Google Scholar

73 

Stauber T and Jentsch TJ: Chloride in vesicular trafficking and function. Annu Rev Physiol. 75:453–477. 2013. View Article : Google Scholar

74 

Wartosch L, Fuhrmann JC, Schweizer M, Stauber T and Jentsch TJ: Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. FASEB J. 23:4056–4068. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Nicoli ER, Weston MR, Hackbarth M, Becerril A, Larson A, Zein WM, Baker PR II, Burke JD, Dorward H, Davids M, et al: Lysosomal storage and albinism due to effects of a de novo CLCN7 variant on lysosomal acidification. Am J Hum Genet. 104:1127–1138. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Polovitskaya MM, Barbini C, Martinelli D, Harms FL, Cole FS, Calligari P, Bocchinfuso G, Stella L, Ciolfi A, Niceta M, et al: A recurrent gain-of-function mutation in CLCN6, encoding the ClC-6 Cl(-)/H(+)-exchanger, causes early-onset neurodegeneration. Am J Hum Genet. 107:1062–1077. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Bose S, He H and Stauber T: Neurodegeneration upon dysfunction of endosomal/lysosomal CLC chloride transporters. Front Cell Dev Biol. 9:6392312021. View Article : Google Scholar : PubMed/NCBI

78 

Locher KP: Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol. 23:487–493. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Csanády L, Vergani P and Gadsby DC: Structure, gating, and regulation of the CFTR anion channel. Physiol Rev. 99:707–738. 2019. View Article : Google Scholar

80 

Fonseca C, Bicker J, Alves G, Falcão A and Fortuna A: Cystic fibrosis: Physiopathology and the latest pharmacological treatments. Pharmacol Res. 162:1052672020. View Article : Google Scholar : PubMed/NCBI

81 

Lukasiak A and Zajac M: The distribution and role of the CFTR protein in the intracellular compartments. Membranes (Basel). 11:8042021. View Article : Google Scholar : PubMed/NCBI

82 

Matsumoto Y, Shiozaki A, Kosuga T, Kudou M, Shimizu H, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, et al: Expression and role of CFTR in human esophageal squamous cell carcinoma. Ann Surg Oncol. 28:6424–6436. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Zhang J, Liu X, Zeng L and Hu Y: GABRP inhibits the progression of oesophageal cancer by regulating CFTR: Integrating bioinformatics analysis and experimental validation. Int J Exp Pathol. 105:118–132. 2024. View Article : Google Scholar : PubMed/NCBI

84 

Shakir S, Echevarria C, Doe S, Brodlie M, Ward C and Bourke SJ: Elexacaftor-tezacaftor-ivacaftor improve gastro-oesophageal reflux and sinonasal symptoms in advanced cystic fibrosis. J Cyst Fibros. 21:807–810. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Rowe SM, Heltshe SL, Gonska T, Donaldson SH, Borowitz D, Gelfond D, Sagel SD, Khan U, Mayer-Hamblett N, Van Dalfsen JM, et al: Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med. 190:175–184. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Petrov MS and Yadav D: Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 16:175–184. 2019. View Article : Google Scholar :

87 

Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM and Sahin-Tóth M: Genetics, cell biology, and pathophysiology of pancreatitis. Gastroenterology. 156:1951–1968.e1. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Hou Y, Guan X, Yang Z and Li C: Emerging role of cystic fibrosis transmembrane conductance regulator-an epithelial chloride channel in gastrointestinal cancers. World J Gastrointest Oncol. 8:282–288. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Fűr G, Bálint ER, Orján EM, Balla Z, Kormányos ES, Czira B, Szűcs A, Kovács DP, Pallagi P, Maléth J, et al: Mislocalization of CFTR expression in acute pancreatitis and the beneficial effect of VX-661 + VX-770 treatment on disease severity. J Physiol. 599:4955–4971. 2021. View Article : Google Scholar

90 

Kim Y, Jun I, Shin DH, Yoon JG, Piao H, Jung J, Park HW, Cheng MH, Bahar I, Whitcomb DC and Lee MG: Regulation of CFTR bicarbonate channel activity by WNK1: Implications for pancreatitis and CFTR-Related disorders. Cell Mol Gastroenterol Hepatol. 9:79–103. 2020. View Article : Google Scholar

91 

Lee MG, Ohana E, Park HW, Yang D and Muallem S: Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev. 92:39–74. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Fong P: CFTR-SLC26 transporter interactions in epithelia. Biophys Rev. 4:107–116. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ and Muallem S: Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol. 6:343–350. 2004. View Article : Google Scholar : PubMed/NCBI

