
Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review)
- Authors:
- Rongqi Guo
- Rui Wang
- Weisong Zhang
- Yangyang Li
- Yihao Wang
- Hao Wang
- Xia Li
- Jianxiang Song
-
Affiliations: Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China, Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China - Published online on: May 27, 2025 https://doi.org/10.3892/ijmm.2025.5554
- Article Number: 113
-
Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Beckmann AM, Matsumoto I and Wilce PA: AP-1 and Egr DNA-binding activities are increased in rat brain during ethanol withdrawal. J Neurochem. 69:306–314. 1997. View Article : Google Scholar : PubMed/NCBI | |
Skerka C, Decker EL and Zipfel PF: Coordinate expression and distinct DNA-Binding characteristics of the four EGR-zinc finger proteins in jurkat T lymphocytes. Immunobiology. 198:179–191. 1997. View Article : Google Scholar | |
Chavrier P, Zerial M, Lemaire P, Almendral J, Bravo R and Charnay P: A gene encoding a protein with zinc fingers is activated during G0/G1 transition in cultured cells. EMBO J. 7:29–35. 1988. View Article : Google Scholar : PubMed/NCBI | |
Joseph LJ, Le Beau MM, Jamieson GA, Acharya S, Shows TB, Rowley JD and Sukhatme VP: Molecular cloning, sequencing, and mapping of EGR2, a human early growth response gene encoding a protein with 'zinc-binding finger' structure. Proc Natl Acad Sci USA. 85:7164–7168. 1988. View Article : Google Scholar | |
Cao X, Mahendran R, Guy GR and Tan YH: Detection and characterization of cellular EGR-1 binding to its recognition site. J Biol Chem. 268:16949–16957. 1993. View Article : Google Scholar : PubMed/NCBI | |
Myung E, Park YL, Kim N, Chung CY, Park HB, Park HC, Myung DS, Kim JS, Cho SB, Lee WS and Joo YE: Expression of early growth response-1 in human gastric cancer and its relationship with tumor cell behaviors and prognosis. Pathol Res Pract. 209:692–699. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li L, Ameri AH, Wang S, Jansson KH, Casey OM, Yang Q, Beshiri ML, Fang L, Lake RG, Agarwal S, et al: EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene. 38:6241–6255. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schmidt K, Carroll JS, Yee E, Thomas DD, Wert-Lamas L, Neier SC, Sheynkman G, Ritz J and Novina CD: The lncRNA SLNCR recruits the androgen receptor to EGR1-Bound genes in melanoma and inhibits expression of tumor suppressor p21. Cell Reports. 27:2493–2507.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Calogero A, Arcella A, De Gregorio G, Porcellini A, Mercola D, Liu C, Lombari V, Zani M, Giannini G, Gagliardi FM, et al: The early growth response gene EGR-1 behaves as a suppressor gene that is down-regulated independent of ARF/Mdm2 but not p53 alterations in fresh human gliomas. Clin Cancer Res. 7:2788–2796. 2001.PubMed/NCBI | |
Damm F, Mylonas E, Cosson A, Yoshida K, Della Valle V, Mouly E, Diop M, Scourzic L, Shiraishi Y, Chiba K, et al: Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 4:1088–1101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS, Wang Q, Imbusch CD, Serva A, Koser SD, et al: DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet. 48:253–264. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ying Y, Ma X, Fang J, Chen S, Wang W, Li J, Xie H, Wu J, Xie B, Liu B, et al: EGR2-mediated regulation of m6A reader IGF2BP proteins drive RCC tumorigenesis and metastasis via enhancing S1PR3 mRNA stabilization. Cell Death Dis. 12:7502021. View Article : Google Scholar : | |
Xiao H, Huang X, Chen H, Zheng Y, Liu W, Chen J, Wei R, Lin M, Wang Q and Zhuang W: Establishment of a SUMO pathway related gene signature for predicting prognosis, chemotherapy response and investigating the role of EGR2 in bladder cancer. J Cancer. 15:3841–3856. 2024. View Article : Google Scholar : PubMed/NCBI | |
Schwachtgen JL, Houston P, Campbell C, Sukhatme V and Braddock M: Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway. J Clin Invest. 101:2540–2549. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Jeong IY, Lim YH, Lee YH and Shin SY: Estrogen receptor β stimulates Egr-1 transcription via MEK1/Erk/Elk-1 cascade in C6 glioma cells. BMB Rep. 44:452–457. 2011. View Article : Google Scholar : PubMed/NCBI | |
Masle-Farquhar E, Peters TJ, Miosge LA, Parish IA, Weigel C, Oakes CC, Reed JH and Goodnow CC: Uncontrolled CD21low age-associated and B1 B cell accumulation caused by failure of an EGR2/3 tolerance checkpoint. Cell Rep. 38:1102592022. View Article : Google Scholar | |
Veremeyko T, Yung AWY, Anthony DC, Strekalova T and Ponomarev ED: Corrigendum: Early growth response Gene-2 is essential for M1 and M2 macrophage activation and plasticity by modulation of the transcription factor CEBPβ. Front Immunol. 9:29232018. View Article : Google Scholar | |
Zhang S, Xia C, Xu C, Liu J, Zhu H, Yang Y, Xu F, Zhao J, Chang Y and Zhao Q: Early growth response 3 inhibits growth of hepatocellular carcinoma cells via upregulation of Fas ligand. Int J Oncol. 50:805–814. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shin SH, Kim I, Lee JE, Lee M and Park JW: Loss of EGR3 is an independent risk factor for metastatic progression in prostate cancer. Oncogene. 39:5839–5854. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Han X, Yu J, Yuan M, Yan Y, Qin J, Lan L and Wang Y: EGR3 and estrone are involved in the tamoxifen resistance and progression of breast cancer. J Cancer Res Clin Oncol. 149:18103–18117. 2023. View Article : Google Scholar : PubMed/NCBI | |
Inoue A, Omoto Y, Yamaguchi Y, Kiyama R and Hayashi S: Transcription factor EGR3 is involved in the estrogen-signaling pathway in breast cancer cells. J Mol Endocrinol. 32:649–661. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hicks HM, Pozdeyev N, Sams SB, Pugazhenthi U, Bales ES, Hofmann MC, McKenna LR and Schweppe RE: Fibronectin contributes to a BRAF Inhibitor-driven invasive phenotype in thyroid cancer through EGR1, which can be blocked by inhibition of ERK1/2. Mol Cancer Res. 21:867–880. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hua Y, Wang H, Ye Z, Zheng D and Zhang X: An integrated pan-cancer analysis of identifying biomarkers about the EGR family genes in human carcinomas. Comput Biol Med. 148:1058892022. View Article : Google Scholar : PubMed/NCBI | |
Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
Quail DF and Joyce JA: The microenvironmental landscape of brain tumors. Cancer Cell. 31:326–341. 2017. View Article : Google Scholar : PubMed/NCBI | |
LeBlanc SE, Ward RM and Svaren J: Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol Cell Biol. 27:3521–3529. 2007. View Article : Google Scholar : PubMed/NCBI | |
Collins S, Lutz MA, Zarek PE, Anders RA, Kersh GJ and Powell JD: Opposing regulation of T cell function by Egr-1/NAB2 and Egr-2/Egr-3. Eur J Immunol. 38:528–536. 2008. View Article : Google Scholar : PubMed/NCBI | |
