
Function and application of brain‑derived neurotrophic factor precursors (Review)
- Authors:
- Risheng Chen
- Weixin Chen
- Ping Li
- Yingchang Zhao
- Qianqian Zeng
- Wenqing Chen
- Dequan Cao
-
Affiliations: Department of Anesthesiology, Pingshan Central Hospital of Shenzhen, Shenzhen, Guangdong 518122, P.R. China, Department of Science and Education, The Fourth People's Hospital of Shenzhen (Shenzhen Sami Medical Center), Shenzhen, Guangdong 518118, P.R. China - Published online on: May 8, 2025 https://doi.org/10.3892/ijmm.2025.5546
- Article Number: 105
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Rafieva LM and Gasanov EV: Neurotrophin propeptides: Biological functions and molecular mechanisms. Curr Protein Pept Sci. 17:298–305. 2016. View Article : Google Scholar | |
Arévalo JC and Deogracias R: Mechanisms controlling the expression and secretion of BDNF. Biomolecules. 13:7892023. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Xie Y and Qin D: Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res Bull. 166:172–184. 2021. View Article : Google Scholar | |
Yang J, Harte-Hargrove LC, Siao CJ, Marinic T, Clarke R, Ma Q, Jing D, Lafrancois JJ, Bath KG, Mark W, et al: proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep. 7:796–806. 2014. View Article : Google Scholar : PubMed/NCBI | |
Edman S, Horwath O, Van der Stede T, Blackwood SJ, Moberg I, Stromlind H, Nordström F, Ekblom M, Katz A, Apró W and Moberg M: Pro-brain-derived neurotrophic factor (BDNF), but not mature BDNF, is expressed in human skeletal muscle: Implications for exercise-induced neuroplasticity. Function (Oxf). 5:zqae52024. | |
Gibon J and Barker PA: Neurotrophins and proneurotrophins: Focus on synaptic activity and plasticity in the brain. Neuroscientist. 23:587–604. 2017. View Article : Google Scholar : PubMed/NCBI | |
Eggert S, Kins S, Endres K and Brigadski T: Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol Chem. 403:43–71. 2022. View Article : Google Scholar | |
Hempstead BL: Deciphering proneurotrophin actions. Handb Exp Pharmacol. 220:17–32. 2014. View Article : Google Scholar : PubMed/NCBI | |
Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, et al: ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci. 25:5455–5463. 2005. View Article : Google Scholar : PubMed/NCBI | |
Anastasia A, Deinhardt K, Chao MV, Will NE, Irmady K, Lee FS, Hempstead BL and Bracken C: Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun. 4:24902013. View Article : Google Scholar : PubMed/NCBI | |
Je HS, Yang F, Ji Y, Nagappan G, Hempstead BL and Lu B: Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci USA. 109:15924–15929. 2012. View Article : Google Scholar : PubMed/NCBI | |
Carlino D, De Vanna M and Tongiorgi E: Is altered BDNF biosynthesis a general feature in patients with cognitive dysfunctions? Neuroscientist. 19:345–353. 2013. View Article : Google Scholar | |
Buhusi M, Etheredge C, Granholm AC and Buhusi CV: Increased hippocampal ProBDNF contributes to memory impairments in aged mice. Front Aging Neurosci. 9:2842017. View Article : Google Scholar : PubMed/NCBI | |
Kailainathan S, Piers TM, Yi JH, Choi S, Fahey MS, Borger E, Gunn-Moore FJ, O'Neill L, Lever M, Whitcomb DJ, et al: Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF). Pharmacol Res. 104:97–107. 2016. View Article : Google Scholar : | |
Pérez Palmer N, Trejo Ortega B and Joshi P: Cognitive impairment in older adults: Epidemiology, diagnosis, and treatment. Psychiatr Clin North Am. 45:639–661. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ampil ER, Ong PA, Krespi Y and Yang YH: A review of SaiLuoTong (MLC-SLT) development in vascular cognitive impairment and dementia. Front Pharmacol. 15:13438202024. View Article : Google Scholar : PubMed/NCBI | |
Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, Li Y, Li Y, Zhu M, Jiao H, et al: Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health. 5:e661–e671. 2020. View Article : Google Scholar : PubMed/NCBI | |
Aderinto N, Olatunji G, Abdulbasit M, Ashinze P, Faturoti O, Ajagbe A, Ukoaka B and Aboderin G: The impact of diabetes in cognitive impairment: A review of current evidence and prospects for future investigations. Medicine (Baltimore). 102:e355572023. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Qin TS, Bo Y, Li YJ, Liu RS, Yu Y, Li XD, He JC, Ma AX, Tao DP, et al: The role of the intestinal flora and its derivatives in neurocognitive disorders: A narrative review from surgical perspective. Mol Neurobiol. 62:1404–1414. 2025. View Article : Google Scholar : | |
Benedict RHB, Amato MP, Deluca J and Geurts JJG: Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues. Lancet Neurol. 19:860–871. 2020. View Article : Google Scholar : PubMed/NCBI | |
Haroon NN, Austin PC, Shah BR, Wu J, Gill SS and Booth GL: Risk of dementia in seniors with newly diagnosed diabetes: A population-based study. Diabetes Care. 38:1868–1875. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ruegsegger GN, Vanderboom PM, Dasari S, Klaus KA, Kabiraj P, McCarthy CB, Lucchinetti CF and Nair KS: Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI Insight. 4:e1306812019. View Article : Google Scholar : PubMed/NCBI | |