94 

Berg P, Svendsen SL, Sorensen MV, Larsen CK, Andersen JF, Jensen-Fangel S, Jeppesen M, Schreiber R, Cabrita I, Kunzelmann K and Leipziger J: Impaired renal HCO(3)(-) excretion in cystic fibrosis. J Am Soc Nephrol. 31:1711–1727. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Ishiguro H, Steward MC, Naruse S, Ko SB, Goto H, Case RM, Kondo T and Yamamoto A: CFTR functions as a bicarbonate channel in pancreatic duct cells. J Gen Physiol. 133:315–326. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH and Lee MG: Dynamic regulation of CFTR bicarbonate permeability by [Cl-]i and its role in pancreatic bicarbonate secretion. Gastroenterology. 139:620–631. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Yang CL, Liu X, Paliege A, Zhu X, Bachmann S, Dawson DC and Ellison DH: WNK1 and WNK4 modulate CFTR activity. Biochem Biophys Res Commun. 353:535–540. 2007. View Article : Google Scholar

98 

Yang D, Li Q, So I, Huang CL, Ando H, Mizutani A, Seki G, Mikoshiba K, Thomas PJ and Muallem S: IRBIT governs epithelial secretion in mice by antagonizing the WNK/SPAK kinase pathway. J Clin Invest. 121:956–965. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Shirakabe K, Priori G, Yamada H, Ando H, Horita S, Fujita T, Fujimoto I, Mizutani A, Seki G and Mikoshiba K: IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3-cotransporter 1 (pNBC1). Proc Natl Acad Sci USA. 103:9542–9547. 2006. View Article : Google Scholar

100 

Park S, Shcheynikov N, Hong JH, Zheng C, Suh SH, Kawaai K, Ando H, Mizutani A, Abe T, Kiyonari H, et al: Irbit mediates synergy between ca(2+) and cAMP signaling pathways during epithelial transport in mice. Gastroenterology. 145:232–241. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Pankonien I, Quaresma MC, Rodrigues CS and Amaral MD: CFTR, cell junctions and the cytoskeleton. Int J Mol Sci. 23:2022. View Article : Google Scholar : PubMed/NCBI

102 

Wen G, Jin H, Deng S, Xu J, Liu X, Xie R and Tuo B: Effects of helicobacter pylori infection on the expressions and functional activities of human duodenal mucosal bicarbonate transport proteins. Helicobacter. 21:536–547. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Reyes EA, Castillo-Azofeifa D, Rispal J, Wald T, Zwick RK, Palikuqi B, Mujukian A, Rabizadeh S, Gupta AR, Gardner JM, et al: Epithelial TNF controls cell differentiation and CFTR activity to maintain intestinal mucin homeostasis. J Clin Invest. 133:e1635912023. View Article : Google Scholar : PubMed/NCBI

104 

Bhattacharya R, Blankenheim Z, Scott PM and Cormier RT: CFTR and gastrointestinal cancers: An update. J Pers Med. 12:8682022. View Article : Google Scholar : PubMed/NCBI

105 

Liu H, Wu W, Liu Y, Zhang C and Zhou Z: Predictive value of cystic fibrosis transmembrane conductance regulator (CFTR) in the diagnosis of gastric cancer. Clinical and investigative medicine. Clin Invest Med. 37:E226–E232. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Yamada A, Komaki Y, Komaki F, Micic D, Zullow S and Sakuraba A: Risk of gastrointestinal cancers in patients with cystic fibrosis: A systematic review and meta-analysis. Lancet Oncol. 19:758–767. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Jakab RL, Collaco AM and Ameen NA: Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol. 300:G82–G98. 2011. View Article : Google Scholar :

108 

Tse CM, Yin J, Singh V, Sarker R, Lin R, Verkman AS, Turner JR and Donowitz M: cAMP stimulates SLC26A3 activity in human colon by a CFTR-dependent mechanism that does not require CFTR activity. Cell Mol Gastroenterol Hepatol. 7:641–653. 2019. View Article : Google Scholar :

109 

Vernocchi P, Del Chierico F, Russo A, Majo F, Rossitto M, Valerio M, Casadei L, La Storia A, De Filippis F, Rizzo C, et al: Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype. PLoS One. 13:e02081712018. View Article : Google Scholar : PubMed/NCBI

