Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2025 Volume 56 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 56 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review)

  • Authors:
    • Rongqi Guo
    • Rui Wang
    • Weisong Zhang
    • Yangyang Li
    • Yihao Wang
    • Hao Wang
    • Xia Li
    • Jianxiang Song
  • View Affiliations / Copyright

    Affiliations: Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China, Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
    Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 113
    |
    Published online on: May 27, 2025
       https://doi.org/10.3892/ijmm.2025.5554
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The early growth response (EGR) family comprises four zinc finger transcription factors: EGR1, EGR2, EGR3 and EGR4. These transcription factors belong to the Cys2‑His2‑type zinc finger protein family and are essential in cell differentiation, proliferation, apoptosis and stress response. Initially, EGR1 was recognised for its essential regulatory role in tumourigenesis. Recent studies have identified similarities between other members of the EGR family and EGR1 in tumour regulation and the multifaceted regulatory mechanism employed by the EGR family to affect tumours. Therefore, the present review describes the dual roles of the EGR family in tumours and their regulatory mechanisms in immunity, metabolism and differentiation. Additionally, the present review offers a new perspective on relevant tumour therapeutic studies based on current EGR targeting.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Beckmann AM, Matsumoto I and Wilce PA: AP-1 and Egr DNA-binding activities are increased in rat brain during ethanol withdrawal. J Neurochem. 69:306–314. 1997. View Article : Google Scholar : PubMed/NCBI

2 

Skerka C, Decker EL and Zipfel PF: Coordinate expression and distinct DNA-Binding characteristics of the four EGR-zinc finger proteins in jurkat T lymphocytes. Immunobiology. 198:179–191. 1997. View Article : Google Scholar

3 

Chavrier P, Zerial M, Lemaire P, Almendral J, Bravo R and Charnay P: A gene encoding a protein with zinc fingers is activated during G0/G1 transition in cultured cells. EMBO J. 7:29–35. 1988. View Article : Google Scholar : PubMed/NCBI

4 

Joseph LJ, Le Beau MM, Jamieson GA, Acharya S, Shows TB, Rowley JD and Sukhatme VP: Molecular cloning, sequencing, and mapping of EGR2, a human early growth response gene encoding a protein with 'zinc-binding finger' structure. Proc Natl Acad Sci USA. 85:7164–7168. 1988. View Article : Google Scholar

5 

Cao X, Mahendran R, Guy GR and Tan YH: Detection and characterization of cellular EGR-1 binding to its recognition site. J Biol Chem. 268:16949–16957. 1993. View Article : Google Scholar : PubMed/NCBI

6 

Myung E, Park YL, Kim N, Chung CY, Park HB, Park HC, Myung DS, Kim JS, Cho SB, Lee WS and Joo YE: Expression of early growth response-1 in human gastric cancer and its relationship with tumor cell behaviors and prognosis. Pathol Res Pract. 209:692–699. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Li L, Ameri AH, Wang S, Jansson KH, Casey OM, Yang Q, Beshiri ML, Fang L, Lake RG, Agarwal S, et al: EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene. 38:6241–6255. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Schmidt K, Carroll JS, Yee E, Thomas DD, Wert-Lamas L, Neier SC, Sheynkman G, Ritz J and Novina CD: The lncRNA SLNCR recruits the androgen receptor to EGR1-Bound genes in melanoma and inhibits expression of tumor suppressor p21. Cell Reports. 27:2493–2507.e4. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Calogero A, Arcella A, De Gregorio G, Porcellini A, Mercola D, Liu C, Lombari V, Zani M, Giannini G, Gagliardi FM, et al: The early growth response gene EGR-1 behaves as a suppressor gene that is down-regulated independent of ARF/Mdm2 but not p53 alterations in fresh human gliomas. Clin Cancer Res. 7:2788–2796. 2001.PubMed/NCBI

10 

Damm F, Mylonas E, Cosson A, Yoshida K, Della Valle V, Mouly E, Diop M, Scourzic L, Shiraishi Y, Chiba K, et al: Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 4:1088–1101. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS, Wang Q, Imbusch CD, Serva A, Koser SD, et al: DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet. 48:253–264. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Ying Y, Ma X, Fang J, Chen S, Wang W, Li J, Xie H, Wu J, Xie B, Liu B, et al: EGR2-mediated regulation of m6A reader IGF2BP proteins drive RCC tumorigenesis and metastasis via enhancing S1PR3 mRNA stabilization. Cell Death Dis. 12:7502021. View Article : Google Scholar :

13 

Xiao H, Huang X, Chen H, Zheng Y, Liu W, Chen J, Wei R, Lin M, Wang Q and Zhuang W: Establishment of a SUMO pathway related gene signature for predicting prognosis, chemotherapy response and investigating the role of EGR2 in bladder cancer. J Cancer. 15:3841–3856. 2024. View Article : Google Scholar : PubMed/NCBI

14 

Schwachtgen JL, Houston P, Campbell C, Sukhatme V and Braddock M: Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway. J Clin Invest. 101:2540–2549. 1998. View Article : Google Scholar : PubMed/NCBI

15 

Kim JH, Jeong IY, Lim YH, Lee YH and Shin SY: Estrogen receptor β stimulates Egr-1 transcription via MEK1/Erk/Elk-1 cascade in C6 glioma cells. BMB Rep. 44:452–457. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Masle-Farquhar E, Peters TJ, Miosge LA, Parish IA, Weigel C, Oakes CC, Reed JH and Goodnow CC: Uncontrolled CD21low age-associated and B1 B cell accumulation caused by failure of an EGR2/3 tolerance checkpoint. Cell Rep. 38:1102592022. View Article : Google Scholar

17 

Veremeyko T, Yung AWY, Anthony DC, Strekalova T and Ponomarev ED: Corrigendum: Early growth response Gene-2 is essential for M1 and M2 macrophage activation and plasticity by modulation of the transcription factor CEBPβ. Front Immunol. 9:29232018. View Article : Google Scholar

18 

Zhang S, Xia C, Xu C, Liu J, Zhu H, Yang Y, Xu F, Zhao J, Chang Y and Zhao Q: Early growth response 3 inhibits growth of hepatocellular carcinoma cells via upregulation of Fas ligand. Int J Oncol. 50:805–814. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Shin SH, Kim I, Lee JE, Lee M and Park JW: Loss of EGR3 is an independent risk factor for metastatic progression in prostate cancer. Oncogene. 39:5839–5854. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Xie Y, Han X, Yu J, Yuan M, Yan Y, Qin J, Lan L and Wang Y: EGR3 and estrone are involved in the tamoxifen resistance and progression of breast cancer. J Cancer Res Clin Oncol. 149:18103–18117. 2023. View Article : Google Scholar : PubMed/NCBI

21 

Inoue A, Omoto Y, Yamaguchi Y, Kiyama R and Hayashi S: Transcription factor EGR3 is involved in the estrogen-signaling pathway in breast cancer cells. J Mol Endocrinol. 32:649–661. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Hicks HM, Pozdeyev N, Sams SB, Pugazhenthi U, Bales ES, Hofmann MC, McKenna LR and Schweppe RE: Fibronectin contributes to a BRAF Inhibitor-driven invasive phenotype in thyroid cancer through EGR1, which can be blocked by inhibition of ERK1/2. Mol Cancer Res. 21:867–880. 2023. View Article : Google Scholar : PubMed/NCBI

23 

Hua Y, Wang H, Ye Z, Zheng D and Zhang X: An integrated pan-cancer analysis of identifying biomarkers about the EGR family genes in human carcinomas. Comput Biol Med. 148:1058892022. View Article : Google Scholar : PubMed/NCBI

24 

Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Quail DF and Joyce JA: The microenvironmental landscape of brain tumors. Cancer Cell. 31:326–341. 2017. View Article : Google Scholar : PubMed/NCBI

