You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Beckmann AM, Matsumoto I and Wilce PA: AP-1 and Egr DNA-binding activities are increased in rat brain during ethanol withdrawal. J Neurochem. 69:306–314. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Skerka C, Decker EL and Zipfel PF: Coordinate expression and distinct DNA-Binding characteristics of the four EGR-zinc finger proteins in jurkat T lymphocytes. Immunobiology. 198:179–191. 1997. View Article : Google Scholar | |
|
Chavrier P, Zerial M, Lemaire P, Almendral J, Bravo R and Charnay P: A gene encoding a protein with zinc fingers is activated during G0/G1 transition in cultured cells. EMBO J. 7:29–35. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Joseph LJ, Le Beau MM, Jamieson GA, Acharya S, Shows TB, Rowley JD and Sukhatme VP: Molecular cloning, sequencing, and mapping of EGR2, a human early growth response gene encoding a protein with 'zinc-binding finger' structure. Proc Natl Acad Sci USA. 85:7164–7168. 1988. View Article : Google Scholar | |
|
Cao X, Mahendran R, Guy GR and Tan YH: Detection and characterization of cellular EGR-1 binding to its recognition site. J Biol Chem. 268:16949–16957. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Myung E, Park YL, Kim N, Chung CY, Park HB, Park HC, Myung DS, Kim JS, Cho SB, Lee WS and Joo YE: Expression of early growth response-1 in human gastric cancer and its relationship with tumor cell behaviors and prognosis. Pathol Res Pract. 209:692–699. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Ameri AH, Wang S, Jansson KH, Casey OM, Yang Q, Beshiri ML, Fang L, Lake RG, Agarwal S, et al: EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene. 38:6241–6255. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Schmidt K, Carroll JS, Yee E, Thomas DD, Wert-Lamas L, Neier SC, Sheynkman G, Ritz J and Novina CD: The lncRNA SLNCR recruits the androgen receptor to EGR1-Bound genes in melanoma and inhibits expression of tumor suppressor p21. Cell Reports. 27:2493–2507.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Calogero A, Arcella A, De Gregorio G, Porcellini A, Mercola D, Liu C, Lombari V, Zani M, Giannini G, Gagliardi FM, et al: The early growth response gene EGR-1 behaves as a suppressor gene that is down-regulated independent of ARF/Mdm2 but not p53 alterations in fresh human gliomas. Clin Cancer Res. 7:2788–2796. 2001.PubMed/NCBI | |
|
Damm F, Mylonas E, Cosson A, Yoshida K, Della Valle V, Mouly E, Diop M, Scourzic L, Shiraishi Y, Chiba K, et al: Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 4:1088–1101. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS, Wang Q, Imbusch CD, Serva A, Koser SD, et al: DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet. 48:253–264. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ying Y, Ma X, Fang J, Chen S, Wang W, Li J, Xie H, Wu J, Xie B, Liu B, et al: EGR2-mediated regulation of m6A reader IGF2BP proteins drive RCC tumorigenesis and metastasis via enhancing S1PR3 mRNA stabilization. Cell Death Dis. 12:7502021. View Article : Google Scholar : | |
|
Xiao H, Huang X, Chen H, Zheng Y, Liu W, Chen J, Wei R, Lin M, Wang Q and Zhuang W: Establishment of a SUMO pathway related gene signature for predicting prognosis, chemotherapy response and investigating the role of EGR2 in bladder cancer. J Cancer. 15:3841–3856. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Schwachtgen JL, Houston P, Campbell C, Sukhatme V and Braddock M: Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway. J Clin Invest. 101:2540–2549. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JH, Jeong IY, Lim YH, Lee YH and Shin SY: Estrogen receptor β stimulates Egr-1 transcription via MEK1/Erk/Elk-1 cascade in C6 glioma cells. BMB Rep. 44:452–457. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Masle-Farquhar E, Peters TJ, Miosge LA, Parish IA, Weigel C, Oakes CC, Reed JH and Goodnow CC: Uncontrolled CD21low age-associated and B1 B cell accumulation caused by failure of an EGR2/3 tolerance checkpoint. Cell Rep. 38:1102592022. View Article : Google Scholar | |
|
Veremeyko T, Yung AWY, Anthony DC, Strekalova T and Ponomarev ED: Corrigendum: Early growth response Gene-2 is essential for M1 and M2 macrophage activation and plasticity by modulation of the transcription factor CEBPβ. Front Immunol. 9:29232018. View Article : Google Scholar | |
|
Zhang S, Xia C, Xu C, Liu J, Zhu H, Yang Y, Xu F, Zhao J, Chang Y and Zhao Q: Early growth response 3 inhibits growth of hepatocellular carcinoma cells via upregulation of Fas ligand. Int J Oncol. 50:805–814. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shin SH, Kim I, Lee JE, Lee M and Park JW: Loss of EGR3 is an independent risk factor for metastatic progression in prostate cancer. Oncogene. 39:5839–5854. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Y, Han X, Yu J, Yuan M, Yan Y, Qin J, Lan L and Wang Y: EGR3 and estrone are involved in the tamoxifen resistance and progression of breast cancer. J Cancer Res Clin Oncol. 149:18103–18117. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Inoue A, Omoto Y, Yamaguchi Y, Kiyama R and Hayashi S: Transcription factor EGR3 is involved in the estrogen-signaling pathway in breast cancer cells. J Mol Endocrinol. 32:649–661. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Hicks HM, Pozdeyev N, Sams SB, Pugazhenthi U, Bales ES, Hofmann MC, McKenna LR and Schweppe RE: Fibronectin contributes to a BRAF Inhibitor-driven invasive phenotype in thyroid cancer through EGR1, which can be blocked by inhibition of ERK1/2. Mol Cancer Res. 21:867–880. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hua Y, Wang H, Ye Z, Zheng D and Zhang X: An integrated pan-cancer analysis of identifying biomarkers about the EGR family genes in human carcinomas. Comput Biol Med. 148:1058892022. View Article : Google Scholar : PubMed/NCBI | |
|
Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Quail DF and Joyce JA: The microenvironmental landscape of brain tumors. Cancer Cell. 31:326–341. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
LeBlanc SE, Ward RM and Svaren J: Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol Cell Biol. 27:3521–3529. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Collins S, Lutz MA, Zarek PE, Anders RA, Kersh GJ and Powell JD: Opposing regulation of T cell function by Egr-1/NAB2 and Egr-2/Egr-3. Eur J Immunol. 38:528–536. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Samakai E, Hooper R, Martin KA, Shmurak M, Zhang Y, Kappes DJ, Tempera I and Soboloff J: Novel STIM1-dependent control of Ca2+ clearance regulates NFAT activity during T-cell activation. FASEB J. 30:3878–3886. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ge Y, Liu H, Huang W, Zhu H, Zong D and He X: Immunoinhibitory effects of hypoxia-driven reprogramming of EGR1hi and EGR3 positive B cells in the nasopharyngeal carcinoma microenvironment. Oral Oncol. 158:1069992024. View Article : Google Scholar | |