Samakai E, Hooper R, Martin KA, Shmurak M, Zhang Y, Kappes DJ, Tempera I and Soboloff J: Novel STIM1-dependent control of Ca2+ clearance regulates NFAT activity during T-cell activation. FASEB J. 30:3878–3886. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Liu H, Huang W, Zhu H, Zong D and He X: Immunoinhibitory effects of hypoxia-driven reprogramming of EGR1hi and EGR3 positive B cells in the nasopharyngeal carcinoma microenvironment. Oral Oncol. 158:1069992024. View Article : Google Scholar | |
Veremeyko T, Yung AWY, Anthony DC, Strekalova T and Ponomarev ED: Early growth response Gene-2 is essential for M1 and M2 macrophage activation and plasticity by modulation of the transcription factor CEBPβ. Front Immunol. 9:25152018. View Article : Google Scholar | |
Thiel G, Müller I and Rössler OG: Expression, signaling and function of Egr transcription factors in pancreatic β-cells and insulin-responsive tissues. Mol Cell Endocrinol. 388:10–19. 2014. View Article : Google Scholar : PubMed/NCBI | |
Srinivasan R, Mager GM, Ward RM, Mayer J and Svaren J: NAB2 Represses Transcription by Interacting with the CHD4 Subunit of the Nucleosome Remodeling and Deacetylase (NuRD) Complex. J Biol Chem. 281:15129–15137. 2006. View Article : Google Scholar : PubMed/NCBI | |
Silverman ES and Collins T: Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol. 154:665–670. 1999. View Article : Google Scholar : PubMed/NCBI | |
Gregg J and Fraizer G: Transcriptional regulation of EGR1 by EGF and the ERK signaling pathway in prostate cancer cells. Genes Cancer. 2:900–909. 2011. View Article : Google Scholar | |
Cavigelli M, Dolfi F, Claret FX and Karin M: Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J. 14:5957–5964. 1995. View Article : Google Scholar : PubMed/NCBI | |
Cabodi S, Morello V, Masi A, Cicchi R, Broggio C, Distefano P, Brunelli E, Silengo L, Pavone F, Arcangeli, et al: Convergence of integrins and EGF receptor signaling via PI3K/Akt/FoxO pathway in early gene Egr-1 expression. J Cell Physiol. 218:294–303. 2009. View Article : Google Scholar | |
Ivanova D, Dirks A, Montenegro-Venegas C, Schöne C, Altrock WD, Marini C, Frischknecht R, Schanze D, Zenker M, Gundelfinger ED and Fejtova A: Synaptic activity controls localization and function of Ct BP 1 via binding to B assoon and P iccolo. EMBO J. 34:1056–1077. 2015. View Article : Google Scholar : PubMed/NCBI | |
Thyss R, Virolle V, Imbert V, Peyron JF, Aberdam D and Virolle T: NF-κB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO J. 24:128–137. 2005. View Article : Google Scholar | |
Rössler OG and Thiel G: Thrombin induces Egr-1 expression in fibroblasts involving elevation of the intracellular Ca2+ concentration, phosphorylation of ERK and activation of ternary complex factor. BMC Mol Biol. 10:402009. View Article : Google Scholar : PubMed/NCBI | |
Mayer SI, Willars GB, Nishida E and Thiel G: Elk-1, CREB, and MKP-1 regulate Egr-1 expression in gonadotropin-releasing hormone stimulated gonadotrophs. J Cell Biochem. 105:1267–1278. 2008. View Article : Google Scholar : PubMed/NCBI | |
Simo-Cheyou ER, Tan JJ, Grygorczyk R and Srivastava AK: STIM-1 and ORAI-1 channel mediate angiotensin-II-induced expression of Egr-1 in vascular smooth muscle cells. J Cell Physiol. 232:3496–3509. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jain N, Mahendran R, Philp R, Guy GR, Tan YH and Cao X: Casein Kinase II associates with Egr-1 and acts as a negative modulator of its DNA binding and transcription activities in NIH 3T3 Cells. J Biol Chem. 271:13530–13536. 1996. View Article : Google Scholar : PubMed/NCBI | |
Manente AG, Pinton G, Tavian D, Lopez-Rodas G, Brunelli E and Moro L: Coordinated Sumoylation and Ubiquitination Modulate EGF Induced EGR1 Expression and Stability. PLoS One. 6:e256762011. View Article : Google Scholar : PubMed/NCBI | |
Rexach JE, Clark PM and Hsieh-Wilson LC: Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol. 4:97–106. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cheng D, Dong Z, Lin P, Shen G and Xia Q: Transcriptional activation of Ecdysone-responsive genes requires H3K27 acetylation at enhancers. Int J Mol Sci. 23:107912022. View Article : Google Scholar : PubMed/NCBI | |
Xiong YJ, Zhu Y, Liu YL, Zhao YF, Shen X, Zuo WQ, Lin F and Liang ZQ: P300 participates in ionizing Radiation-mediated activation of Cathepsin L by mutant p53. J Pharmacol Exp Ther. 378:276–286. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Huang L, Zhao S, Wang J, Zhang C, Song X, Chen Q, Du J, Yu D, Sun X, et al: Early growth Response 1 strengthens Pol-III-Directed transcription and transformed cell proliferation by controlling PTEN/AKT signalling activity. Int J Mol Sci. 23:49302022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yun C, Gao B, Xu Y, Zhang Y, Wang Y, Kong Q, Zhao F, Wang CR, Dent SYR, et al: The lysine acetyltransferase GCN5 is required for iNKT cell development through EGR2 acetylation. Cell Rep. 20:600–612. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Deng H, Choi UL, Li Z, Yang Y, Zeng J, Liu Y, Zhang X and Li G: EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis. Oncogene. 39:7127–7141. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mendes K, Schmidhofer S, Minderjahn J, Glatz D, Kiesewetter C, Raithel J, Wimmer J, Gebhard C and Rehli M: The epigenetic pioneer EGR2 initiates DNA demethylation in differentiating monocytes at both stable and transient binding sites. Nat Commun. 12:15562021. View Article : Google Scholar : PubMed/NCBI | |
Scheid R, Chen J and Zhong X: Biological role and mechanism of chromatin readers in plants. Curr Opin Plant Biol. 61:1020082021. View Article : Google Scholar : PubMed/NCBI | |
Hu TM, Chen SJ, Hsu SH and Cheng MC: Functional analyses and effect of DNA methylation on the EGR1 gene in patients with schizophrenia. Psychiatry Res. 275:276–282. 2019. View Article : Google Scholar : PubMed/NCBI | |
Salguero-Aranda C, Beltran-Povea A, Postigo-Corrales F, Hitos AB, Díaz I, Caballano-Infantes E, Fraga MF, Hmadcha A, Martín F, Soria B, et al: Pdx1 is transcriptionally regulated by EGR-1 during nitric oxide-induced endoderm differentiation of mouse embryonic stem cells. Int J Mol Sci. 23:39202022. View Article : Google Scholar : PubMed/NCBI | |
Fetahu IS and Taschner-Mandl S: Neuroblastoma and the epigenome. Cancer Metastasis Rev. 40:173–189. 2021. View Article : Google Scholar : PubMed/NCBI | |
Saha SK, Islam SMR, Saha T, Nishat A, Biswas PK, Gil M, Nkenyereye L, El-Sappagh S, Islam MS and Cho SG: Prognostic role of EGR1 in breast cancer: A systematic review. BMB Rep. 54:497–504. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Chang C, Liu X, He Y, Wu Y, Wang S and Zhang C: Stimulator of interferon genes signaling pathway and its role in Anti-tumor immune therapy. Curr Pharm Des. 26:3085–3095. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Chen M, Li R, Sun Y, Ye P, Fang K, Wang C, Shi S and Dong C: A responsive cocktail nano-strategy breaking the immune excluded state enhances immunotherapy for triple negative breast cancer. Nanoscale. 17:4610–4623. 2025. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Qiu C, Wang X, Wang P, Yi L, Peng X, Xu X, Huang W, Bai Y, Wei J, et al: Engineering semiconducting polymeric nanoagonists potentiate cGAS-STING pathway activation and elicit long term memory against recurrence in breast cancer. Adv Mater. 37:e24066622025. View Article : Google Scholar | |