Kullmann S, Goj T, Veit R, Fritsche L, Wagner L, Schneeweiss P, Hoene M, Hoffmann C, Machann J, Niess A, et al: Exercise restores brain insulin sensitivity in sedentary adults who are overweight and obese. JCI Insight. 7:e1614982022. View Article : Google Scholar : PubMed/NCBI | |
Kim B and Feldman EL: Insulin resistance in the nervous system. Trends Endocrinol Metab. 23:133–141. 2012. View Article : Google Scholar : PubMed/NCBI | |
Delgado-Peraza F, Nogueras-Ortiz C, Simonsen AH, Knight DD, Yao PJ, Goetzl EJ, Jensen CS, Høgh P, Gottrup H, Vestergaard K, et al: Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer's disease. Alzheimers Res Ther. 15:1562023. View Article : Google Scholar : PubMed/NCBI | |
Dahiya M, Yadav M, Goyal C and Kumar A: Insulin resistance in Alzheimer's disease: Signalling mechanisms and therapeutics strategies. Inflammopharmacology. 33:1817–1831. 2025. View Article : Google Scholar : PubMed/NCBI | |
Malin SK, Battillo DJ, Beeri MS, Mustapic M, Delgado-Peraza F and Kapogiannis D: Two weeks of exercise alters neuronal extracellular vesicle insulin signaling proteins and pro-BDNF in older adults with prediabetes. Aging Cell. 24:e143692025. View Article : Google Scholar | |
Da Mesquita S, Papadopoulos Z, Dykstra T, Brase L, Farias FG, Wall M, Jiang H, Kodira CD, de Lima KA, Herz J, et al: Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature. 593:255–260. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li P, Chen J, Wang X, Su Z, Gao M and Huang Y: Liquid-liquid phase separation of tau: Driving forces, regulation, and biological implications. Neurobiol Dis. 183:1061672023. View Article : Google Scholar | |
Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, et al: TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell. 160:1061–1071. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kellar D and Craft S: Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 19:758–766. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chandra S, Sisodia SS and Vassar RJ: The gut microbiome in Alzheimer's disease: What we know and what remains to be explored. Mol Neurodegener. 18:92023. View Article : Google Scholar : PubMed/NCBI | |
Sienski G, Narayan P, Bonner JM, Kory N, Boland S, Arczewska AA, Ralvenius WT, Akay L, Lockshin E, He L, et al: APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci Transl Med. 13:eaaz45642021. View Article : Google Scholar : PubMed/NCBI | |
Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, Naj AC, Campos-Martin R, Grenier-Boley B, Andrade V, et al: New insights into the genetic etiology of Alzheimer's disease and related dementias. Nat Genet. 54:412–436. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Dunnett S, Ho YS and Chang RCC: The role of sleep deprivation and circadian rhythm disruption as risk factors of Alzheimer's disease. Front Neuroendocrinol. 54:1007642019. View Article : Google Scholar : PubMed/NCBI | |
Hussain R, Graham U, Elder A and Nedergaard M: Air pollution, glymphatic impairment, and Alzheimer's disease. Trends Neurosci. 46:901–911. 2023. View Article : Google Scholar : PubMed/NCBI | |
Myhre O, Utkilen H, Duale N, Brunborg G and Hofer T: Metal dyshomeostasis and inflammation in Alzheimer's and Parkinson's diseases: Possible impact of environmental exposures. Oxid Med Cell Longev. 2013:7269542013. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Chen Y, Zhang C, Xiang Z, Ding J and Han X: Learning and memory deficits and alzheimer's disease-like changes in mice after chronic exposure to microcystin-LR. J Hazard Mater. 373:504–518. 2019. View Article : Google Scholar : PubMed/NCBI | |
Goldman SM: Environmental toxins and Parkinson's disease. Annu Rev Pharmacol Toxicol. 54:141–164. 2014. View Article : Google Scholar | |
Vasefi M, Ghaboolian-Zare E, Abedelwahab H and Osu A: Environmental toxins and Alzheimer's disease progression. Neurochem Int. 141:1048522020. View Article : Google Scholar : PubMed/NCBI | |
Bovis K, Davies-Branch M and Day PJR: Dysregulated neurotransmission and the role of viruses in Alzheimer's disease. ACS Chem Neurosci. 16:982–987. 2025. View Article : Google Scholar : PubMed/NCBI | |
Dai L, Zou L, Meng L, Qiang G, Yan M and Zhang Z: Cholesterol metabolism in neurodegenerative diseases: Molecular mechanisms and therapeutic targets. Mol Neurobiol. 58:2183–2201. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang J, Wan J, Liu A and Sun J: Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer's disease. Biomed Pharmacother. 132:1108872020. View Article : Google Scholar | |
Manucat-Tan NB, Shen LL, Bobrovskaya L, Al-Hawwas M, Zhou FH, Wang YJ and Zhou XF: Knockout of p75 neurotrophin receptor attenuates the hyperphosphorylation of Tau in pR5 mouse model. Aging (Albany NY). 11:6762–6791. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bie B, Wu J, Lin F, Naguib M and Xu J: Suppression of hippocampal GABAergic transmission impairs memory in rodent models of Alzheimer's disease. Eur J Pharmacol. 917:1747712022. View Article : Google Scholar : PubMed/NCBI | |
Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K and Weintraub D: Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 7:472021. View Article : Google Scholar : PubMed/NCBI | |
Jellinger KA: Morphological basis of Parkinson disease-associated cognitive impairment: An update. J Neural Transm (Vienna). 129:977–999. 2022. View Article : Google Scholar : PubMed/NCBI | |
Goldman JG and Sieg E: Cognitive impairment and dementia in Parkinson disease. Clin Geriatr Med. 36:365–377. 2020. View Article : Google Scholar : PubMed/NCBI | |
Baiano C, Barone P, Trojano L and Santangelo G: Prevalence and clinical aspects of mild cognitive impairment in Parkinson's disease: A meta-analysis. Mov Disord. 35:45–54. 2020. View Article : Google Scholar | |
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Saad HM and Batiha GES: The molecular pathway of p75 neurotrophin receptor (p75NTR) in Parkinson's disease: The way of new inroads. Mol Neurobiol. 61:2469–2480. 2024. View Article : Google Scholar | |
Kazzi C, Alpitsis R, O'Brien TJ, Malpas CB and Monif M: Cognitive and psychopathological features of neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody-associated disease: A narrative review. Mult Scler Relat Disord. 85:1055962024. View Article : Google Scholar : PubMed/NCBI | |
Jellinger KA: Cognitive impairment in multiple sclerosis: From phenomenology to neurobiological mechanisms. J Neural Transm (Vienna). 131:871–899. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hu ZL, Luo C, Hurtado PR, Li H, Wang S, Hu B, Xu JM, Liu Y, Feng SQ, Hurtado-Perez E, et al: Brain-derived neurotrophic factor precursor in the immune system is a novel target for treating multiple sclerosis. Theranostics. 11:715–730. 2021. View Article : Google Scholar : PubMed/NCBI | |
Al-Yozbaki M, Acha-Sagredo A, George A, Liloglou T and Wilson CM: Balancing neurotrophin pathway and sortilin function: Its role in human disease. Biochim Biophys Acta Rev Cancer. 1874:1884292020. View Article : Google Scholar : PubMed/NCBI | |
Vilar M: Structural characterization of the p75 neurotrophin receptor: A stranger in the TNFR superfamily. Vitam Horm. 104:57–87. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Li J, Matye DJ, Wang Y and Li T: Hepatocyte sortilin 1 knockout and treatment with a sortilin 1 inhibitor reduced plasma cholesterol in Western diet-fed mice. J Lipid Res. 60:539–549. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Hu YZ, Gao S, Wang PF, Hu ZL and Dai RP: ProBDNF and its receptors in immune-mediated inflammatory diseases: Novel insights into the regulation of metabolism and mitochondria. Front Immunol. 14:11553332023. View Article : Google Scholar : PubMed/NCBI | |
Al-Kuraishy HM, Sulaiman GM, Mohammed HA, Albukhaty S, Albuhadily AK, Al-Gareeb AI, Klionsky DJ and Abomughaid MM: The compelling role of brain-derived neurotrophic factor signaling in multiple sclerosis: Role of BDNF activators. CNS Neurosci Ther. 30:e701672024. View Article : Google Scholar : PubMed/NCBI | |
Reuter E, Weber J, Paterka M, Ploen R, Breiderhoff T, van Horssen J, Willnow TE, Siffrin V and Zipp F: Role of sortilin in models of autoimmune neuroinflammation. J Immunol. 195:5762–5769. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sarno E, Moeser AJ and Robison AJ: Neuroimmunology of depression. Adv Pharmacol. 91:259–292. 2021. View Article : Google Scholar : PubMed/NCBI | |
Price RB and Duman R: Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model. Mol Psychiatry. 25:530–543. 2020. View Article : Google Scholar : | |
Pan Z, Park C, Brietzke E, Zuckerman H, Rong C, Mansur RB, Fus D, Subramaniapillai M, Lee Y and Mcintyre RS: Cognitive impairment in major depressive disorder. CNS Spectr. 24:22–29. 2019. View Article : Google Scholar | |
Zhao XP, Li H and Dai RP: Neuroimmune crosstalk through brain-derived neurotrophic factor and its precursor pro-BDNF: New insights into mood disorders. World J Psychiatry. 12:379–392. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lin LY, Kelliny S, Liu LC, Al-Hawwas M, Zhou XF and Bobrovskaya L: Peripheral ProBDNF delivered by an AAV vector to the muscle triggers depression-like behaviours in mice. Neurotox Res. 38:626–639. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang CR, Liang R, Liu Y, Meng FJ, Zhou F, Zhang XY, Ning L, Wang ZQ, Liu S and Zhou XF: Upregulation of proBDNF/p75NTR signaling in immune cells and its correlation with inflammatory markers in patients with major depression. FASEB J. 38:e233122024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Guan X, He Y, Jia X, Pan L, Wang Y, Han Y, Zhao R, Yang J and Hou T: ProBDNF signaling is involved in periodontitis-induced depression-like behavior in mouse hippocampus. Int Immunopharmacol. 116:1097672023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang Y, Guan X, Liu Z, Pan L, Wang Y, Jia X, Yang J and Hou T: SorCS2 is involved in promoting periodontitis-induced depression-like behaviour in mice. Oral Dis. 30:5408–5420. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jin HJ, Pei L, Li YN, Zheng H, Yang S, Wan Y, Mao L, Xia YP, He QW, Li M, et al: Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci Rep. 7:149262017. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Wang L, Nie Y, Wei W and Xiong W: proBDNF expression induces apoptosis and inhibits synaptic regeneration by regulating the RhoA-JNK pathway in an in vitro post-stroke depression model. Transl Psychiatry. 11:5782021. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Nie Y, Qin J, Wen M, Wang Q, Xie F, Song F and Yang B: Hippocampal exosomes from stroke aggravate post-stroke depression by regulating the expression of proBDNF and p75NTR and altering spine density. Sci Rep. 14:282232024. View Article : Google Scholar : PubMed/NCBI | |