|
Veremeyko T, Yung AWY, Anthony DC, Strekalova T and Ponomarev ED: Early growth response Gene-2 is essential for M1 and M2 macrophage activation and plasticity by modulation of the transcription factor CEBPβ. Front Immunol. 9:25152018. View Article : Google Scholar | |
|
Thiel G, Müller I and Rössler OG: Expression, signaling and function of Egr transcription factors in pancreatic β-cells and insulin-responsive tissues. Mol Cell Endocrinol. 388:10–19. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Srinivasan R, Mager GM, Ward RM, Mayer J and Svaren J: NAB2 Represses Transcription by Interacting with the CHD4 Subunit of the Nucleosome Remodeling and Deacetylase (NuRD) Complex. J Biol Chem. 281:15129–15137. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Silverman ES and Collins T: Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol. 154:665–670. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Gregg J and Fraizer G: Transcriptional regulation of EGR1 by EGF and the ERK signaling pathway in prostate cancer cells. Genes Cancer. 2:900–909. 2011. View Article : Google Scholar | |
|
Cavigelli M, Dolfi F, Claret FX and Karin M: Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J. 14:5957–5964. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Cabodi S, Morello V, Masi A, Cicchi R, Broggio C, Distefano P, Brunelli E, Silengo L, Pavone F, Arcangeli, et al: Convergence of integrins and EGF receptor signaling via PI3K/Akt/FoxO pathway in early gene Egr-1 expression. J Cell Physiol. 218:294–303. 2009. View Article : Google Scholar | |
|
Ivanova D, Dirks A, Montenegro-Venegas C, Schöne C, Altrock WD, Marini C, Frischknecht R, Schanze D, Zenker M, Gundelfinger ED and Fejtova A: Synaptic activity controls localization and function of Ct BP 1 via binding to B assoon and P iccolo. EMBO J. 34:1056–1077. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Thyss R, Virolle V, Imbert V, Peyron JF, Aberdam D and Virolle T: NF-κB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO J. 24:128–137. 2005. View Article : Google Scholar | |
|
Rössler OG and Thiel G: Thrombin induces Egr-1 expression in fibroblasts involving elevation of the intracellular Ca2+ concentration, phosphorylation of ERK and activation of ternary complex factor. BMC Mol Biol. 10:402009. View Article : Google Scholar : PubMed/NCBI | |
|
Mayer SI, Willars GB, Nishida E and Thiel G: Elk-1, CREB, and MKP-1 regulate Egr-1 expression in gonadotropin-releasing hormone stimulated gonadotrophs. J Cell Biochem. 105:1267–1278. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Simo-Cheyou ER, Tan JJ, Grygorczyk R and Srivastava AK: STIM-1 and ORAI-1 channel mediate angiotensin-II-induced expression of Egr-1 in vascular smooth muscle cells. J Cell Physiol. 232:3496–3509. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jain N, Mahendran R, Philp R, Guy GR, Tan YH and Cao X: Casein Kinase II associates with Egr-1 and acts as a negative modulator of its DNA binding and transcription activities in NIH 3T3 Cells. J Biol Chem. 271:13530–13536. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Manente AG, Pinton G, Tavian D, Lopez-Rodas G, Brunelli E and Moro L: Coordinated Sumoylation and Ubiquitination Modulate EGF Induced EGR1 Expression and Stability. PLoS One. 6:e256762011. View Article : Google Scholar : PubMed/NCBI | |
|
Rexach JE, Clark PM and Hsieh-Wilson LC: Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol. 4:97–106. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng D, Dong Z, Lin P, Shen G and Xia Q: Transcriptional activation of Ecdysone-responsive genes requires H3K27 acetylation at enhancers. Int J Mol Sci. 23:107912022. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong YJ, Zhu Y, Liu YL, Zhao YF, Shen X, Zuo WQ, Lin F and Liang ZQ: P300 participates in ionizing Radiation-mediated activation of Cathepsin L by mutant p53. J Pharmacol Exp Ther. 378:276–286. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Z, Huang L, Zhao S, Wang J, Zhang C, Song X, Chen Q, Du J, Yu D, Sun X, et al: Early growth Response 1 strengthens Pol-III-Directed transcription and transformed cell proliferation by controlling PTEN/AKT signalling activity. Int J Mol Sci. 23:49302022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yun C, Gao B, Xu Y, Zhang Y, Wang Y, Kong Q, Zhao F, Wang CR, Dent SYR, et al: The lysine acetyltransferase GCN5 is required for iNKT cell development through EGR2 acetylation. Cell Rep. 20:600–612. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Guan X, Deng H, Choi UL, Li Z, Yang Y, Zeng J, Liu Y, Zhang X and Li G: EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis. Oncogene. 39:7127–7141. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mendes K, Schmidhofer S, Minderjahn J, Glatz D, Kiesewetter C, Raithel J, Wimmer J, Gebhard C and Rehli M: The epigenetic pioneer EGR2 initiates DNA demethylation in differentiating monocytes at both stable and transient binding sites. Nat Commun. 12:15562021. View Article : Google Scholar : PubMed/NCBI | |
|
Scheid R, Chen J and Zhong X: Biological role and mechanism of chromatin readers in plants. Curr Opin Plant Biol. 61:1020082021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu TM, Chen SJ, Hsu SH and Cheng MC: Functional analyses and effect of DNA methylation on the EGR1 gene in patients with schizophrenia. Psychiatry Res. 275:276–282. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Salguero-Aranda C, Beltran-Povea A, Postigo-Corrales F, Hitos AB, Díaz I, Caballano-Infantes E, Fraga MF, Hmadcha A, Martín F, Soria B, et al: Pdx1 is transcriptionally regulated by EGR-1 during nitric oxide-induced endoderm differentiation of mouse embryonic stem cells. Int J Mol Sci. 23:39202022. View Article : Google Scholar : PubMed/NCBI | |
|
Fetahu IS and Taschner-Mandl S: Neuroblastoma and the epigenome. Cancer Metastasis Rev. 40:173–189. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Saha SK, Islam SMR, Saha T, Nishat A, Biswas PK, Gil M, Nkenyereye L, El-Sappagh S, Islam MS and Cho SG: Prognostic role of EGR1 in breast cancer: A systematic review. BMB Rep. 54:497–504. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gong Y, Chang C, Liu X, He Y, Wu Y, Wang S and Zhang C: Stimulator of interferon genes signaling pathway and its role in Anti-tumor immune therapy. Curr Pharm Des. 26:3085–3095. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Chen M, Li R, Sun Y, Ye P, Fang K, Wang C, Shi S and Dong C: A responsive cocktail nano-strategy breaking the immune excluded state enhances immunotherapy for triple negative breast cancer. Nanoscale. 17:4610–4623. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan H, Qiu C, Wang X, Wang P, Yi L, Peng X, Xu X, Huang W, Bai Y, Wei J, et al: Engineering semiconducting polymeric nanoagonists potentiate cGAS-STING pathway activation and elicit long term memory against recurrence in breast cancer. Adv Mater. 37:e24066622025. View Article : Google Scholar | |