Hao M, Zhu L, Hou S, Chen S, Li X, Li K, Zhu N, Chen S, Xue L, Ju C and Zhang C: Sensitizing tumors to immune checkpoint blockage via STING Agonists delivered by tumor-penetrating neutrophil cytopharmaceuticals. ACS Nano. 17:1663–1680. 2023. View Article : Google Scholar | |
Noritsugu K, Ito A, Nakao Y and Yoshida M: Identification of zinc finger transcription factor EGR2 as a novel acetylated protein. Biochem Biophys Res Commun. 489:455–459. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stoddart A, Fernald AA, Davis EM, McNerney ME and Le Beau MM: EGR1 haploinsufficiency confers a fitness advantage to hematopoietic stem cells following chemotherapy. Exp Hematol. 115:54–67. 2022. View Article : Google Scholar : PubMed/NCBI | |
Inoue K and Fry EA: Tumor suppression by the EGR1, DMP1, ARF, p53, and PTEN network. Cancer Invest. 36:520–536. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Zhang Y, Zhong S, Gao F, Chen Y, Wang B, Cai W, Zhang Z, Li W, Lu S, et al: N-n-Butyl haloperidol iodide, a derivative of the Anti-psychotic haloperidol, antagonizes Hypoxia/reoxygenation injury by inhibiting an Egr-1/ROS positive feedback loop in H9c2 cells. Front Pharmacol. 9:192018. View Article : Google Scholar : PubMed/NCBI | |
Tseng YC, Shu CW, Chang HM, Lin YH, Tseng YH, Hsu HS, Goan YG and Tseng CJ: Assessment of early growth response 1 in tumor suppression of esophageal squamous cell carcinoma. J Clin Med. 11:57922022. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Zhang S, Wang H, Wang M, Tao Y, Ye M, Fan Z, Wang Y and Liu L: Identification of EGR4 as a prospective target for inhibiting tumor cell proliferation and a novel biomarker in colorectal cancer. Cancer Gene Ther. 31:871–883. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Lu J, Song Y, Bai J, Sun W, Yu J, Cai M and Fu S: Analysis of DNA Repair-related prognostic function and mechanism in gastric cancer. Front Cell Dev Biol. 10:8970962022. View Article : Google Scholar : PubMed/NCBI | |
Sehat B, Andersson S, Vasilcanu R, Girnita L and Larsson O: Role of Ubiquitination in IGF-1 receptor signaling and degradation. PLoS One. 2:e3402007. View Article : Google Scholar : PubMed/NCBI | |
Kuo P, Chen Y, Chen T, Shen K and Hsu Y: CXCL5/ENA78 increased cell migration and epithelial-to-mesenchymal transition of hormone-independent prostate cancer by early growth response-1/snail signaling pathway. J Cell Physiol. 226:1224–1231. 2011. View Article : Google Scholar | |
Xiao D, Chinnappan D, Pestell R, Albanese C and Weber HC: Bombesin regulates Cyclin D1 expression through the early growth response protein Egr-1 in prostate cancer cells. Cancer Res. 65:9934–9942. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Zhang J and Sun Y: Early growth response-1 is a new substrate of the GSK3β-FBXW7 axis. Neoplasia. 34:1008392022. View Article : Google Scholar | |
Young E, Noerenberg D, Mansouri L, Ljungström V, Frick M, Sutton LA, Blakemore SJ, Galan-Sousa J, Plevova K, Baliakas P, et al: EGR2 mutations define a new clinically aggressive subgroup of chronic lymphocytic leukemia. Leukemia. 31:1547–1554. 2017. View Article : Google Scholar | |
Grotegut S, Von Schweinitz D, Christofori G and Lehembre F: Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 25:3534–3545. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu WS, You RI, Cheng CC, Lee MC, Lin TY and Hu CT: Author correction: Snail collaborates with EGR-1 and SP-1 to directly activate transcription of MMP 9 and ZEB1. Sci Rep. 8:142262018. View Article : Google Scholar : PubMed/NCBI | |
Yeo H, Lee JY, Kim J, Ahn SS, Jeong JY, Choi JH, Lee YH and Shin SY: Transcription factor EGR-1 transactivates the MMP1 gene promoter in response to TNFα in HaCaT keratinocytes. BMB Rep. 53:323–328. 2020. View Article : Google Scholar : PubMed/NCBI | |
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S and Kossatz-Boehlert U: Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front Immunol. 11:12802020. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Tian H, Feng YG, Zhu YQ and Zhang WQ: Egr-1 promotes cell proliferation and invasion by increasing β-Catenin expression in gastric cancer. Dig Dis Sci. 58:423–430. 2012. | |
Cheng JC, Chang HM and Leung PC: Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells. Oncogene. 32:1041–1049. 2013. View Article : Google Scholar | |
Wang Y, Qin C, Zhao B, Li Z, Li T, Yang X, Zhao Y and Wang W: EGR1 induces EMT in pancreatic cancer via a P300/SNAI2 pathway. J Transl Med. 21:2012023. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Kuo T, Tseng CF, Ma JT, Yang ST, Yen CJ, Yang CY, Sung SY and Su JL: Angiopoietin-like protein 1 antagonizes MET receptor activity to repress sorafenib resistance and cancer stemness in hepatocellular carcinoma. Hepatology. 64:1637–1651. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Nam K, Ju J, Lee K, Oh S and Shin I: S100A4 negatively regulates β-catenin by inducing the Egr-1-PTEN-Akt-GSK3β degradation pathway. Cell Signal. 26:2096–2106. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Ji J, Jin Y, Sun Y, Cai Q, Jiang J, Guo L, Zhou C and Zhang J: Tumor-mesothelium HOXA11-PDGF BB/TGF β1-miR-181a-5p-Egr1 feedforward amplifier circuity propels mesothelial fibrosis and peritoneal metastasis of gastric cancer. Oncogene. 43:171–188. 2024. View Article : Google Scholar | |
Feng YH, Su YC, Lin SF, Lin PR, Wu CL, Tung CL, Li CF, Shieh GS and Shiau AL: Oct4 upregulates osteopontin via Egr1 and is associated with poor outcome in human lung cancer. BMC Cancer. 19:7912019. View Article : Google Scholar : PubMed/NCBI | |
Raue F and Frank-Raue K: Thyroid cancer: Risk-stratified management and individualized therapy. Clin Cancer Res. 22:5012–5021. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Zhang N, Wang T, Guan H, Huang Y, Huang L, Zheng Y, Zhang L, Han L, Huo Y, et al: Inflammatory cytokine-regulated LNCPTCTS suppresses thyroid cancer progression via enhancing Snail nuclear export. Cancer Lett. 575:2164022023. View Article : Google Scholar : PubMed/NCBI | |
Brown KC, Lau JK, Dom AM, Witte TR, Luo H, Crabtree CM, Shah YH, Shiflett BS, Marcelo AJ, Proper NA, et al: MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis. 15:99–114. 2012. View Article : Google Scholar | |
Sperandio S, Fortin J, Sasik R, Robitaille L, Corbeil J and De Belle I: The transcription factor Egr1 regulates the HIF-1α gene during hypoxia. Mol Carcinog. 48:38–44. 2009. View Article : Google Scholar | |
