|
1
|
Yamada H, Kase Y, Okano Y, Kim D, Goto M,
Takahashi S, Okano H and Toda M: Subarachnoid hemorrhage triggers
neuroinflammation of the entire cerebral cortex, leading to
neuronal cell death. Inflamm Regen. 42:612022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Raskob GE, Angchaisuksiri P, Blanco AN,
Buller H, Gallus A, Hunt BJ, Hylek EM, Kakkar A, Konstantinides SV,
McCumber M, et al: Thrombosis: A major contributor to global
disease burden. Arterioscler Thromb Vasc Biol. 34:2363–2371. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Boehme AK, Esenwa C and Elkind MSV: Stroke
risk factors, genetics, and prevention. Circ Res. 120:472–495.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Feigin VL, Abajobir AA, Abate KH,
Abd-Allah F, Abdulle AM, Abera SF, Abyu GY, Ahmed MB, Aichour AN,
Aichour I, et al: Global, regional, and national burden of
neurological disorders during 1990-2015: A systematic analysis for
the global burden of disease study 2015. Lancet Neurol. 16:877–897.
2017. View Article : Google Scholar
|
|
5
|
Aldayel AY, Alharbi MM, Shadid AM and
Zevallos JC: The association between race/ethnicity and the
prevalence of stroke among United States adults in 2015: A
secondary analysis study using behavioural risk factor surveillance
system (BRFSS). Electron Physician. 9:5871–5876. 2017. View Article : Google Scholar
|
|
6
|
Katan M and Luft A: Global burden of
stroke. Semin Neurol. 38:208–211. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Virani SS, Alonso A, Aparicio HJ, Benjamin
EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng
S, Delling FN, et al: Heart disease and stroke statistics-2021
update: A report from the american heart association. Circulation.
143:e254–e743. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A,
Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP,
Commodore-Mensah Y, et al: Heart disease and stroke statistics-2022
update: A report from the American heart association. Circulation.
145:e153–e639. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang C, Li X and Wang H: Application of
action observation therapy in stroke rehabilitation: A systematic
review. Brain Behav. 13:e31572023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Campbell BCV and Khatri P: Stroke. Lancet.
396:129–142. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Virani SS, Alonso A, Benjamin EJ,
Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR,
Cheng S, Delling FN, et al: Heart disease and stroke
statistics-2020 update: A report from the American heart
association. Circulation. 141:e139–e596. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sun L, He C, Nair L, Yeung J and Egwuagu
CE: Interleukin 12 (IL-12) family cytokines: Role in immune
pathogenesis and treatment of CNS autoimmune disease. Cytokine.
75:249–255. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Iwasaki Y, Fujio K, Okamura T and Yamamoto
K: Interleukin-27 in T cell immunity. Int J Mol Sci. 16:2851–2863.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nortey AN, Garces KN and Hackam AS:
Exploring the role of interleukin-27 as a regulator of neuronal
survival in central nervous system diseases. Neural Regen Res.
17:2149–2152. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sénécal V, Deblois G, Beauseigle D,
Schneider R, Brandenburg J, Newcombe J, Moore CS, Prat A, Antel J
and Arbour N: Production of IL-27 in multiple sclerosis lesions by
astrocytes and myeloid cells: Modulation of local immune responses.
Glia. 64:553–569. 2016. View Article : Google Scholar
|
|
16
|
Luo C, Li B, Chen L, Zhao L and Wei Y:
IL-27 protects the brain from ischemia-reperfusion injury via the
gp130/STAT3 signaling pathway. J Mol Neurosci. 71:1838–1848. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhao X, Ting S, Liu C, Sun G, Kruzel M,
Roy-O'Reilly M and Aronowski J: Neutrophil polarization by IL-27 as
a therapeutic target for intracerebral hemorrhage. Nat Commun.
8:6022017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Martha SR, Cheng Q, Fraser JF, Gong L,
Collier LA, Davis SM, Lukins D, Alhajeri A, Grupke S and
Pennypacker KR: Expression of cytokines and chemokines as
predictors of stroke outcomes in acute ischemic stroke. Front
Neurol. 10:13912020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Montaño A, Hanley DF and Hemphill JC III:
Hemorrhagic stroke. Handb Clin Neurol. 176:229–248. 2021.