Sanmarti M, Ibáñez L, Huertas S, Badenes D, Dalmau D, Slevin M, Krupinski J, Popa-Wagner A and Jaen A: Hiv-associated neurocognitive disorders. J Mol Psychiatry. 2:22014. View Article : Google Scholar : PubMed/NCBI | |
Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ and Mcarthur JC: Hiv-associated neurocognitive disorder-pathogenesis and prospects for treatment. Nat Rev Neurol. 12:234–248. 2016. View Article : Google Scholar : PubMed/NCBI | |
Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, et al: Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 69:1789–1799. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kaul M, Zheng J, Okamoto S, Gendelman HE and Lipton SA: HIV-1 infection and AIDS: Consequences for the central nervous system. Cell Death Differ. 12(Suppl 1): S878–S892. 2005. View Article : Google Scholar | |
Eggers C, Arendt G, Hahn K, Husstedt IW, Maschke M, Neuen-Jacob E, Obermann M, Rosenkranz T, Schielke E and Straube E; German Association of Neuro-AIDS und Neuro-Infectiology (DGNANI): HIV-1-associated neurocognitive disorder: Epidemiology, pathogenesis, diagnosis, and treatment. J Neurol. 264:1715–1727. 2017. View Article : Google Scholar : PubMed/NCBI | |
Avedissian SN, Dyavar SR, Fox HS and Fletcher CV: Pharmacologic approaches to HIV-associated neurocognitive disorders. Curr Opin Pharmacol. 54:102–108. 2020. View Article : Google Scholar : PubMed/NCBI | |
Erdos T, Masuda M and Venketaraman V: Glutathione in HIV-associated neurocognitive disorders. Curr Issues Mol Biol. 46:5530–5549. 2024. View Article : Google Scholar : PubMed/NCBI | |
Riviere-Cazaux C, Cornell J, Shen Y and Zhou M: The role of CCR5 in HIV-associated neurocognitive disorders. Heliyon. 8:e99502022. View Article : Google Scholar | |
Hou C, Wei J, Zhang H and Li H: Evolving strategies in the diagnosis and treatment of HIV-associated neurocognitive disorders. Rev Neurosci. Mar 6–2025.Epub ahead of print. View Article : Google Scholar | |
Johnson TP and Nath A: Biotypes of HIV-associated neurocognitive disorders based on viral and immune pathogenesis. Curr Opin Infect Dis. 35:223–230. 2022. View Article : Google Scholar : PubMed/NCBI | |
Speidell A, Asuni GP, Wakulski R and Mocchetti I: Up-regulation of the p75 neurotrophin receptor is an essential mechanism for HIV-gp120 mediated synaptic loss in the striatum. Brain Behav Immun. 89:371–379. 2020. View Article : Google Scholar : PubMed/NCBI | |
Allen CNS, Arjona SP, Santerre M, De Lucia C, Koch WJ and Sawaya BE: Metabolic reprogramming in HIV-associated neurocognitive disorders. Front Cell Neurosci. 16:8128872022. View Article : Google Scholar : PubMed/NCBI | |
Michael HU, Rapulana AM, Smit T, Xulu N, Danaviah S, Ramlall S and Oosthuizen F: Serum mature and precursor brain-derived neurotrophic factors and their association with neurocognitive function in ART-Naïve adults living with HIV in Sub-Saharan Africa. Mol Neurobiol. 62:5442–5451. 2025. View Article : Google Scholar | |
Mizoguchi Y, Ohgidani M, Haraguchi Y, Murakawa-Hirachi T, Kato TA and Monji A: ProBDNF induces sustained elevation of intracellular Ca2+ possibly mediated by TRPM7 channels in rodent microglial cells. Glia. 69:1694–1708. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sonneville R, de Montmollin E, Poujade J, Garrouste-Orgeas M, Souweine B, Darmon M, Mariotte E, Argaud L, Barbier F, Goldgran-Toledano D, et al: Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med. 43:1075–1084. 2017. View Article : Google Scholar : PubMed/NCBI | |
Long LH, Cao WY, Xu Y and Xiang YY: Research progress on the role of microglia in sepsis-associated encephalopathy. Sheng Li Xue Bao. 76:289–300. 2024.In Chinese. PubMed/NCBI | |
Luo RY, Luo C, Zhong F, Shen WY, Li H, Hu ZL and Dai RP: ProBDNF promotes sepsis-associated encephalopathy in mice by dampening the immune activity of meningeal CD4+ T cells. J Neuroinflammation. 17:1692020. View Article : Google Scholar | |
Huang J, Chen L, Yao ZM, Sun XR, Tong XH and Dong SY: The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury. Biomed Pharmacother. 162:1146712023. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Gu X and Ma Z: Mitochondrial quality control in cerebral ischemia-reperfusion injury. Mol Neurobiol. 58:5253–5271. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kumar SS and Singh D: Mitochondrial mechanisms in cerebral ischemia-reperfusion injury: Unravelling the intricacies. Mitochondrion. 77:1018832024. View Article : Google Scholar | |