26 

LeBlanc SE, Ward RM and Svaren J: Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol Cell Biol. 27:3521–3529. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Collins S, Lutz MA, Zarek PE, Anders RA, Kersh GJ and Powell JD: Opposing regulation of T cell function by Egr-1/NAB2 and Egr-2/Egr-3. Eur J Immunol. 38:528–536. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Samakai E, Hooper R, Martin KA, Shmurak M, Zhang Y, Kappes DJ, Tempera I and Soboloff J: Novel STIM1-dependent control of Ca2+ clearance regulates NFAT activity during T-cell activation. FASEB J. 30:3878–3886. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Ge Y, Liu H, Huang W, Zhu H, Zong D and He X: Immunoinhibitory effects of hypoxia-driven reprogramming of EGR1hi and EGR3 positive B cells in the nasopharyngeal carcinoma microenvironment. Oral Oncol. 158:1069992024. View Article : Google Scholar

30 

Veremeyko T, Yung AWY, Anthony DC, Strekalova T and Ponomarev ED: Early growth response Gene-2 is essential for M1 and M2 macrophage activation and plasticity by modulation of the transcription factor CEBPβ. Front Immunol. 9:25152018. View Article : Google Scholar

31 

Thiel G, Müller I and Rössler OG: Expression, signaling and function of Egr transcription factors in pancreatic β-cells and insulin-responsive tissues. Mol Cell Endocrinol. 388:10–19. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Srinivasan R, Mager GM, Ward RM, Mayer J and Svaren J: NAB2 Represses Transcription by Interacting with the CHD4 Subunit of the Nucleosome Remodeling and Deacetylase (NuRD) Complex. J Biol Chem. 281:15129–15137. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Silverman ES and Collins T: Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol. 154:665–670. 1999. View Article : Google Scholar : PubMed/NCBI

34 

Gregg J and Fraizer G: Transcriptional regulation of EGR1 by EGF and the ERK signaling pathway in prostate cancer cells. Genes Cancer. 2:900–909. 2011. View Article : Google Scholar

35 

Cavigelli M, Dolfi F, Claret FX and Karin M: Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J. 14:5957–5964. 1995. View Article : Google Scholar : PubMed/NCBI

36 

Cabodi S, Morello V, Masi A, Cicchi R, Broggio C, Distefano P, Brunelli E, Silengo L, Pavone F, Arcangeli, et al: Convergence of integrins and EGF receptor signaling via PI3K/Akt/FoxO pathway in early gene Egr-1 expression. J Cell Physiol. 218:294–303. 2009. View Article : Google Scholar

37 

Ivanova D, Dirks A, Montenegro-Venegas C, Schöne C, Altrock WD, Marini C, Frischknecht R, Schanze D, Zenker M, Gundelfinger ED and Fejtova A: Synaptic activity controls localization and function of Ct BP 1 via binding to B assoon and P iccolo. EMBO J. 34:1056–1077. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Thyss R, Virolle V, Imbert V, Peyron JF, Aberdam D and Virolle T: NF-κB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO J. 24:128–137. 2005. View Article : Google Scholar

39 

Rössler OG and Thiel G: Thrombin induces Egr-1 expression in fibroblasts involving elevation of the intracellular Ca2+ concentration, phosphorylation of ERK and activation of ternary complex factor. BMC Mol Biol. 10:402009. View Article : Google Scholar : PubMed/NCBI

40 

Mayer SI, Willars GB, Nishida E and Thiel G: Elk-1, CREB, and MKP-1 regulate Egr-1 expression in gonadotropin-releasing hormone stimulated gonadotrophs. J Cell Biochem. 105:1267–1278. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Simo-Cheyou ER, Tan JJ, Grygorczyk R and Srivastava AK: STIM-1 and ORAI-1 channel mediate angiotensin-II-induced expression of Egr-1 in vascular smooth muscle cells. J Cell Physiol. 232:3496–3509. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Jain N, Mahendran R, Philp R, Guy GR, Tan YH and Cao X: Casein Kinase II associates with Egr-1 and acts as a negative modulator of its DNA binding and transcription activities in NIH 3T3 Cells. J Biol Chem. 271:13530–13536. 1996. View Article : Google Scholar : PubMed/NCBI

43 

Manente AG, Pinton G, Tavian D, Lopez-Rodas G, Brunelli E and Moro L: Coordinated Sumoylation and Ubiquitination Modulate EGF Induced EGR1 Expression and Stability. PLoS One. 6:e256762011. View Article : Google Scholar : PubMed/NCBI

44 

Rexach JE, Clark PM and Hsieh-Wilson LC: Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol. 4:97–106. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Cheng D, Dong Z, Lin P, Shen G and Xia Q: Transcriptional activation of Ecdysone-responsive genes requires H3K27 acetylation at enhancers. Int J Mol Sci. 23:107912022. View Article : Google Scholar : PubMed/NCBI

46 

Xiong YJ, Zhu Y, Liu YL, Zhao YF, Shen X, Zuo WQ, Lin F and Liang ZQ: P300 participates in ionizing Radiation-mediated activation of Cathepsin L by mutant p53. J Pharmacol Exp Ther. 378:276–286. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Wu Z, Huang L, Zhao S, Wang J, Zhang C, Song X, Chen Q, Du J, Yu D, Sun X, et al: Early growth Response 1 strengthens Pol-III-Directed transcription and transformed cell proliferation by controlling PTEN/AKT signalling activity. Int J Mol Sci. 23:49302022. View Article : Google Scholar : PubMed/NCBI

48 

Wang Y, Yun C, Gao B, Xu Y, Zhang Y, Wang Y, Kong Q, Zhao F, Wang CR, Dent SYR, et al: The lysine acetyltransferase GCN5 is required for iNKT cell development through EGR2 acetylation. Cell Rep. 20:600–612. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Guan X, Deng H, Choi UL, Li Z, Yang Y, Zeng J, Liu Y, Zhang X and Li G: EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis. Oncogene. 39:7127–7141. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Mendes K, Schmidhofer S, Minderjahn J, Glatz D, Kiesewetter C, Raithel J, Wimmer J, Gebhard C and Rehli M: The epigenetic pioneer EGR2 initiates DNA demethylation in differentiating monocytes at both stable and transient binding sites. Nat Commun. 12:15562021. View Article : Google Scholar : PubMed/NCBI

51 

Scheid R, Chen J and Zhong X: Biological role and mechanism of chromatin readers in plants. Curr Opin Plant Biol. 61:1020082021. View Article : Google Scholar : PubMed/NCBI

52 

Hu TM, Chen SJ, Hsu SH and Cheng MC: Functional analyses and effect of DNA methylation on the EGR1 gene in patients with schizophrenia. Psychiatry Res. 275:276–282. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Salguero-Aranda C, Beltran-Povea A, Postigo-Corrales F, Hitos AB, Díaz I, Caballano-Infantes E, Fraga MF, Hmadcha A, Martín F, Soria B, et al: Pdx1 is transcriptionally regulated by EGR-1 during nitric oxide-induced endoderm differentiation of mouse embryonic stem cells. Int J Mol Sci. 23:39202022. View Article : Google Scholar : PubMed/NCBI

54 

Fetahu IS and Taschner-Mandl S: Neuroblastoma and the epigenome. Cancer Metastasis Rev. 40:173–189. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Saha SK, Islam SMR, Saha T, Nishat A, Biswas PK, Gil M, Nkenyereye L, El-Sappagh S, Islam MS and Cho SG: Prognostic role of EGR1 in breast cancer: A systematic review. BMB Rep. 54:497–504. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Gong Y, Chang C, Liu X, He Y, Wu Y, Wang S and Zhang C: Stimulator of interferon genes signaling pathway and its role in Anti-tumor immune therapy. Curr Pharm Des. 26:3085–3095. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Yang J, Chen M, Li R, Sun Y, Ye P, Fang K, Wang C, Shi S and Dong C: A responsive cocktail nano-strategy breaking the immune excluded state enhances immunotherapy for triple negative breast cancer. Nanoscale. 17:4610–4623. 2025. View Article : Google Scholar : PubMed/NCBI

58 

Yuan H, Qiu C, Wang X, Wang P, Yi L, Peng X, Xu X, Huang W, Bai Y, Wei J, et al: Engineering semiconducting polymeric nanoagonists potentiate cGAS-STING pathway activation and elicit long term memory against recurrence in breast cancer. Adv Mater. 37:e24066622025. View Article : Google Scholar

59 

Hao M, Zhu L, Hou S, Chen S, Li X, Li K, Zhu N, Chen S, Xue L, Ju C and Zhang C: Sensitizing tumors to immune checkpoint blockage via STING Agonists delivered by tumor-penetrating neutrophil cytopharmaceuticals. ACS Nano. 17:1663–1680. 2023. View Article : Google Scholar

