Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2025 Volume 56 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 56 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Function and application of brain‑derived neurotrophic factor precursors (Review)

  • Authors:
    • Risheng Chen
    • Weixin Chen
    • Ping Li
    • Yingchang Zhao
    • Qianqian Zeng
    • Wenqing Chen
    • Dequan Cao
  • View Affiliations / Copyright

    Affiliations: Department of Anesthesiology, Pingshan Central Hospital of Shenzhen, Shenzhen, Guangdong 518122, P.R. China, Department of Science and Education, The Fourth People's Hospital of Shenzhen (Shenzhen Sami Medical Center), Shenzhen, Guangdong 518118, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 105
    |
    Published online on: May 8, 2025
       https://doi.org/10.3892/ijmm.2025.5546
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Brain‑derived neurotrophic factor precursor (proBDNF) plays a critical role in the pathogenesis and progression of various human diseases. Through its interaction with p75NTR and sortilin receptors, proBDNF promotes apoptosis, impairs synaptic plasticity, and contributes to the regulation of immune system function, inflammatory responses and cellular metabolic processes. proBDNF is widely distributed throughout the body, and as such, extensive research has demonstrated that proBDNF is significantly associated with the pathophysiological mechanisms underlying several diseases. In the present review, the mechanisms by which proBDNF contributes to different diseases are summarized to highlight its potential therapeutic and diagnostic implications. Specifically, the role of proBDNF in cognitive disorders, focusing on its effects on synaptic function and neural network dynamics, while analyzing the cascade reactions involving proBDNF and downstream effector molecules in inflammatory diseases, to elucidate its bidirectional regulatory effects in tumor initiation and progression. Furthermore, the function of proBDNF in neurogenesis, the mechanism by which it regulates the memory of fear, and enhances individual behavioral flexibility is discussed. Finally, the potential of proBDNF as a biomarker for disease diagnosis and the therapeutic prospects of targeting it using monoclonal antibodies are highlighted while also proposing future research directions. The present review can serve as a reference for translational medical research on proBDNF and its receptors.
View Figures

Figure 1

View References

1 

Rafieva LM and Gasanov EV: Neurotrophin propeptides: Biological functions and molecular mechanisms. Curr Protein Pept Sci. 17:298–305. 2016. View Article : Google Scholar

2 

Arévalo JC and Deogracias R: Mechanisms controlling the expression and secretion of BDNF. Biomolecules. 13:7892023. View Article : Google Scholar : PubMed/NCBI

3 

Wang M, Xie Y and Qin D: Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res Bull. 166:172–184. 2021. View Article : Google Scholar

4 

Yang J, Harte-Hargrove LC, Siao CJ, Marinic T, Clarke R, Ma Q, Jing D, Lafrancois JJ, Bath KG, Mark W, et al: proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep. 7:796–806. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Edman S, Horwath O, Van der Stede T, Blackwood SJ, Moberg I, Stromlind H, Nordström F, Ekblom M, Katz A, Apró W and Moberg M: Pro-brain-derived neurotrophic factor (BDNF), but not mature BDNF, is expressed in human skeletal muscle: Implications for exercise-induced neuroplasticity. Function (Oxf). 5:zqae52024.

6 

Gibon J and Barker PA: Neurotrophins and proneurotrophins: Focus on synaptic activity and plasticity in the brain. Neuroscientist. 23:587–604. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Eggert S, Kins S, Endres K and Brigadski T: Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol Chem. 403:43–71. 2022. View Article : Google Scholar

8 

Hempstead BL: Deciphering proneurotrophin actions. Handb Exp Pharmacol. 220:17–32. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, et al: ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci. 25:5455–5463. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Anastasia A, Deinhardt K, Chao MV, Will NE, Irmady K, Lee FS, Hempstead BL and Bracken C: Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun. 4:24902013. View Article : Google Scholar : PubMed/NCBI

11 

Je HS, Yang F, Ji Y, Nagappan G, Hempstead BL and Lu B: Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci USA. 109:15924–15929. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Carlino D, De Vanna M and Tongiorgi E: Is altered BDNF biosynthesis a general feature in patients with cognitive dysfunctions? Neuroscientist. 19:345–353. 2013. View Article : Google Scholar

13 

Buhusi M, Etheredge C, Granholm AC and Buhusi CV: Increased hippocampal ProBDNF contributes to memory impairments in aged mice. Front Aging Neurosci. 9:2842017. View Article : Google Scholar : PubMed/NCBI

14 

Kailainathan S, Piers TM, Yi JH, Choi S, Fahey MS, Borger E, Gunn-Moore FJ, O'Neill L, Lever M, Whitcomb DJ, et al: Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF). Pharmacol Res. 104:97–107. 2016. View Article : Google Scholar :

15 

Pérez Palmer N, Trejo Ortega B and Joshi P: Cognitive impairment in older adults: Epidemiology, diagnosis, and treatment. Psychiatr Clin North Am. 45:639–661. 2022. View Article : Google Scholar : PubMed/NCBI

16 

Ampil ER, Ong PA, Krespi Y and Yang YH: A review of SaiLuoTong (MLC-SLT) development in vascular cognitive impairment and dementia. Front Pharmacol. 15:13438202024. View Article : Google Scholar : PubMed/NCBI

17 

Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, Li Y, Li Y, Zhu M, Jiao H, et al: Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health. 5:e661–e671. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Aderinto N, Olatunji G, Abdulbasit M, Ashinze P, Faturoti O, Ajagbe A, Ukoaka B and Aboderin G: The impact of diabetes in cognitive impairment: A review of current evidence and prospects for future investigations. Medicine (Baltimore). 102:e355572023. View Article : Google Scholar : PubMed/NCBI

19 

Huang J, Qin TS, Bo Y, Li YJ, Liu RS, Yu Y, Li XD, He JC, Ma AX, Tao DP, et al: The role of the intestinal flora and its derivatives in neurocognitive disorders: A narrative review from surgical perspective. Mol Neurobiol. 62:1404–1414. 2025. View Article : Google Scholar :