Fiskum G, Murphy AN and Beal MF: Mitochondria in neurodegeneration: Acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab. 19:351–369. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jurcau A and Simion A: Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysiology to therapeutic strategies. Int J Mol Sci. 23:142021. View Article : Google Scholar | |
Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, Mei Z, Wang G and Ge J: A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol. 13:9301712022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Jia M, Wang Y, Wang Q and Wu J: Cell death mechanisms in cerebral ischemia-reperfusion injury. Neurochem Res. 47:3525–3542. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xie C, Wang Y, Xiang J, Chen L, Yuan J, Chen C and Tian H: Ferritinophagy and ferroptosis in cerebral ischemia reperfusion injury. Neurochem Res. 49:1965–1979. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li M, Tang H, Li Z and Tang W: Emerging treatment strategies for cerebral ischemia-reperfusion injury. Neuroscience. 507:112–124. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ginsberg MD: Neuroprotection for ischemic stroke: Past, present and future. Neuropharmacology. 55:363–389. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chamorro A, Dirnagl U, Urra X and Planas AM: Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 15:869–881. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiong XY, Liu L and Yang QW: Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 142:23–44. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R and Yuan J: Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 9:122024. View Article : Google Scholar : PubMed/NCBI | |
Liu DQ, Mei W, Zhou YQ and Xi H: Targeting TRPM channels for cerebral ischemia-reperfusion injury. Trends Pharmacol Sci. 45:862–867. 2024. View Article : Google Scholar : PubMed/NCBI | |
Candelario-Jalil E, Dijkhuizen RM and Magnus T: Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke. 53:1473–1486. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Hawkins KE, Doré S and Candelario-Jalil E: Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 316:C135–C153. 2019. View Article : Google Scholar : | |
Li S, Dou B, Shu S, Wei L, Zhu S, Ke Z and Wang Z: Suppressing NK Cells by astragaloside IV protects against acute ischemic stroke in mice via inhibiting STAT3. Front Pharmacol. 12:8020472022. View Article : Google Scholar : PubMed/NCBI | |
Cramer T, Gill R, Thirouin ZS, Vaas M, Sampath S, Martineau F, Noya SB, Panzanelli P, Sudharshan TJJ, Colameo D, et al: Cross-talk between GABAergic postsynapse and microglia regulate synapse loss after brain ischemia. Sci Adv. 8:eabj1122022. View Article : Google Scholar | |
Rahman M, Luo H, Bobrovskaya L and Zhou XF: Neuroprotective effects of anti-probdnf in a RAT photothrombotic ischemic model. Neuroscience. 446:261–270. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kotekar N, Shenkar A and Nagaraj R: Postoperative cognitive dysfunction-current preventive strategies. Clin Interv Aging. 13:2267–2273. 2018. View Article : Google Scholar : | |
Yang X, Huang X, Li M, Jiang Y and Zhang H: Identification of individuals at risk for postoperative cognitive dysfunction (POCD). Ther Adv Neurol Disord. 15:175628642211143562022. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Zhang Y and Zhu Z: Research progress on the association between MicroRNA and postoperative cognitive dysfunction. Minerva Anestesiol. 90:191–199. 2024. View Article : Google Scholar : PubMed/NCBI | |
Luo A, Yan J, Tang X, Zhao Y, Zhou B and Li S: Postoperative cognitive dysfunction in the aged: The collision of neuroinflammaging with perioperative neuroinflammation. Inflammopharmacology. 27:27–37. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xue Z, Shui M, Lin X, Sun Y, Liu J, Wei C, Wu A and Li T: Role of BDNF/ProBDNF imbalance in postoperative cognitive dysfunction by modulating synaptic plasticity in aged mice. Front Aging Neurosci. 14:7809722022. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Dong R, Xu M, Liu Y, Xu J, Ma Z, Xia T and Gu X: Inhibition of the integrated stress response reverses oxidative stress damage-induced postoperative cognitive dysfunction. Front Cell Neurosci. 16:9928692022. View Article : Google Scholar : PubMed/NCBI | |
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR and Vincent JL: Sepsis and septic shock. Nat Rev Dis Primers. 2:160452016. View Article : Google Scholar | |
Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, Angus DC and Reinhart K; International Forum of Acute Care Trialists: Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 193:259–272. 2016. View Article : Google Scholar | |
Wang Z, Wu JL, Zhong F, Liu Y, Yu YQ, Sun JJ, Wang S, Li H, Zhou XF, Hu ZL and Dai RP: Upregulation of proBDNF in the mesenteric lymph nodes in septic mice. Neurotox Res. 36:540–550. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zeng Q, Gao H, Gao S, Dai R and Hu Z: Expression of proBDNF/p75NTR in peripheral blood lymphocytes of patients with sepsis and its impact on lymphocyte differentiation. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 48:1629–1638. 2023.In English, Chinese. | |