60 

Noritsugu K, Ito A, Nakao Y and Yoshida M: Identification of zinc finger transcription factor EGR2 as a novel acetylated protein. Biochem Biophys Res Commun. 489:455–459. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Stoddart A, Fernald AA, Davis EM, McNerney ME and Le Beau MM: EGR1 haploinsufficiency confers a fitness advantage to hematopoietic stem cells following chemotherapy. Exp Hematol. 115:54–67. 2022. View Article : Google Scholar : PubMed/NCBI

62 

Inoue K and Fry EA: Tumor suppression by the EGR1, DMP1, ARF, p53, and PTEN network. Cancer Invest. 36:520–536. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Sun T, Zhang Y, Zhong S, Gao F, Chen Y, Wang B, Cai W, Zhang Z, Li W, Lu S, et al: N-n-Butyl haloperidol iodide, a derivative of the Anti-psychotic haloperidol, antagonizes Hypoxia/reoxygenation injury by inhibiting an Egr-1/ROS positive feedback loop in H9c2 cells. Front Pharmacol. 9:192018. View Article : Google Scholar : PubMed/NCBI

64 

Tseng YC, Shu CW, Chang HM, Lin YH, Tseng YH, Hsu HS, Goan YG and Tseng CJ: Assessment of early growth response 1 in tumor suppression of esophageal squamous cell carcinoma. J Clin Med. 11:57922022. View Article : Google Scholar : PubMed/NCBI

65 

Wang B, Zhang S, Wang H, Wang M, Tao Y, Ye M, Fan Z, Wang Y and Liu L: Identification of EGR4 as a prospective target for inhibiting tumor cell proliferation and a novel biomarker in colorectal cancer. Cancer Gene Ther. 31:871–883. 2024. View Article : Google Scholar : PubMed/NCBI

66 

Wang L, Lu J, Song Y, Bai J, Sun W, Yu J, Cai M and Fu S: Analysis of DNA Repair-related prognostic function and mechanism in gastric cancer. Front Cell Dev Biol. 10:8970962022. View Article : Google Scholar : PubMed/NCBI

67 

Sehat B, Andersson S, Vasilcanu R, Girnita L and Larsson O: Role of Ubiquitination in IGF-1 receptor signaling and degradation. PLoS One. 2:e3402007. View Article : Google Scholar : PubMed/NCBI

68 

Kuo P, Chen Y, Chen T, Shen K and Hsu Y: CXCL5/ENA78 increased cell migration and epithelial-to-mesenchymal transition of hormone-independent prostate cancer by early growth response-1/snail signaling pathway. J Cell Physiol. 226:1224–1231. 2011. View Article : Google Scholar

69 

Xiao D, Chinnappan D, Pestell R, Albanese C and Weber HC: Bombesin regulates Cyclin D1 expression through the early growth response protein Egr-1 in prostate cancer cells. Cancer Res. 65:9934–9942. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Yin L, Zhang J and Sun Y: Early growth response-1 is a new substrate of the GSK3β-FBXW7 axis. Neoplasia. 34:1008392022. View Article : Google Scholar

71 

Young E, Noerenberg D, Mansouri L, Ljungström V, Frick M, Sutton LA, Blakemore SJ, Galan-Sousa J, Plevova K, Baliakas P, et al: EGR2 mutations define a new clinically aggressive subgroup of chronic lymphocytic leukemia. Leukemia. 31:1547–1554. 2017. View Article : Google Scholar

72 

Grotegut S, Von Schweinitz D, Christofori G and Lehembre F: Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 25:3534–3545. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Wu WS, You RI, Cheng CC, Lee MC, Lin TY and Hu CT: Author correction: Snail collaborates with EGR-1 and SP-1 to directly activate transcription of MMP 9 and ZEB1. Sci Rep. 8:142262018. View Article : Google Scholar : PubMed/NCBI

74 

Yeo H, Lee JY, Kim J, Ahn SS, Jeong JY, Choi JH, Lee YH and Shin SY: Transcription factor EGR-1 transactivates the MMP1 gene promoter in response to TNFα in HaCaT keratinocytes. BMB Rep. 53:323–328. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S and Kossatz-Boehlert U: Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front Immunol. 11:12802020. View Article : Google Scholar : PubMed/NCBI

76 

Sun T, Tian H, Feng YG, Zhu YQ and Zhang WQ: Egr-1 promotes cell proliferation and invasion by increasing β-Catenin expression in gastric cancer. Dig Dis Sci. 58:423–430. 2012.

77 

Cheng JC, Chang HM and Leung PC: Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells. Oncogene. 32:1041–1049. 2013. View Article : Google Scholar

78 

Wang Y, Qin C, Zhao B, Li Z, Li T, Yang X, Zhao Y and Wang W: EGR1 induces EMT in pancreatic cancer via a P300/SNAI2 pathway. J Transl Med. 21:2012023. View Article : Google Scholar : PubMed/NCBI

79 

Chen H, Kuo T, Tseng CF, Ma JT, Yang ST, Yen CJ, Yang CY, Sung SY and Su JL: Angiopoietin-like protein 1 antagonizes MET receptor activity to repress sorafenib resistance and cancer stemness in hepatocellular carcinoma. Hepatology. 64:1637–1651. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Yang W, Nam K, Ju J, Lee K, Oh S and Shin I: S100A4 negatively regulates β-catenin by inducing the Egr-1-PTEN-Akt-GSK3β degradation pathway. Cell Signal. 26:2096–2106. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Wang C, Ji J, Jin Y, Sun Y, Cai Q, Jiang J, Guo L, Zhou C and Zhang J: Tumor-mesothelium HOXA11-PDGF BB/TGF β1-miR-181a-5p-Egr1 feedforward amplifier circuity propels mesothelial fibrosis and peritoneal metastasis of gastric cancer. Oncogene. 43:171–188. 2024. View Article : Google Scholar

82 

Feng YH, Su YC, Lin SF, Lin PR, Wu CL, Tung CL, Li CF, Shieh GS and Shiau AL: Oct4 upregulates osteopontin via Egr1 and is associated with poor outcome in human lung cancer. BMC Cancer. 19:7912019. View Article : Google Scholar : PubMed/NCBI

83 

Raue F and Frank-Raue K: Thyroid cancer: Risk-stratified management and individualized therapy. Clin Cancer Res. 22:5012–5021. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Ma C, Zhang N, Wang T, Guan H, Huang Y, Huang L, Zheng Y, Zhang L, Han L, Huo Y, et al: Inflammatory cytokine-regulated LNCPTCTS suppresses thyroid cancer progression via enhancing Snail nuclear export. Cancer Lett. 575:2164022023. View Article : Google Scholar : PubMed/NCBI

85 

Brown KC, Lau JK, Dom AM, Witte TR, Luo H, Crabtree CM, Shah YH, Shiflett BS, Marcelo AJ, Proper NA, et al: MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis. 15:99–114. 2012. View Article : Google Scholar

86 

Sperandio S, Fortin J, Sasik R, Robitaille L, Corbeil J and De Belle I: The transcription factor Egr1 regulates the HIF-1α gene during hypoxia. Mol Carcinog. 48:38–44. 2009. View Article : Google Scholar

87 

Shimoyamada H, Yazawa T, Sato H, Okudela K, Ishii J, Sakaeda M, Kashiwagi K, Suzuki T, Mitsui H, Woo T, et al: Early growth Response-1 induces and enhances vascular endothelial growth Factor-A expression in lung cancer cells. Am J Pathol. 177:70–83. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Yan J, Gao Y, Lin S, Li Y, Shi L and Kan Q: EGR1-CCL2 feedback loop maintains Epithelial-mesenchymal transition of Cisplatin-resistant gastric cancer cells and promotes tumor angiogenesis. Dig Dis Sci. 67:3702–3713. 2022. View Article : Google Scholar

89 

Yu J, Zhuang A, Gu X, Hua Y, Yang L, Ge S, Ruan J, Chai P, Jia R and Fan X: Nuclear PD-L1 promotes EGR1-mediated angiogenesis and accelerates tumorigenesis. Cell Discov. 9:332023. View Article : Google Scholar : PubMed/NCBI