|
Hao M, Zhu L, Hou S, Chen S, Li X, Li K, Zhu N, Chen S, Xue L, Ju C and Zhang C: Sensitizing tumors to immune checkpoint blockage via STING Agonists delivered by tumor-penetrating neutrophil cytopharmaceuticals. ACS Nano. 17:1663–1680. 2023. View Article : Google Scholar | |
|
Noritsugu K, Ito A, Nakao Y and Yoshida M: Identification of zinc finger transcription factor EGR2 as a novel acetylated protein. Biochem Biophys Res Commun. 489:455–459. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Stoddart A, Fernald AA, Davis EM, McNerney ME and Le Beau MM: EGR1 haploinsufficiency confers a fitness advantage to hematopoietic stem cells following chemotherapy. Exp Hematol. 115:54–67. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Inoue K and Fry EA: Tumor suppression by the EGR1, DMP1, ARF, p53, and PTEN network. Cancer Invest. 36:520–536. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sun T, Zhang Y, Zhong S, Gao F, Chen Y, Wang B, Cai W, Zhang Z, Li W, Lu S, et al: N-n-Butyl haloperidol iodide, a derivative of the Anti-psychotic haloperidol, antagonizes Hypoxia/reoxygenation injury by inhibiting an Egr-1/ROS positive feedback loop in H9c2 cells. Front Pharmacol. 9:192018. View Article : Google Scholar : PubMed/NCBI | |
|
Tseng YC, Shu CW, Chang HM, Lin YH, Tseng YH, Hsu HS, Goan YG and Tseng CJ: Assessment of early growth response 1 in tumor suppression of esophageal squamous cell carcinoma. J Clin Med. 11:57922022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Zhang S, Wang H, Wang M, Tao Y, Ye M, Fan Z, Wang Y and Liu L: Identification of EGR4 as a prospective target for inhibiting tumor cell proliferation and a novel biomarker in colorectal cancer. Cancer Gene Ther. 31:871–883. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Lu J, Song Y, Bai J, Sun W, Yu J, Cai M and Fu S: Analysis of DNA Repair-related prognostic function and mechanism in gastric cancer. Front Cell Dev Biol. 10:8970962022. View Article : Google Scholar : PubMed/NCBI | |
|
Sehat B, Andersson S, Vasilcanu R, Girnita L and Larsson O: Role of Ubiquitination in IGF-1 receptor signaling and degradation. PLoS One. 2:e3402007. View Article : Google Scholar : PubMed/NCBI | |
|
Kuo P, Chen Y, Chen T, Shen K and Hsu Y: CXCL5/ENA78 increased cell migration and epithelial-to-mesenchymal transition of hormone-independent prostate cancer by early growth response-1/snail signaling pathway. J Cell Physiol. 226:1224–1231. 2011. View Article : Google Scholar | |
|
Xiao D, Chinnappan D, Pestell R, Albanese C and Weber HC: Bombesin regulates Cyclin D1 expression through the early growth response protein Egr-1 in prostate cancer cells. Cancer Res. 65:9934–9942. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Yin L, Zhang J and Sun Y: Early growth response-1 is a new substrate of the GSK3β-FBXW7 axis. Neoplasia. 34:1008392022. View Article : Google Scholar | |
|
Young E, Noerenberg D, Mansouri L, Ljungström V, Frick M, Sutton LA, Blakemore SJ, Galan-Sousa J, Plevova K, Baliakas P, et al: EGR2 mutations define a new clinically aggressive subgroup of chronic lymphocytic leukemia. Leukemia. 31:1547–1554. 2017. View Article : Google Scholar | |
|
Grotegut S, Von Schweinitz D, Christofori G and Lehembre F: Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 25:3534–3545. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Wu WS, You RI, Cheng CC, Lee MC, Lin TY and Hu CT: Author correction: Snail collaborates with EGR-1 and SP-1 to directly activate transcription of MMP 9 and ZEB1. Sci Rep. 8:142262018. View Article : Google Scholar : PubMed/NCBI | |
|
Yeo H, Lee JY, Kim J, Ahn SS, Jeong JY, Choi JH, Lee YH and Shin SY: Transcription factor EGR-1 transactivates the MMP1 gene promoter in response to TNFα in HaCaT keratinocytes. BMB Rep. 53:323–328. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S and Kossatz-Boehlert U: Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front Immunol. 11:12802020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun T, Tian H, Feng YG, Zhu YQ and Zhang WQ: Egr-1 promotes cell proliferation and invasion by increasing β-Catenin expression in gastric cancer. Dig Dis Sci. 58:423–430. 2012. | |
|
Cheng JC, Chang HM and Leung PC: Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells. Oncogene. 32:1041–1049. 2013. View Article : Google Scholar | |
|
Wang Y, Qin C, Zhao B, Li Z, Li T, Yang X, Zhao Y and Wang W: EGR1 induces EMT in pancreatic cancer via a P300/SNAI2 pathway. J Transl Med. 21:2012023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Kuo T, Tseng CF, Ma JT, Yang ST, Yen CJ, Yang CY, Sung SY and Su JL: Angiopoietin-like protein 1 antagonizes MET receptor activity to repress sorafenib resistance and cancer stemness in hepatocellular carcinoma. Hepatology. 64:1637–1651. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Nam K, Ju J, Lee K, Oh S and Shin I: S100A4 negatively regulates β-catenin by inducing the Egr-1-PTEN-Akt-GSK3β degradation pathway. Cell Signal. 26:2096–2106. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Ji J, Jin Y, Sun Y, Cai Q, Jiang J, Guo L, Zhou C and Zhang J: Tumor-mesothelium HOXA11-PDGF BB/TGF β1-miR-181a-5p-Egr1 feedforward amplifier circuity propels mesothelial fibrosis and peritoneal metastasis of gastric cancer. Oncogene. 43:171–188. 2024. View Article : Google Scholar | |
|
Feng YH, Su YC, Lin SF, Lin PR, Wu CL, Tung CL, Li CF, Shieh GS and Shiau AL: Oct4 upregulates osteopontin via Egr1 and is associated with poor outcome in human lung cancer. BMC Cancer. 19:7912019. View Article : Google Scholar : PubMed/NCBI | |
|
Raue F and Frank-Raue K: Thyroid cancer: Risk-stratified management and individualized therapy. Clin Cancer Res. 22:5012–5021. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ma C, Zhang N, Wang T, Guan H, Huang Y, Huang L, Zheng Y, Zhang L, Han L, Huo Y, et al: Inflammatory cytokine-regulated LNCPTCTS suppresses thyroid cancer progression via enhancing Snail nuclear export. Cancer Lett. 575:2164022023. View Article : Google Scholar : PubMed/NCBI | |
|
Brown KC, Lau JK, Dom AM, Witte TR, Luo H, Crabtree CM, Shah YH, Shiflett BS, Marcelo AJ, Proper NA, et al: MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis. 15:99–114. 2012. View Article : Google Scholar | |
|
Sperandio S, Fortin J, Sasik R, Robitaille L, Corbeil J and De Belle I: The transcription factor Egr1 regulates the HIF-1α gene during hypoxia. Mol Carcinog. 48:38–44. 2009. View Article : Google Scholar | |
|