Shimoyamada H, Yazawa T, Sato H, Okudela K, Ishii J, Sakaeda M, Kashiwagi K, Suzuki T, Mitsui H, Woo T, et al: Early growth Response-1 induces and enhances vascular endothelial growth Factor-A expression in lung cancer cells. Am J Pathol. 177:70–83. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Gao Y, Lin S, Li Y, Shi L and Kan Q: EGR1-CCL2 feedback loop maintains Epithelial-mesenchymal transition of Cisplatin-resistant gastric cancer cells and promotes tumor angiogenesis. Dig Dis Sci. 67:3702–3713. 2022. View Article : Google Scholar | |
Yu J, Zhuang A, Gu X, Hua Y, Yang L, Ge S, Ruan J, Chai P, Jia R and Fan X: Nuclear PD-L1 promotes EGR1-mediated angiogenesis and accelerates tumorigenesis. Cell Discov. 9:332023. View Article : Google Scholar : PubMed/NCBI | |
McCaffrey TA, Fu C, Du B, Eksinar S, Kent KC, Bush H Jr, Kreiger K, Rosengart T, Cybulsky MI, Silverman ES and Collins T: High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. J Clin Invest. 105:653–662. 2000. View Article : Google Scholar : PubMed/NCBI | |
Harja E, Bucciarelli LG, Lu Y, Stern DM, Zou YS, Schmidt AM and Yan SF: Early growth Response-1 promotes atherogenesis: Mice deficient in early growth Response-1 and apolipoprotein E display decreased atherosclerosis and vascular inflammation. Circ Res. 94:333–339. 2004. View Article : Google Scholar | |
Yan SF, Fujita T, Lu J, Okada K, Shan Zou Y, Mackman N, Pinsky DJ and Stern DM: Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med. 6:1355–1361. 2000. View Article : Google Scholar : PubMed/NCBI | |
Suehiro J, Hamakubo T, Kodama T, Aird WC and Minami T: Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood. 115:2520–2532. 2010. View Article : Google Scholar : | |
Minami T, Miura M, Aird WC and Kodama T: Thrombin-induced autoinhibitory factor, down syndrome critical Region-1, attenuates NFAT-dependent vascular cell adhesion Molecule-1 expression and inflammation in the endothelium. J Biol Chem. 281:20503–20520. 2006. View Article : Google Scholar : PubMed/NCBI | |
Minami T, Horiuchi K, Miura M, Abid MR, Takabe W, Noguchi N, Kohro T, Ge X, Aburatani H, Hamakubo T, et al: Vascular endothelial growth Factor- and Thrombin-induced termination factor, down syndrome critical Region-1, attenuates endothelial cell proliferation and angiogenesis. J Biol Chem. 279:50537–50554. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sambasivan S: Epithelial ovarian cancer: Review article. Cancer Treat Res Commun. 33:1006292022. View Article : Google Scholar : PubMed/NCBI | |
De Belle I, Huang RP, Fan Y, Liu C, Mercola D and Adamson ED: p53 and Egr-1 additively suppress transformed growth in HT1080 cells but Egr-1 counteracts p53-dependent apoptosis. Oncogene. 18:3633–3642. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ryu J, Choe SS, Ryu SH, Park EY, Lee BW, Kim TK, Ha CH and Lee SW: Paradoxical induction of growth arrest and apoptosis by EGF via the up-regulation of PTEN by activating Redox factor-1/Egr-1 in human lung cancer cells. Oncotarget. 8:4181–4195. 2017. View Article : Google Scholar : | |
Wang C, Husain K, Zhang A, Centeno BA, Chen DT, Tong Z, Sebti SM and Malafa MP: EGR-1/Bax pathway plays a role in vitamin E δ-tocotrienol-induced apoptosis in pancreatic cancer cells. J Nutr Biochem. 26:797–807. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Traub B, Shi J, Huber N, Schreiner S, Chen G, Zhou S, Henne-Bruns D, Knippschild U and Kornmann M: c-Jun N-terminal kinase 2 suppresses pancreatic cancer growth and invasion and is opposed by c-Jun N-terminal kinase 1. Cancer Gene Ther. 29:73–86. 2022. View Article : Google Scholar : | |
Moorehead RA, Hojilla CV, De Belle I, Wood GA, Fata JE, Adamson ED, Watson KL, Edwards DR and Khokha R: Insulin-like Growth Factor-II regulates PTEN expression in the mammary gland. J Biol Chem. 278:50422–50427. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shan LN, Song YG, Su D, Liu YL, Shi XB and Lu SJ: Early growth response Protein-1 involves in transforming growth factor-β1 induced Epithelial-mesenchymal transition and inhibits migration of Non-Small-cell lung cancer cells. Asian Pac J Cancer Prev. 16:4137–4142. 2015. View Article : Google Scholar | |
Wang B, Wang Y, Wang W, Wang Z, Zhang Y, Pan X, Wen X, Leng H, Guo J and Ma XX: WTAP/IGF2BP3 mediated m6A modification of the EGR1/PTEN axis regulates the malignant phenotypes of endometrial cancer stem cells. J Exp Clin Cancer Res. 43:2042024. View Article : Google Scholar : PubMed/NCBI | |
Unoki M and Nakamura Y: Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene. 20:4457–4465. 2001. View Article : Google Scholar : PubMed/NCBI | |
Unoki M and Nakamura Y: EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene. 22:2172–2185. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen YL, Lin PC, Chen SP, Lin CC, Tsai NM, Cheng YL, Chang WL, Lin SZ and Harn HJ: Activation of nonsteroidal Anti-inflammatory Drug-activated Gene-1 via extracellular Signal-regulated kinase 1/2 Mitogen-Activated protein kinase revealed a isochaihulactone-triggered apoptotic pathway in human lung cancer A549 cells. J Pharmacol Exp Ther. 323:746–756. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vaish V, Piplani H, Rana C, Vaiphei K and Sanyal SN: NSAIDs may regulate EGR-1-mediated induction of reactive oxygen species and non-steroidal anti-inflammatory drug-induced gene (NAG)-1 to initiate intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer. Mol Cell Biochem. 378:47–64. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Su Z, Tavana O and Gu W: Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell. 42:946–967. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ko H, Kim JM, Kim SJ, Shim SH, Ha CH and Chang HI: Induction of apoptosis by genipin inhibits cell proliferation in AGS human gastric cancer cells via Egr1/p21 signaling pathway. Bioorg Med Chem Letts. 25:4191–4196. 2015. View Article : Google Scholar | |
Liu J, Grogan L, Nau M, Allegra C, Chu E and Wright J: Physical interaction between p53 and primary response gene Egr-1. Int J Oncol. 18:863–870. 2001.PubMed/NCBI | |
Meng W, Yu S, Li Y, Wang H, Feng Y, Sun W, Liu Y, Sun S and Liu H: Mutant p53 achieves function by regulating EGR1 to induce epithelial mesenchymal transition. Tissue Cell. 90:1025102024. View Article : Google Scholar : PubMed/NCBI | |
Ahmed MM, Sells SF, Venkatasubbarao K, Fruitwala SM, Muthukkumar S, Harp C, Mohiuddin M and Rangnekar VM: Ionizing Radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR-1. J Biol Chem. 272:33056–33061. 1997. View Article : Google Scholar | |
Adams PD: Healing and hurting: Molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell. 36:2–14. 2009. View Article : Google Scholar : PubMed/NCBI | |
Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 88:593–602. 1997. View Article : Google Scholar : PubMed/NCBI | |