90 

McCaffrey TA, Fu C, Du B, Eksinar S, Kent KC, Bush H Jr, Kreiger K, Rosengart T, Cybulsky MI, Silverman ES and Collins T: High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. J Clin Invest. 105:653–662. 2000. View Article : Google Scholar : PubMed/NCBI

91 

Harja E, Bucciarelli LG, Lu Y, Stern DM, Zou YS, Schmidt AM and Yan SF: Early growth Response-1 promotes atherogenesis: Mice deficient in early growth Response-1 and apolipoprotein E display decreased atherosclerosis and vascular inflammation. Circ Res. 94:333–339. 2004. View Article : Google Scholar

92 

Yan SF, Fujita T, Lu J, Okada K, Shan Zou Y, Mackman N, Pinsky DJ and Stern DM: Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med. 6:1355–1361. 2000. View Article : Google Scholar : PubMed/NCBI

93 

Suehiro J, Hamakubo T, Kodama T, Aird WC and Minami T: Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood. 115:2520–2532. 2010. View Article : Google Scholar :

94 

Minami T, Miura M, Aird WC and Kodama T: Thrombin-induced autoinhibitory factor, down syndrome critical Region-1, attenuates NFAT-dependent vascular cell adhesion Molecule-1 expression and inflammation in the endothelium. J Biol Chem. 281:20503–20520. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Minami T, Horiuchi K, Miura M, Abid MR, Takabe W, Noguchi N, Kohro T, Ge X, Aburatani H, Hamakubo T, et al: Vascular endothelial growth Factor- and Thrombin-induced termination factor, down syndrome critical Region-1, attenuates endothelial cell proliferation and angiogenesis. J Biol Chem. 279:50537–50554. 2004. View Article : Google Scholar : PubMed/NCBI

96 

Sambasivan S: Epithelial ovarian cancer: Review article. Cancer Treat Res Commun. 33:1006292022. View Article : Google Scholar : PubMed/NCBI

97 

De Belle I, Huang RP, Fan Y, Liu C, Mercola D and Adamson ED: p53 and Egr-1 additively suppress transformed growth in HT1080 cells but Egr-1 counteracts p53-dependent apoptosis. Oncogene. 18:3633–3642. 1999. View Article : Google Scholar : PubMed/NCBI

98 

Ryu J, Choe SS, Ryu SH, Park EY, Lee BW, Kim TK, Ha CH and Lee SW: Paradoxical induction of growth arrest and apoptosis by EGF via the up-regulation of PTEN by activating Redox factor-1/Egr-1 in human lung cancer cells. Oncotarget. 8:4181–4195. 2017. View Article : Google Scholar :

99 

Wang C, Husain K, Zhang A, Centeno BA, Chen DT, Tong Z, Sebti SM and Malafa MP: EGR-1/Bax pathway plays a role in vitamin E δ-tocotrienol-induced apoptosis in pancreatic cancer cells. J Nutr Biochem. 26:797–807. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Tian X, Traub B, Shi J, Huber N, Schreiner S, Chen G, Zhou S, Henne-Bruns D, Knippschild U and Kornmann M: c-Jun N-terminal kinase 2 suppresses pancreatic cancer growth and invasion and is opposed by c-Jun N-terminal kinase 1. Cancer Gene Ther. 29:73–86. 2022. View Article : Google Scholar :

101 

Moorehead RA, Hojilla CV, De Belle I, Wood GA, Fata JE, Adamson ED, Watson KL, Edwards DR and Khokha R: Insulin-like Growth Factor-II regulates PTEN expression in the mammary gland. J Biol Chem. 278:50422–50427. 2003. View Article : Google Scholar : PubMed/NCBI

102 

Shan LN, Song YG, Su D, Liu YL, Shi XB and Lu SJ: Early growth response Protein-1 involves in transforming growth factor-β1 induced Epithelial-mesenchymal transition and inhibits migration of Non-Small-cell lung cancer cells. Asian Pac J Cancer Prev. 16:4137–4142. 2015. View Article : Google Scholar

103 

Wang B, Wang Y, Wang W, Wang Z, Zhang Y, Pan X, Wen X, Leng H, Guo J and Ma XX: WTAP/IGF2BP3 mediated m6A modification of the EGR1/PTEN axis regulates the malignant phenotypes of endometrial cancer stem cells. J Exp Clin Cancer Res. 43:2042024. View Article : Google Scholar : PubMed/NCBI

104 

Unoki M and Nakamura Y: Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene. 20:4457–4465. 2001. View Article : Google Scholar : PubMed/NCBI

105 

Unoki M and Nakamura Y: EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene. 22:2172–2185. 2003. View Article : Google Scholar : PubMed/NCBI

106 

Chen YL, Lin PC, Chen SP, Lin CC, Tsai NM, Cheng YL, Chang WL, Lin SZ and Harn HJ: Activation of nonsteroidal Anti-inflammatory Drug-activated Gene-1 via extracellular Signal-regulated kinase 1/2 Mitogen-Activated protein kinase revealed a isochaihulactone-triggered apoptotic pathway in human lung cancer A549 cells. J Pharmacol Exp Ther. 323:746–756. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Vaish V, Piplani H, Rana C, Vaiphei K and Sanyal SN: NSAIDs may regulate EGR-1-mediated induction of reactive oxygen species and non-steroidal anti-inflammatory drug-induced gene (NAG)-1 to initiate intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer. Mol Cell Biochem. 378:47–64. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Liu Y, Su Z, Tavana O and Gu W: Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell. 42:946–967. 2024. View Article : Google Scholar : PubMed/NCBI

109 

Ko H, Kim JM, Kim SJ, Shim SH, Ha CH and Chang HI: Induction of apoptosis by genipin inhibits cell proliferation in AGS human gastric cancer cells via Egr1/p21 signaling pathway. Bioorg Med Chem Letts. 25:4191–4196. 2015. View Article : Google Scholar

110 

Liu J, Grogan L, Nau M, Allegra C, Chu E and Wright J: Physical interaction between p53 and primary response gene Egr-1. Int J Oncol. 18:863–870. 2001.PubMed/NCBI

111 

Meng W, Yu S, Li Y, Wang H, Feng Y, Sun W, Liu Y, Sun S and Liu H: Mutant p53 achieves function by regulating EGR1 to induce epithelial mesenchymal transition. Tissue Cell. 90:1025102024. View Article : Google Scholar : PubMed/NCBI

112 

Ahmed MM, Sells SF, Venkatasubbarao K, Fruitwala SM, Muthukkumar S, Harp C, Mohiuddin M and Rangnekar VM: Ionizing Radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR-1. J Biol Chem. 272:33056–33061. 1997. View Article : Google Scholar

113 

Adams PD: Healing and hurting: Molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell. 36:2–14. 2009. View Article : Google Scholar : PubMed/NCBI

114 

Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 88:593–602. 1997. View Article : Google Scholar : PubMed/NCBI

115 

Salotti J, Sakchaisri K, Tourtellotte WG and Johnson PF: An Arf-Egr-C/EBPβ pathway linked to Ras-induced senescence and cancer. Mol Cell Biol. 35:866–883. 2015. View Article : Google Scholar :

116 

Lucerna M, Pomyje J, Mechtcheriakova D, Kadl A, Gruber F, Bilban M, Sobanov Y, Schabbauer G, Breuss J, Wagner O, et al: Sustained expression of early growth response Protein-1 blocks angiogenesis and tumor growth. Cancer Res. 66:6708–6713. 2006. View Article : Google Scholar : PubMed/NCBI

117 

Liu M, Wang X, Peng Y, Shen S and Li G: Egr-1 regulates the transcription of NGX6 gene through a Sp1/Egr-1 overlapping site in the promoter. BMC Mol Biol. 15:142014. View Article : Google Scholar : PubMed/NCBI

118 

Wang LF, Liu YS, Yang B, Li P, Cheng XS, Xiao CX, Liu JJ, Li S, Ren JL and Guleng B: The extracellular matrix protein mindin attenuates colon cancer progression by blocking angiogenesis via Egr-1-mediated regulation. Oncogene. 37:601–615. 2018. View Article : Google Scholar

