
Application of liquid biopsy in differentiating lung cancer from benign pulmonary nodules (Review)
- Authors:
- Mingcheng Peng
- Jun Gong
- Taixue An
- Hongbing Cheng
- Liangji Chen
- Mengyang Cai
- Jinhua Lan
- Yueting Tang
-
Affiliations: Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China, Department of Thoracic Surgery, Xiantao First People's Hospital, Xiantao, Hubei 433099, P.R. China, Department of Clinical Laboratory, Xiantao First People's Hospital, Xiantao, Hubei 433099, P.R. China - Published online on: May 9, 2025 https://doi.org/10.3892/ijmm.2025.5547
- Article Number: 106
-
Copyright: © Peng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Larici AR, Farchione A, Franchi P, Ciliberto M, Cicchetti G, Calandriello L, Del Ciello A and Bonomo L: Lung nodules: Size still matters. Eur Respir Rev. 26:1700252017. View Article : Google Scholar : PubMed/NCBI | |
Groome PA, Bolejack V, Crowley JJ, Kennedy C, Krasnik M, Sobin LH and Goldstraw P; IASLC International Staging Committee; Cancer Research and Biostatistics; Observers to the Committee; Participating Institutions: The IASLC lung cancer staging project: Validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2:694–705. 2007. View Article : Google Scholar : PubMed/NCBI | |
Viswanathan VS, Toro P, Corredor G, Mukhopadhyay S and Madabhushi A: The state of the art for artificial intelligence in lung digital pathology. J Pathol. 257:413–429. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pei Q, Luo Y, Chen Y, Li J, Xie D and Ye T: Artificial intelligence in clinical applications for lung cancer: Diagnosis, treatment and prognosis. Clin Chem Lab Med. 60:1974–1983. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim TJ, Kim CH, Lee HY, Chung MJ, Shin SH, Lee KJ and Lee KS: Management of incidental pulmonary nodules: Current strategies and future perspectives. Expert Rev Respir Med. 14:173–194. 2020. View Article : Google Scholar | |
Ali K and Bal S: Management of Solitary Pulmonary Nodule. Recent concepts in minimal access surgery. Sharma D and Hazrah P: 1. Springer Singapore; Singapore: pp. 401–418. 2022, View Article : Google Scholar | |
Hasan N, Kumar R and Kavuru MS: Lung cancer screening beyond low-dose computed tomography: The role of novel biomarkers. Lung. 192:639–648. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nooreldeen R and Bach H: Current and future development in lung cancer diagnosis. Int J Mol Sci. 22:86612021. View Article : Google Scholar : PubMed/NCBI | |
Dalli A, Selimoglu Sen H, Coskunsel M, Komek H, Abakay O, Sergi C and Cetin Tanrikulu A: Diagnostic value of PET/CT in differentiating benign from malignant solitary pulmonary nodules. J BUON. 18:935–941. 2013. | |
Khalil A, Majlath M, Gounant V, Hess A, Laissy JP and Debray MP: Contribution of magnetic resonance imaging in lung cancer imaging. Diagn Interv Imaging. 97:991–1002. 2016. View Article : Google Scholar : PubMed/NCBI | |
Periaswamy G, Arunachalam VK, Varatharajaperumal R, Kalyan G, Selvaraj R, Mehta P and Cherian M: Comparison of ultrashort TE lung MRI and HRCT lungs for detection of pulmonary nodules in oncology patients. Indian J Radiol Imaging. 32:497–504. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Guan S, Ou Z, Li W, Yan L and Situ B: Advances in AI-based cancer cytopathology. Interdiscip Med. 1:e202300132023. View Article : Google Scholar | |
Li Y, Wu X, Yang P, Jiang G and Luo Y: Machine learning for lung cancer diagnosis, treatment, and prognosis. Genomics Proteomics Bioinformatics. 20:850–866. 2022. View Article : Google Scholar : PubMed/NCBI | |