20 

Benedict RHB, Amato MP, Deluca J and Geurts JJG: Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues. Lancet Neurol. 19:860–871. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Haroon NN, Austin PC, Shah BR, Wu J, Gill SS and Booth GL: Risk of dementia in seniors with newly diagnosed diabetes: A population-based study. Diabetes Care. 38:1868–1875. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Ruegsegger GN, Vanderboom PM, Dasari S, Klaus KA, Kabiraj P, McCarthy CB, Lucchinetti CF and Nair KS: Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI Insight. 4:e1306812019. View Article : Google Scholar : PubMed/NCBI

23 

Kullmann S, Goj T, Veit R, Fritsche L, Wagner L, Schneeweiss P, Hoene M, Hoffmann C, Machann J, Niess A, et al: Exercise restores brain insulin sensitivity in sedentary adults who are overweight and obese. JCI Insight. 7:e1614982022. View Article : Google Scholar : PubMed/NCBI

24 

Kim B and Feldman EL: Insulin resistance in the nervous system. Trends Endocrinol Metab. 23:133–141. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Delgado-Peraza F, Nogueras-Ortiz C, Simonsen AH, Knight DD, Yao PJ, Goetzl EJ, Jensen CS, Høgh P, Gottrup H, Vestergaard K, et al: Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer's disease. Alzheimers Res Ther. 15:1562023. View Article : Google Scholar : PubMed/NCBI

26 

Dahiya M, Yadav M, Goyal C and Kumar A: Insulin resistance in Alzheimer's disease: Signalling mechanisms and therapeutics strategies. Inflammopharmacology. 33:1817–1831. 2025. View Article : Google Scholar : PubMed/NCBI

27 

Malin SK, Battillo DJ, Beeri MS, Mustapic M, Delgado-Peraza F and Kapogiannis D: Two weeks of exercise alters neuronal extracellular vesicle insulin signaling proteins and pro-BDNF in older adults with prediabetes. Aging Cell. 24:e143692025. View Article : Google Scholar

28 

Da Mesquita S, Papadopoulos Z, Dykstra T, Brase L, Farias FG, Wall M, Jiang H, Kodira CD, de Lima KA, Herz J, et al: Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature. 593:255–260. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Li P, Chen J, Wang X, Su Z, Gao M and Huang Y: Liquid-liquid phase separation of tau: Driving forces, regulation, and biological implications. Neurobiol Dis. 183:1061672023. View Article : Google Scholar

30 

Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, et al: TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell. 160:1061–1071. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Kellar D and Craft S: Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 19:758–766. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Chandra S, Sisodia SS and Vassar RJ: The gut microbiome in Alzheimer's disease: What we know and what remains to be explored. Mol Neurodegener. 18:92023. View Article : Google Scholar : PubMed/NCBI

33 

Sienski G, Narayan P, Bonner JM, Kory N, Boland S, Arczewska AA, Ralvenius WT, Akay L, Lockshin E, He L, et al: APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci Transl Med. 13:eaaz45642021. View Article : Google Scholar : PubMed/NCBI

34 

Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, Naj AC, Campos-Martin R, Grenier-Boley B, Andrade V, et al: New insights into the genetic etiology of Alzheimer's disease and related dementias. Nat Genet. 54:412–436. 2022. View Article : Google Scholar : PubMed/NCBI

35 

Wu H, Dunnett S, Ho YS and Chang RCC: The role of sleep deprivation and circadian rhythm disruption as risk factors of Alzheimer's disease. Front Neuroendocrinol. 54:1007642019. View Article : Google Scholar : PubMed/NCBI

36 

Hussain R, Graham U, Elder A and Nedergaard M: Air pollution, glymphatic impairment, and Alzheimer's disease. Trends Neurosci. 46:901–911. 2023. View Article : Google Scholar : PubMed/NCBI

37 

Myhre O, Utkilen H, Duale N, Brunborg G and Hofer T: Metal dyshomeostasis and inflammation in Alzheimer's and Parkinson's diseases: Possible impact of environmental exposures. Oxid Med Cell Longev. 2013:7269542013. View Article : Google Scholar : PubMed/NCBI

38 

Wang J, Chen Y, Zhang C, Xiang Z, Ding J and Han X: Learning and memory deficits and alzheimer's disease-like changes in mice after chronic exposure to microcystin-LR. J Hazard Mater. 373:504–518. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Goldman SM: Environmental toxins and Parkinson's disease. Annu Rev Pharmacol Toxicol. 54:141–164. 2014. View Article : Google Scholar

40 

Vasefi M, Ghaboolian-Zare E, Abedelwahab H and Osu A: Environmental toxins and Alzheimer's disease progression. Neurochem Int. 141:1048522020. View Article : Google Scholar : PubMed/NCBI

41 

Bovis K, Davies-Branch M and Day PJR: Dysregulated neurotransmission and the role of viruses in Alzheimer's disease. ACS Chem Neurosci. 16:982–987. 2025. View Article : Google Scholar : PubMed/NCBI

42 

Dai L, Zou L, Meng L, Qiang G, Yan M and Zhang Z: Cholesterol metabolism in neurodegenerative diseases: Molecular mechanisms and therapeutic targets. Mol Neurobiol. 58:2183–2201. 2021. View Article : Google Scholar : PubMed/NCBI

43 

Li Y, Zhang J, Wan J, Liu A and Sun J: Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer's disease. Biomed Pharmacother. 132:1108872020. View Article : Google Scholar

44 

Manucat-Tan NB, Shen LL, Bobrovskaya L, Al-Hawwas M, Zhou FH, Wang YJ and Zhou XF: Knockout of p75 neurotrophin receptor attenuates the hyperphosphorylation of Tau in pR5 mouse model. Aging (Albany NY). 11:6762–6791. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Bie B, Wu J, Lin F, Naguib M and Xu J: Suppression of hippocampal GABAergic transmission impairs memory in rodent models of Alzheimer's disease. Eur J Pharmacol. 917:1747712022. View Article : Google Scholar : PubMed/NCBI

46 

Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K and Weintraub D: Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 7:472021. View Article : Google Scholar : PubMed/NCBI

47 

Jellinger KA: Morphological basis of Parkinson disease-associated cognitive impairment: An update. J Neural Transm (Vienna). 129:977–999. 2022. View Article : Google Scholar : PubMed/NCBI