Bezzio C, Della CC, Vernero M, Di Luna I, Manes G and Saibeni S: Inflammatory bowel disease and immune-mediated inflammatory diseases: Looking at the less frequent associations. Therap Adv Gastroenterol. 15:175628482211153122022. View Article : Google Scholar : PubMed/NCBI | |
Yang CR, Ding HJ, Yu M, Zhou FH, Han CY, Liang R, Zhang XY, Zhang XL, Meng FJ, Wang S, et al: proBDNF/p75NTR promotes rheumatoid arthritis and inflammatory response by activating proinflammatory cytokines. FASEB J. 36:e221802022.PubMed/NCBI | |
Farina L, Minnone G, Alivernini S, Caiello I, MacDonald L, Soligo M, Manni L, Tolusso B, Coppola S, Zara E, et al: Pro nerve growth factor and its receptor p75NTR activate inflammatory responses in synovial fibroblasts: A novel targetable mechanism in arthritis. Front Immunol. 13:8186302022. View Article : Google Scholar : PubMed/NCBI | |
Ameer MA, Chaudhry H, Mushtaq J, Khan OS, Babar M, Hashim T, Zeb S, Tariq MA, Patlolla SR, Ali J, et al: An overview of systemic lupus erythematosus (SLE) pathogenesis, classification, and management. Cureus. 14:e303302022.PubMed/NCBI | |
Shen WY, Luo C, Hurtado PR, Liu XJ, Luo RY, Li H, Hu ZL, Xu JM, Coulson EJ, Zhao M, et al: Up-regulation of proBDNF/p75NTR signaling in antibody-secreting cells drives systemic lupus erythematosus. Sci Adv. 8:eabj27972022. View Article : Google Scholar | |
Putcha GV, Moulder KL, Golden JP, Bouillet P, Adams JA, Strasser A and Johnson EM: Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron. 29:615–628. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sankorrakul K, Qian L, Thangnipon W and Coulson EJ: Is there a role for the p75 neurotrophin receptor in mediating degeneration during oxidative stress and after hypoxia? J Neurochem. 158:1292–1306. 2021. View Article : Google Scholar : PubMed/NCBI | |
Taylor KR, Barron T, Hui A, Spitzer A, Yalçin B, Ivec AE, Geraghty AC, Hartmann GG, Arzt M, Gillespie SM, et al: Glioma synapses recruit mechanisms of adaptive plasticity. Nature. 623:366–374. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiang CC, Marsland M, Wang Y, Dowdell A, Eden E, Gao F, Faulkner S, Jobling P, Li X, Liu L, et al: Tumor innervation is triggered by endoplasmic reticulum stress. Oncogene. 41:586–599. 2022. View Article : Google Scholar | |
Xiong J, Zhou L, Yang M, Lim Y, Zhu YH, Fu DL, Li ZW, Zhong JH, Xiao ZC and Zhou XF: ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro Oncol. 15:990–1007. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fan YJ, Wu LLY, Li HY, Wang YJ and Zhou XF: Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci. 27:2380–2390. 2008. View Article : Google Scholar : PubMed/NCBI | |
Koshimizu H, Hazama S, Hara T, Ogura A and Kojima M: Distinct signaling pathways of precursor BDNF and mature BDNF in cultured cerebellar granule neurons. Neurosci Lett. 473:229–232. 2010. View Article : Google Scholar : PubMed/NCBI | |
Salmaggi A, Croci D, Prina P, Cajola L, Pollo B, Marras CE, Ciusani E, Silvani A, Boiardi A and Sciacca FL: Production and post-surgical modification of VEGF, tPA and PAI-1 in patients with glioma. Cancer Biol Ther. 5:204–209. 2006. View Article : Google Scholar | |
Nakabayashi H, Yawata T and Shimizu K: Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells. BMC Cancer. 10:3392010. View Article : Google Scholar : PubMed/NCBI | |
Levicar N, Nuttall RK and Lah TT: Proteases in brain tumour progression. Acta Neurochir (Wien). 145:825–838. 2003. View Article : Google Scholar : PubMed/NCBI | |
De la Cruz-Morcillo MA, Berger J, Sánchez-Prieto R, Saada S, Naves T, Guillaudeau A, Perraud A, Sindou P, Lacroix A, Descazeaud A, et al: p75 neurotrophin receptor and pro-BDNF promote cell survival and migration in clear cell renal cell carcinoma. Oncotarget. 7:34480–34497. 2016. View Article : Google Scholar : PubMed/NCBI | |
Corti C, Antonarelli G, Criscitiello C, Lin NU, Carey LA, Cortés J, Poortmans P and Curigliano G: Targeting brain metastases in breast cancer. Cancer Treat Rev. 103:1023242022. View Article : Google Scholar | |
Fidler IJ: The biology of brain metastasis: Challenges for therapy. Cancer J. 21:284–293. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alhusban L, Ayoub NM and Alhusban A: ProBDNF is a novel mediator of the interaction between MDA-MB-231 breast cancer cells and brain microvascular endothelial cells. Curr Mol Med. 21:914–921. 2021. View Article : Google Scholar | |
Klann IP, Fulco BCW and Nogueira CW: Subchronic exposure to Tamoxifen modulates the hippocampal BDNF/ERK/Akt/CREB pathway and impairs memory in intact female rats. Chem Biol Interact. 382:1106152023. View Article : Google Scholar : PubMed/NCBI | |
Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, Ferns GA, Pasdar A and Avan A: Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives. J Cell Biochem. 118:2502–2515. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu Q, Qu Y, Ding Y and Kang X: p75NTR/proBDNF modulates basal cell carcinoma (BCC) immune microenvironment via necroptosis signaling pathway. J Immunol Res. 2021:66528462021. View Article : Google Scholar : PubMed/NCBI | |
Culig L, Chu X and Bohr VA: Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev. 78:1016362022. View Article : Google Scholar : PubMed/NCBI | |