119 

Kim J, Kang SM, Lee HJ, Choi SY and Hong SH: Oxytocin inhibits head and neck squamous cell carcinoma cell migration by early growth response-1 upregulation. Anticancer Drugs. 28:613–622. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Liu P, Li J, Lu H and Xu B: Thalidomide inhibits leukemia cell invasion and migration by upregulation of early growth response gene 1. Leuk Lymphoma. 50:109–113. 2009. View Article : Google Scholar : PubMed/NCBI

121 

Huang R, Li S, Yang W, Chen L, Yao C and Huang RP: Early growth Response-1 suppresses human fibrosarcoma cell invasion and angiogenesis. Cancer Genomics Proteomics. 3:71–82. 2006.PubMed/NCBI

122 

Mookerjee-Basu J, Hooper R, Gross S, Schultz B, Go CK, Samakai E, Ladner J, Nicolas E, Tian Y, Zhou B, et al: Suppression of Ca2+ signals by EGR 4 controls Th1 differentiation and anti-cancer immunity in vivo. EMBO Rep. 21:e489042020. View Article : Google Scholar

123 

Zheng Y, Zha Y, Spaapen RM, Mathew R, Barr K, Bendelac A and Gajewski TF: Egr2-dependent gene expression profiling and ChIP-Seq reveal novel biologic targets in T cell anergy. Mol Immunol. 55:283–291. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Williams JB, Horton BL, Zheng Y, Duan Y, Powell JD and Gajewski TF: The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. J Exp Med. 214:381–400. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Zheng Y, Zha Y, Driessens G, Locke F and Gajewski TF: Transcriptional regulator early growth response gene 2 (Egr2) is required for T cell anergy in vitro and in vivo. J Exp Med. 209:2157–2163. 2012. View Article : Google Scholar : PubMed/NCBI

126 

Crispín JC and Tsokos GC: Transcriptional regulation of IL-2 in health and autoimmunity. Autoimmun Rev. 8:190–195. 2009. View Article : Google Scholar :

127 

Decker EL: Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res. 31:911–921. 2003. View Article : Google Scholar : PubMed/NCBI

128 

Lin JX and Leonard WJ: The immediate-early gene product Egr-1 regulates the human interleukin-2 receptor beta-chain promoter through noncanonical Egr and Sp1 binding sites. Mol Cell Biol. 17:3714–3722. 1997. View Article : Google Scholar : PubMed/NCBI

129 

Lindgren H, Axcrona K and Leanderson T: Regulation of transcriptional activity of the murine CD40 Ligand promoter in response to signals through TCR and the costimulatory molecules CD28 and CD2. J Immunol. 166:4578–4585. 2001. View Article : Google Scholar : PubMed/NCBI

130 

Cron RQ, Bandyopadhyay R, Genin A, Brunner M, Kersh GJ, Yin J, Finkel TH and Crow MK: Early growth Response-1 is required for CD154 transcription. J Immunol. 176:811–818. 2006. View Article : Google Scholar : PubMed/NCBI

131 

Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL and Ahmed R: Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 27:670–684. 2007. View Article : Google Scholar : PubMed/NCBI

132 

Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, Tsao HW, Godec J, LaFleur MW, Brown FD, et al: The epigenetic landscape of T cell exhaustion. Science. 354:1165–1169. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, Pellegrini M, Zehn D, Berberich-Siebelt F, Febbraio MA, et al: Transcription factor IRF4 Promotes CD8+ T cell exhaustion and limits the development of Memory-like T cells during chronic infection. Immunity. 47:1129–1141.e5. 2017. View Article : Google Scholar

134 

Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG and Wherry EJ: Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity. 37:1130–1144. 2012. View Article : Google Scholar : PubMed/NCBI

135 

Kallies A, Zehn D and Utzschneider DT: Precursor exhausted T cells: Key to successful immunotherapy? Nat Rev Immunol. 20:128–136. 2020. View Article : Google Scholar

136 

Macián F, Garcı́a-Cózar F, Im SH, Horton HF, Byrne MC and Rao A: Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 109:719–731. 2002. View Article : Google Scholar : PubMed/NCBI

137 

Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F, Pipkin ME, Togher S, Heissmeyer V, Zhang YC, Crotty S, et al: The transcription factor NFAT promotes exhaustion of activated CD8 + T Cells. Immunity. 42:265–278. 2015. View Article : Google Scholar : PubMed/NCBI

138 

Mittelstadt PR and Ashwell JD: Cyclosporin A-Sensitive transcription factor Egr-3 regulates fas ligand expression. Mol Cell Biol. 18:3744–3751. 1998. View Article : Google Scholar : PubMed/NCBI

139 

Safford M, Collins S, Lutz MA, Allen A, Huang CT, Kowalski J, Blackford A, Horton MR, Drake C, Schwartz RH and Powell JD: Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol. 6:472–480. 2005. View Article : Google Scholar : PubMed/NCBI

140 

Rengarajan J, Mittelstadt PR, Mages HW, Gerth AJ, Kroczek RA, Ashwell JD and Glimcher LH: Sequential Involvement of NFAT and Egr transcription factors in FasL regulation. Immunity. 12:293–300. 2000. View Article : Google Scholar

141 

Kodakandla G, Akimzhanov AM and Boehning D: Regulatory mechanisms controlling store-operated calcium entry. Front Physiol. 14:13302592023. View Article : Google Scholar

142 

Kim HJ, Park S, Shin HY, Nam YR, Lam Hong PT, Chin YW, Nam JH and Kim WK: Inhibitory effects of α-Mangostin on T cell cytokine secretion via ORAI1 calcium channel and K+ channels inhibition. PeerJ. 9:e109732021. View Article : Google Scholar

143 

Srikanth S, Woo JS, Sun Z and Gwack Y: Immunological disorders: Regulation of Ca2+ signaling in T lymphocytes. Adv Exp Med Biol. 993:397–424. 2017. View Article : Google Scholar

144 

Gross S, Womer L, Kappes DJ and Soboloff J: Multifaceted control of T cell differentiation by STIM1. Trends Biochem Sci. 48:1083–1097. 2023. View Article : Google Scholar : PubMed/NCBI

145 

Thompson JL, Lai-Zhao Y, Stathopulos PB, Grossfield A and Shuttleworth TJ: Phosphorylation-mediated structural changes within the SOAR domain of stromal interaction molecule 1 enable specific activation of distinct Orai channels. J Biol Chem. 293:3145–3155. 2018. View Article : Google Scholar : PubMed/NCBI

146 

Flourakis M, Lehen'kyi V, Beck B, Raphaël M, Vandenberghe M, Abeele FV, Roudbaraki M, Lepage G, Mauroy B, Romanin C, et al: Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Dis. 1:e752010. View Article : Google Scholar

147 

Xie J, Pan H, Yao J, Zhou Y and Han W: SOCE and cancer: Recent progress and new perspectives. Int J Cancer. 138:2067–2077. 2016. View Article : Google Scholar :

148 

Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 537:417–421. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Armesilla AL, Lorenzo E, Gómez Del Arco P, Martínez-Martínez S, Alfranca A and Redondo JM: Vascular Endothelial growth factor activates nuclear factor of activated T cells in human endothelial cells: A role for tissue factor gene expression. Mol Cell Biol. 19:2032–2043. 1999. View Article : Google Scholar : PubMed/NCBI

150 

Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, Chang HC, Tang MJ and Shen MR: Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci USA. 108:15225–15230. 2011. View Article : Google Scholar : PubMed/NCBI

151 

Xu Y, Zhang S, Niu H, Ye Y, Hu F, Chen S, Li X, Luo X, Jiang S, Liu Y, et al: STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer. Sci Rep. 5:117542015. View Article : Google Scholar : PubMed/NCBI

152 

Yang S, Zhang JJ and Huang XY: Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell. 15:124–134. 2009. View Article : Google Scholar : PubMed/NCBI

153 

Wilm B and Muñoz-Chapuli R: The role of WT1 in Embryonic Development and Normal Organ Homeostasis. The Wilms' Tumor (WT1) Gene. 1467. Hastie N: Springer New York; New York, NY: pp. 23–39. 2016, View Article : Google Scholar