48 

Goldman JG and Sieg E: Cognitive impairment and dementia in Parkinson disease. Clin Geriatr Med. 36:365–377. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Baiano C, Barone P, Trojano L and Santangelo G: Prevalence and clinical aspects of mild cognitive impairment in Parkinson's disease: A meta-analysis. Mov Disord. 35:45–54. 2020. View Article : Google Scholar

50 

Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Saad HM and Batiha GES: The molecular pathway of p75 neurotrophin receptor (p75NTR) in Parkinson's disease: The way of new inroads. Mol Neurobiol. 61:2469–2480. 2024. View Article : Google Scholar

51 

Kazzi C, Alpitsis R, O'Brien TJ, Malpas CB and Monif M: Cognitive and psychopathological features of neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody-associated disease: A narrative review. Mult Scler Relat Disord. 85:1055962024. View Article : Google Scholar : PubMed/NCBI

52 

Jellinger KA: Cognitive impairment in multiple sclerosis: From phenomenology to neurobiological mechanisms. J Neural Transm (Vienna). 131:871–899. 2024. View Article : Google Scholar : PubMed/NCBI

53 

Hu ZL, Luo C, Hurtado PR, Li H, Wang S, Hu B, Xu JM, Liu Y, Feng SQ, Hurtado-Perez E, et al: Brain-derived neurotrophic factor precursor in the immune system is a novel target for treating multiple sclerosis. Theranostics. 11:715–730. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Al-Yozbaki M, Acha-Sagredo A, George A, Liloglou T and Wilson CM: Balancing neurotrophin pathway and sortilin function: Its role in human disease. Biochim Biophys Acta Rev Cancer. 1874:1884292020. View Article : Google Scholar : PubMed/NCBI

55 

Vilar M: Structural characterization of the p75 neurotrophin receptor: A stranger in the TNFR superfamily. Vitam Horm. 104:57–87. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Chen C, Li J, Matye DJ, Wang Y and Li T: Hepatocyte sortilin 1 knockout and treatment with a sortilin 1 inhibitor reduced plasma cholesterol in Western diet-fed mice. J Lipid Res. 60:539–549. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Li Q, Hu YZ, Gao S, Wang PF, Hu ZL and Dai RP: ProBDNF and its receptors in immune-mediated inflammatory diseases: Novel insights into the regulation of metabolism and mitochondria. Front Immunol. 14:11553332023. View Article : Google Scholar : PubMed/NCBI

58 

Al-Kuraishy HM, Sulaiman GM, Mohammed HA, Albukhaty S, Albuhadily AK, Al-Gareeb AI, Klionsky DJ and Abomughaid MM: The compelling role of brain-derived neurotrophic factor signaling in multiple sclerosis: Role of BDNF activators. CNS Neurosci Ther. 30:e701672024. View Article : Google Scholar : PubMed/NCBI

59 

Reuter E, Weber J, Paterka M, Ploen R, Breiderhoff T, van Horssen J, Willnow TE, Siffrin V and Zipp F: Role of sortilin in models of autoimmune neuroinflammation. J Immunol. 195:5762–5769. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Sarno E, Moeser AJ and Robison AJ: Neuroimmunology of depression. Adv Pharmacol. 91:259–292. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Price RB and Duman R: Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model. Mol Psychiatry. 25:530–543. 2020. View Article : Google Scholar :

62 

Pan Z, Park C, Brietzke E, Zuckerman H, Rong C, Mansur RB, Fus D, Subramaniapillai M, Lee Y and Mcintyre RS: Cognitive impairment in major depressive disorder. CNS Spectr. 24:22–29. 2019. View Article : Google Scholar

63 

Zhao XP, Li H and Dai RP: Neuroimmune crosstalk through brain-derived neurotrophic factor and its precursor pro-BDNF: New insights into mood disorders. World J Psychiatry. 12:379–392. 2022. View Article : Google Scholar : PubMed/NCBI

64 

Lin LY, Kelliny S, Liu LC, Al-Hawwas M, Zhou XF and Bobrovskaya L: Peripheral ProBDNF delivered by an AAV vector to the muscle triggers depression-like behaviours in mice. Neurotox Res. 38:626–639. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Yang CR, Liang R, Liu Y, Meng FJ, Zhou F, Zhang XY, Ning L, Wang ZQ, Liu S and Zhou XF: Upregulation of proBDNF/p75NTR signaling in immune cells and its correlation with inflammatory markers in patients with major depression. FASEB J. 38:e233122024. View Article : Google Scholar : PubMed/NCBI

66 

Li Y, Guan X, He Y, Jia X, Pan L, Wang Y, Han Y, Zhao R, Yang J and Hou T: ProBDNF signaling is involved in periodontitis-induced depression-like behavior in mouse hippocampus. Int Immunopharmacol. 116:1097672023. View Article : Google Scholar : PubMed/NCBI

67 

Li Y, Yang Y, Guan X, Liu Z, Pan L, Wang Y, Jia X, Yang J and Hou T: SorCS2 is involved in promoting periodontitis-induced depression-like behaviour in mice. Oral Dis. 30:5408–5420. 2024. View Article : Google Scholar : PubMed/NCBI

68 

Jin HJ, Pei L, Li YN, Zheng H, Yang S, Wan Y, Mao L, Xia YP, He QW, Li M, et al: Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci Rep. 7:149262017. View Article : Google Scholar : PubMed/NCBI

69 

Yang B, Wang L, Nie Y, Wei W and Xiong W: proBDNF expression induces apoptosis and inhibits synaptic regeneration by regulating the RhoA-JNK pathway in an in vitro post-stroke depression model. Transl Psychiatry. 11:5782021. View Article : Google Scholar : PubMed/NCBI

70 

Huang S, Nie Y, Qin J, Wen M, Wang Q, Xie F, Song F and Yang B: Hippocampal exosomes from stroke aggravate post-stroke depression by regulating the expression of proBDNF and p75NTR and altering spine density. Sci Rep. 14:282232024. View Article : Google Scholar : PubMed/NCBI