Shimoyamada H, Yazawa T, Sato H, Okudela K, Ishii J, Sakaeda M, Kashiwagi K, Suzuki T, Mitsui H, Woo T, et al: Early growth Response-1 induces and enhances vascular endothelial growth Factor-A expression in lung cancer cells. Am J Pathol. 177:70–83. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yan J, Gao Y, Lin S, Li Y, Shi L and Kan Q: EGR1-CCL2 feedback loop maintains Epithelial-mesenchymal transition of Cisplatin-resistant gastric cancer cells and promotes tumor angiogenesis. Dig Dis Sci. 67:3702–3713. 2022. View Article : Google Scholar | |
|
Yu J, Zhuang A, Gu X, Hua Y, Yang L, Ge S, Ruan J, Chai P, Jia R and Fan X: Nuclear PD-L1 promotes EGR1-mediated angiogenesis and accelerates tumorigenesis. Cell Discov. 9:332023. View Article : Google Scholar : PubMed/NCBI | |
|
McCaffrey TA, Fu C, Du B, Eksinar S, Kent KC, Bush H Jr, Kreiger K, Rosengart T, Cybulsky MI, Silverman ES and Collins T: High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. J Clin Invest. 105:653–662. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Harja E, Bucciarelli LG, Lu Y, Stern DM, Zou YS, Schmidt AM and Yan SF: Early growth Response-1 promotes atherogenesis: Mice deficient in early growth Response-1 and apolipoprotein E display decreased atherosclerosis and vascular inflammation. Circ Res. 94:333–339. 2004. View Article : Google Scholar | |
|
Yan SF, Fujita T, Lu J, Okada K, Shan Zou Y, Mackman N, Pinsky DJ and Stern DM: Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med. 6:1355–1361. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Suehiro J, Hamakubo T, Kodama T, Aird WC and Minami T: Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood. 115:2520–2532. 2010. View Article : Google Scholar : | |
|
Minami T, Miura M, Aird WC and Kodama T: Thrombin-induced autoinhibitory factor, down syndrome critical Region-1, attenuates NFAT-dependent vascular cell adhesion Molecule-1 expression and inflammation in the endothelium. J Biol Chem. 281:20503–20520. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Minami T, Horiuchi K, Miura M, Abid MR, Takabe W, Noguchi N, Kohro T, Ge X, Aburatani H, Hamakubo T, et al: Vascular endothelial growth Factor- and Thrombin-induced termination factor, down syndrome critical Region-1, attenuates endothelial cell proliferation and angiogenesis. J Biol Chem. 279:50537–50554. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Sambasivan S: Epithelial ovarian cancer: Review article. Cancer Treat Res Commun. 33:1006292022. View Article : Google Scholar : PubMed/NCBI | |
|
De Belle I, Huang RP, Fan Y, Liu C, Mercola D and Adamson ED: p53 and Egr-1 additively suppress transformed growth in HT1080 cells but Egr-1 counteracts p53-dependent apoptosis. Oncogene. 18:3633–3642. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Ryu J, Choe SS, Ryu SH, Park EY, Lee BW, Kim TK, Ha CH and Lee SW: Paradoxical induction of growth arrest and apoptosis by EGF via the up-regulation of PTEN by activating Redox factor-1/Egr-1 in human lung cancer cells. Oncotarget. 8:4181–4195. 2017. View Article : Google Scholar : | |
|
Wang C, Husain K, Zhang A, Centeno BA, Chen DT, Tong Z, Sebti SM and Malafa MP: EGR-1/Bax pathway plays a role in vitamin E δ-tocotrienol-induced apoptosis in pancreatic cancer cells. J Nutr Biochem. 26:797–807. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tian X, Traub B, Shi J, Huber N, Schreiner S, Chen G, Zhou S, Henne-Bruns D, Knippschild U and Kornmann M: c-Jun N-terminal kinase 2 suppresses pancreatic cancer growth and invasion and is opposed by c-Jun N-terminal kinase 1. Cancer Gene Ther. 29:73–86. 2022. View Article : Google Scholar : | |
|
Moorehead RA, Hojilla CV, De Belle I, Wood GA, Fata JE, Adamson ED, Watson KL, Edwards DR and Khokha R: Insulin-like Growth Factor-II regulates PTEN expression in the mammary gland. J Biol Chem. 278:50422–50427. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Shan LN, Song YG, Su D, Liu YL, Shi XB and Lu SJ: Early growth response Protein-1 involves in transforming growth factor-β1 induced Epithelial-mesenchymal transition and inhibits migration of Non-Small-cell lung cancer cells. Asian Pac J Cancer Prev. 16:4137–4142. 2015. View Article : Google Scholar | |
|
Wang B, Wang Y, Wang W, Wang Z, Zhang Y, Pan X, Wen X, Leng H, Guo J and Ma XX: WTAP/IGF2BP3 mediated m6A modification of the EGR1/PTEN axis regulates the malignant phenotypes of endometrial cancer stem cells. J Exp Clin Cancer Res. 43:2042024. View Article : Google Scholar : PubMed/NCBI | |
|
Unoki M and Nakamura Y: Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene. 20:4457–4465. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Unoki M and Nakamura Y: EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene. 22:2172–2185. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YL, Lin PC, Chen SP, Lin CC, Tsai NM, Cheng YL, Chang WL, Lin SZ and Harn HJ: Activation of nonsteroidal Anti-inflammatory Drug-activated Gene-1 via extracellular Signal-regulated kinase 1/2 Mitogen-Activated protein kinase revealed a isochaihulactone-triggered apoptotic pathway in human lung cancer A549 cells. J Pharmacol Exp Ther. 323:746–756. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Vaish V, Piplani H, Rana C, Vaiphei K and Sanyal SN: NSAIDs may regulate EGR-1-mediated induction of reactive oxygen species and non-steroidal anti-inflammatory drug-induced gene (NAG)-1 to initiate intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer. Mol Cell Biochem. 378:47–64. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Su Z, Tavana O and Gu W: Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell. 42:946–967. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ko H, Kim JM, Kim SJ, Shim SH, Ha CH and Chang HI: Induction of apoptosis by genipin inhibits cell proliferation in AGS human gastric cancer cells via Egr1/p21 signaling pathway. Bioorg Med Chem Letts. 25:4191–4196. 2015. View Article : Google Scholar | |
|
Liu J, Grogan L, Nau M, Allegra C, Chu E and Wright J: Physical interaction between p53 and primary response gene Egr-1. Int J Oncol. 18:863–870. 2001.PubMed/NCBI | |
|
Meng W, Yu S, Li Y, Wang H, Feng Y, Sun W, Liu Y, Sun S and Liu H: Mutant p53 achieves function by regulating EGR1 to induce epithelial mesenchymal transition. Tissue Cell. 90:1025102024. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmed MM, Sells SF, Venkatasubbarao K, Fruitwala SM, Muthukkumar S, Harp C, Mohiuddin M and Rangnekar VM: Ionizing Radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR-1. J Biol Chem. 272:33056–33061. 1997. View Article : Google Scholar | |
|
Adams PD: Healing and hurting: Molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell. 36:2–14. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 88:593–602. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Salotti J, Sakchaisri K, Tourtellotte WG and Johnson PF: An Arf-Egr-C/EBPβ pathway linked to Ras-induced senescence and cancer. Mol Cell Biol. 35:866–883. 2015. View Article : Google Scholar : | |