154 

Madden SL, Cook DM, Morris JF, Gashler A, Sukhatme VP and Rauscher FJ: Transcriptional repression mediated by the WT1 wilms tumor gene product. Science. 253:1550–1553. 1991. View Article : Google Scholar : PubMed/NCBI

155 

Zandarashvili L, White MA, Esadze A and Iwahara J: Structural impact of complete CpG methylation within target DNA on specific complex formation of the inducible transcription factor Egr-1. FEBS Lett. 589:1748–1753. 2015. View Article : Google Scholar : PubMed/NCBI

156 

Hashimoto H, Olanrewaju YO, Zheng Y, Wilson GG, Zhang X and Cheng X: Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev. 28:2304–2313. 2014. View Article : Google Scholar : PubMed/NCBI

157 

Eleftheriou M, Pascual AJ, Wheldon LM, Perry C, Abakir A, Arora A, Johnson AD, Auer DT, Ellis IO, Madhusudan S and Ruzov A: 5-Carboxylcytosine levels are elevated in human breast cancers and gliomas. Clin Epigenet. 7:882015. View Article : Google Scholar

158 

Neri F, Incarnato D, Krepelova A, Rapelli S, Anselmi F, Parlato C, Medana C, Dal Bello F and Oliviero S: Single-base resolution analysis of 5-formyl and 5-carboxyl cytosine reveals promoter DNA methylation dynamics. Cell Rep. 10:674–683. 2015. View Article : Google Scholar : PubMed/NCBI

159 

Ritchie MF, Yue C, Zhou Y, Houghton PJ and Soboloff J: Wilms tumor suppressor 1 (WT1) and early growth response 1 (EGR1) are regulators of STIM1 expression. J Biol Chem. 285:10591–10596. 2010. View Article : Google Scholar : PubMed/NCBI

160 

Natrajan R, Little SE, Reis-Filho JS, Hing L, Messahel B, Grundy PE, Dome JS, Schneider T, Vujanic GM, Pritchard-Jones K and Jones C: Amplification and overexpression of CACNA1E correlates with relapse in favorable histology Wilms' tumors. Clinical Cancer Res. 12:7284–7293. 2006. View Article : Google Scholar

161 

Wittmann S, Wunder C, Zirn B, Furtwängler R, Wegert J, Graf N and Gessler M: New prognostic markers revealed by evaluation of genes correlated with clinical parameters in Wilms tumors. Genes Chromosomes Cancer. 47:386–395. 2008. View Article : Google Scholar : PubMed/NCBI

162 

Wagle MV, Vervoort SJ, Kelly MJ, Van Der Byl W, Peters TJ, Martin BP, Martelotto LG, Nüssing S, Ramsbottom KM, Torpy JR, et al: Antigen-driven EGR2 expression is required for exhausted CD8+ T cell stability and maintenance. Nat Commun. 12:27822021. View Article : Google Scholar :

163 

Lee J, Lee K, Bae H, Lee K, Lee S, Ma J, Jo K, Kim I, Jee B, Kang M and Im SJ: IL-15 promotes self-renewal of progenitor exhausted CD8 T cells during persistent antigenic stimulation. Front Immunol. 14:11170922023. View Article : Google Scholar : PubMed/NCBI

164 

Sun L, Ma Z, Zhao X, Tan X, Tu Y, Wang J, Chen L, Chen Z, Chen G and Lan P: LRP11 promotes stem-like T cells via MAPK13-mediated TCF1 phosphorylation, enhancing anti-PD1 immunotherapy. J Immunother Cancer. 12:e0083672024. View Article : Google Scholar : PubMed/NCBI

165 

Omodho B, Miao T, Symonds ALJ, Singh R, Li S and Wang P: Transcription factors early growth response gene (Egr) 2 and 3 control inflammatory responses of tolerant T cells. Immun Inflamm Dis. 6:221–233. 2018. View Article : Google Scholar : PubMed/NCBI

166 

Liu Y, Debo B, Li M, Shi Z, Sheng W and Shi Y: Author correction: LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade. Nat Commun. 13:2632022. View Article : Google Scholar : PubMed/NCBI

167 

Symonds ALJ, Miao T, Busharat Z, Li S and Wang P: Egr2 and 3 maintain anti-tumour responses of exhausted tumour infiltrating CD8 + T cells. Cancer Immunol Immunother. 72:1139–1151. 2023. View Article : Google Scholar

168 

Symonds AL, Zheng W, Miao T, Wang H, Wang T, Kiome R, Hou X, Li S and Wang P: Egr2 and 3 control inflammation, but maintain homeostasis, of PD-1high memory phenotype CD4 T cells. Life Sci Alliance. 3:e2020007662020. View Article : Google Scholar

169 

Miao T, Symonds ALJ, Singh R, Symonds JD, Ogbe A, Omodho B, Zhu B, Li S and Wang P: Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 214:1787–1808. 2017. View Article : Google Scholar : PubMed/NCBI

170 

Seyfert VL, McMahon SB, Glenn WD, Yellen AJ, Sukhatme VP, Cao X and Monroe JG: Methylation of an Immediate-early inducible gene as a mechanism for B cell tolerance induction. Science. 250:797–800. 1990. View Article : Google Scholar : PubMed/NCBI

171 

Natarajan P, Singh A, McNamara JT, Secor ER, Guernsey LA, Thrall RS and Schramm CM: Regulatory B cells from hilar lymph nodes of tolerant mice in a murine model of allergic airway disease are CD5+, express TGF-β, and co-localize with CD4+Foxp3+ T cells. Mucosal Immunol. 5:691–701. 2012. View Article : Google Scholar : PubMed/NCBI

172 

Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H, Kallies A, Nutt SL, Sakaguchi S, Takeda K, et al: Interleukin-10-Producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity. 41:1040–1051. 2014. View Article : Google Scholar : PubMed/NCBI

173 

Xie J, Shi CW, Huang HB, Yang WT, Jiang YL, Ye LP, Zhao Q, Yang GL and Wang CF: Induction of the IL-10-producing regulatory B cell phenotype following Trichinella spiralis infection. Mol Immunol. 133:86–94. 2021. View Article : Google Scholar : PubMed/NCBI

174 

Nguyen HQ, Hoffman-Liebermann B and Liebermann DA: The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell. 72:197–209. 1993. View Article : Google Scholar : PubMed/NCBI

175 

Kharbanda S, Nakamura T, Stone R, Hass R, Bernstein S, Datta R, Sukhatme VP and Kufe D: Expression of the early growth response 1 and 2 zinc finger genes during induction of monocytic differentiation. J Clin Invest. 88:571–577. 1991. View Article : Google Scholar : PubMed/NCBI

176 

Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR and Singh H: Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell. 126:755–766. 2006. View Article : Google Scholar : PubMed/NCBI

177 

Carter JH and Tourtellotte WG: Early growth response transcriptional regulators are dispensable for macrophage differentiation. J Immunol. 178:3038–3047. 2007. View Article : Google Scholar : PubMed/NCBI

178 

Pham TH, Benner C, Lichtinger M, Schwarzfischer L, Hu Y, Andreesen R, Chen W and Rehli M: Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood. 119:e161–e171. 2012. View Article : Google Scholar : PubMed/NCBI

179 

Trizzino M, Zucco A, Deliard S, Wang F, Barbieri E, Veglia F, Gabrilovich D and Gardini A: EGR1 is a gatekeeper of inflammatory enhancers in human macrophages. Sci Adv. 7:eaaz88362021. View Article : Google Scholar : PubMed/NCBI

180 

Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D and Dittel BN: GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol. 178:39–48. 2007. View Article : Google Scholar

181 

Murray PJ: Macrophage Polarization. Annu Rev Physiol. 79:541–566. 2017. View Article : Google Scholar

182 

Italiani P and Boraschi D: From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front Immunol. 5:5142014. View Article : Google Scholar : PubMed/NCBI

183 

Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado JDD, Popovich PG, Partida-Sanchez S and Guerau-de-Arellano M: Novel Markers to delineate murine M1 and M2 macrophages. PLoS One. 10:e01453422015. View Article : Google Scholar : PubMed/NCBI