71 

Sanmarti M, Ibáñez L, Huertas S, Badenes D, Dalmau D, Slevin M, Krupinski J, Popa-Wagner A and Jaen A: Hiv-associated neurocognitive disorders. J Mol Psychiatry. 2:22014. View Article : Google Scholar : PubMed/NCBI

72 

Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ and Mcarthur JC: Hiv-associated neurocognitive disorder-pathogenesis and prospects for treatment. Nat Rev Neurol. 12:234–248. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, et al: Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 69:1789–1799. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Kaul M, Zheng J, Okamoto S, Gendelman HE and Lipton SA: HIV-1 infection and AIDS: Consequences for the central nervous system. Cell Death Differ. 12(Suppl 1): S878–S892. 2005. View Article : Google Scholar

75 

Eggers C, Arendt G, Hahn K, Husstedt IW, Maschke M, Neuen-Jacob E, Obermann M, Rosenkranz T, Schielke E and Straube E; German Association of Neuro-AIDS und Neuro-Infectiology (DGNANI): HIV-1-associated neurocognitive disorder: Epidemiology, pathogenesis, diagnosis, and treatment. J Neurol. 264:1715–1727. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Avedissian SN, Dyavar SR, Fox HS and Fletcher CV: Pharmacologic approaches to HIV-associated neurocognitive disorders. Curr Opin Pharmacol. 54:102–108. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Erdos T, Masuda M and Venketaraman V: Glutathione in HIV-associated neurocognitive disorders. Curr Issues Mol Biol. 46:5530–5549. 2024. View Article : Google Scholar : PubMed/NCBI

78 

Riviere-Cazaux C, Cornell J, Shen Y and Zhou M: The role of CCR5 in HIV-associated neurocognitive disorders. Heliyon. 8:e99502022. View Article : Google Scholar

79 

Hou C, Wei J, Zhang H and Li H: Evolving strategies in the diagnosis and treatment of HIV-associated neurocognitive disorders. Rev Neurosci. Mar 6–2025.Epub ahead of print. View Article : Google Scholar

80 

Johnson TP and Nath A: Biotypes of HIV-associated neurocognitive disorders based on viral and immune pathogenesis. Curr Opin Infect Dis. 35:223–230. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Speidell A, Asuni GP, Wakulski R and Mocchetti I: Up-regulation of the p75 neurotrophin receptor is an essential mechanism for HIV-gp120 mediated synaptic loss in the striatum. Brain Behav Immun. 89:371–379. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Allen CNS, Arjona SP, Santerre M, De Lucia C, Koch WJ and Sawaya BE: Metabolic reprogramming in HIV-associated neurocognitive disorders. Front Cell Neurosci. 16:8128872022. View Article : Google Scholar : PubMed/NCBI

83 

Michael HU, Rapulana AM, Smit T, Xulu N, Danaviah S, Ramlall S and Oosthuizen F: Serum mature and precursor brain-derived neurotrophic factors and their association with neurocognitive function in ART-Naïve adults living with HIV in Sub-Saharan Africa. Mol Neurobiol. 62:5442–5451. 2025. View Article : Google Scholar

84 

Mizoguchi Y, Ohgidani M, Haraguchi Y, Murakawa-Hirachi T, Kato TA and Monji A: ProBDNF induces sustained elevation of intracellular Ca2+ possibly mediated by TRPM7 channels in rodent microglial cells. Glia. 69:1694–1708. 2021. View Article : Google Scholar : PubMed/NCBI

85 

Sonneville R, de Montmollin E, Poujade J, Garrouste-Orgeas M, Souweine B, Darmon M, Mariotte E, Argaud L, Barbier F, Goldgran-Toledano D, et al: Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med. 43:1075–1084. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Long LH, Cao WY, Xu Y and Xiang YY: Research progress on the role of microglia in sepsis-associated encephalopathy. Sheng Li Xue Bao. 76:289–300. 2024.In Chinese. PubMed/NCBI

87 

Luo RY, Luo C, Zhong F, Shen WY, Li H, Hu ZL and Dai RP: ProBDNF promotes sepsis-associated encephalopathy in mice by dampening the immune activity of meningeal CD4+ T cells. J Neuroinflammation. 17:1692020. View Article : Google Scholar

88 

Huang J, Chen L, Yao ZM, Sun XR, Tong XH and Dong SY: The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury. Biomed Pharmacother. 162:1146712023. View Article : Google Scholar : PubMed/NCBI

89 

Wu M, Gu X and Ma Z: Mitochondrial quality control in cerebral ischemia-reperfusion injury. Mol Neurobiol. 58:5253–5271. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Kumar SS and Singh D: Mitochondrial mechanisms in cerebral ischemia-reperfusion injury: Unravelling the intricacies. Mitochondrion. 77:1018832024. View Article : Google Scholar

91 

Fiskum G, Murphy AN and Beal MF: Mitochondria in neurodegeneration: Acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab. 19:351–369. 1999. View Article : Google Scholar : PubMed/NCBI

92 

Jurcau A and Simion A: Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysiology to therapeutic strategies. Int J Mol Sci. 23:142021. View Article : Google Scholar

93 

Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, Mei Z, Wang G and Ge J: A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol. 13:9301712022. View Article : Google Scholar : PubMed/NCBI

94 

Zhang Q, Jia M, Wang Y, Wang Q and Wu J: Cell death mechanisms in cerebral ischemia-reperfusion injury. Neurochem Res. 47:3525–3542. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Liu X, Xie C, Wang Y, Xiang J, Chen L, Yuan J, Chen C and Tian H: Ferritinophagy and ferroptosis in cerebral ischemia reperfusion injury. Neurochem Res. 49:1965–1979. 2024. View Article : Google Scholar : PubMed/NCBI

96 

Li M, Tang H, Li Z and Tang W: Emerging treatment strategies for cerebral ischemia-reperfusion injury. Neuroscience. 507:112–124. 2022. View Article : Google Scholar : PubMed/NCBI

97 

Ginsberg MD: Neuroprotection for ischemic stroke: Past, present and future. Neuropharmacology. 55:363–389. 2008. View Article : Google Scholar : PubMed/NCBI