|
Lucerna M, Pomyje J, Mechtcheriakova D, Kadl A, Gruber F, Bilban M, Sobanov Y, Schabbauer G, Breuss J, Wagner O, et al: Sustained expression of early growth response Protein-1 blocks angiogenesis and tumor growth. Cancer Res. 66:6708–6713. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Wang X, Peng Y, Shen S and Li G: Egr-1 regulates the transcription of NGX6 gene through a Sp1/Egr-1 overlapping site in the promoter. BMC Mol Biol. 15:142014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang LF, Liu YS, Yang B, Li P, Cheng XS, Xiao CX, Liu JJ, Li S, Ren JL and Guleng B: The extracellular matrix protein mindin attenuates colon cancer progression by blocking angiogenesis via Egr-1-mediated regulation. Oncogene. 37:601–615. 2018. View Article : Google Scholar | |
|
Kim J, Kang SM, Lee HJ, Choi SY and Hong SH: Oxytocin inhibits head and neck squamous cell carcinoma cell migration by early growth response-1 upregulation. Anticancer Drugs. 28:613–622. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu P, Li J, Lu H and Xu B: Thalidomide inhibits leukemia cell invasion and migration by upregulation of early growth response gene 1. Leuk Lymphoma. 50:109–113. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Huang R, Li S, Yang W, Chen L, Yao C and Huang RP: Early growth Response-1 suppresses human fibrosarcoma cell invasion and angiogenesis. Cancer Genomics Proteomics. 3:71–82. 2006.PubMed/NCBI | |
|
Mookerjee-Basu J, Hooper R, Gross S, Schultz B, Go CK, Samakai E, Ladner J, Nicolas E, Tian Y, Zhou B, et al: Suppression of Ca2+ signals by EGR 4 controls Th1 differentiation and anti-cancer immunity in vivo. EMBO Rep. 21:e489042020. View Article : Google Scholar | |
|
Zheng Y, Zha Y, Spaapen RM, Mathew R, Barr K, Bendelac A and Gajewski TF: Egr2-dependent gene expression profiling and ChIP-Seq reveal novel biologic targets in T cell anergy. Mol Immunol. 55:283–291. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Williams JB, Horton BL, Zheng Y, Duan Y, Powell JD and Gajewski TF: The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. J Exp Med. 214:381–400. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Zha Y, Driessens G, Locke F and Gajewski TF: Transcriptional regulator early growth response gene 2 (Egr2) is required for T cell anergy in vitro and in vivo. J Exp Med. 209:2157–2163. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Crispín JC and Tsokos GC: Transcriptional regulation of IL-2 in health and autoimmunity. Autoimmun Rev. 8:190–195. 2009. View Article : Google Scholar : | |
|
Decker EL: Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res. 31:911–921. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Lin JX and Leonard WJ: The immediate-early gene product Egr-1 regulates the human interleukin-2 receptor beta-chain promoter through noncanonical Egr and Sp1 binding sites. Mol Cell Biol. 17:3714–3722. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Lindgren H, Axcrona K and Leanderson T: Regulation of transcriptional activity of the murine CD40 Ligand promoter in response to signals through TCR and the costimulatory molecules CD28 and CD2. J Immunol. 166:4578–4585. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Cron RQ, Bandyopadhyay R, Genin A, Brunner M, Kersh GJ, Yin J, Finkel TH and Crow MK: Early growth Response-1 is required for CD154 transcription. J Immunol. 176:811–818. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL and Ahmed R: Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 27:670–684. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, Tsao HW, Godec J, LaFleur MW, Brown FD, et al: The epigenetic landscape of T cell exhaustion. Science. 354:1165–1169. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, Pellegrini M, Zehn D, Berberich-Siebelt F, Febbraio MA, et al: Transcription factor IRF4 Promotes CD8+ T cell exhaustion and limits the development of Memory-like T cells during chronic infection. Immunity. 47:1129–1141.e5. 2017. View Article : Google Scholar | |
|
Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG and Wherry EJ: Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity. 37:1130–1144. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kallies A, Zehn D and Utzschneider DT: Precursor exhausted T cells: Key to successful immunotherapy? Nat Rev Immunol. 20:128–136. 2020. View Article : Google Scholar | |
|
Macián F, Garcı́a-Cózar F, Im SH, Horton HF, Byrne MC and Rao A: Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 109:719–731. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F, Pipkin ME, Togher S, Heissmeyer V, Zhang YC, Crotty S, et al: The transcription factor NFAT promotes exhaustion of activated CD8 + T Cells. Immunity. 42:265–278. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mittelstadt PR and Ashwell JD: Cyclosporin A-Sensitive transcription factor Egr-3 regulates fas ligand expression. Mol Cell Biol. 18:3744–3751. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Safford M, Collins S, Lutz MA, Allen A, Huang CT, Kowalski J, Blackford A, Horton MR, Drake C, Schwartz RH and Powell JD: Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol. 6:472–480. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Rengarajan J, Mittelstadt PR, Mages HW, Gerth AJ, Kroczek RA, Ashwell JD and Glimcher LH: Sequential Involvement of NFAT and Egr transcription factors in FasL regulation. Immunity. 12:293–300. 2000. View Article : Google Scholar | |
|
Kodakandla G, Akimzhanov AM and Boehning D: Regulatory mechanisms controlling store-operated calcium entry. Front Physiol. 14:13302592023. View Article : Google Scholar | |
|
Kim HJ, Park S, Shin HY, Nam YR, Lam Hong PT, Chin YW, Nam JH and Kim WK: Inhibitory effects of α-Mangostin on T cell cytokine secretion via ORAI1 calcium channel and K+ channels inhibition. PeerJ. 9:e109732021. View Article : Google Scholar | |
|
Srikanth S, Woo JS, Sun Z and Gwack Y: Immunological disorders: Regulation of Ca2+ signaling in T lymphocytes. Adv Exp Med Biol. 993:397–424. 2017. View Article : Google Scholar | |
|
Gross S, Womer L, Kappes DJ and Soboloff J: Multifaceted control of T cell differentiation by STIM1. Trends Biochem Sci. 48:1083–1097. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Thompson JL, Lai-Zhao Y, Stathopulos PB, Grossfield A and Shuttleworth TJ: Phosphorylation-mediated structural changes within the SOAR domain of stromal interaction molecule 1 enable specific activation of distinct Orai channels. J Biol Chem. 293:3145–3155. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Flourakis M, Lehen'kyi V, Beck B, Raphaël M, Vandenberghe M, Abeele FV, Roudbaraki M, Lepage G, Mauroy B, Romanin C, et al: Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Dis. 1:e752010. View Article : Google Scholar | |
|