View Article : Google Scholar
|
|
20
|
Feske SK: Ischemic stroke. Am J Med.
134:1457–1464. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hilkens NA, Casolla B, Leung TW and de
Leeuw FE: Stroke. Lancet. 403:2820–2836. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Meng F, Qiu J, Chen H, Shi X, Yin M, Zhu M
and Yang G: Dietary supplementation with N-3 polyunsaturated fatty
acid-enriched fish oil promotes wound healing after ultraviolet
B-induced sunburn in mice. Food Sci Nutr. 9:3693–3700. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ohashi SN, DeLong JH, Kozberg MG,
Mazur-Hart DJ, van Veluw SJ, Alkayed NJ and Sansing LH: Role of
inflammatory processes in hemorrhagic stroke. Stroke. 54:605–619.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Couch C, Mallah K, Borucki DM, Bonilha HS
and Tomlinson S: State of the science in inflammation and stroke
recovery: A systematic review. Ann Phys Rehabil Med. 65:1015462022.
View Article : Google Scholar :
|
|
25
|
Yang G, Chen H, Chen Q, Qiu J, Qahar M,
Fan Z, Chu W, Tredget EE and Wu Y: Injury-induced interleukin-1
alpha promotes Lgr5 hair follicle stem cells de novo regeneration
and proliferation via regulating regenerative microenvironment in
mice. Inflamm Regen. 43:142023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liang Z, Lou Y, Hao Y, Li H, Feng J and
Liu S: The relationship of astrocytes and microglia with different
stages of ischemic stroke. Curr Neuropharmacol. 21:2465–2480. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jayaraj RL, Azimullah S, Beiram R, Jalal
FY and Rosenberg GA: Neuroinflammation: Friend and foe for ischemic
stroke. J Neuroinflammation. 16:1422019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Orellana-Urzúa S, Rojas I, Líbano L and
Rodrigo R: Pathophysiology of ischemic stroke: Role of oxidative
stress. Curr Pharm Des. 26:4246–4260. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhu M, Zhu M, Wu X, Xu M, Fan K, Wang J,
Zhang L, Yin M, Wu J, Zhu Z and Yang G: Porcine acellular dermal
matrix increases fat survival rate after fat grafting in nude mice.
Aesthetic Plast Surg. 45:2426–2436. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Shi K, Tian DC, Li ZG, Ducruet AF, Lawton
MT and Shi FD: Global brain inflammation in stroke. Lancet Neurol.
18:1058–1066. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yip S and Sastry BR: Effects of hemoglobin
and its breakdown products on synaptic transmission in rat
hippocampal CA1 neurons. Brain Res. 864:1–12. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hammer A, Yang G, Friedrich J, Kovacs A,
Lee DH, Grave K, Jörg S, Alenina N, Grosch J, Winkler J, et al:
Role of the receptor Mas in macrophage-mediated inflammation in
vivo. Proc Natl Acad Sci USA. 113:14109–14114. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yang G, Waheed S, Wang C, Shekh M, Li Z
and Wu J: Exosomes and their bioengineering strategies in the
cutaneous wound healing and related complications: Current
knowledge and future perspectives. Int J Biol Sci. 19:1430–1454.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yang G, Tan L, Yao H, Xiong Z, Wu J and
Huang X: Long-term effects of severe burns on the kidneys: Research
advances and potential therapeutic approaches. J Inflamm Res.