AbdulJabbar K, Raza SEA, Rosenthal R, Jamal-Hanjani M, Veeriah S, Akarca A, Lund T, Moore DA, Salgado R, Al Bakir M, et al: Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nat Med. 26:1054–1062. 2020. View Article : Google Scholar : PubMed/NCBI | |
Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, Moreira AL, Razavian N and Tsirigos A: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 24:1559–1567. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liu JB, Hou LK, Yu F, Zhang J, Wu W, Tang XM, Sun F, Lu HM, Deng J, et al: Liquid biopsy in lung cancer: Significance in diagnostics, prediction, and treatment monitoring. Mol Cancer. 21:252022. View Article : Google Scholar : PubMed/NCBI | |
Levy B, Hu ZI, Cordova KN, Close S, Lee K and Becker D: Clinical utility of liquid diagnostic platforms in non-small cell lung cancer. Oncologist. 21:1121–1130. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Wu X, Yin J, Wang S, Li Z and You C: Clinical applications of liquid biopsies for early lung cancer detection. Am J Cancer Res. 9:2567–2579. 2019. | |
Bao H, Min L, Bu F, Wang S and Meng J: Recent advances of liquid biopsy: Interdisciplinary strategies toward clinical decision-making. Interdiscip Med. 1:e202300212023. View Article : Google Scholar | |
Zhu Y, Li W, Lan F, Chen S, Chen X, Zhang X, Yan X and Zhang Y: DNA nanotechnology in tumor liquid biopsy: Enrichment and determination of circulating biomarkers. Interdiscip Med. 2:e202300432024. View Article : Google Scholar | |
El Andaloussi S, Mäger I, Breakefield XO and Wood MJA: Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 12:347–357. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen SW, Zhu SQ, Pei X, Qiu BQ, Xiong D, Long X, Lin K, Lu F, Xu JJ and Wu YB: Cancer cell-derived exosomal circUSP7 induces CD8+ T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol Cancer. 20:1442021. View Article : Google Scholar | |
You J, Li M, Cao LM, Gu QH, Deng PB, Tan Y and Hu CP: Snail1-dependent cancer-associated fibroblasts induce epithelial-mesenchymal transition in lung cancer cells via exosomes. QJM. 112:581–590. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Tang D, Lin J, Huang X, Lin S, Shen G and Dai Y: Exosomal circSHKBP1 participates in non-small cell lung cancer progression through PKM2-mediated glycolysis. Mol Ther Oncolytics. 24:470–485. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Han C, Fang P, Ma Z, Wang X, Chen H, Wang S, Meng F, Wang C, Zhang E, et al: Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. J Hematol Oncol. 15:1412022. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Zhao C, Xu F, Zhang A, Jin M, Zhang K, Liu L, Hua Q, Zhao J, Liu J, et al: Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2. Theranostics. 11:2860–2875. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Luo M, To KKW, Zhang J, Su C, Zhang H, An S, Wang F, Chen D and Fu L: Intercellular transfer of exosomal wild type EGFR triggers osimertinib resistance in non-small cell lung cancer. Mol Cancer. 20:172021. View Article : Google Scholar : | |
Zhang Q, Zheng K, Gao Y, Zhao S, Zhao Y, Li W, Nan Y, Li Z, Liu W, Wang X, et al: Plasma exosomal miR-1290 and miR-29c-3p as diagnostic biomarkers for lung cancer. Heliyon. 9:e210592023. View Article : Google Scholar : | |
Gao S, Guo W, Liu T, Liang N, Ma Q, Gao Y, Tan F, Xue Q and He J: Plasma extracellular vesicle microRNA profiling and the identification of a diagnostic signature for stage I lung adenocarcinoma. Cancer Sci. 113:648–659. 2022. View Article : Google Scholar | |