Xie J, Pan H, Yao J, Zhou Y and Han W: SOCE and cancer: Recent progress and new perspectives. Int J Cancer. 138:2067–2077. 2016. View Article : Google Scholar : | |
|
Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 537:417–421. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Armesilla AL, Lorenzo E, Gómez Del Arco P, Martínez-Martínez S, Alfranca A and Redondo JM: Vascular Endothelial growth factor activates nuclear factor of activated T cells in human endothelial cells: A role for tissue factor gene expression. Mol Cell Biol. 19:2032–2043. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, Chang HC, Tang MJ and Shen MR: Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci USA. 108:15225–15230. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Zhang S, Niu H, Ye Y, Hu F, Chen S, Li X, Luo X, Jiang S, Liu Y, et al: STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer. Sci Rep. 5:117542015. View Article : Google Scholar : PubMed/NCBI | |
|
Yang S, Zhang JJ and Huang XY: Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell. 15:124–134. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wilm B and Muñoz-Chapuli R: The role of WT1 in Embryonic Development and Normal Organ Homeostasis. The Wilms' Tumor (WT1) Gene. 1467. Hastie N: Springer New York; New York, NY: pp. 23–39. 2016, View Article : Google Scholar | |
|
Madden SL, Cook DM, Morris JF, Gashler A, Sukhatme VP and Rauscher FJ: Transcriptional repression mediated by the WT1 wilms tumor gene product. Science. 253:1550–1553. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Zandarashvili L, White MA, Esadze A and Iwahara J: Structural impact of complete CpG methylation within target DNA on specific complex formation of the inducible transcription factor Egr-1. FEBS Lett. 589:1748–1753. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto H, Olanrewaju YO, Zheng Y, Wilson GG, Zhang X and Cheng X: Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev. 28:2304–2313. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Eleftheriou M, Pascual AJ, Wheldon LM, Perry C, Abakir A, Arora A, Johnson AD, Auer DT, Ellis IO, Madhusudan S and Ruzov A: 5-Carboxylcytosine levels are elevated in human breast cancers and gliomas. Clin Epigenet. 7:882015. View Article : Google Scholar | |
|
Neri F, Incarnato D, Krepelova A, Rapelli S, Anselmi F, Parlato C, Medana C, Dal Bello F and Oliviero S: Single-base resolution analysis of 5-formyl and 5-carboxyl cytosine reveals promoter DNA methylation dynamics. Cell Rep. 10:674–683. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ritchie MF, Yue C, Zhou Y, Houghton PJ and Soboloff J: Wilms tumor suppressor 1 (WT1) and early growth response 1 (EGR1) are regulators of STIM1 expression. J Biol Chem. 285:10591–10596. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Natrajan R, Little SE, Reis-Filho JS, Hing L, Messahel B, Grundy PE, Dome JS, Schneider T, Vujanic GM, Pritchard-Jones K and Jones C: Amplification and overexpression of CACNA1E correlates with relapse in favorable histology Wilms' tumors. Clinical Cancer Res. 12:7284–7293. 2006. View Article : Google Scholar | |
|
Wittmann S, Wunder C, Zirn B, Furtwängler R, Wegert J, Graf N and Gessler M: New prognostic markers revealed by evaluation of genes correlated with clinical parameters in Wilms tumors. Genes Chromosomes Cancer. 47:386–395. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wagle MV, Vervoort SJ, Kelly MJ, Van Der Byl W, Peters TJ, Martin BP, Martelotto LG, Nüssing S, Ramsbottom KM, Torpy JR, et al: Antigen-driven EGR2 expression is required for exhausted CD8+ T cell stability and maintenance. Nat Commun. 12:27822021. View Article : Google Scholar : | |
|
Lee J, Lee K, Bae H, Lee K, Lee S, Ma J, Jo K, Kim I, Jee B, Kang M and Im SJ: IL-15 promotes self-renewal of progenitor exhausted CD8 T cells during persistent antigenic stimulation. Front Immunol. 14:11170922023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Ma Z, Zhao X, Tan X, Tu Y, Wang J, Chen L, Chen Z, Chen G and Lan P: LRP11 promotes stem-like T cells via MAPK13-mediated TCF1 phosphorylation, enhancing anti-PD1 immunotherapy. J Immunother Cancer. 12:e0083672024. View Article : Google Scholar : PubMed/NCBI | |
|
Omodho B, Miao T, Symonds ALJ, Singh R, Li S and Wang P: Transcription factors early growth response gene (Egr) 2 and 3 control inflammatory responses of tolerant T cells. Immun Inflamm Dis. 6:221–233. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Debo B, Li M, Shi Z, Sheng W and Shi Y: Author correction: LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade. Nat Commun. 13:2632022. View Article : Google Scholar : PubMed/NCBI | |
|
Symonds ALJ, Miao T, Busharat Z, Li S and Wang P: Egr2 and 3 maintain anti-tumour responses of exhausted tumour infiltrating CD8 + T cells. Cancer Immunol Immunother. 72:1139–1151. 2023. View Article : Google Scholar | |
|
Symonds AL, Zheng W, Miao T, Wang H, Wang T, Kiome R, Hou X, Li S and Wang P: Egr2 and 3 control inflammation, but maintain homeostasis, of PD-1high memory phenotype CD4 T cells. Life Sci Alliance. 3:e2020007662020. View Article : Google Scholar | |
|
Miao T, Symonds ALJ, Singh R, Symonds JD, Ogbe A, Omodho B, Zhu B, Li S and Wang P: Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 214:1787–1808. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Seyfert VL, McMahon SB, Glenn WD, Yellen AJ, Sukhatme VP, Cao X and Monroe JG: Methylation of an Immediate-early inducible gene as a mechanism for B cell tolerance induction. Science. 250:797–800. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Natarajan P, Singh A, McNamara JT, Secor ER, Guernsey LA, Thrall RS and Schramm CM: Regulatory B cells from hilar lymph nodes of tolerant mice in a murine model of allergic airway disease are CD5+, express TGF-β, and co-localize with CD4+Foxp3+ T cells. Mucosal Immunol. 5:691–701. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H, Kallies A, Nutt SL, Sakaguchi S, Takeda K, et al: Interleukin-10-Producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity. 41:1040–1051. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Xie J, Shi CW, Huang HB, Yang WT, Jiang YL, Ye LP, Zhao Q, Yang GL and Wang CF: Induction of the IL-10-producing regulatory B cell phenotype following Trichinella spiralis infection. Mol Immunol. 133:86–94. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen HQ, Hoffman-Liebermann B and Liebermann DA: The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell. 72:197–209. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Kharbanda S, Nakamura T, Stone R, Hass R, Bernstein S, Datta R, Sukhatme VP and Kufe D: Expression of the early growth response 1 and 2 zinc finger genes during induction of monocytic differentiation. J Clin Invest. 88:571–577. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR and Singh H: Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell. 126:755–766. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Carter JH and Tourtellotte WG: Early growth response transcriptional regulators are dispensable for macrophage differentiation. J Immunol. 178:3038–3047. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Pham TH, Benner C, Lichtinger M, Schwarzfischer L, Hu Y, Andreesen R, Chen W and Rehli M: Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood. 119:e161–e171. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Trizzino M, Zucco A, Deliard S, Wang F, Barbieri E, Veglia F, Gabrilovich D and Gardini A: EGR1 is a gatekeeper of inflammatory enhancers in human macrophages. Sci Adv. 7:eaaz88362021. View Article : Google Scholar : PubMed/NCBI | |