110 

Burke DG, Fouhy F, Harrison MJ, Rea MC, Cotter PD, O'Sullivan O, Stanton C, Hill C, Shanahan F, Plant BJ and Ross RP: The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol. 17:582017. View Article : Google Scholar : PubMed/NCBI

111 

De Lisle RC: Disrupted tight junctions in the small intestine of cystic fibrosis mice. Cell Tissue Res. 355:131–142. 2014. View Article : Google Scholar :

112 

Broadbent D, Ahmadzai MM, Kammala AK, Yang C, Occhiuto C, Das R and Subramanian H: Roles of NHERF family of PDZ-binding proteins in regulating GPCR functions. Adv Immunol. 136:353–385. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Meeker SM, Mears KS, Sangwan N, Brittnacher MJ, Weiss EJ, Treuting PM, Tolley N, Pope CE, Hager KR, Vo AT, et al: CFTR dysregulation drives active selection of the gut microbiome. PLoS Pathog. 16:e10082512020. View Article : Google Scholar : PubMed/NCBI

114 

Mulcahy EM, Cooley MA, McGuire H, Asad S, Fazekas de St Groth B, Beggs SA and Roddam LF: Widespread alterations in the peripheral blood innate immune cell profile in cystic fibrosis reflect lung pathology. Immunol Cell Biol. 97:416–426. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Trigo Salado C, Leo Carnerero E and de la Cruz Ramírez MD: Crohn's disease and cystic fibrosis: There is still a lot to learn. Rev Esp Enferm Dig. 110:835–836. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Gabel ME, Galante GJ and Freedman SD: Gastrointestinal and hepatobiliary disease in cystic fibrosis. Semin Respir Crit Care Med. 40:825–841. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Maisonneuve P, Marshall BC, Knapp EA and Lowenfels AB: Cancer risk in cystic fibrosis: A 20-year nationwide study from the United States. J Natl Cancer Inst. 105:122–129. 2013. View Article : Google Scholar

118 

Than BL, Linnekamp JF, Starr TK, Largaespada DA, Rod A, Zhang Y, Bruner V, Abrahante J, Schumann A, Luczak T, et al: CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene. 35:4179–4187. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Sun TT, Wang Y, Cheng H, Xiao HZ, Xiang JJ, Zhang JT, Yu SB, Martin TA, Ye L, Tsang LL, et al: Disrupted interaction between CFTR and AF-6/afadin aggravates malignant phenotypes of colon cancer. Biochim Biophys Acta. 1843:618–628. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Palma AG, Soares Machado M, Lira MC, Rosa F, Rubio MF, Marino G, Kotsias BA and Costas MA: Functional relationship between CFTR and RAC3 expression for maintaining cancer cell stemness in human colorectal cancer. Cell Oncol (Dordr). 44:627–641. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Strubberg AM, Liu J, Walker NM, Stefanski CD, MacLeod RJ, Magness ST and Clarke LL: Cftr modulates Wnt/β-catenin signaling and stem cell proliferation in murine intestine. Cell Mol Gastroenterol Hepatol. 5:253–271. 2017. View Article : Google Scholar

122 

Liu C, Song C, Li J and Sun Q: CFTR functions as a tumor suppressor and is regulated by DNA methylation in colorectal cancer. Cancer Manag Res. 12:4261–4270. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Paulino C, Neldner Y, Lam AK, Kalienkova V, Brunner JD, Schenck S and Dutzler R: Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A. Elife. 6:e262322017. View Article : Google Scholar : PubMed/NCBI

124 

Dang S, Feng S, Tien J, Peters CJ, Bulkley D, Lolicato M, Zhao J, Zuberbühler K, Ye W, Qi L, et al: Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature. 552:426–429. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Ji Q, Guo S, Wang X, Pang C, Zhan Y, Chen Y and An H: Recent advances in TMEM16A: Structure, function, and disease. J Cell Physiol. 234:7856–7873. 2019. View Article : Google Scholar

126 

Liu Y, Liu Z and Wang K: The Ca(2+)-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B. 11:1412–1433. 2021. View Article : Google Scholar : PubMed/NCBI

127 

Crottès D and Jan LY: The multifaceted role of TMEM16A in cancer. Cell Calcium. 82:1020502019. View Article : Google Scholar : PubMed/NCBI

128 

Jang Y and Oh U: Anoctamin 1 in secretory epithelia. Cell Calcium. 55:355–361. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Ji Q, Shi S, Guo S, Zhan Y, Zhang H, Chen Y and An H: Activation of TMEM16A by natural product canthaxanthin promotes gastrointestinal contraction. FASEB J. 34:13430–13444. 2020. View Article : Google Scholar : PubMed/NCBI