Sun S, Chen H, Xu C, Zhang Y, Zhang Q, Chen L, Ding Q and Deng Z: Exosomal miR-106b serves as a novel marker for lung cancer and promotes cancer metastasis via targeting PTEN. Life Sci. 244:1172972020. View Article : Google Scholar : PubMed/NCBI | |
Open Biology Editorial Team: Retraction 'Reduced miR-125a-5p level in non-small-cell lung cancer is associated with tumour progression'. Open Biol. 10:2002052020. View Article : Google Scholar : PubMed/NCBI | |
Zhong L, Sun S, Shi J, Cao F, Han X and Chen Z: MicroRNA-125a-5p plays a role as a tumor suppressor in lung carcinoma cells by directly targeting STAT3. Tumour Biol. 39:10104283176975792017. View Article : Google Scholar : PubMed/NCBI | |
Ye P, Lv X, Aizemaiti R, Cheng J, Xia P and Di M: H3K27acactivated LINC00519 promotes lung squamous cell carcinoma progression by targeting miR-450b-5p/miR-515-5p/YAP1 axis. Cell Prolif. 53:e127972020. View Article : Google Scholar | |
Yang G, Wang T, Qu X, Chen S, Han Z, Chen S, Chen M, Lin J, Yu S, Gao L, et al: Exosomal miR-21/Let-7a ratio distinguishes non-small cell lung cancer from benign pulmonary diseases. Asia Pac J Clin Oncol. 16:280–286. 2020. View Article : Google Scholar | |
Zhong Y, Ding X, Bian Y, Wang J, Zhou W, Wang X, Li P, Shen Y, Wang JJ, Li J, et al: Discovery and validation of extracellular vesicle-associated miRNAs as noninvasive detection biomarkers for early-stage non-small-cell lung cancer. Mol Oncol. 15:2439–2452. 2021. View Article : Google Scholar : | |
Tang CP, Zhou HJ, Qin J, Luo Y and Zhang T: MicroRNA-520c-3p negatively regulates EMT by targeting IL-8 to suppress the invasion and migration of breast cancer. Oncol Rep. 38:3144–3152. 2017. View Article : Google Scholar | |
Gulhane P and Singh S: MicroRNA-520c-3p impacts sphingolipid metabolism mediating PI3K/AKT signaling in NSCLC: Systems perspective. J Cell Biochem. 123:1827–1840. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Lu X, Sun J and Shu Y: microRNA expression profiling of side population cells in human lung cancer and preliminary analysis. Zhongguo Fei Ai Za Zhi. 13:665–669. 2010.In Chinese. | |
Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M and De Palma M: Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep. 8:1432–1446. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Jin C, Qiu W, Zhao R, Wang S, Li B, Zhang Z, Guo Q, Zhang S, Gao Z, et al: The dual role of glioma exosomal microRNAs: Glioma eliminates tumor suppressor miR-1298-5p via exosomes to promote immunosuppressive effects of MDSCs. Cell Death Dis. 13:4262022. View Article : Google Scholar : | |
Chen X, Yu L, Hao K, Yin X, Tu M, Cai L, Zhang L, Pan X, Gao Q and Huang Y: Fucosylated exosomal miRNAs as promising biomarkers for the diagnosis of early lung adenocarcinoma. Front Oncol. 12:9351842022. View Article : Google Scholar : | |
Hu Y, Bai J, Zhou D, Zhang L, Chen X, Chen L, Liu Y, Zhang B, Li H and Yin C: The miR-4732-5p/XPR1 axis suppresses the invasion, metastasis, and epithelial-mesenchymal transition of lung adenocarcinoma via the PI3K/Akt/GSK3β/Snail pathway. Mol Omics. 18:417–429. 2022. View Article : Google Scholar | |
Shen YY, Cui JY, Yuan J and Wang X: MiR-451a suppressed cell migration and invasion in non-small cell lung cancer through targeting ATF2. Eur Rev Med Pharmacol Sci. 22:5554–5561. 2018.PubMed/NCBI | |