Bhalla M and Lee CJ: Long-term inhibition of ODC1 in APP/PS1 mice rescues amyloid pathology and switches astrocytes from a reactive to active state. Mol Brain. 17:32024. View Article : Google Scholar : PubMed/NCBI | |
Sunderland S: A classification of peripheral nerve injuries producing loss of function. Brain. 74:491–516. 1951. View Article : Google Scholar : PubMed/NCBI | |
Kamble N, Shukla D and Bhat D: Peripheral nerve injuries: Electrophysiology for the neurosurgeon. Neurol India. 67:1419–1422. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gordon T: Peripheral nerve regeneration and muscle reinnervation. Int J Mol Sci. 21:86522020. View Article : Google Scholar : PubMed/NCBI | |
Rotshenker S: Wallerian degeneration: The innate-immune response to traumatic nerve injury. J Neuroinflammation. 8:1092011. View Article : Google Scholar : PubMed/NCBI | |
Defrancesco-Lisowitz A, Lindborg JA, Niemi JP and Zigmond RE: The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience. 302:174–203. 2015. View Article : Google Scholar | |
Cámara-Lemarroy CR, Guzmán-de la Garza FJ and Fernández-Garza NE: Molecular inflammatory mediators in peripheral nerve degeneration and regeneration. Neuroimmunomodulation. 17:314–324. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang EJ and Reichardt LF: Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci. 24:677–736. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jessen KR and Mirsky R: The repair schwann cell and its function in regenerating nerves. J Physiol. 594:3521–3531. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ma W, Wang T, Yang J, Wu Z, Liu K, Dai Y, Zang C, Liu W, Liu J, et al: BDNF-TrkB and proBDNF-p75NTR/Sortilin signaling pathways are involved in mitochondria-mediated neuronal apoptosis in dorsal root ganglia after sciatic nerve transection. CNS Neurol Disord Drug Targets. 19:66–82. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma W, Yang JW, Wang XB, Luo T, Zhou L, Lagares A, Li H, Liang Z, Liu KP, Zang CH, et al: Negative regulation by proBDNF signaling of peripheral neurogenesis in the sensory ganglia of adult rats. Biomed Pharmacother. 144:1122732021. View Article : Google Scholar : PubMed/NCBI | |
Fronza MG, Ferreira BF, Pavan-Silva I, Guimarães FS and Lisboa SF: 'NO' time in fear response: Possible implication of nitric-oxide-related mechanisms in PTSD. Molecules. 29:892023. View Article : Google Scholar | |
He M, Wei JX, Mao M, Zhao GY, Tang JJ, Feng S, Lu XM and Wang YT: Synaptic plasticity in PTSD and associated comorbidities: The function and mechanism for diagnostics and therapy. Curr Pharm Des. 24:4051–4059. 2018. View Article : Google Scholar : PubMed/NCBI | |
Andero R and Ressler KJ: Fear extinction and BDNF: Translating animal models of PTSD to the clinic. Genes Brain Behav. 11:503–512. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bennett MR, Hatton SN and Lagopoulos J: Stress, trauma and PTSD: Translational insights into the core synaptic circuitry and its modulation. Brain Struct Funct. 221:2401–2426. 2016. View Article : Google Scholar | |
Sagarwala R and Nasrallah HA: Changes in inflammatory biomarkers before and after SSRI therapy in PTSD: A review. Ann Clin Psychiatry. 31:292–297. 2019.PubMed/NCBI | |
Meis S, Endres T and Lessmann V: Neurotrophin signalling in amygdala-dependent cued fear learning. Cell Tissue Res. 382:161–172. 2020. View Article : Google Scholar : PubMed/NCBI | |
Beckers T and Kindt M: Memory reconsolidation interference as an emerging treatment for emotional disorders: Strengths, limitations, challenges, and opportunities. Annu Rev Clin Psychol. 13:99–121. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Chen X, Mei Y, Yang Y, Li X and An L: Prelimbic proBDNF facilitates retrieval-dependent fear memory destabilization by regulation of synaptic and neural functions in juvenile rats. Mol Neurobiol. 59:4179–4196. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Vuyyuru H, Munsch T, Endres T, Lessmann V and Meis S: ProBDNF dependence of LTD and fear extinction learning in the amygdala of adult mice. Cereb Cortex. 32:1350–1364. 2022. View Article : Google Scholar | |
Machado BSJ, Cardoso NC, Raymundi AM, Prickaerts J and Stern CAJ: Phosphodiesterase 4 inhibition after retrieval switches the memory fate favoring extinction instead of reconsolidation. Sci Rep. 13:203842023. View Article : Google Scholar | |
van der Merwe RK, Nadel JA, Copes-Finke D, Pawelko S, Scott JS, Ghanem M, Fox M, Morehouse C, Mclaughlin R, Maddox C, et al: Characterization of striatal dopamine projections across striatal subregions in behavioral flexibility. Eur J Neurosci. 58:4466–4486. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Che H, Li J, Tang D, Liu X, Liu W and An L: Dorsolateral striatal proBDNF improves reversal learning by enhancing coordination of neural activity in rats. Mol Neurobiol. 57:4642–4656. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zheng W: Implicit motor learning in children with autism spectrum disorder: Current approaches and future directions. Front Psychiatry. 15:12531992024. View Article : Google Scholar : PubMed/NCBI | |