130 

Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J and Zhao H: ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci USA. 106:11776–11781. 2009. View Article : Google Scholar : PubMed/NCBI

131 

Huang WC, Xiao S, Huang F, Harfe BD, Jan YN and Jan LY: Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron. 74:179–192. 2012. View Article : Google Scholar : PubMed/NCBI

132 

Ha GE, Lee J, Kwak H, Song K, Kwon J, Jung SY, Hong J, Chang GE, Hwang EM, Shin HS, et al: The Ca(2+)-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nat Commun. 7:137912016. View Article : Google Scholar : PubMed/NCBI

133 

Vanoni S, Zeng C, Marella S, Uddin J, Wu D, Arora K, Ptaschinski C, Que J, Noah T, Waggoner L, et al: Identification of anoctamin 1 (ANO1) as a key driver of esophageal epithelial proliferation in eosinophilic esophagitis. J Allergy Clin Immunol. 145:239–254.e2. 2020. View Article : Google Scholar :

134 

Yu Y, Cao J, Wu W, Zhu Q, Tang Y, Zhu C, Dai J, Li Z, Wang J, Xue L, et al: Genome-wide copy number variation analysis identified ANO1 as a novel oncogene and prognostic biomarker in esophageal squamous cell cancer. Carcinogenesis. 40:1198–1208. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Le SC, Jia Z, Chen J and Yang H: Molecular basis of PIP(2)-dependent regulation of the Ca(2+)-activated chloride channel TMEM16A. Nat Commun. 10:37692019. View Article : Google Scholar : PubMed/NCBI

136 

Fairfield CJ, Drake TM, Pius R, Bretherick AD, Campbell A, Clark DW, Fallowfield JA, Hayward C, Henderson NC, Iakovliev A, et al: Genome-wide analysis identifies gallstone-susceptibility loci including genes regulating gastrointestinal motility. Hepatology. 75:1081–1094. 2022. View Article : Google Scholar

137 

Camilleri M, Sandler RS and Peery AF: Etiopathogenetic mechanisms in diverticular disease of the colon. Cell Mol Gastroenterol Hepatol. 9:15–32. 2020. View Article : Google Scholar

138 

Schafmayer C, Harrison JW, Buch S, Lange C, Reichert MC, Hofer P, Cossais F, Kupcinskas J, von Schönfels W, Schniewind B, et al: Genome-wide association analysis of diverticular disease points towards neuromuscular, connective tissue and epithelial pathomechanisms. Gut. 68:854–865. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Zeng X, Pan D, Wu H, Chen H, Yuan W, Zhou J, Shen Z and Chen S: Transcriptional activation of ANO1 promotes gastric cancer progression. Biochem Biophys Res Commun. 512:131–136. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Xie R, Liu L, Lu X and Hu Y: LncRNA OIP5-AS1 facilitates gastric cancer cell growth by targeting the miR-422a/ANO1 axis. Acta Biochim Biophys Sin (Shanghai). 52:430–438. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Lu G, Shi W and Zheng H: Inhibition of STAT6/Anoctamin-1 activation suppresses proliferation and invasion of gastric cancer cells. Cancer Biother Radiopharm. 33:3–7. 2018.PubMed/NCBI

142 

Yan Y, Ding X, Han C, Gao J, Liu Z, Liu Y and Wang K: Involvement of TMEM16A/ANO1 upregulation in the oncogenesis of colorectal cancer. Biochim Biophys Acta Mol Basis Dis. 1868:1663702022. View Article : Google Scholar : PubMed/NCBI

143 

Wang Q, Bai L, Luo S, Wang T, Yang F, Xia J, Wang H, Ma K, Liu M, Wu S, et al: TMEM16A Ca(2+)-activated Cl(-) channel inhibition ameliorates acute pancreatitis via the IP(3) R/Ca(2+)/NFκB/IL-6 signaling pathway. J Adv Res. 23:25–35. 2020. View Article : Google Scholar : PubMed/NCBI

144 

Zhang G, Shu Z, Yu J, Li J, Yi P, Wu B, Deng D, Yan S, Li Y, Ren D, et al: High ANO1 expression is a prognostic factor and correlated with an immunosuppressive tumor microenvironment in pancreatic cancer. Front Immunol. 15:13412092024. View Article : Google Scholar : PubMed/NCBI