Ding L, Tian W, Zhang H, Li W, Ji C, Wang Y and Li Y: MicroRNA-486-5p suppresses lung cancer via downregulating mTOR signaling in vitro and in vivo. Front Oncol. 11:6552362021. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Zhang Y, Wu S, Jiang B and Liu Y: MiR-139-3p targets CHEK1 modulating DNA repair and cell viability in lung squamous carcinoma cells. Mol Biotechnol. 64:832–840. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng B, Peng M, Gong J, Li C, Cheng H, Li Y and Tang Y: Circulating exosomal microRNA-4497 as a potential biomarker for metastasis and prognosis in non-small-cell lung cancer. Exp Biol Med (Maywood). 248:1403–1413. 2023. View Article : Google Scholar | |
Jin X, Chen Y, Chen H, Fei S, Chen D, Cai X, Liu L, Lin B, Su H, Zhao L, et al: Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res. 23:5311–5319. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhao J, Yu S, Wang Z, He X, Su Y, Guo T, Sheng H, Chen J, Zheng Q, et al: Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis. Clin Chem. 65:798–808. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu W, Zhang H, Sun B, Chen T, Hu M, Zhou H, Cao Y, Han B and Wu L: Extracellular vesicle long RNA markers of early-stage lung adenocarcinoma. Int J Cancer. 152:1490–1500. 2023. View Article : Google Scholar | |
Wang N, Yao C, Luo C, Liu S, Wu L, Hu W, Zhang Q, Rong Y, Yuan C and Wang F: Integrated plasma and exosome long noncoding RNA profiling is promising for diagnosing non-small cell lung cancer. Clin Chem Lab Med. 61:2216–2228. 2023. View Article : Google Scholar : PubMed/NCBI | |
Min L, Zhu T, Lv B, An T, Zhang Q, Shang Y, Yu Z, Zheng L and Wang Q: Exosomal LncRNA RP5-977B1 as a novel minimally invasive biomarker for diagnosis and prognosis in non-small cell lung cancer. Int J Clin Oncol. 27:1013–1024. 2022. View Article : Google Scholar | |
Li C, Lv Y, Shao C, Chen C, Zhang T, Wei Y, Fan H, Lv T, Liu H and Song Y: Tumor-derived exosomal lncRNA GAS5 as a biomarker for early-stage non-small-cell lung cancer diagnosis. J Cell Physiol. 234:20721–20727. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Meyer CA, Fei T, Wang G, Zhang F and Liu XS: A systematic approach identifies FOXA1 as a key factor in the loss of epithelial traits during the epithelial-to-mesenchymal transition in lung cancer. BMC Genomics. 14:6802013. View Article : Google Scholar : PubMed/NCBI | |
Kuang M, Peng Y, Tao X, Zhou Z, Mao H, Zhuge L, Sun Y and Zhang H: FGB and FGG derived from plasma exosomes as potential biomarkers to distinguish benign from malignant pulmonary nodules. Clin Exp Med. 19:557–564. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chang W, Zhu J, Yang D, Shang A, Sun Z, Quan W and Li D: Plasma versican and plasma exosomal versican as potential diagnostic markers for non-small cell lung cancer. Respir Res. 24:1402023. View Article : Google Scholar | |
Yang P, Zhang Y, Zhang R, Wang Y, Zhu S, Peng X, Zeng Y, Yang B, Pan M, Gong J and Ba H: Plasma-derived exosomal immunoglobulins IGHV4-4 and IGLV1-40 as new non-small cell lung cancer biomarkers. Am J Cancer Res. 13:1923–1937. 2023.PubMed/NCBI | |
Luo B, Que Z, Lu X, Qi D, Qiao Z, Yang Y, Qian F, Jiang Y, Li Y, Ke R, et al: Identification of exosome protein panels as predictive biomarkers for non-small cell lung cancer. Biol Proced Online. 25:292023. View Article : Google Scholar : PubMed/NCBI | |
Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, Zambirinis CP, Rodrigues G, Molina H, Heissel S, et al: Extracellular vesicle and particle biomarkers define multiple human cancers. Cell. 182:1044–1061.e18. 2020. View Article : Google Scholar : PubMed/NCBI | |
An T, Qin S, Sun D, Huang Y, Hu Y, Li S, Zhang H, Li B, Situ B, Lie L, et al: Unique protein profiles of extracellular vesicles as diagnostic biomarkers for early and advanced non-small cell lung cancer. Proteomics. 19:e18001602019. View Article : Google Scholar | |