Salotti J, Sakchaisri K, Tourtellotte WG and Johnson PF: An Arf-Egr-C/EBPβ pathway linked to Ras-induced senescence and cancer. Mol Cell Biol. 35:866–883. 2015. View Article : Google Scholar : | |
Lucerna M, Pomyje J, Mechtcheriakova D, Kadl A, Gruber F, Bilban M, Sobanov Y, Schabbauer G, Breuss J, Wagner O, et al: Sustained expression of early growth response Protein-1 blocks angiogenesis and tumor growth. Cancer Res. 66:6708–6713. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Wang X, Peng Y, Shen S and Li G: Egr-1 regulates the transcription of NGX6 gene through a Sp1/Egr-1 overlapping site in the promoter. BMC Mol Biol. 15:142014. View Article : Google Scholar : PubMed/NCBI | |
Wang LF, Liu YS, Yang B, Li P, Cheng XS, Xiao CX, Liu JJ, Li S, Ren JL and Guleng B: The extracellular matrix protein mindin attenuates colon cancer progression by blocking angiogenesis via Egr-1-mediated regulation. Oncogene. 37:601–615. 2018. View Article : Google Scholar | |
Kim J, Kang SM, Lee HJ, Choi SY and Hong SH: Oxytocin inhibits head and neck squamous cell carcinoma cell migration by early growth response-1 upregulation. Anticancer Drugs. 28:613–622. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Li J, Lu H and Xu B: Thalidomide inhibits leukemia cell invasion and migration by upregulation of early growth response gene 1. Leuk Lymphoma. 50:109–113. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Li S, Yang W, Chen L, Yao C and Huang RP: Early growth Response-1 suppresses human fibrosarcoma cell invasion and angiogenesis. Cancer Genomics Proteomics. 3:71–82. 2006.PubMed/NCBI | |
Mookerjee-Basu J, Hooper R, Gross S, Schultz B, Go CK, Samakai E, Ladner J, Nicolas E, Tian Y, Zhou B, et al: Suppression of Ca2+ signals by EGR 4 controls Th1 differentiation and anti-cancer immunity in vivo. EMBO Rep. 21:e489042020. View Article : Google Scholar | |
Zheng Y, Zha Y, Spaapen RM, Mathew R, Barr K, Bendelac A and Gajewski TF: Egr2-dependent gene expression profiling and ChIP-Seq reveal novel biologic targets in T cell anergy. Mol Immunol. 55:283–291. 2013. View Article : Google Scholar : PubMed/NCBI | |
Williams JB, Horton BL, Zheng Y, Duan Y, Powell JD and Gajewski TF: The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. J Exp Med. 214:381–400. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Zha Y, Driessens G, Locke F and Gajewski TF: Transcriptional regulator early growth response gene 2 (Egr2) is required for T cell anergy in vitro and in vivo. J Exp Med. 209:2157–2163. 2012. View Article : Google Scholar : PubMed/NCBI | |
Crispín JC and Tsokos GC: Transcriptional regulation of IL-2 in health and autoimmunity. Autoimmun Rev. 8:190–195. 2009. View Article : Google Scholar : | |
Decker EL: Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res. 31:911–921. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lin JX and Leonard WJ: The immediate-early gene product Egr-1 regulates the human interleukin-2 receptor beta-chain promoter through noncanonical Egr and Sp1 binding sites. Mol Cell Biol. 17:3714–3722. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lindgren H, Axcrona K and Leanderson T: Regulation of transcriptional activity of the murine CD40 Ligand promoter in response to signals through TCR and the costimulatory molecules CD28 and CD2. J Immunol. 166:4578–4585. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cron RQ, Bandyopadhyay R, Genin A, Brunner M, Kersh GJ, Yin J, Finkel TH and Crow MK: Early growth Response-1 is required for CD154 transcription. J Immunol. 176:811–818. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL and Ahmed R: Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 27:670–684. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, Tsao HW, Godec J, LaFleur MW, Brown FD, et al: The epigenetic landscape of T cell exhaustion. Science. 354:1165–1169. 2016. View Article : Google Scholar : PubMed/NCBI | |
Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, Pellegrini M, Zehn D, Berberich-Siebelt F, Febbraio MA, et al: Transcription factor IRF4 Promotes CD8+ T cell exhaustion and limits the development of Memory-like T cells during chronic infection. Immunity. 47:1129–1141.e5. 2017. View Article : Google Scholar | |
Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG and Wherry EJ: Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity. 37:1130–1144. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kallies A, Zehn D and Utzschneider DT: Precursor exhausted T cells: Key to successful immunotherapy? Nat Rev Immunol. 20:128–136. 2020. View Article : Google Scholar | |
Macián F, Garcı́a-Cózar F, Im SH, Horton HF, Byrne MC and Rao A: Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 109:719–731. 2002. View Article : Google Scholar : PubMed/NCBI | |
Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F, Pipkin ME, Togher S, Heissmeyer V, Zhang YC, Crotty S, et al: The transcription factor NFAT promotes exhaustion of activated CD8 + T Cells. Immunity. 42:265–278. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mittelstadt PR and Ashwell JD: Cyclosporin A-Sensitive transcription factor Egr-3 regulates fas ligand expression. Mol Cell Biol. 18:3744–3751. 1998. View Article : Google Scholar : PubMed/NCBI | |
Safford M, Collins S, Lutz MA, Allen A, Huang CT, Kowalski J, Blackford A, Horton MR, Drake C, Schwartz RH and Powell JD: Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol. 6:472–480. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rengarajan J, Mittelstadt PR, Mages HW, Gerth AJ, Kroczek RA, Ashwell JD and Glimcher LH: Sequential Involvement of NFAT and Egr transcription factors in FasL regulation. Immunity. 12:293–300. 2000. View Article : Google Scholar | |
Kodakandla G, Akimzhanov AM and Boehning D: Regulatory mechanisms controlling store-operated calcium entry. Front Physiol. 14:13302592023. View Article : Google Scholar | |
Kim HJ, Park S, Shin HY, Nam YR, Lam Hong PT, Chin YW, Nam JH and Kim WK: Inhibitory effects of α-Mangostin on T cell cytokine secretion via ORAI1 calcium channel and K+ channels inhibition. PeerJ. 9:e109732021. View Article : Google Scholar | |
Srikanth S, Woo JS, Sun Z and Gwack Y: Immunological disorders: Regulation of Ca2+ signaling in T lymphocytes. Adv Exp Med Biol. 993:397–424. 2017. View Article : Google Scholar | |
Gross S, Womer L, Kappes DJ and Soboloff J: Multifaceted control of T cell differentiation by STIM1. Trends Biochem Sci. 48:1083–1097. 2023. View Article : Google Scholar : PubMed/NCBI | |
Thompson JL, Lai-Zhao Y, Stathopulos PB, Grossfield A and Shuttleworth TJ: Phosphorylation-mediated structural changes within the SOAR domain of stromal interaction molecule 1 enable specific activation of distinct Orai channels. J Biol Chem. 293:3145–3155. 2018. View Article : Google Scholar : PubMed/NCBI | |