98 

Chamorro A, Dirnagl U, Urra X and Planas AM: Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 15:869–881. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Xiong XY, Liu L and Yang QW: Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 142:23–44. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R and Yuan J: Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 9:122024. View Article : Google Scholar : PubMed/NCBI

101 

Liu DQ, Mei W, Zhou YQ and Xi H: Targeting TRPM channels for cerebral ischemia-reperfusion injury. Trends Pharmacol Sci. 45:862–867. 2024. View Article : Google Scholar : PubMed/NCBI

102 

Candelario-Jalil E, Dijkhuizen RM and Magnus T: Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke. 53:1473–1486. 2022. View Article : Google Scholar : PubMed/NCBI

103 

Yang C, Hawkins KE, Doré S and Candelario-Jalil E: Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 316:C135–C153. 2019. View Article : Google Scholar :

104 

Li S, Dou B, Shu S, Wei L, Zhu S, Ke Z and Wang Z: Suppressing NK Cells by astragaloside IV protects against acute ischemic stroke in mice via inhibiting STAT3. Front Pharmacol. 12:8020472022. View Article : Google Scholar : PubMed/NCBI

105 

Cramer T, Gill R, Thirouin ZS, Vaas M, Sampath S, Martineau F, Noya SB, Panzanelli P, Sudharshan TJJ, Colameo D, et al: Cross-talk between GABAergic postsynapse and microglia regulate synapse loss after brain ischemia. Sci Adv. 8:eabj1122022. View Article : Google Scholar

106 

Rahman M, Luo H, Bobrovskaya L and Zhou XF: Neuroprotective effects of anti-probdnf in a RAT photothrombotic ischemic model. Neuroscience. 446:261–270. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Kotekar N, Shenkar A and Nagaraj R: Postoperative cognitive dysfunction-current preventive strategies. Clin Interv Aging. 13:2267–2273. 2018. View Article : Google Scholar :

108 

Yang X, Huang X, Li M, Jiang Y and Zhang H: Identification of individuals at risk for postoperative cognitive dysfunction (POCD). Ther Adv Neurol Disord. 15:175628642211143562022. View Article : Google Scholar : PubMed/NCBI

109 

Zhong Y, Zhang Y and Zhu Z: Research progress on the association between MicroRNA and postoperative cognitive dysfunction. Minerva Anestesiol. 90:191–199. 2024. View Article : Google Scholar : PubMed/NCBI

110 

Luo A, Yan J, Tang X, Zhao Y, Zhou B and Li S: Postoperative cognitive dysfunction in the aged: The collision of neuroinflammaging with perioperative neuroinflammation. Inflammopharmacology. 27:27–37. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Xue Z, Shui M, Lin X, Sun Y, Liu J, Wei C, Wu A and Li T: Role of BDNF/ProBDNF imbalance in postoperative cognitive dysfunction by modulating synaptic plasticity in aged mice. Front Aging Neurosci. 14:7809722022. View Article : Google Scholar : PubMed/NCBI

112 

Jiang L, Dong R, Xu M, Liu Y, Xu J, Ma Z, Xia T and Gu X: Inhibition of the integrated stress response reverses oxidative stress damage-induced postoperative cognitive dysfunction. Front Cell Neurosci. 16:9928692022. View Article : Google Scholar : PubMed/NCBI

113 

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR and Vincent JL: Sepsis and septic shock. Nat Rev Dis Primers. 2:160452016. View Article : Google Scholar

115 

Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, Angus DC and Reinhart K; International Forum of Acute Care Trialists: Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 193:259–272. 2016. View Article : Google Scholar

116 

Wang Z, Wu JL, Zhong F, Liu Y, Yu YQ, Sun JJ, Wang S, Li H, Zhou XF, Hu ZL and Dai RP: Upregulation of proBDNF in the mesenteric lymph nodes in septic mice. Neurotox Res. 36:540–550. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Wang S, Zeng Q, Gao H, Gao S, Dai R and Hu Z: Expression of proBDNF/p75NTR in peripheral blood lymphocytes of patients with sepsis and its impact on lymphocyte differentiation. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 48:1629–1638. 2023.In English, Chinese.

118 

Bezzio C, Della CC, Vernero M, Di Luna I, Manes G and Saibeni S: Inflammatory bowel disease and immune-mediated inflammatory diseases: Looking at the less frequent associations. Therap Adv Gastroenterol. 15:175628482211153122022. View Article : Google Scholar : PubMed/NCBI

119 

Yang CR, Ding HJ, Yu M, Zhou FH, Han CY, Liang R, Zhang XY, Zhang XL, Meng FJ, Wang S, et al: proBDNF/p75NTR promotes rheumatoid arthritis and inflammatory response by activating proinflammatory cytokines. FASEB J. 36:e221802022.PubMed/NCBI

120 

Farina L, Minnone G, Alivernini S, Caiello I, MacDonald L, Soligo M, Manni L, Tolusso B, Coppola S, Zara E, et al: Pro nerve growth factor and its receptor p75NTR activate inflammatory responses in synovial fibroblasts: A novel targetable mechanism in arthritis. Front Immunol. 13:8186302022. View Article : Google Scholar : PubMed/NCBI

121 

Ameer MA, Chaudhry H, Mushtaq J, Khan OS, Babar M, Hashim T, Zeb S, Tariq MA, Patlolla SR, Ali J, et al: An overview of systemic lupus erythematosus (SLE) pathogenesis, classification, and management. Cureus. 14:e303302022.PubMed/NCBI

122 

Shen WY, Luo C, Hurtado PR, Liu XJ, Luo RY, Li H, Hu ZL, Xu JM, Coulson EJ, Zhao M, et al: Up-regulation of proBDNF/p75NTR signaling in antibody-secreting cells drives systemic lupus erythematosus. Sci Adv. 8:eabj27972022. View Article : Google Scholar

123 

Putcha GV, Moulder KL, Golden JP, Bouillet P, Adams JA, Strasser A and Johnson EM: Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron. 29:615–628. 2001. View Article : Google Scholar : PubMed/NCBI

124 

Sankorrakul K, Qian L, Thangnipon W and Coulson EJ: Is there a role for the p75 neurotrophin receptor in mediating degeneration during oxidative stress and after hypoxia? J Neurochem. 158:1292–1306. 2021. View Article : Google Scholar : PubMed/NCBI