Schlesinger M: Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol. 11:1252018. View Article : Google Scholar : PubMed/NCBI | |
Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, Yost CC, Rubner FJ, Albertine KH, Swoboda KJ, et al: Escaping the nuclear confines: Signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 122:379–391. 2005. View Article : Google Scholar | |
Li X, Liu L and Song X, Wang K, Niu L, Xie L and Song X: TEP linc-GTF2H2-1, RP3-466P17.2, and lnc-ST8SIA4-12 as novel biomarkers for lung cancer diagnosis and progression prediction. J Cancer Res Clin Oncol. 147:1609–1622. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xing S, Zeng T, Xue N, He Y, Lai YZ, Li HL, Huang Q, Chen SL and Liu WL: Development and validation of tumor-educated blood platelets integrin alpha 2b (ITGA2B) RNA for diagnosis and prognosis of non-small-cell lung cancer through RNA-seq. Int J Biol Sci. 15:1977–1992. 2019. View Article : Google Scholar | |
Tian T, Lu J, Zhao W, Wang Z, Xu H, Ding Y, Guo W, Qin P, Zhu W, Song C, et al: Associations of systemic inflammation markers with identification of pulmonary nodule and incident lung cancer in Chinese population. Cancer Med. 11:2482–2491. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zu R, Wu L, Zhou R, Wen X, Cao B, Liu S, Yang G, Leng P, Li Y, Zhang L, et al: A new classifier constructed with platelet features for malignant and benign pulmonary nodules based on prospective real-world data. J Cancer. 13:2515–2527. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lu TX and Rothenberg ME: MicroRNA. J Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar : | |
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y and Wang X: miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci. 16:2628–2647. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ge N, Mao C, Yang Q, Han B, Wang Y, Xu L, Yang X, Jiao W and Li C: Single nucleotide polymorphism rs3746444 in miR-499a affects susceptibility to non-small cell lung carcinoma by regulating the expression of CD200. Int J Mol Med. 43:2221–2229. 2019.PubMed/NCBI | |
Xi KX, Zhang XW, Yu XY, Wang WD, Xi KX, Chen YQ, Wen YS and Zhang LJ: The role of plasma miRNAs in the diagnosis of pulmonary nodules. J Thorac Dis. 10:4032–4041. 2018. View Article : Google Scholar | |
He Y, Ren S, Wang Y, Li X, Zhou C and Hirsch FR: Serum microRNAs improving the diagnostic accuracy in lung cancer presenting with pulmonary nodules. J Thorac Dis. 10:5080–5085. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Liu Z, Todd NW, Zhang H, Liao J, Yu L, Guarnera MA, Li R, Cai L, Zhan M and Jiang F: Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer. 11:3742011. View Article : Google Scholar : PubMed/NCBI | |
Fan L, Sha J, Teng J, Li D, Wang C, Xia Q, Chen H, Su B and Qi H: Evaluation of serum paired MicroRNA ratios for differential diagnosis of non-small cell lung cancer and benign pulmonary diseases. Mol Diagn Ther. 22:493–502. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Wang Z, Xia H, Ge Z, Yu L, Li J, Bao H, Liang Z, Cui Y and Xu Y: Long noncoding RNA HAND2-AS1: A crucial regulator of malignancy. Clin Chim Acta. 539:162–169. 2023. View Article : Google Scholar | |
Karger A, Mansouri S, Leisegang MS, Weigert A, Günther S, Kuenne C, Wittig I, Zukunft S, Klatt S, Aliraj B, et al: ADPGK-AS1 long noncoding RNA switches macrophage metabolic and phenotypic state to promote lung cancer growth. EMBO J. 42:e1116202023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhu X, Yan W, Wang L, Xue D, Zhu S, Pan J, Li Y, Zhao Q and Han D: Serum lncRNA THRIL predicts benign and malignant pulmonary nodules and promotes the progression of pulmonary malignancies. BMC Cancer. 23:7552023. View Article : Google Scholar : PubMed/NCBI | |