16:1905–1921. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Shapouri-Moghaddam A, Mohammadian S,
Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi
A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization,
and function in health and disease. J Cell Physiol. 233:6425–6440.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai
M, Ji X, Leak RK, Gao Y, Chen J and Hu M: Interleukin-4 is
essential for microglia/macrophage M2 polarization and long-term
recovery after cerebral ischemia. Stroke. 47:498–504. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yang Y, Salayandia VM, Thompson JF, Yang
LY, Estrada EY and Yang Y: Attenuation of acute stroke injury in
rat brain by minocycline promotes blood-brain barrier remodeling
and alternative microglia/macrophage activation during recovery. J
Neuroinflammation. 12:262015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ge R, Tornero D, Hirota M, Monni E,
Laterza C, Lindvall O and Kokaia Z: Choroid plexus-cerebrospinal
fluid route for monocyte-derived macrophages after stroke. J
Neuroinflammation. 14:1532017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Amantea D and Bagetta G: Drug repurposing
for immune modulation in acute ischemic stroke. Curr Opin
Pharmacol. 26:124–130. 2016. View Article : Google Scholar
|
|
40
|
Zi L, Zhou W, Xu J, Li J, Li N, Xu J, You
C, Wang C and Tian M: Rosuvastatin nanomicelles target
neuroinflammation and improve neurological deficit in a mouse model
of intracerebral hemorrhage. Int J Nanomedicine. 16:2933–2947.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chernykh ER, Shevela EY, Starostina NM,
Morozov SA, Davydova MN, Menyaeva EV and Ostanin AA: Safety and
therapeutic potential of M2-macrophages in stroke treatment. Cell
Transplant. 25:1461–1471. 2016. View Article : Google Scholar
|
|
42
|
Jin Y, Fyfe PK, Gardner S, Wilmes S,
Bubeck D and Moraga I: Structural insights into the assembly and
activation of the IL-27 signaling complex. EMBO Rep. 23:e554502022.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yoshida H and Hunter CA: The immunobiology
of interleukin-27. Annu Rev Immunol. 33:417–443. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang Q and Liu J: Regulation and immune
function of IL-27. Adv Exp Med Biol. 941:191–211. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Schneider R, Yaneva T, Beauseigle D,
El-Khoury L and Arbour N: IL-27 increases the proliferation and
effector functions of human naïve CD8+ T lymphocytes and promotes
their development into Tc1 cells. Eur J Immunol. 41:47–59. 2011.
View Article : Google Scholar
|
|
46
|
Hibi M, Murakami M, Saito M, Hirano T,
Taga T and Kishimoto T: Molecular cloning and expression of an IL-6
signal transducer, gp130. Cell. 63:1149–1157. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pflanz S, Hibbert L, Mattson J, Rosales R,
Vaisberg E, Bazan JF, Phillips JH, McClanahan TK, de Waal Malefyt R
and Kastelein RA: WSX-1 and glycoprotein 130 constitute a
signal-transducing receptor for IL-27. J Immunol. 172:2225–2231.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wan X, Zhang Y, Tang H, Li M, Jiang T, He
J, Bao C, Wang J, Song Y, Xiao P, et al: IL-27 signaling negatively
regulates FcεRI-mediated mast cell activation and allergic
response. J Leukoc Biol. 112:411–424. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Han L, Chen Z, Yu K, Yan J, Li T, Ba X,
Lin W, Huang Y, Shen P, Huang Y, et al: Interleukin 27 signaling in
rheumatoid arthritis patients: Good or evil? Front Immunol.
12:7872522022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Valdés-López JF, Fernandez GJ and
Urcuqui-Inchima S: Synergistic effects of toll-like receptor 1/2
and toll-like receptor 3 signaling triggering interleukin 27 gene
expression in chikungunya virus-infected macrophages. Front Cell
Dev Biol. 10:8121102022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Beizavi Z, Zohouri M, Asadipour M and
Ghaderi A: IL-27, a pleiotropic cytokine for fine-tuning the immune
response in cancer. Int Rev Immunol. 40:319–329. 2021. View Article : Google Scholar
|
|
52
|
Frangieh M, McHenry A, Phillips R, Ye C,
Bernier A, Laffel L, Elyaman W and Bradshaw EM: IL-27: An
endogenous constitutive repressor of human monocytes. Clin Immunol.
217:1084982020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Andrews C, McLean MH, Hixon JA, Pontejo
SM, Starr T, Malo C, Cam M, Ridnour L, Hickman H, Steele-Mortimer
O, et al: IL-27 induces an IFN-like signature in murine macrophages
which in turn modulate colonic epithelium. Front Immunol.
14:10218242023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Frank AC, Zhang X, Katsounas A, Bharucha
JP, Kottilil S and Imamichi T: Interleukin-27, an anti-HIV-1
cytokine, inhibits replication of hepatitis C virus. J Interferon
Cytokine Res. 30:427–431. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Imamichi T, Yang J, Huang DW, Brann TW,
Fullmer BA, Adelsberger JW, Lempicki RA, Baseler MW and Lane HC:
IL-27, a novel anti-HIV cytokine, activates multiple
interferon-inducible genes in macrophages. AIDS. 22:39–45. 2008.