125 

Taylor KR, Barron T, Hui A, Spitzer A, Yalçin B, Ivec AE, Geraghty AC, Hartmann GG, Arzt M, Gillespie SM, et al: Glioma synapses recruit mechanisms of adaptive plasticity. Nature. 623:366–374. 2023. View Article : Google Scholar : PubMed/NCBI

126 

Jiang CC, Marsland M, Wang Y, Dowdell A, Eden E, Gao F, Faulkner S, Jobling P, Li X, Liu L, et al: Tumor innervation is triggered by endoplasmic reticulum stress. Oncogene. 41:586–599. 2022. View Article : Google Scholar

127 

Xiong J, Zhou L, Yang M, Lim Y, Zhu YH, Fu DL, Li ZW, Zhong JH, Xiao ZC and Zhou XF: ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro Oncol. 15:990–1007. 2013. View Article : Google Scholar : PubMed/NCBI

128 

Fan YJ, Wu LLY, Li HY, Wang YJ and Zhou XF: Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci. 27:2380–2390. 2008. View Article : Google Scholar : PubMed/NCBI

129 

Koshimizu H, Hazama S, Hara T, Ogura A and Kojima M: Distinct signaling pathways of precursor BDNF and mature BDNF in cultured cerebellar granule neurons. Neurosci Lett. 473:229–232. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Salmaggi A, Croci D, Prina P, Cajola L, Pollo B, Marras CE, Ciusani E, Silvani A, Boiardi A and Sciacca FL: Production and post-surgical modification of VEGF, tPA and PAI-1 in patients with glioma. Cancer Biol Ther. 5:204–209. 2006. View Article : Google Scholar

131 

Nakabayashi H, Yawata T and Shimizu K: Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells. BMC Cancer. 10:3392010. View Article : Google Scholar : PubMed/NCBI

132 

Levicar N, Nuttall RK and Lah TT: Proteases in brain tumour progression. Acta Neurochir (Wien). 145:825–838. 2003. View Article : Google Scholar : PubMed/NCBI

133 

De la Cruz-Morcillo MA, Berger J, Sánchez-Prieto R, Saada S, Naves T, Guillaudeau A, Perraud A, Sindou P, Lacroix A, Descazeaud A, et al: p75 neurotrophin receptor and pro-BDNF promote cell survival and migration in clear cell renal cell carcinoma. Oncotarget. 7:34480–34497. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Corti C, Antonarelli G, Criscitiello C, Lin NU, Carey LA, Cortés J, Poortmans P and Curigliano G: Targeting brain metastases in breast cancer. Cancer Treat Rev. 103:1023242022. View Article : Google Scholar

135 

Fidler IJ: The biology of brain metastasis: Challenges for therapy. Cancer J. 21:284–293. 2015. View Article : Google Scholar : PubMed/NCBI

136 

Alhusban L, Ayoub NM and Alhusban A: ProBDNF is a novel mediator of the interaction between MDA-MB-231 breast cancer cells and brain microvascular endothelial cells. Curr Mol Med. 21:914–921. 2021. View Article : Google Scholar

137 

Klann IP, Fulco BCW and Nogueira CW: Subchronic exposure to Tamoxifen modulates the hippocampal BDNF/ERK/Akt/CREB pathway and impairs memory in intact female rats. Chem Biol Interact. 382:1106152023. View Article : Google Scholar : PubMed/NCBI

138 

Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, Ferns GA, Pasdar A and Avan A: Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives. J Cell Biochem. 118:2502–2515. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Lu Q, Qu Y, Ding Y and Kang X: p75NTR/proBDNF modulates basal cell carcinoma (BCC) immune microenvironment via necroptosis signaling pathway. J Immunol Res. 2021:66528462021. View Article : Google Scholar : PubMed/NCBI

140 

Culig L, Chu X and Bohr VA: Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev. 78:1016362022. View Article : Google Scholar : PubMed/NCBI

141 

Bhalla M and Lee CJ: Long-term inhibition of ODC1 in APP/PS1 mice rescues amyloid pathology and switches astrocytes from a reactive to active state. Mol Brain. 17:32024. View Article : Google Scholar : PubMed/NCBI

142 

Sunderland S: A classification of peripheral nerve injuries producing loss of function. Brain. 74:491–516. 1951. View Article : Google Scholar : PubMed/NCBI

143 

Kamble N, Shukla D and Bhat D: Peripheral nerve injuries: Electrophysiology for the neurosurgeon. Neurol India. 67:1419–1422. 2019. View Article : Google Scholar : PubMed/NCBI

144 

Gordon T: Peripheral nerve regeneration and muscle reinnervation. Int J Mol Sci. 21:86522020. View Article : Google Scholar : PubMed/NCBI

145 

Rotshenker S: Wallerian degeneration: The innate-immune response to traumatic nerve injury. J Neuroinflammation. 8:1092011. View Article : Google Scholar : PubMed/NCBI

146 

Defrancesco-Lisowitz A, Lindborg JA, Niemi JP and Zigmond RE: The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience. 302:174–203. 2015. View Article : Google Scholar

147 

Cámara-Lemarroy CR, Guzmán-de la Garza FJ and Fernández-Garza NE: Molecular inflammatory mediators in peripheral nerve degeneration and regeneration. Neuroimmunomodulation. 17:314–324. 2010. View Article : Google Scholar : PubMed/NCBI

148 

Huang EJ and Reichardt LF: Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci. 24:677–736. 2001. View Article : Google Scholar : PubMed/NCBI

149 

Jessen KR and Mirsky R: The repair schwann cell and its function in regenerating nerves. J Physiol. 594:3521–3531. 2016. View Article : Google Scholar : PubMed/NCBI

150 

Wang X, Ma W, Wang T, Yang J, Wu Z, Liu K, Dai Y, Zang C, Liu W, Liu J, et al: BDNF-TrkB and proBDNF-p75NTR/Sortilin signaling pathways are involved in mitochondria-mediated neuronal apoptosis in dorsal root ganglia after sciatic nerve transection. CNS Neurol Disord Drug Targets. 19:66–82. 2020. View Article : Google Scholar : PubMed/NCBI