145 

Guo JW, Liu X, Zhang TT, Lin XC, Hong Y, Yu J, Wu QY, Zhang FR, Wu QQ, Shang JY, et al: Hepatocyte TMEM16A deletion retards NAFLD progression by ameliorating hepatic glucose metabolic disorder. Adv Sci (Weinh). 7:19036572020. View Article : Google Scholar : PubMed/NCBI

146 

Guo J, Song Z, Yu J, Li C, Jin C, Duan W, Liu X, Liu Y, Huang S, Tuo Y, et al: Hepatocyte-specific TMEM16A deficiency alleviates hepatic ischemia/reperfusion injury via suppressing GPX4-mediated ferroptosis. Cell Death Dis. 13:10722022. View Article : Google Scholar : PubMed/NCBI

147 

Kondo R, Furukawa N, Deguchi A, Kawata N, Suzuki Y, Imaizumi Y and Yamamura H: Downregulation of Ca(2+)-activated Cl(-) channel TMEM16A mediated by angiotensin II in cirrhotic portal hypertensive mice. Front Pharmacol. 13:8313112022. View Article : Google Scholar : PubMed/NCBI

148 

Deng L, Yang J, Chen H, Ma B, Pan K, Su C, Xu F and Zhang J: Knockdown of TMEM16A suppressed MAPK and inhibited cell proliferation and migration in hepatocellular carcinoma. Onco Targets Ther. 9:325–333. 2016.PubMed/NCBI

149 

König B and Stauber T: Biophysics and structure-function relationships of LRRC8-formed volume-regulated anion channels. Biophys J. 116:1185–1193. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Sawicka M and Dutzler R: Regulators of cell volume: The structural and functional properties of anion channels of the LRRC8 family. Curr Opin Struct Biol. 74:1023822022. View Article : Google Scholar : PubMed/NCBI

151 

Okada Y, Sabirov RZ, Sato-Numata K and Numata T: Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 1: Roles of VSOR/VRAC in cell volume regulation, release of double-edged signals and apoptotic/necrotic cell death. Front Cell Dev Biol. 8:6140402021. View Article : Google Scholar : PubMed/NCBI

152 

Chen L, König B, Liu T, Pervaiz S, Razzaque YS and Stauber T: More than just a pressure relief valve: Physiological roles of volume-regulated LRRC8 anion channels. Biol Chem. 400:1481–1496. 2019. View Article : Google Scholar : PubMed/NCBI

153 

Konishi T, Shiozaki A, Kosuga T, Kudou M, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, et al: LRRC8A expression influences growth of esophageal squamous cell carcinoma. Am J Pathol. 189:1973–1985. 2019. View Article : Google Scholar : PubMed/NCBI

154 

Kurashima K, Shiozaki A, Kudou M, Shimizu H, Arita T, Kosuga T, Konishi H, Komatsu S, Kubota T, Fujiwara H, et al: LRRC8A influences the growth of gastric cancer cells via the p53 signaling pathway. Gastric Cancer. 24:1063–1075. 2021. View Article : Google Scholar : PubMed/NCBI

155 

Xu R, Hu Y, Xie Q, Zhang C, Zhao Y, Zhang H, Shi H, Wang X and Shi C: LRRC8A is a promising prognostic biomarker and therapeutic target for pancreatic adenocarcinoma. Cancers (Basel). 14:55262022. View Article : Google Scholar : PubMed/NCBI

156 

Lu P, Ding Q, Li X, Ji X, Li L, Fan Y, Xia Y, Tian D and Liu M: SWELL1 promotes cell growth and metastasis of hepatocellular carcinoma in vitro and in vivo. EBioMedicine. 48:100–116. 2019. View Article : Google Scholar : PubMed/NCBI

157 

Zhang H, Deng Z, Zhang D, Li H, Zhang L, Niu J, Zuo W, Fu R, Fan L, Ye JH and She J: High expression of leucine-rich repeat-containing 8A is indicative of a worse outcome of colon cancer patients by enhancing cancer cell growth and metastasis. Oncol Rep. 40:1275–1286. 2018.PubMed/NCBI

158 

Fujii T, Shimizu T, Yamamoto S, Funayama K, Fujita K, Tabuchi Y, Ikari A, Takeshima H and Sakai H: Crosstalk between Na(+),K(+)-ATPase and a volume-regulated anion channel in membrane microdomains of human cancer cells. Biochim Biophys Acta Mol Basis Dis. 1864:3792–3804. 2018. View Article : Google Scholar : PubMed/NCBI