Flourakis M, Lehen'kyi V, Beck B, Raphaël M, Vandenberghe M, Abeele FV, Roudbaraki M, Lepage G, Mauroy B, Romanin C, et al: Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Dis. 1:e752010. View Article : Google Scholar | |
Xie J, Pan H, Yao J, Zhou Y and Han W: SOCE and cancer: Recent progress and new perspectives. Int J Cancer. 138:2067–2077. 2016. View Article : Google Scholar : | |
Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 537:417–421. 2016. View Article : Google Scholar : PubMed/NCBI | |
Armesilla AL, Lorenzo E, Gómez Del Arco P, Martínez-Martínez S, Alfranca A and Redondo JM: Vascular Endothelial growth factor activates nuclear factor of activated T cells in human endothelial cells: A role for tissue factor gene expression. Mol Cell Biol. 19:2032–2043. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, Chang HC, Tang MJ and Shen MR: Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci USA. 108:15225–15230. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Zhang S, Niu H, Ye Y, Hu F, Chen S, Li X, Luo X, Jiang S, Liu Y, et al: STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer. Sci Rep. 5:117542015. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Zhang JJ and Huang XY: Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell. 15:124–134. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wilm B and Muñoz-Chapuli R: The role of WT1 in Embryonic Development and Normal Organ Homeostasis. The Wilms' Tumor (WT1) Gene. 1467. Hastie N: Springer New York; New York, NY: pp. 23–39. 2016, View Article : Google Scholar | |
Madden SL, Cook DM, Morris JF, Gashler A, Sukhatme VP and Rauscher FJ: Transcriptional repression mediated by the WT1 wilms tumor gene product. Science. 253:1550–1553. 1991. View Article : Google Scholar : PubMed/NCBI | |
Zandarashvili L, White MA, Esadze A and Iwahara J: Structural impact of complete CpG methylation within target DNA on specific complex formation of the inducible transcription factor Egr-1. FEBS Lett. 589:1748–1753. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto H, Olanrewaju YO, Zheng Y, Wilson GG, Zhang X and Cheng X: Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev. 28:2304–2313. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eleftheriou M, Pascual AJ, Wheldon LM, Perry C, Abakir A, Arora A, Johnson AD, Auer DT, Ellis IO, Madhusudan S and Ruzov A: 5-Carboxylcytosine levels are elevated in human breast cancers and gliomas. Clin Epigenet. 7:882015. View Article : Google Scholar | |
Neri F, Incarnato D, Krepelova A, Rapelli S, Anselmi F, Parlato C, Medana C, Dal Bello F and Oliviero S: Single-base resolution analysis of 5-formyl and 5-carboxyl cytosine reveals promoter DNA methylation dynamics. Cell Rep. 10:674–683. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ritchie MF, Yue C, Zhou Y, Houghton PJ and Soboloff J: Wilms tumor suppressor 1 (WT1) and early growth response 1 (EGR1) are regulators of STIM1 expression. J Biol Chem. 285:10591–10596. 2010. View Article : Google Scholar : PubMed/NCBI | |
Natrajan R, Little SE, Reis-Filho JS, Hing L, Messahel B, Grundy PE, Dome JS, Schneider T, Vujanic GM, Pritchard-Jones K and Jones C: Amplification and overexpression of CACNA1E correlates with relapse in favorable histology Wilms' tumors. Clinical Cancer Res. 12:7284–7293. 2006. View Article : Google Scholar | |
Wittmann S, Wunder C, Zirn B, Furtwängler R, Wegert J, Graf N and Gessler M: New prognostic markers revealed by evaluation of genes correlated with clinical parameters in Wilms tumors. Genes Chromosomes Cancer. 47:386–395. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wagle MV, Vervoort SJ, Kelly MJ, Van Der Byl W, Peters TJ, Martin BP, Martelotto LG, Nüssing S, Ramsbottom KM, Torpy JR, et al: Antigen-driven EGR2 expression is required for exhausted CD8+ T cell stability and maintenance. Nat Commun. 12:27822021. View Article : Google Scholar : | |
Lee J, Lee K, Bae H, Lee K, Lee S, Ma J, Jo K, Kim I, Jee B, Kang M and Im SJ: IL-15 promotes self-renewal of progenitor exhausted CD8 T cells during persistent antigenic stimulation. Front Immunol. 14:11170922023. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Ma Z, Zhao X, Tan X, Tu Y, Wang J, Chen L, Chen Z, Chen G and Lan P: LRP11 promotes stem-like T cells via MAPK13-mediated TCF1 phosphorylation, enhancing anti-PD1 immunotherapy. J Immunother Cancer. 12:e0083672024. View Article : Google Scholar : PubMed/NCBI | |
Omodho B, Miao T, Symonds ALJ, Singh R, Li S and Wang P: Transcription factors early growth response gene (Egr) 2 and 3 control inflammatory responses of tolerant T cells. Immun Inflamm Dis. 6:221–233. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Debo B, Li M, Shi Z, Sheng W and Shi Y: Author correction: LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade. Nat Commun. 13:2632022. View Article : Google Scholar : PubMed/NCBI | |
Symonds ALJ, Miao T, Busharat Z, Li S and Wang P: Egr2 and 3 maintain anti-tumour responses of exhausted tumour infiltrating CD8 + T cells. Cancer Immunol Immunother. 72:1139–1151. 2023. View Article : Google Scholar | |
Symonds AL, Zheng W, Miao T, Wang H, Wang T, Kiome R, Hou X, Li S and Wang P: Egr2 and 3 control inflammation, but maintain homeostasis, of PD-1high memory phenotype CD4 T cells. Life Sci Alliance. 3:e2020007662020. View Article : Google Scholar | |
Miao T, Symonds ALJ, Singh R, Symonds JD, Ogbe A, Omodho B, Zhu B, Li S and Wang P: Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 214:1787–1808. 2017. View Article : Google Scholar : PubMed/NCBI | |
Seyfert VL, McMahon SB, Glenn WD, Yellen AJ, Sukhatme VP, Cao X and Monroe JG: Methylation of an Immediate-early inducible gene as a mechanism for B cell tolerance induction. Science. 250:797–800. 1990. View Article : Google Scholar : PubMed/NCBI | |
Natarajan P, Singh A, McNamara JT, Secor ER, Guernsey LA, Thrall RS and Schramm CM: Regulatory B cells from hilar lymph nodes of tolerant mice in a murine model of allergic airway disease are CD5+, express TGF-β, and co-localize with CD4+Foxp3+ T cells. Mucosal Immunol. 5:691–701. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H, Kallies A, Nutt SL, Sakaguchi S, Takeda K, et al: Interleukin-10-Producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity. 41:1040–1051. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Shi CW, Huang HB, Yang WT, Jiang YL, Ye LP, Zhao Q, Yang GL and Wang CF: Induction of the IL-10-producing regulatory B cell phenotype following Trichinella spiralis infection. Mol Immunol. 133:86–94. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HQ, Hoffman-Liebermann B and Liebermann DA: The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell. 72:197–209. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kharbanda S, Nakamura T, Stone R, Hass R, Bernstein S, Datta R, Sukhatme VP and Kufe D: Expression of the early growth response 1 and 2 zinc finger genes during induction of monocytic differentiation. J Clin Invest. 88:571–577. 1991. View Article : Google Scholar : PubMed/NCBI | |
Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR and Singh H: Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell. 126:755–766. 2006. View Article : Google Scholar : PubMed/NCBI | |
Carter JH and Tourtellotte WG: Early growth response transcriptional regulators are dispensable for macrophage differentiation. J Immunol. 178:3038–3047. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pham TH, Benner C, Lichtinger M, Schwarzfischer L, Hu Y, Andreesen R, Chen W and Rehli M: Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood. 119:e161–e171. 2012. View Article : Google Scholar : PubMed/NCBI | |
Trizzino M, Zucco A, Deliard S, Wang F, Barbieri E, Veglia F, Gabrilovich D and Gardini A: EGR1 is a gatekeeper of inflammatory enhancers in human macrophages. Sci Adv. 7:eaaz88362021. View Article : Google Scholar : PubMed/NCBI | |
Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D and Dittel BN: GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol. 178:39–48. 2007. View Article : Google Scholar | |
Murray PJ: Macrophage Polarization. Annu Rev Physiol. 79:541–566. 2017. View Article : Google Scholar | |
Italiani P and Boraschi D: From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front Immunol. 5:5142014. View Article : Google Scholar : PubMed/NCBI | |
Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado JDD, Popovich PG, Partida-Sanchez S and Guerau-de-Arellano M: Novel Markers to delineate murine M1 and M2 macrophages. PLoS One. 10:e01453422015. View Article : Google Scholar : PubMed/NCBI | |
Horvath A, Daniel B, Szeles L, Cuaranta-Monroy I, Czimmerer Z, Ozgyin L, Steiner L, Kiss M, Simandi Z, Poliska S, et al: Labelled regulatory elements are pervasive features of the macrophage genome and are dynamically utilized by classical and alternative polarization signals. Nucleic Acids Res. 47:2778–2792. 2019. View Article : Google Scholar : PubMed/NCBI | |
Daniel B, Nagy G, Horvath A, Czimmerer Z, Cuaranta-Monroy I, Poliska S, Hays TT, Sauer S, Francois-Deleuze J and Nagy L: The IL-4/STAT6/PPARγ signaling axis is driving the expansion of the RXR heterodimer cistrome, providing complex ligand responsiveness in macrophages. Nucleic Acids Res. 46:4425–4439. 2018. View Article : Google Scholar : PubMed/NCBI | |
Daniel B, Nagy G, Czimmerer Z, Horvath A, Hammers DW, Cuaranta-Monroy I, Poliska S, Tzerpos P, Kolostyak Z, Hays TT, et al: The nuclear receptor PPARγ controls progressive macrophage polarization as a Ligand-insensitive epigenomic ratchet of transcriptional memory. Immunity. 49:615–626.e6. 2018. View Article : Google Scholar | |
Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, et al: STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity. 33:699–712. 2010. View Article : Google Scholar : PubMed/NCBI | |
Czimmerer Z, Daniel B, Horvath A, Rückerl D, Nagy G, Kiss M, Peloquin M, Budai MM, Cuaranta-Monroy I, Simandi Z, et al: The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages. Immunity. 48:75–90.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Piccolo V, Curina A, Genua M, Ghisletti S, Simonatto M, Sabò A, Amati B, Ostuni R and Natoli G: Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat Immunol. 18:530–540. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sabag B, Puthenveetil A, Levy M, Joseph N, Doniger T, Yaron O, Karako-Lampert S, Lazar I, Awwad F, Ashkenazi S and Barda-Saad M: Dysfunctional natural killer cells can be reprogrammed to regain anti-tumor activity. EMBO J. 43:2552–2581. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Tong H, Zhang Z, Shao S, Liu D, Li S and Yan Y: Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression. J Cell Physiol. 233:350–362. 2018. View Article : Google Scholar | |
Wei S, Xu G, Zhao S, Zhang C, Feng Y, Yang W, Lu R, Zhou J and Ma Y: EGR2 promotes liver cancer metastasis by enhancing IL-8 expression through transcription regulation of PDK4 in M2 macrophages. Int Immunopharmacol. 153:1144842025. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Tao X, Cao Q, Feng X, Wu J, Yu H, Yu Y, Xu C and Zhao H: lnc003875/miR-363/EGR1 regulatory network in the carcinoma-associated fibroblasts controls the angiogenesis of human placental site trophoblastic tumor (PSTT). Exp Cell Res. 387:1117832020. View Article : Google Scholar | |
Zhang Y, Sun S, Qi Y, Dai Y, Hao Y, Xin M, Xu R, Chen H, Wu X, Liu Q, et al: Characterization of tumour microenvironment reprogramming reveals invasion in epithelial ovarian carcinoma. J Ovarian Res. 16:2002023. View Article : Google Scholar : PubMed/NCBI | |
Joo EH, Bae JH, Park J, Bang YJ, Han J, Gulati N, Kim JI, Park CG, Park WY and Kim HJ: Deconvolution of adult T-Cell Leukemia/lymphoma with Single-cell RNA-Seq using frozen archived skin tissue reveals new subset of Cancer-associated fibroblast. Front Immunol. 13:8563632022. View Article : Google Scholar : PubMed/NCBI | |
Seyfried TN, Flores RE, Poff AM and D'Agostino DP: Cancer as a metabolic disease: Implications for novel therapeutics. Carcinogenesis. 35:515–527. 2014. View Article : Google Scholar : | |
Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li L, Li L, Li W, Chen T, Bin Zou, Zhao L, Wang H, Wang X, Xu L, Liu X, et al: TAp73-induced phosphofructokinase-1 transcription promotes the Warburg effect and enhances cell proliferation. Nat Commun. 9:46832018. View Article : Google Scholar : PubMed/NCBI | |
Pan M, Luo M, Liu L, Chen Y, Cheng Z, Wang K, Huang L, Tang N, Qiu J, Huang A and Xia J: EGR1 suppresses HCC growth and aerobic glycolysis by transcriptionally downregulating PFKL. J Exp Clin Cancer Res. 43:352024. View Article : Google Scholar : PubMed/NCBI | |
Sulli G, Lam MTY and Panda S: Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer. 5:475–494. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Lahens NF, Ballance HI, Hughes ME and Hogenesch JB: A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci USA. 111:16219–16224. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Bu D, Wang H, Shen D, Chong D, Zhang T, Tao W, Zhao M, Zhao Y, Fang L, et al: The rhythmic coupling of Egr-1 and Cidea regulates age-related metabolic dysfunction in the liver of male mice. Nat Commun. 14:16342023. View Article : Google Scholar : PubMed/NCBI | |
Qu M, Zhang G, Qu H, Vu A, Wu R, Tsukamoto H, Jia Z, Huang W, Lenz HJ, Rich JN and Kay SA: Circadian regulator BMAL1::CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle. Proc Natl Acad Sci USA. 120:e22148291202023. View Article : Google Scholar : PubMed/NCBI | |
Spencer RL and Deak T: A users guide to HPA axis research. Physiol Behav. 178:43–65. 2017. View Article : Google Scholar : | |
Wan X, Wang L, Khan MA, Peng L, Zhang K, Sun X, Yi X, Wang Z and Chen K: Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway. Cell Death Discov. 10:1292024. View Article : Google Scholar : PubMed/NCBI | |