151 

Ma W, Yang JW, Wang XB, Luo T, Zhou L, Lagares A, Li H, Liang Z, Liu KP, Zang CH, et al: Negative regulation by proBDNF signaling of peripheral neurogenesis in the sensory ganglia of adult rats. Biomed Pharmacother. 144:1122732021. View Article : Google Scholar : PubMed/NCBI

152 

Fronza MG, Ferreira BF, Pavan-Silva I, Guimarães FS and Lisboa SF: 'NO' time in fear response: Possible implication of nitric-oxide-related mechanisms in PTSD. Molecules. 29:892023. View Article : Google Scholar

153 

He M, Wei JX, Mao M, Zhao GY, Tang JJ, Feng S, Lu XM and Wang YT: Synaptic plasticity in PTSD and associated comorbidities: The function and mechanism for diagnostics and therapy. Curr Pharm Des. 24:4051–4059. 2018. View Article : Google Scholar : PubMed/NCBI

154 

Andero R and Ressler KJ: Fear extinction and BDNF: Translating animal models of PTSD to the clinic. Genes Brain Behav. 11:503–512. 2012. View Article : Google Scholar : PubMed/NCBI

155 

Bennett MR, Hatton SN and Lagopoulos J: Stress, trauma and PTSD: Translational insights into the core synaptic circuitry and its modulation. Brain Struct Funct. 221:2401–2426. 2016. View Article : Google Scholar

156 

Sagarwala R and Nasrallah HA: Changes in inflammatory biomarkers before and after SSRI therapy in PTSD: A review. Ann Clin Psychiatry. 31:292–297. 2019.PubMed/NCBI

157 

Meis S, Endres T and Lessmann V: Neurotrophin signalling in amygdala-dependent cued fear learning. Cell Tissue Res. 382:161–172. 2020. View Article : Google Scholar : PubMed/NCBI

158 

Beckers T and Kindt M: Memory reconsolidation interference as an emerging treatment for emotional disorders: Strengths, limitations, challenges, and opportunities. Annu Rev Clin Psychol. 13:99–121. 2017. View Article : Google Scholar : PubMed/NCBI

159 

Sun W, Chen X, Mei Y, Yang Y, Li X and An L: Prelimbic proBDNF facilitates retrieval-dependent fear memory destabilization by regulation of synaptic and neural functions in juvenile rats. Mol Neurobiol. 59:4179–4196. 2022. View Article : Google Scholar : PubMed/NCBI

160 

Ma X, Vuyyuru H, Munsch T, Endres T, Lessmann V and Meis S: ProBDNF dependence of LTD and fear extinction learning in the amygdala of adult mice. Cereb Cortex. 32:1350–1364. 2022. View Article : Google Scholar

161 

Machado BSJ, Cardoso NC, Raymundi AM, Prickaerts J and Stern CAJ: Phosphodiesterase 4 inhibition after retrieval switches the memory fate favoring extinction instead of reconsolidation. Sci Rep. 13:203842023. View Article : Google Scholar

162 

van der Merwe RK, Nadel JA, Copes-Finke D, Pawelko S, Scott JS, Ghanem M, Fox M, Morehouse C, Mclaughlin R, Maddox C, et al: Characterization of striatal dopamine projections across striatal subregions in behavioral flexibility. Eur J Neurosci. 58:4466–4486. 2023. View Article : Google Scholar : PubMed/NCBI

163 

Sun W, Che H, Li J, Tang D, Liu X, Liu W and An L: Dorsolateral striatal proBDNF improves reversal learning by enhancing coordination of neural activity in rats. Mol Neurobiol. 57:4642–4656. 2020. View Article : Google Scholar : PubMed/NCBI

164 

Zheng W: Implicit motor learning in children with autism spectrum disorder: Current approaches and future directions. Front Psychiatry. 15:12531992024. View Article : Google Scholar : PubMed/NCBI

165 

Hughes HK, Moreno RJ and Ashwood P: Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav Immun. 108:245–254. 2023. View Article : Google Scholar

166 

Robinson-Agramonte MDLA, Michalski B, Vidal-Martinez B, Hernández LR, Santiesteban MW and Fahnestock M: BDNF, proBDNF and IGF-1 serum levels in naïve and medicated subjects with autism. Sci Rep. 12:137682022. View Article : Google Scholar

167 

Armstrong MJ and Okun MS: Diagnosis and treatment of parkinson disease: A review. JAMA. 323:548–560. 2020. View Article : Google Scholar : PubMed/NCBI

168 

Yi X, Yang Y, Zhao Z, Xu M, Zhang Y, Sheng Y, Tian J and Xu Z: Serum mBDNF and ProBDNF expression levels as diagnosis clue for early stage Parkinson's disease. Front Neurol. 12:6807652021. View Article : Google Scholar : PubMed/NCBI

169 

Li Y, Chen J, Yu H, Ye J, Wang C and Kong L: Serum brain-derived neurotrophic factor as diagnosis clue for Alzheimer's disease: A cross-sectional observational study in the elderly. Front Psychiatry. 14:11276582023. View Article : Google Scholar : PubMed/NCBI

170 

Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC and Verdin E: From discoveries in ageing research to therapeutics for healthy ageing. Nature. 571:183–192. 2019. View Article : Google Scholar : PubMed/NCBI

171 

Norgren J, Daniilidou M, Kåreholt I, Sindi S, Akenine U, Nordin K, Rosenborg S, Ngandu T, Kivipelto M and Sandebring-Matton A: Serum proBDNF is associated with changes in the ketone body β-hydroxybutyrate and shows superior repeatability over mature BDNF: Secondary outcomes from a cross-over trial in healthy older adults. Front Aging Neurosci. 13:7165942021. View Article : Google Scholar

172 

Yu WR, Jiang YH, Jhang JF and Kuo HC: Urine biomarker could be a useful tool for differential diagnosis of a lower urinary tract dysfunction. Tzu Chi Med J. 36:110–119. 2023.