159 

Zhang H, Jing Z, Liu R, Shada Y, Shria S, Cui S, Ren Y, Wei Y, Li L and Peng S: LRRC8A promotes the initial development of oxaliplatin resistance in colon cancer cells. Heliyon. 9:e168722023. View Article : Google Scholar : PubMed/NCBI

160 

Zhang H, Cui S, Jing Z, Fu G, Liu R, Zhao W, Xu L, Yu L, Bai Y, Lv C, et al: LRRC8A is responsible for exosome biogenesis and volume regulation in colon cancer cells. Biochem J. 480:701–713. 2023. View Article : Google Scholar : PubMed/NCBI

161 

Wang HY, Shimizu T, Numata T and Okada Y: Role of acid-sensitive outwardly rectifying anion channels in acidosis-induced cell death in human epithelial cells. Pflugers Arch. 454:223–233. 2007. View Article : Google Scholar

162 

Osei-Owusu J, Kots E, Ruan Z, Mihaljević L, Chen KH, Tamhaney A, Ye X, Lü W, Weinstein H and Qiu Z: Molecular determinants of pH sensing in the proton-activated chloride channel. Proc Natl Acad Sci USA. 119:e22007271192022. View Article : Google Scholar : PubMed/NCBI

163 

Zhao J, Zhu D, Zhang X, Zhang Y, Zhou J and Dong M: TMEM206 promotes the malignancy of colorectal cancer cells by interacting with AKT and extracellular signal-regulated kinase signaling pathways. J Cell Physiol. 234:10888–10898. 2019. View Article : Google Scholar

164 

Zhang L, Liu SY, Yang X, Wang YQ and Cheng YX: TMEM206 is a potential prognostic marker of hepatocellular carcinoma. Oncol Lett. 20:1742020.PubMed/NCBI

165 

Huang X, Chen H, Michelsen K, Schneider S and Shaffer PL: Crystal structure of human glycine receptor-α3 bound to antagonist strychnine. Nature. 526:277–280. 2015. View Article : Google Scholar : PubMed/NCBI

166 

Clar DT and Maani CV: Physiology, Ligand Gated Chloride Channel. StatPearls. StatPearls Publishing; Treasure Island, FL: 2024

167 

Sanjari Moghaddam H, Zare-Shahabadi A, Rahmani F and Rezaei N: Neurotransmission systems in Parkinson's disease. Rev Neurosci. 28:509–536. 2017. View Article : Google Scholar : PubMed/NCBI

168 

Hsu YT, Chang YG and Chern Y: Insights into GABA(A)ergic system alteration in Huntington's disease. Open Biol. 8:1801652018. View Article : Google Scholar : PubMed/NCBI

169 

Govindpani K, Calvo-Flores Guzmán B, Vinnakota C, Waldvogel HJ, Faull RL and Kwakowsky A: Towards a better understanding of GABAergic remodeling in Alzheimer's disease. Int J Mol Sci. 18:18132017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hu Y and Tuo B: The function of chloride channels in digestive system disease (Review). Int J Mol Med 55: 99, 2025.
APA
Hu, Y., & Tuo, B. (2025). The function of chloride channels in digestive system disease (Review). International Journal of Molecular Medicine, 55, 99. https://doi.org/10.3892/ijmm.2025.5540
MLA
Hu, Y., Tuo, B."The function of chloride channels in digestive system disease (Review)". International Journal of Molecular Medicine 55.6 (2025): 99.
Chicago
Hu, Y., Tuo, B."The function of chloride channels in digestive system disease (Review)". International Journal of Molecular Medicine 55, no. 6 (2025): 99. https://doi.org/10.3892/ijmm.2025.5540
Copy and paste a formatted citation
x
Spandidos Publications style
Hu Y and Tuo B: The function of chloride channels in digestive system disease (Review). Int J Mol Med 55: 99, 2025.
APA
Hu, Y., & Tuo, B. (2025). The function of chloride channels in digestive system disease (Review). International Journal of Molecular Medicine, 55, 99. https://doi.org/10.3892/ijmm.2025.5540
MLA
Hu, Y., Tuo, B."The function of chloride channels in digestive system disease (Review)". International Journal of Molecular Medicine 55.6 (2025): 99.
Chicago
Hu, Y., Tuo, B."The function of chloride channels in digestive system disease (Review)". International Journal of Molecular Medicine 55, no. 6 (2025): 99. https://doi.org/10.3892/ijmm.2025.5540
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team