Deuter CE, Kaczmarczyk M, Hellmann-Regen J, Kuehl LK, Wingenfeld K and Otte C: The influence of pharmacological mineralocorticoid and glucocorticoid receptor blockade on the cortisol response to psychological stress. Prog Neuropsychopharmacol Biol Psychiatry. 129:1109052024. View Article : Google Scholar | |
Wu K, Liu Z, Liang J, Zhu Y, Wang X and Li X: Discovery of a glucocorticoid receptor (GR) activity signature correlates with immune cell infiltration in adrenocortical carcinoma. J Immunother Cancer. 11:e0075282023. View Article : Google Scholar : PubMed/NCBI | |
Pang Y, Gong S, Tetti M, Sun Z, Mir-Bashiri S, Bidlingmaier M, Knösel T, Wolf E, Reincke M, Kemter E and Williams TA: EGR1 regulates oxidative stress and aldosterone production in adrenal cells and aldosterone-producing adenomas. Redox Biol. 80:1034982025. View Article : Google Scholar : PubMed/NCBI | |
Miki Y, Iwabuchi E, Takagi K, Yamazaki Y, Shibuya Y, Tokunaga H, Shimada M, Suzuki T and Ito K: Intratumoral cortisol associated with aromatase in the endometrial cancer microenvironment. Pathol Res Pract. 251:1548732023. View Article : Google Scholar : PubMed/NCBI | |
Heyns B, Pieters R, Stander MA, Atkin SL and Swart AC: Glucocorticoids and mineralocorticoids in hair: Facilitating accurate diagnosis of adrenal-related endocrine disorders. Front Endocrinol (Lausanne). 15:14480132024. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Shan Y, Li J, Li M, Meng Z and Guo N: Early growth response 1 regulates dual-specificity protein phosphatase 1 and inhibits cell migration and invasion of tongue squamous cell carcinoma. Oncol Lett. 27:2402024. View Article : Google Scholar | |
Senga SS and Grose RP: Hallmarks of cancer-the New testament. Open Biol. 11:2003582021. View Article : Google Scholar : PubMed/NCBI | |
Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ and Frenette PS: Autonomic nerve development contributes to prostate cancer progression. Science. 341:12363612013. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Sun F, D'Souza A, Dhakal B, Pisano M, Chhabra S, Stolley M, Hari P and Janz S: Autonomic nervous system control of multiple myeloma. Blood Rev. 46:1007412021. View Article : Google Scholar : | |
Tan X, Sivakumar S, Bednarsch J, Wiltberger G, Kather JN, Niehues J, de Vos-Geelen J, Valkenburg-van Iersel L, Kintsler S, Roeth A, et al: Nerve fibers in the tumor microenvironment in neurotropic cancer-pancreatic cancer and cholangiocarcinoma. Oncogene. 40:899–908. 2021. View Article : Google Scholar | |
Monje M, Borniger JC, D'Silva NJ, Deneen B, Dirks PB, Fattahi F, Frenette PS, Garzia L, Gutmann DH, Hanahan D, et al: Roadmap for the emerging field of cancer neuroscience. Cell. 181:219–222. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, Renz BW, Tailor Y, Macchini M, Middelhoff M, et al: Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 31:21–34. 2017. View Article : Google Scholar : | |
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, et al: Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience. 25:1044982022. View Article : Google Scholar : PubMed/NCBI | |
Cheng H and Cheng T: 'Waterloo': When normal blood cells meet leukemia. Curr Opin Hematol. 23:304–310. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Chen Y, Li YN, Zhang H, Huang X, Li YY, Li ZY, Han JX, Wu XY, Liu HJ and Sun T: EGR3 inhibits tumor progression by inducing schwann Cell-Like differentiation. Adv Sci (Weinh). 11:e24000662024. View Article : Google Scholar : PubMed/NCBI | |
Spasevska I, Matera EL, Chettab K, Ville J, Potier-Cartereau M, Jordheim LP, Thieblemont C, Sahin D, Klein C and Dumontet C: Calcium channel blockers impair the antitumor activity of Anti-CD20 monoclonal antibodies by blocking EGR-1 induction. Mol Cancer Ther. 19:2371–2381. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lim JH, Park JW, Min DS, Chang JS, Lee YH, Park YB, Choi KS and Kwon TK: NAG-1 up-regulation mediated by EGR-1 and p53 is critical for quercetin-induced apoptosis in HCT116 colon carcinoma cells. Apoptosis. 12:411–421. 2007. View Article : Google Scholar | |
Shi Q and Bhatia D: Resveratrol-responsive CArG elements from the Egr-1 promoter for the induction of GADD45α to arrest the G2/M transition. Suicide Gene Therapy. 1895. Düzgüneş N: Springer New York; New York, NY: pp. 111–122. 2019, View Article : Google Scholar | |
Shah D, Challagundla N, Dave V, Patidar A, Saha B, Nivsarkar M, Trivedi VB and Agrawal-Rajput R: Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages. Phytomedicine. 99:1539042022. View Article : Google Scholar : PubMed/NCBI | |
Han S, Yang X, Zhuang J, Zhou Q, Wang J, Ru L, Niu F and Mao W: α-Hederin promotes ferroptosis and reverses cisplatin chemoresistance in non-small cell lung cancer. Aging. 16:1298–1317. 2024. View Article : Google Scholar | |
Wang W, Li R, Chen Z, Li D, Duan Y and Cao Z: Cisplatin-controlled p53 gene therapy for human non-small cell lung cancer xenografts in athymic nude mice via the CArG elements. Cancer Sci. 96:706–712. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wei B and Ma S: EGR1/LINC00839/SOX5 axis modulates migration, invasion and Gemcitabine resistance of bladder cancer cells. Cancer Biol Ther. 24:22701062023. View Article : Google Scholar : PubMed/NCBI | |
Marks BA, Pipia IM, Mukai C, Horibata S, Rice EJ, Danko CG and Coonrod SA: GDNF-RET signaling and EGR1 form a positive feedback loop that promotes tamoxifen resistance via cyclin D1. BMC Cancer. 23:1382023. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Chen F, Wei D, Chen F, Jiang H and Qin S: EGR1 mediates MDR1 transcriptional activity regulating gemcitabine resistance in pancreatic cancer. BMC Cancer. 24:2682024. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Liu Z, Pan Z, Zhang Y, Yang X, Feng Y, Zhang R, Zeng W, Gong C and Chen J: EGR1 Promotes Erastin-induced ferroptosis through activating Nrf2-HMOX1 signaling pathway in breast cancer cells. J Cancer. 15:4577–4590. 2024. View Article : Google Scholar : PubMed/NCBI | |
Palencia-Campos A, Ruiz-Cañas L, Abal-Sanisidro M, López-Gil JC, Batres-Ramos S, Saraiva SM, Yagüe B, Navarro D, Alcalá S, Rubiolo JA, et al: Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis. J Nanobiotechnol. 22:7952024. View Article : Google Scholar | |
Mo Z, Du P, Wang G and Wang Y: The Multi-purpose tool of tumor immunotherapy: Gene-engineered T cells. J Cancer. 8:1690–1703. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Yang Z, Horan LH, Zhang P, Liu L, Zimdahl B, Green S, Lu J, Morales JF, Barrett DM, et al: A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 4:622018. View Article : Google Scholar : PubMed/NCBI | |
Jung IY, Bartoszek RL, Rech AJ, Collins SM, Ooi SK, Williams EF, Hopkins CR, Narayan V, Haas NB, Frey NV, et al: Type I interferon signaling via the EGR2 transcriptional regulator potentiates CAR T Cell-intrinsic dysfunction. Cancer Discov. 13:1636–1655. 2023. View Article : Google Scholar : PubMed/NCBI |