Jiang N, Meng X, Mi H, Chi Y, Li S, Jin Z, Tian H, He J, Shen W, Tian H, et al: Circulating lncRNA XLOC_009167 serves as a diagnostic biomarker to predict lung cancer. Clin Chim Acta. 486:26–33. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fackche NT, Mei Y, Ito T, Garner M and Brock M: Abstract 1822: A mitochondrial pfeRNA associates with far upstream element binding protein 1 (FUBP1) to promote lung adenocarcinoma tumorigenesis. Cancer Res. 79(Suppl 13): S18222019. View Article : Google Scholar | |
Brock M and Mei Y: Protein functional effector sncRNAs (pfeRNAs) in lung cancer. Cancer Lett. 403:138–143. 2017. View Article : Google Scholar | |
Liu W, Wang Y, Huang H, Fackche N, Rodgers K, Lee B, Nizam W, Khan H, Lu Z, Kong X, et al: A cost-effective and non-invasive pfeRNA-based test differentiates benign and suspicious pulmonary nodules from malignant ones. Noncoding RNA. 7:802021. | |
Ponomaryova AA, Rykova EY, Solovyova AI, Tarasova AS, Kostromitsky DN, Dobrodeev AY, Afanasiev SA and Cherdyntseva NV: Genomic and transcriptomic research in the discovery and application of colorectal cancer circulating markers. Int J Mol Sci. 24:124072023. View Article : Google Scholar : | |
Schwarzenbach H, Hoon DSB and Pantel K: Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 11:426–437. 2011. View Article : Google Scholar | |
Jiang N, Zhou J, Zhang W, Li P, Liu Y, Shi H, Zhang C, Wang Y, Zhou C, Peng C, et al: RNF213 gene mutation in circulating tumor DNA detected by targeted next-generation sequencing in the assisted discrimination of early-stage lung cancer from pulmonary nodules. Thorac Cancer. 12:181–193. 2021. View Article : Google Scholar | |
Peng M, Xie Y, Li X, Qian Y, Tu X, Yao X, Cheng F, Xu F, Kong D, He B, et al: Resectable lung lesions malignancy assessment and cancer detection by ultra-deep sequencing of targeted gene mutations in plasma cell-free DNA. J Med Genet. 56:647–653. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hung CS, Wang SC, Yen YT, Lee TH, Wen WC and Lin RK: Hypermethylation of CCND2 in lung and breast cancer is a potential biomarker and drug target. Int J Mol Sci. 19:30962018. View Article : Google Scholar : PubMed/NCBI | |
Liang W, Zhao Y, Huang W, Gao Y, Xu W, Tao J, Yang M, Li L, Ping W, Shen H, et al: Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics. 9:2056–2070. 2019. View Article : Google Scholar : | |
Fang Y, Qu Y, Ji L, Sun H, Li J, Zhao Y, Liang F, Wang Z, Su J, Liu J, et al: Novel blood-based FUT7 DNA methylation is associated with lung cancer: Especially for lung squamous cell carcinoma. Clin Epigenetics. 14:1672022. View Article : Google Scholar | |
Crowley E, Di Nicolantonio F, Loupakis F and Bardelli A: Liquid biopsy: Monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 10:472–484. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Huang X, Yin W, Peng M, Wu F, Wu X, Tang J, Chen M, Wang X, Hulbert A, et al: Ultrasensitive DNA hypermethylation detection using plasma for early detection of NSCLC: A study in Chinese patients with very small nodules. Clin Epigenetics. 12:392020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, O'Keefe CM, Hsieh K, Cope L, Joyce SC, Pisanic TR, Herman JG and Wang TH: Multiplex digital methylation-specific PCR for noninvasive screening of lung cancer. Adv Sci (Weinh). 10:e22065182023. View Article : Google Scholar | |