184 

Horvath A, Daniel B, Szeles L, Cuaranta-Monroy I, Czimmerer Z, Ozgyin L, Steiner L, Kiss M, Simandi Z, Poliska S, et al: Labelled regulatory elements are pervasive features of the macrophage genome and are dynamically utilized by classical and alternative polarization signals. Nucleic Acids Res. 47:2778–2792. 2019. View Article : Google Scholar : PubMed/NCBI

185 

Daniel B, Nagy G, Horvath A, Czimmerer Z, Cuaranta-Monroy I, Poliska S, Hays TT, Sauer S, Francois-Deleuze J and Nagy L: The IL-4/STAT6/PPARγ signaling axis is driving the expansion of the RXR heterodimer cistrome, providing complex ligand responsiveness in macrophages. Nucleic Acids Res. 46:4425–4439. 2018. View Article : Google Scholar : PubMed/NCBI

186 

Daniel B, Nagy G, Czimmerer Z, Horvath A, Hammers DW, Cuaranta-Monroy I, Poliska S, Tzerpos P, Kolostyak Z, Hays TT, et al: The nuclear receptor PPARγ controls progressive macrophage polarization as a Ligand-insensitive epigenomic ratchet of transcriptional memory. Immunity. 49:615–626.e6. 2018. View Article : Google Scholar

187 

Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, et al: STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity. 33:699–712. 2010. View Article : Google Scholar : PubMed/NCBI

188 

Czimmerer Z, Daniel B, Horvath A, Rückerl D, Nagy G, Kiss M, Peloquin M, Budai MM, Cuaranta-Monroy I, Simandi Z, et al: The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages. Immunity. 48:75–90.e6. 2018. View Article : Google Scholar : PubMed/NCBI

189 

Piccolo V, Curina A, Genua M, Ghisletti S, Simonatto M, Sabò A, Amati B, Ostuni R and Natoli G: Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat Immunol. 18:530–540. 2017. View Article : Google Scholar : PubMed/NCBI

190 

Sabag B, Puthenveetil A, Levy M, Joseph N, Doniger T, Yaron O, Karako-Lampert S, Lazar I, Awwad F, Ashkenazi S and Barda-Saad M: Dysfunctional natural killer cells can be reprogrammed to regain anti-tumor activity. EMBO J. 43:2552–2581. 2024. View Article : Google Scholar : PubMed/NCBI

191 

Zhang W, Tong H, Zhang Z, Shao S, Liu D, Li S and Yan Y: Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression. J Cell Physiol. 233:350–362. 2018. View Article : Google Scholar

192 

Wei S, Xu G, Zhao S, Zhang C, Feng Y, Yang W, Lu R, Zhou J and Ma Y: EGR2 promotes liver cancer metastasis by enhancing IL-8 expression through transcription regulation of PDK4 in M2 macrophages. Int Immunopharmacol. 153:1144842025. View Article : Google Scholar : PubMed/NCBI

193 

Zhang S, Tao X, Cao Q, Feng X, Wu J, Yu H, Yu Y, Xu C and Zhao H: lnc003875/miR-363/EGR1 regulatory network in the carcinoma-associated fibroblasts controls the angiogenesis of human placental site trophoblastic tumor (PSTT). Exp Cell Res. 387:1117832020. View Article : Google Scholar

194 

Zhang Y, Sun S, Qi Y, Dai Y, Hao Y, Xin M, Xu R, Chen H, Wu X, Liu Q, et al: Characterization of tumour microenvironment reprogramming reveals invasion in epithelial ovarian carcinoma. J Ovarian Res. 16:2002023. View Article : Google Scholar : PubMed/NCBI

195 

Joo EH, Bae JH, Park J, Bang YJ, Han J, Gulati N, Kim JI, Park CG, Park WY and Kim HJ: Deconvolution of adult T-Cell Leukemia/lymphoma with Single-cell RNA-Seq using frozen archived skin tissue reveals new subset of Cancer-associated fibroblast. Front Immunol. 13:8563632022. View Article : Google Scholar : PubMed/NCBI

196 

Seyfried TN, Flores RE, Poff AM and D'Agostino DP: Cancer as a metabolic disease: Implications for novel therapeutics. Carcinogenesis. 35:515–527. 2014. View Article : Google Scholar :

197 

Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI

198 

Li L, Li L, Li W, Chen T, Bin Zou, Zhao L, Wang H, Wang X, Xu L, Liu X, et al: TAp73-induced phosphofructokinase-1 transcription promotes the Warburg effect and enhances cell proliferation. Nat Commun. 9:46832018. View Article : Google Scholar : PubMed/NCBI

199 

Pan M, Luo M, Liu L, Chen Y, Cheng Z, Wang K, Huang L, Tang N, Qiu J, Huang A and Xia J: EGR1 suppresses HCC growth and aerobic glycolysis by transcriptionally downregulating PFKL. J Exp Clin Cancer Res. 43:352024. View Article : Google Scholar : PubMed/NCBI

200 

Sulli G, Lam MTY and Panda S: Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer. 5:475–494. 2019. View Article : Google Scholar : PubMed/NCBI

201 

Zhang R, Lahens NF, Ballance HI, Hughes ME and Hogenesch JB: A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci USA. 111:16219–16224. 2014. View Article : Google Scholar : PubMed/NCBI

202 

Wu J, Bu D, Wang H, Shen D, Chong D, Zhang T, Tao W, Zhao M, Zhao Y, Fang L, et al: The rhythmic coupling of Egr-1 and Cidea regulates age-related metabolic dysfunction in the liver of male mice. Nat Commun. 14:16342023. View Article : Google Scholar : PubMed/NCBI

203 

Qu M, Zhang G, Qu H, Vu A, Wu R, Tsukamoto H, Jia Z, Huang W, Lenz HJ, Rich JN and Kay SA: Circadian regulator BMAL1::CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle. Proc Natl Acad Sci USA. 120:e22148291202023. View Article : Google Scholar : PubMed/NCBI

204 

Spencer RL and Deak T: A users guide to HPA axis research. Physiol Behav. 178:43–65. 2017. View Article : Google Scholar :

205 

Wan X, Wang L, Khan MA, Peng L, Zhang K, Sun X, Yi X, Wang Z and Chen K: Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway. Cell Death Discov. 10:1292024. View Article : Google Scholar : PubMed/NCBI

206 

Deuter CE, Kaczmarczyk M, Hellmann-Regen J, Kuehl LK, Wingenfeld K and Otte C: The influence of pharmacological mineralocorticoid and glucocorticoid receptor blockade on the cortisol response to psychological stress. Prog Neuropsychopharmacol Biol Psychiatry. 129:1109052024. View Article : Google Scholar

207 

Wu K, Liu Z, Liang J, Zhu Y, Wang X and Li X: Discovery of a glucocorticoid receptor (GR) activity signature correlates with immune cell infiltration in adrenocortical carcinoma. J Immunother Cancer. 11:e0075282023. View Article : Google Scholar : PubMed/NCBI

208 

Pang Y, Gong S, Tetti M, Sun Z, Mir-Bashiri S, Bidlingmaier M, Knösel T, Wolf E, Reincke M, Kemter E and Williams TA: EGR1 regulates oxidative stress and aldosterone production in adrenal cells and aldosterone-producing adenomas. Redox Biol. 80:1034982025. View Article : Google Scholar : PubMed/NCBI

209 

Miki Y, Iwabuchi E, Takagi K, Yamazaki Y, Shibuya Y, Tokunaga H, Shimada M, Suzuki T and Ito K: Intratumoral cortisol associated with aromatase in the endometrial cancer microenvironment. Pathol Res Pract. 251:1548732023. View Article : Google Scholar : PubMed/NCBI

210 

Heyns B, Pieters R, Stander MA, Atkin SL and Swart AC: Glucocorticoids and mineralocorticoids in hair: Facilitating accurate diagnosis of adrenal-related endocrine disorders. Front Endocrinol (Lausanne). 15:14480132024. View Article : Google Scholar : PubMed/NCBI

211 

Zhou L, Shan Y, Li J, Li M, Meng Z and Guo N: Early growth response 1 regulates dual-specificity protein phosphatase 1 and inhibits cell migration and invasion of tongue squamous cell carcinoma. Oncol Lett. 27:2402024. View Article : Google Scholar