173 

Nitti VW, Patel A and Karram M: Diagnosis and management of overactive bladder: A review. J Obstet Gynaecol Res. 47:1654–1665. 2021. View Article : Google Scholar : PubMed/NCBI

174 

Malde S, Kelly S, Saad S and Sahai A: Case-finding tools for the diagnosis of OAB in women: A narrative review. Neurourol Urodyn. 39:13–24. 2020. View Article : Google Scholar

175 

Covarrubias C, Cammisotto PG, Shamout S and Campeau L: Decrease in the ratio proBDNF/BDNF in the urine of aging female patients with OAB. Metabolites. 13:7232023. View Article : Google Scholar : PubMed/NCBI

176 

Gelle T, Sa mey R A, Pla nsont B, Besset te B, Jauberteau-Marchan MO, Lalloué F and Girard M: BDNF and pro-BDNF in serum and exosomes in major depression: Evolution after antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry. 109:1102292021. View Article : Google Scholar

177 

Yang Z, Gao C, Li Z, Jiang T, Liang Y, Jiang T, Yu C, Yan S, Li P and Zhou L: The changes of tPA/PAI-1 system are associated with the ratio of BDNF/proBDNF in major depressive disorder and SSRIs antidepressant treatment. Neuroscience. 559:220–228. 2024. View Article : Google Scholar : PubMed/NCBI

178 

Lin L, Fu XY, Zhou XF, Liu D, Bobrovskaya L and Zhou L: Analysis of blood mature BDNF and proBDNF in mood disorders with specific ELISA assays. J Psychiatr Res. 133:166–173. 2021. View Article : Google Scholar

179 

Zwolińska W, Skibinska M, Słopień A and Dmitrzak-Weglarz M: ProBDNF as an indicator of improvement among women with depressive episodes. Metabolites. 12:3582022. View Article : Google Scholar

180 

Shen WY, Luo C, Reinaldo HP, Hurtado-Perez E, Luo RY, Hu ZL, Li H, Xu JM, Zhou XF and Dai RP: The regulatory role of ProBDNF in monocyte function: Implications in Stanford type-A aortic dissection disease. FASEB J. 34:2541–2553. 2020. View Article : Google Scholar : PubMed/NCBI

181 

Luo C, Zhong XL, Zhou FH, Li JY, Zhou P, Xu JM, Song B, Li CQ, Zhou XF and Dai RP: Peripheral brain derived neurotrophic factor precursor regulates pain as an inflammatory mediator. Sci Rep. 6:271712016. View Article : Google Scholar : PubMed/NCBI

182 

Li H, Liu T, Sun J, Zhao S, Wang X, Luo W, Luo R, Shen W, Luo C and Fu D: Up-regulation of ProBDNF/p75NTR signaling in spinal cord drives inflammatory pain in male rats. J Inflamm Res. 16:95–107. 2023. View Article : Google Scholar :

183 

Zha AH, Luo C, Shen WY, Fu D and Dai RP: Systemic blockade of proBDNF inhibited the expansion and altered the transcriptomic expression in CD3+B220+ cells in MRL/lpr lupus mice. Lupus Sci Med. 9:e0008362022. View Article : Google Scholar

184 

Li JN, Luo RY, Luo C, Hu ZL, Zha AH, Shen WY, Li Q, Li H, Fu D and Dai RP: Brain-derived neurotrophic factor precursor contributes to a proinflammatory program in monocytes/macrophages after acute myocardial infarction. J Am Heart Assoc. 12:e281982023. View Article : Google Scholar

185 

Cui YH, Zhou SF, Liu Y, Wang S, Li F, Dai RP, Hu ZL and Li CQ: Injection of anti-proBDNF attenuates hippocampal-dependent learning and memory dysfunction in mice with sepsis-associated encephalopathy. Front Neurosci. 15:6657572021. View Article : Google Scholar : PubMed/NCBI

186 

Lim Y, Zhong JH and Zhou XF: Development of mature BDNF-specific sandwich ELISA. J Neurochem. 134:75–85. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen R, Chen W, Li P, Zhao Y, Zeng Q, Chen W and Cao D: Function and application of brain‑derived neurotrophic factor precursors (Review). Int J Mol Med 56: 105, 2025.
APA
Chen, R., Chen, W., Li, P., Zhao, Y., Zeng, Q., Chen, W., & Cao, D. (2025). Function and application of brain‑derived neurotrophic factor precursors (Review). International Journal of Molecular Medicine, 56, 105. https://doi.org/10.3892/ijmm.2025.5546
MLA
Chen, R., Chen, W., Li, P., Zhao, Y., Zeng, Q., Chen, W., Cao, D."Function and application of brain‑derived neurotrophic factor precursors (Review)". International Journal of Molecular Medicine 56.1 (2025): 105.
Chicago
Chen, R., Chen, W., Li, P., Zhao, Y., Zeng, Q., Chen, W., Cao, D."Function and application of brain‑derived neurotrophic factor precursors (Review)". International Journal of Molecular Medicine 56, no. 1 (2025): 105. https://doi.org/10.3892/ijmm.2025.5546
Copy and paste a formatted citation
x
Spandidos Publications style
Chen R, Chen W, Li P, Zhao Y, Zeng Q, Chen W and Cao D: Function and application of brain‑derived neurotrophic factor precursors (Review). Int J Mol Med 56: 105, 2025.
APA
Chen, R., Chen, W., Li, P., Zhao, Y., Zeng, Q., Chen, W., & Cao, D. (2025). Function and application of brain‑derived neurotrophic factor precursors (Review). International Journal of Molecular Medicine, 56, 105. https://doi.org/10.3892/ijmm.2025.5546
MLA
Chen, R., Chen, W., Li, P., Zhao, Y., Zeng, Q., Chen, W., Cao, D."Function and application of brain‑derived neurotrophic factor precursors (Review)". International Journal of Molecular Medicine 56.1 (2025): 105.
Chicago
Chen, R., Chen, W., Li, P., Zhao, Y., Zeng, Q., Chen, W., Cao, D."Function and application of brain‑derived neurotrophic factor precursors (Review)". International Journal of Molecular Medicine 56, no. 1 (2025): 105. https://doi.org/10.3892/ijmm.2025.5546
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team