Wang Z, Xie K, Zhu G, Ma C, Cheng C, Li Y, Xiao X, Li C, Tang J, Wang H, et al: Early detection and stratification of lung cancer aided by a cost-effective assay targeting circulating tumor DNA (ctDNA) methylation. Respir Res. 24:1632023. View Article : Google Scholar : PubMed/NCBI | |
Xing W, Sun H, Yan C, Zhao C, Wang D, Li M and Ma J: A prediction model based on DNA methylation biomarkers and radiological characteristics for identifying malignant from benign pulmonary nodules. BMC Cancer. 21:2632021. View Article : Google Scholar | |
He J, Wang B, Tao J, Liu Q, Peng M, Xiong S, Li J, Cheng B, Li C, Jiang S, et al: Accurate classification of pulmonary nodules by a combined model of clinical, imaging, and cell-free DNA methylation biomarkers: A model development and external validation study. Lancet Digit Health. 5:e647–e656. 2023. View Article : Google Scholar | |
Seijo LM, Peled N, Ajona D, Boeri M, Field JK, Sozzi G, Pio R, Zulueta JJ, Spira A, Massion PP, et al: Biomarkers in lung cancer screening: achievements, promises, and challenges. J Thorac Oncol. 14:343–357. 2019. View Article : Google Scholar | |
Zhang X, Liu M, Zhang X, Wang Y and Dai L: Autoantibodies to tumor-associated antigens in lung cancer diagnosis. Adv Clin Chem. 103:1–45. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lastwika KJ, Kargl J, Zhang Y, Zhu X, Lo E, Shelley D, Ladd JJ, Wu W, Kinahan P, Pipavath SNJ, et al: Tumor-derived autoantibodies identify malignant pulmonary nodules. Am J Respir Crit Care Med. 199:1257–1266. 2019. View Article : Google Scholar : | |
Xu L, Chang N, Yang T, Lang Y, Zhang Y, Che Y, Xi H, Zhang W, Song Q, Zhou Y, et al: Development of diagnosis model for early lung nodules based on a seven autoantibodies panel and imaging features. Front Oncol. 12:8835432022. View Article : Google Scholar | |
Auger C, Moudgalya H, Neely MR, Stephan JT, Tarhoni I, Gerard D, Basu S, Fhied CL, Abdelkader A, Vargas M, et al: Development of a novel circulating autoantibody biomarker panel for the identification of patients with 'actionable' pulmonary nodules. Cancers (Basel). 15:22592023. View Article : Google Scholar : PubMed/NCBI | |
Shome M, Gao W, Engelbrektson A, Song L, Williams S, Murugan V, Park JG, Chung Y, LaBaer J and Qiu J: Comparative microbiomics analysis of antimicrobial antibody response between patients with lung cancer and control subjects with benign pulmonary nodules. Cancer Epidemiol Biomarkers Prev. 32:496–504. 2023. View Article : Google Scholar | |
Sina AAI, Vaidyanathan R, Dey S, Carrascosa LG, Shiddiky MJA and Trau M: Real time and label free profiling of clinically relevant exosomes. Sci Rep. 6:304602016. View Article : Google Scholar | |
Fang S, Tian H, Li X, Jin D, Li X, Kong J, Yang C, Yang X, Lu Y, Luo Y, et al: Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS One. 12:e01750502017. View Article : Google Scholar : PubMed/NCBI | |
Morales-Pacheco M, Valenzuela-Mayen M, Gonzalez-Alatriste AM, Mendoza-Almanza G, Cortés-Ramírez SA, Losada-García A, Rodríguez-Martínez G, González-Ramírez I, Maldonado-Lagunas V, Vazquez-Santillan K, et al: The role of platelets in cancer: From their influence on tumor progression to their potential use in liquid biopsy. Biomark Res. 13:272025. View Article : Google Scholar | |
Didychuk AL, Butcher SE and Brow DA: The life of U6 small nuclear RNA, from cradle to grave. RNA. 24:437–460. 2018. View Article : Google Scholar : PubMed/NCBI | |
Najafi S, Asemani Y, Majidpoor J, Mahmoudi R, Aghaei-Zarch SM and Mortezaee K: Tumor-educated platelets. Clin Chim Acta. 552:1176902024. View Article : Google Scholar | |