Hughes HK, Moreno RJ and Ashwood P: Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav Immun. 108:245–254. 2023. View Article : Google Scholar | |
Robinson-Agramonte MDLA, Michalski B, Vidal-Martinez B, Hernández LR, Santiesteban MW and Fahnestock M: BDNF, proBDNF and IGF-1 serum levels in naïve and medicated subjects with autism. Sci Rep. 12:137682022. View Article : Google Scholar | |
Armstrong MJ and Okun MS: Diagnosis and treatment of parkinson disease: A review. JAMA. 323:548–560. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yi X, Yang Y, Zhao Z, Xu M, Zhang Y, Sheng Y, Tian J and Xu Z: Serum mBDNF and ProBDNF expression levels as diagnosis clue for early stage Parkinson's disease. Front Neurol. 12:6807652021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen J, Yu H, Ye J, Wang C and Kong L: Serum brain-derived neurotrophic factor as diagnosis clue for Alzheimer's disease: A cross-sectional observational study in the elderly. Front Psychiatry. 14:11276582023. View Article : Google Scholar : PubMed/NCBI | |
Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC and Verdin E: From discoveries in ageing research to therapeutics for healthy ageing. Nature. 571:183–192. 2019. View Article : Google Scholar : PubMed/NCBI | |
Norgren J, Daniilidou M, Kåreholt I, Sindi S, Akenine U, Nordin K, Rosenborg S, Ngandu T, Kivipelto M and Sandebring-Matton A: Serum proBDNF is associated with changes in the ketone body β-hydroxybutyrate and shows superior repeatability over mature BDNF: Secondary outcomes from a cross-over trial in healthy older adults. Front Aging Neurosci. 13:7165942021. View Article : Google Scholar | |
Yu WR, Jiang YH, Jhang JF and Kuo HC: Urine biomarker could be a useful tool for differential diagnosis of a lower urinary tract dysfunction. Tzu Chi Med J. 36:110–119. 2023. | |
Nitti VW, Patel A and Karram M: Diagnosis and management of overactive bladder: A review. J Obstet Gynaecol Res. 47:1654–1665. 2021. View Article : Google Scholar : PubMed/NCBI | |
Malde S, Kelly S, Saad S and Sahai A: Case-finding tools for the diagnosis of OAB in women: A narrative review. Neurourol Urodyn. 39:13–24. 2020. View Article : Google Scholar | |
Covarrubias C, Cammisotto PG, Shamout S and Campeau L: Decrease in the ratio proBDNF/BDNF in the urine of aging female patients with OAB. Metabolites. 13:7232023. View Article : Google Scholar : PubMed/NCBI | |
Gelle T, Sa mey R A, Pla nsont B, Besset te B, Jauberteau-Marchan MO, Lalloué F and Girard M: BDNF and pro-BDNF in serum and exosomes in major depression: Evolution after antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry. 109:1102292021. View Article : Google Scholar | |
Yang Z, Gao C, Li Z, Jiang T, Liang Y, Jiang T, Yu C, Yan S, Li P and Zhou L: The changes of tPA/PAI-1 system are associated with the ratio of BDNF/proBDNF in major depressive disorder and SSRIs antidepressant treatment. Neuroscience. 559:220–228. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Fu XY, Zhou XF, Liu D, Bobrovskaya L and Zhou L: Analysis of blood mature BDNF and proBDNF in mood disorders with specific ELISA assays. J Psychiatr Res. 133:166–173. 2021. View Article : Google Scholar | |
Zwolińska W, Skibinska M, Słopień A and Dmitrzak-Weglarz M: ProBDNF as an indicator of improvement among women with depressive episodes. Metabolites. 12:3582022. View Article : Google Scholar | |
Shen WY, Luo C, Reinaldo HP, Hurtado-Perez E, Luo RY, Hu ZL, Li H, Xu JM, Zhou XF and Dai RP: The regulatory role of ProBDNF in monocyte function: Implications in Stanford type-A aortic dissection disease. FASEB J. 34:2541–2553. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo C, Zhong XL, Zhou FH, Li JY, Zhou P, Xu JM, Song B, Li CQ, Zhou XF and Dai RP: Peripheral brain derived neurotrophic factor precursor regulates pain as an inflammatory mediator. Sci Rep. 6:271712016. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu T, Sun J, Zhao S, Wang X, Luo W, Luo R, Shen W, Luo C and Fu D: Up-regulation of ProBDNF/p75NTR signaling in spinal cord drives inflammatory pain in male rats. J Inflamm Res. 16:95–107. 2023. View Article : Google Scholar : | |
Zha AH, Luo C, Shen WY, Fu D and Dai RP: Systemic blockade of proBDNF inhibited the expansion and altered the transcriptomic expression in CD3+B220+ cells in MRL/lpr lupus mice. Lupus Sci Med. 9:e0008362022. View Article : Google Scholar | |
Li JN, Luo RY, Luo C, Hu ZL, Zha AH, Shen WY, Li Q, Li H, Fu D and Dai RP: Brain-derived neurotrophic factor precursor contributes to a proinflammatory program in monocytes/macrophages after acute myocardial infarction. J Am Heart Assoc. 12:e281982023. View Article : Google Scholar | |
Cui YH, Zhou SF, Liu Y, Wang S, Li F, Dai RP, Hu ZL and Li CQ: Injection of anti-proBDNF attenuates hippocampal-dependent learning and memory dysfunction in mice with sepsis-associated encephalopathy. Front Neurosci. 15:6657572021. View Article : Google Scholar : PubMed/NCBI | |
Lim Y, Zhong JH and Zhou XF: Development of mature BDNF-specific sandwich ELISA. J Neurochem. 134:75–85. 2015. View Article : Google Scholar : PubMed/NCBI |