|
Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D and Dittel BN: GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol. 178:39–48. 2007. View Article : Google Scholar | |
|
Murray PJ: Macrophage Polarization. Annu Rev Physiol. 79:541–566. 2017. View Article : Google Scholar | |
|
Italiani P and Boraschi D: From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front Immunol. 5:5142014. View Article : Google Scholar : PubMed/NCBI | |
|
Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado JDD, Popovich PG, Partida-Sanchez S and Guerau-de-Arellano M: Novel Markers to delineate murine M1 and M2 macrophages. PLoS One. 10:e01453422015. View Article : Google Scholar : PubMed/NCBI | |
|
Horvath A, Daniel B, Szeles L, Cuaranta-Monroy I, Czimmerer Z, Ozgyin L, Steiner L, Kiss M, Simandi Z, Poliska S, et al: Labelled regulatory elements are pervasive features of the macrophage genome and are dynamically utilized by classical and alternative polarization signals. Nucleic Acids Res. 47:2778–2792. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Daniel B, Nagy G, Horvath A, Czimmerer Z, Cuaranta-Monroy I, Poliska S, Hays TT, Sauer S, Francois-Deleuze J and Nagy L: The IL-4/STAT6/PPARγ signaling axis is driving the expansion of the RXR heterodimer cistrome, providing complex ligand responsiveness in macrophages. Nucleic Acids Res. 46:4425–4439. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Daniel B, Nagy G, Czimmerer Z, Horvath A, Hammers DW, Cuaranta-Monroy I, Poliska S, Tzerpos P, Kolostyak Z, Hays TT, et al: The nuclear receptor PPARγ controls progressive macrophage polarization as a Ligand-insensitive epigenomic ratchet of transcriptional memory. Immunity. 49:615–626.e6. 2018. View Article : Google Scholar | |
|
Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, et al: STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity. 33:699–712. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Czimmerer Z, Daniel B, Horvath A, Rückerl D, Nagy G, Kiss M, Peloquin M, Budai MM, Cuaranta-Monroy I, Simandi Z, et al: The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages. Immunity. 48:75–90.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Piccolo V, Curina A, Genua M, Ghisletti S, Simonatto M, Sabò A, Amati B, Ostuni R and Natoli G: Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat Immunol. 18:530–540. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sabag B, Puthenveetil A, Levy M, Joseph N, Doniger T, Yaron O, Karako-Lampert S, Lazar I, Awwad F, Ashkenazi S and Barda-Saad M: Dysfunctional natural killer cells can be reprogrammed to regain anti-tumor activity. EMBO J. 43:2552–2581. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Tong H, Zhang Z, Shao S, Liu D, Li S and Yan Y: Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression. J Cell Physiol. 233:350–362. 2018. View Article : Google Scholar | |
|
Wei S, Xu G, Zhao S, Zhang C, Feng Y, Yang W, Lu R, Zhou J and Ma Y: EGR2 promotes liver cancer metastasis by enhancing IL-8 expression through transcription regulation of PDK4 in M2 macrophages. Int Immunopharmacol. 153:1144842025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Tao X, Cao Q, Feng X, Wu J, Yu H, Yu Y, Xu C and Zhao H: lnc003875/miR-363/EGR1 regulatory network in the carcinoma-associated fibroblasts controls the angiogenesis of human placental site trophoblastic tumor (PSTT). Exp Cell Res. 387:1117832020. View Article : Google Scholar | |
|
Zhang Y, Sun S, Qi Y, Dai Y, Hao Y, Xin M, Xu R, Chen H, Wu X, Liu Q, et al: Characterization of tumour microenvironment reprogramming reveals invasion in epithelial ovarian carcinoma. J Ovarian Res. 16:2002023. View Article : Google Scholar : PubMed/NCBI | |
|
Joo EH, Bae JH, Park J, Bang YJ, Han J, Gulati N, Kim JI, Park CG, Park WY and Kim HJ: Deconvolution of adult T-Cell Leukemia/lymphoma with Single-cell RNA-Seq using frozen archived skin tissue reveals new subset of Cancer-associated fibroblast. Front Immunol. 13:8563632022. View Article : Google Scholar : PubMed/NCBI | |
|
Seyfried TN, Flores RE, Poff AM and D'Agostino DP: Cancer as a metabolic disease: Implications for novel therapeutics. Carcinogenesis. 35:515–527. 2014. View Article : Google Scholar : | |
|
Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Li L, Li W, Chen T, Bin Zou, Zhao L, Wang H, Wang X, Xu L, Liu X, et al: TAp73-induced phosphofructokinase-1 transcription promotes the Warburg effect and enhances cell proliferation. Nat Commun. 9:46832018. View Article : Google Scholar : PubMed/NCBI | |
|
Pan M, Luo M, Liu L, Chen Y, Cheng Z, Wang K, Huang L, Tang N, Qiu J, Huang A and Xia J: EGR1 suppresses HCC growth and aerobic glycolysis by transcriptionally downregulating PFKL. J Exp Clin Cancer Res. 43:352024. View Article : Google Scholar : PubMed/NCBI | |
|
Sulli G, Lam MTY and Panda S: Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer. 5:475–494. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Lahens NF, Ballance HI, Hughes ME and Hogenesch JB: A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci USA. 111:16219–16224. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Bu D, Wang H, Shen D, Chong D, Zhang T, Tao W, Zhao M, Zhao Y, Fang L, et al: The rhythmic coupling of Egr-1 and Cidea regulates age-related metabolic dysfunction in the liver of male mice. Nat Commun. 14:16342023. View Article : Google Scholar : PubMed/NCBI | |
|
Qu M, Zhang G, Qu H, Vu A, Wu R, Tsukamoto H, Jia Z, Huang W, Lenz HJ, Rich JN and Kay SA: Circadian regulator BMAL1::CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle. Proc Natl Acad Sci USA. 120:e22148291202023. View Article : Google Scholar : PubMed/NCBI | |
|
Spencer RL and Deak T: A users guide to HPA axis research. Physiol Behav. 178:43–65. 2017. View Article : Google Scholar : | |
|
Wan X, Wang L, Khan MA, Peng L, Zhang K, Sun X, Yi X, Wang Z and Chen K: Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway. Cell Death Discov. 10:1292024. View Article : Google Scholar : PubMed/NCBI | |
|