View Article : Google Scholar
|
|
56
|
Wang X, Liu D, Zhang X, Yang L, Xia Z and
Zhang Q: Exosomes from adipose-derived mesenchymal stem cells
alleviate sepsis-induced lung injury in mice by inhibiting the
secretion of IL-27 in macrophages. Cell Death Discov. 8:182022.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kalliolias GD and Ivashkiv LB: IL-27
activates human monocytes via STAT1 and suppresses IL-10 production
but the inflammatory functions of IL-27 are abrogated by TLRs and
p38. J Immunol. 180:6325–6333. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lin H, Lin D, Xiong XS, Dai XX and Lin T:
Expression and regulation of interleukin-9 in chronic
rhinosinusitis. Am J Rhinol Allergy. 29:e18–e23. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Dong Z, Lu X, Yang Y, Zhang T, Li Y, Chai
Y, Lei W, Li C, Ai L and Tai W: IL-27 alleviates the
bleomycin-induced pulmonary fibrosis by regulating the Th17 cell
differentiation. BMC Pulm Med. 15:132015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jirmo AC, Daluege K, Happle C, Albrecht M,
Dittrich AM, Busse M, Habener A, Skuljec J and Hansen G: IL-27 is
essential for suppression of experimental allergic asthma by the
TLR7/8 agonist R848 (resiquimod). J Immunol. 197:4219–4227. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Rückerl D, Heßmann M, Yoshimoto T, Ehlers
S and Hölscher C: Alternatively activated macrophages express the
IL-27 receptor alpha chain WSX-1. Immunobiology. 211:427–436. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Watzlawick R, Kenngott EE, Liu FD, Schwab
JM and Hamann A: Anti-inflammatory effects of IL-27 in
zymosan-induced peritonitis: Inhibition of neutrophil recruitment
partially explained by impaired mobilization from bone marrow and
reduced chemokine levels. PLoS One. 10:e01376512015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Luck ME, Li X, Herrnreiter CJ, Cannon AR
and Choudhry MA: IL-27 promotes intestinal barrier integrity
following ethanol intoxication and burn injury. ImmunoHorizons.
6:600–613. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jouhault Q, Cherqaoui B, Jobart-Malfait A,
Glatigny S, Lauraine M, Hulot A, Morelle G, Hagege B, Ermoza K, El
Marjou A, et al: Interleukin 27 is a novel cytokine with
anti-inflammatory effects against spondyloarthritis through the
suppression of Th17 responses. Front Immunol. 13:10724202023.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zou X, Zhang Y, Wang S, Wang X, Yang W and
Li Y: Attenuate ICOSL and IL-27 in Aire-overexpressing DC2.4 cells
suppress TFH cell differentiation. Immunobiology. 226:1521472021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pan L, Wang J, Liu J, Guo L and Yang S:
Deficiency in the frequency and function of Tr1 cells in IgAV and
the possible role of IL-27. Rheumatology (Oxford). 60:3432–3442.
2021. View Article : Google Scholar
|
|
67
|
Gerhardt L, Hong MMY, Yousefi Y, Figueredo
R and Maleki Vareki S: IL-12 and IL-27 promote CD39 expression on
CD8+ T cells and differentially regulate the CD39+CD8+ T cell
phenotype. J Immunol. 210:1598–1606. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mei Y, Ran Y, Liu Z, Zhou Y, He J, Yin N
and Qi H: IL-27 mediates Th1 cells infiltration in fetal membranes
in preterm labor. Reprod Sci. 29:1764–1775. 2022. View Article : Google Scholar
|
|
69
|
Cox JH, Kljavin NM, Ramamoorthi N, Diehl
L, Batten M and Ghilardi N: IL-27 promotes T cell-dependent colitis
through multiple mechanisms. J Exp Med. 208:115–123. 2011.
View Article : Google Scholar :
|
|
70
|
Chen X, Deng R, Chi W, Hua X, Lu F, Bian
F, Gao N, Li Z, Pflugfelder SC, de Paiva CS and Li DQ: IL-27
signaling deficiency develops Th17-enhanced Th2-dominant
inflammation in murine allergic conjunctivitis model. Allergy.