212 

Senga SS and Grose RP: Hallmarks of cancer-the New testament. Open Biol. 11:2003582021. View Article : Google Scholar : PubMed/NCBI

213 

Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ and Frenette PS: Autonomic nerve development contributes to prostate cancer progression. Science. 341:12363612013. View Article : Google Scholar : PubMed/NCBI

214 

Cheng Y, Sun F, D'Souza A, Dhakal B, Pisano M, Chhabra S, Stolley M, Hari P and Janz S: Autonomic nervous system control of multiple myeloma. Blood Rev. 46:1007412021. View Article : Google Scholar :

215 

Tan X, Sivakumar S, Bednarsch J, Wiltberger G, Kather JN, Niehues J, de Vos-Geelen J, Valkenburg-van Iersel L, Kintsler S, Roeth A, et al: Nerve fibers in the tumor microenvironment in neurotropic cancer-pancreatic cancer and cholangiocarcinoma. Oncogene. 40:899–908. 2021. View Article : Google Scholar

216 

Monje M, Borniger JC, D'Silva NJ, Deneen B, Dirks PB, Fattahi F, Frenette PS, Garzia L, Gutmann DH, Hanahan D, et al: Roadmap for the emerging field of cancer neuroscience. Cell. 181:219–222. 2020. View Article : Google Scholar : PubMed/NCBI

217 

Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, Renz BW, Tailor Y, Macchini M, Middelhoff M, et al: Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 31:21–34. 2017. View Article : Google Scholar :

218 

Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, et al: Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience. 25:1044982022. View Article : Google Scholar : PubMed/NCBI

219 

Cheng H and Cheng T: 'Waterloo': When normal blood cells meet leukemia. Curr Opin Hematol. 23:304–310. 2016. View Article : Google Scholar : PubMed/NCBI

220 

Chen CH, Chen Y, Li YN, Zhang H, Huang X, Li YY, Li ZY, Han JX, Wu XY, Liu HJ and Sun T: EGR3 inhibits tumor progression by inducing schwann Cell-Like differentiation. Adv Sci (Weinh). 11:e24000662024. View Article : Google Scholar : PubMed/NCBI

221 

Spasevska I, Matera EL, Chettab K, Ville J, Potier-Cartereau M, Jordheim LP, Thieblemont C, Sahin D, Klein C and Dumontet C: Calcium channel blockers impair the antitumor activity of Anti-CD20 monoclonal antibodies by blocking EGR-1 induction. Mol Cancer Ther. 19:2371–2381. 2020. View Article : Google Scholar : PubMed/NCBI

222 

Lim JH, Park JW, Min DS, Chang JS, Lee YH, Park YB, Choi KS and Kwon TK: NAG-1 up-regulation mediated by EGR-1 and p53 is critical for quercetin-induced apoptosis in HCT116 colon carcinoma cells. Apoptosis. 12:411–421. 2007. View Article : Google Scholar

223 

Shi Q and Bhatia D: Resveratrol-responsive CArG elements from the Egr-1 promoter for the induction of GADD45α to arrest the G2/M transition. Suicide Gene Therapy. 1895. Düzgüneş N: Springer New York; New York, NY: pp. 111–122. 2019, View Article : Google Scholar

224 

Shah D, Challagundla N, Dave V, Patidar A, Saha B, Nivsarkar M, Trivedi VB and Agrawal-Rajput R: Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages. Phytomedicine. 99:1539042022. View Article : Google Scholar : PubMed/NCBI

225 

Han S, Yang X, Zhuang J, Zhou Q, Wang J, Ru L, Niu F and Mao W: α-Hederin promotes ferroptosis and reverses cisplatin chemoresistance in non-small cell lung cancer. Aging. 16:1298–1317. 2024. View Article : Google Scholar

226 

Wang W, Li R, Chen Z, Li D, Duan Y and Cao Z: Cisplatin-controlled p53 gene therapy for human non-small cell lung cancer xenografts in athymic nude mice via the CArG elements. Cancer Sci. 96:706–712. 2005. View Article : Google Scholar : PubMed/NCBI

227 

Wang Z, Wei B and Ma S: EGR1/LINC00839/SOX5 axis modulates migration, invasion and Gemcitabine resistance of bladder cancer cells. Cancer Biol Ther. 24:22701062023. View Article : Google Scholar : PubMed/NCBI

228 

Marks BA, Pipia IM, Mukai C, Horibata S, Rice EJ, Danko CG and Coonrod SA: GDNF-RET signaling and EGR1 form a positive feedback loop that promotes tamoxifen resistance via cyclin D1. BMC Cancer. 23:1382023. View Article : Google Scholar : PubMed/NCBI

229 

Yang Z, Chen F, Wei D, Chen F, Jiang H and Qin S: EGR1 mediates MDR1 transcriptional activity regulating gemcitabine resistance in pancreatic cancer. BMC Cancer. 24:2682024. View Article : Google Scholar : PubMed/NCBI

230 

Lin Z, Liu Z, Pan Z, Zhang Y, Yang X, Feng Y, Zhang R, Zeng W, Gong C and Chen J: EGR1 Promotes Erastin-induced ferroptosis through activating Nrf2-HMOX1 signaling pathway in breast cancer cells. J Cancer. 15:4577–4590. 2024. View Article : Google Scholar : PubMed/NCBI

231 

Palencia-Campos A, Ruiz-Cañas L, Abal-Sanisidro M, López-Gil JC, Batres-Ramos S, Saraiva SM, Yagüe B, Navarro D, Alcalá S, Rubiolo JA, et al: Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis. J Nanobiotechnol. 22:7952024. View Article : Google Scholar

232 

Mo Z, Du P, Wang G and Wang Y: The Multi-purpose tool of tumor immunotherapy: Gene-engineered T cells. J Cancer. 8:1690–1703. 2017. View Article : Google Scholar : PubMed/NCBI

233 

Xu Y, Yang Z, Horan LH, Zhang P, Liu L, Zimdahl B, Green S, Lu J, Morales JF, Barrett DM, et al: A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 4:622018. View Article : Google Scholar : PubMed/NCBI

234 

Jung IY, Bartoszek RL, Rech AJ, Collins SM, Ooi SK, Williams EF, Hopkins CR, Narayan V, Haas NB, Frey NV, et al: Type I interferon signaling via the EGR2 transcriptional regulator potentiates CAR T Cell-intrinsic dysfunction. Cancer Discov. 13:1636–1655. 2023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Guo R, Wang R, Zhang W, Li Y, Wang Y, Wang H, Li X and Song J: Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review). Int J Mol Med 56: 113, 2025.
APA
Guo, R., Wang, R., Zhang, W., Li, Y., Wang, Y., Wang, H. ... Song, J. (2025). Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review). International Journal of Molecular Medicine, 56, 113. https://doi.org/10.3892/ijmm.2025.5554
MLA
Guo, R., Wang, R., Zhang, W., Li, Y., Wang, Y., Wang, H., Li, X., Song, J."Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review)". International Journal of Molecular Medicine 56.1 (2025): 113.
Chicago
Guo, R., Wang, R., Zhang, W., Li, Y., Wang, Y., Wang, H., Li, X., Song, J."Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review)". International Journal of Molecular Medicine 56, no. 1 (2025): 113. https://doi.org/10.3892/ijmm.2025.5554
Copy and paste a formatted citation
x
Spandidos Publications style
Guo R, Wang R, Zhang W, Li Y, Wang Y, Wang H, Li X and Song J: Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review). Int J Mol Med 56: 113, 2025.
APA
Guo, R., Wang, R., Zhang, W., Li, Y., Wang, Y., Wang, H. ... Song, J. (2025). Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review). International Journal of Molecular Medicine, 56, 113. https://doi.org/10.3892/ijmm.2025.5554
MLA
Guo, R., Wang, R., Zhang, W., Li, Y., Wang, Y., Wang, H., Li, X., Song, J."Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review)". International Journal of Molecular Medicine 56.1 (2025): 113.
Chicago
Guo, R., Wang, R., Zhang, W., Li, Y., Wang, Y., Wang, H., Li, X., Song, J."Multifaceted regulatory mechanisms of the EGR family in tumours and prospects for therapeutic applications (Review)". International Journal of Molecular Medicine 56, no. 1 (2025): 113. https://doi.org/10.3892/ijmm.2025.5554
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team