Khan J, Lieberman JA and Lockwood CM: Variability in, variability out: best practice recommendations to standardize pre-analytical variables in the detection of circulating and tissue microRNAs. Clin Chem Lab Med. 55:608–621. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Herrero E, Provencio M and Romero A: Clinical utility of liquid biopsy for the diagnosis and monitoring of EML4-ALK NSCLC patients. Adv Lab Med. 1:201900192020. | |
Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, Ledbetter DH, Sanfilippo F, Sheridan K, Rosica D, et al: Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 369:eabb96012020. View Article : Google Scholar : | |
Cescon DW, Bratman SV, Chan SM and Siu LL: Circulating tumor DNA and liquid biopsy in oncology. Nat Cancer. 1:276–290. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, Khodadoust MS, Esfahani MS, Liu CL, Zhou L, et al: Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 7:1394–1403. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fagery M, Khorshidi HA, Wong SQ, Vu M and Ijzerman M: Health economic evidence and modeling challenges for liquid biopsy assays in cancer management: A systematic literature review. PharmacoEconomics. 41:1229–1248. 2023. View Article : Google Scholar : | |
Kammer MN, Lakhani DA, Balar AB, Antic SL, Kussrow AK, Webster RL, Mahapatra S, Barad U, Shah C, Atwater T, et al: Integrated biomarkers for the management of indeterminate pulmonary nodules. Am J Respir Crit Care Med. 204:1306–1316. 2021. View Article : Google Scholar : PubMed/NCBI | |
Siravegna G, Marsoni S, Siena S and Bardelli A: Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 14:531–548. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, Shafi S, Johnson DH, Mitter R, Rosenthal R, et al: Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 376:2109–2121. 2017. View Article : Google Scholar | |
Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WSME, et al: Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 376:629–640. 2017. View Article : Google Scholar | |
Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y, Rittmeyer A, Fehrenbacher L, Otto G, Malboeuf C, et al: Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 24:1441–1448. 2018. View Article : Google Scholar | |
Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O'Connell A, Messineo MM, Luke JJ, Butaney M, Kirschmeier P, Jackman DM and Jänne PA: Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 20:1698–1705. 2014. View Article : Google Scholar | |
Rolfo C, Mack P, Scagliotti GV, Aggarwal C, Arcila ME, Barlesi F, Bivona T, Diehn M, Dive C, Dziadziuszko R, et al: Liquid biopsy for advanced NSCLC: A consensus statement from the international association for the study of lung cancer. J Thorac Oncol. 16:1647–1662. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pennell NA, Mutebi A, Zhou ZY, Ricculli ML, Tang W, Wang H, Guerin A, Arnhart T, Dalal A, Sasane M, et al: Economic impact of next-generation sequencing versus single-gene testing to detect genomic alterations in metastatic non-small-cell lung cancer using a decision analytic model. JCO Precis Oncol. 3:1–9. 2019. View Article : Google Scholar | |
Leighl NB, Page RD, Raymond VM, Daniel DB, Divers SG, Reckamp KL, Villalona-Calero MA, Dix D, Odegaard JI, Lanman RB and Papadimitrakopoulou VA: Clinical utility of comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non-small cell lung cancer. Clin Cancer Res. 25:4691–4700. 2019. View Article : Google Scholar | |
Xie H, Jia Y and Liu S: Integration of artificial intelligence in clinical laboratory medicine: Advancements and challenges. Interdiscip Med. 2:e202300562024. View Article : Google Scholar |