Deuter CE, Kaczmarczyk M, Hellmann-Regen J, Kuehl LK, Wingenfeld K and Otte C: The influence of pharmacological mineralocorticoid and glucocorticoid receptor blockade on the cortisol response to psychological stress. Prog Neuropsychopharmacol Biol Psychiatry. 129:1109052024. View Article : Google Scholar | |
|
Wu K, Liu Z, Liang J, Zhu Y, Wang X and Li X: Discovery of a glucocorticoid receptor (GR) activity signature correlates with immune cell infiltration in adrenocortical carcinoma. J Immunother Cancer. 11:e0075282023. View Article : Google Scholar : PubMed/NCBI | |
|
Pang Y, Gong S, Tetti M, Sun Z, Mir-Bashiri S, Bidlingmaier M, Knösel T, Wolf E, Reincke M, Kemter E and Williams TA: EGR1 regulates oxidative stress and aldosterone production in adrenal cells and aldosterone-producing adenomas. Redox Biol. 80:1034982025. View Article : Google Scholar : PubMed/NCBI | |
|
Miki Y, Iwabuchi E, Takagi K, Yamazaki Y, Shibuya Y, Tokunaga H, Shimada M, Suzuki T and Ito K: Intratumoral cortisol associated with aromatase in the endometrial cancer microenvironment. Pathol Res Pract. 251:1548732023. View Article : Google Scholar : PubMed/NCBI | |
|
Heyns B, Pieters R, Stander MA, Atkin SL and Swart AC: Glucocorticoids and mineralocorticoids in hair: Facilitating accurate diagnosis of adrenal-related endocrine disorders. Front Endocrinol (Lausanne). 15:14480132024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Shan Y, Li J, Li M, Meng Z and Guo N: Early growth response 1 regulates dual-specificity protein phosphatase 1 and inhibits cell migration and invasion of tongue squamous cell carcinoma. Oncol Lett. 27:2402024. View Article : Google Scholar | |
|
Senga SS and Grose RP: Hallmarks of cancer-the New testament. Open Biol. 11:2003582021. View Article : Google Scholar : PubMed/NCBI | |
|
Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ and Frenette PS: Autonomic nerve development contributes to prostate cancer progression. Science. 341:12363612013. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Sun F, D'Souza A, Dhakal B, Pisano M, Chhabra S, Stolley M, Hari P and Janz S: Autonomic nervous system control of multiple myeloma. Blood Rev. 46:1007412021. View Article : Google Scholar : | |
|
Tan X, Sivakumar S, Bednarsch J, Wiltberger G, Kather JN, Niehues J, de Vos-Geelen J, Valkenburg-van Iersel L, Kintsler S, Roeth A, et al: Nerve fibers in the tumor microenvironment in neurotropic cancer-pancreatic cancer and cholangiocarcinoma. Oncogene. 40:899–908. 2021. View Article : Google Scholar | |
|
Monje M, Borniger JC, D'Silva NJ, Deneen B, Dirks PB, Fattahi F, Frenette PS, Garzia L, Gutmann DH, Hanahan D, et al: Roadmap for the emerging field of cancer neuroscience. Cell. 181:219–222. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, Renz BW, Tailor Y, Macchini M, Middelhoff M, et al: Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 31:21–34. 2017. View Article : Google Scholar : | |
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, et al: Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience. 25:1044982022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng H and Cheng T: 'Waterloo': When normal blood cells meet leukemia. Curr Opin Hematol. 23:304–310. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CH, Chen Y, Li YN, Zhang H, Huang X, Li YY, Li ZY, Han JX, Wu XY, Liu HJ and Sun T: EGR3 inhibits tumor progression by inducing schwann Cell-Like differentiation. Adv Sci (Weinh). 11:e24000662024. View Article : Google Scholar : PubMed/NCBI | |
|
Spasevska I, Matera EL, Chettab K, Ville J, Potier-Cartereau M, Jordheim LP, Thieblemont C, Sahin D, Klein C and Dumontet C: Calcium channel blockers impair the antitumor activity of Anti-CD20 monoclonal antibodies by blocking EGR-1 induction. Mol Cancer Ther. 19:2371–2381. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lim JH, Park JW, Min DS, Chang JS, Lee YH, Park YB, Choi KS and Kwon TK: NAG-1 up-regulation mediated by EGR-1 and p53 is critical for quercetin-induced apoptosis in HCT116 colon carcinoma cells. Apoptosis. 12:411–421. 2007. View Article : Google Scholar | |
|
Shi Q and Bhatia D: Resveratrol-responsive CArG elements from the Egr-1 promoter for the induction of GADD45α to arrest the G2/M transition. Suicide Gene Therapy. 1895. Düzgüneş N: Springer New York; New York, NY: pp. 111–122. 2019, View Article : Google Scholar | |
|
Shah D, Challagundla N, Dave V, Patidar A, Saha B, Nivsarkar M, Trivedi VB and Agrawal-Rajput R: Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages. Phytomedicine. 99:1539042022. View Article : Google Scholar : PubMed/NCBI | |
|
Han S, Yang X, Zhuang J, Zhou Q, Wang J, Ru L, Niu F and Mao W: α-Hederin promotes ferroptosis and reverses cisplatin chemoresistance in non-small cell lung cancer. Aging. 16:1298–1317. 2024. View Article : Google Scholar | |
|
Wang W, Li R, Chen Z, Li D, Duan Y and Cao Z: Cisplatin-controlled p53 gene therapy for human non-small cell lung cancer xenografts in athymic nude mice via the CArG elements. Cancer Sci. 96:706–712. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Wei B and Ma S: EGR1/LINC00839/SOX5 axis modulates migration, invasion and Gemcitabine resistance of bladder cancer cells. Cancer Biol Ther. 24:22701062023. View Article : Google Scholar : PubMed/NCBI | |
|
Marks BA, Pipia IM, Mukai C, Horibata S, Rice EJ, Danko CG and Coonrod SA: GDNF-RET signaling and EGR1 form a positive feedback loop that promotes tamoxifen resistance via cyclin D1. BMC Cancer. 23:1382023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Chen F, Wei D, Chen F, Jiang H and Qin S: EGR1 mediates MDR1 transcriptional activity regulating gemcitabine resistance in pancreatic cancer. BMC Cancer. 24:2682024. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Z, Liu Z, Pan Z, Zhang Y, Yang X, Feng Y, Zhang R, Zeng W, Gong C and Chen J: EGR1 Promotes Erastin-induced ferroptosis through activating Nrf2-HMOX1 signaling pathway in breast cancer cells. J Cancer. 15:4577–4590. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Palencia-Campos A, Ruiz-Cañas L, Abal-Sanisidro M, López-Gil JC, Batres-Ramos S, Saraiva SM, Yagüe B, Navarro D, Alcalá S, Rubiolo JA, et al: Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis. J Nanobiotechnol. 22:7952024. View Article : Google Scholar | |
|
Mo Z, Du P, Wang G and Wang Y: The Multi-purpose tool of tumor immunotherapy: Gene-engineered T cells. J Cancer. 8:1690–1703. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Yang Z, Horan LH, Zhang P, Liu L, Zimdahl B, Green S, Lu J, Morales JF, Barrett DM, et al: A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 4:622018. View Article : Google Scholar : PubMed/NCBI | |
|
Jung IY, Bartoszek RL, Rech AJ, Collins SM, Ooi SK, Williams EF, Hopkins CR, Narayan V, Haas NB, Frey NV, et al: Type I interferon signaling via the EGR2 transcriptional regulator potentiates CAR T Cell-intrinsic dysfunction. Cancer Discov. 13:1636–1655. 2023. View Article : Google Scholar : PubMed/NCBI |