74:910–921. 2019. View Article : Google Scholar
|
|
71
|
Gong H, Ma S, Chen J, Yang B, Liu S, Liu
X, Han J, Wu X, Lei L, Yin Z, et al: Dendritic cell-derived IL-27
p28 regulates T cell program in pathogenicity and alleviates acute
graft-versus-host disease. Signal Transduc Target Ther. 7:3192022.
View Article : Google Scholar
|
|
72
|
Park YJ, Ryu H, Choi G, Kim BS, Hwang ES,
Kim HS and Chung Y: IL-27 confers a protumorigenic activity of
regulatory T cells via CD39. Proc Natl Acad Sci USA. 116:3106–3111.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Le HT, Keslar K, Nguyen QT, Blazar BR,
Hamilton BK and Min B: Interleukin-27 enforces regulatory T cell
functions to prevent graft-versus-host disease. Front Immunol.
11:1812020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Xia C, Li XQ, Zhou ZH and Chen HS:
Identification of cytokines for early prediction of malignant
middle cerebral artery infarction. Int J Neurosci. 127:86–91. 2017.
View Article : Google Scholar
|
|
75
|
Zhou Z, Zhang J, Li X, Xia C, Han Y and
Chen H: Protein microarray analysis identifies key cytokines
associated with malignant middle cerebral artery infarction. Brain
Behav. 7:e007462017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lowe DW, Hollis BW, Wagner CL, Bass T,
Kaufman DA, Horgan MJ, Givelichian LM, Sankaran K, Yager JY,
Katikaneni LD, et al: Vitamin D insufficiency in neonatal
hypoxic-ischemic encephalopathy. Pediatr Res. 82:55–62. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lind L, Siegbahn A, Lindahl B, Stenemo M,
Sundström J and Ärnlöv J: Discovery of new risk markers for
ischemic stroke using a novel targeted proteomics chip. Stroke.
46:3340–3347. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sweeney CM, Lonergan R, Basdeo SA,
Kinsella K, Dungan LS, Higgins SC, Kelly PJ, Costelloe L, Tubridy
N, Mills KHG and Fletcher JM: IL-27 mediates the response to IFN-β
therapy in multiple sclerosis patients by inhibiting Th17 cells.
Brain Behav Immun. 25:1170–1181. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Meka RR, Venkatesha SH, Dudics S, Acharya
B and Moudgil KD: IL-27-induced modulation of autoimmunity and its
therapeutic potential. Autoimmun Rev. 14:1131–1141. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kouchaki E, Kakhaki RD, Tamtaji OR,
Dadgostar E, Behnam M, Nikoueinejad H and Akbari H: Increased serum
levels of TNF-α and decreased serum levels of IL-27 in patients
with Parkinson disease and their correlation with disease severity.
Clin Neurol Neurosurg. 166:76–79. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Casella G, Finardi A, Descamps H, Colombo
F, Maiorino C, Ruffini F, Patrone M, Degano M, Martino G, Muzio L,
et al: IL-27, but not IL-35, inhibits neuroinflammation through
modulating GM-CSF expression. Sci Rep. 7:165472017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Casella G, Rasouli J, Thome R, Descamps
HC, Vattikonda A, Ishikawa L, Boehm A, Hwang D, Zhang WF, Xiao D,
et al: Interferon-γ/Interleukin-27 axis induces programmed death
ligand 1 expression in monocyte-derived dendritic cells and
restores immune tolerance in central nervous system autoimmunity.
Front Immunol. 11:5767522020. View Article : Google Scholar
|
|
83
|
Garces K, Carmy T, Illiano P, Brambilla R
and Hackam AS: Increased neuroprotective microglia and
photoreceptor survival in the retina from a peptide inhibitor of
myeloid differentiation factor 88 (MyD88). J Mol Neurosci.
70:968–980. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Nortey A, Garces K, Carmy-Bennun T and
Hackam AS: The cytokine IL-27 reduces inflammation and protects
photoreceptors in a mouse model of retinal degeneration. J
Neuroinflammation. 19:2162022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tanaka T, Obana M, Mohri T, Ebara M, Otani
Y, Maeda M and Fujio Y: Interleukin-27 induces the endothelial
differentiation in Sca-1+ cardiac resident stem cells. Cytokine.
75:365–372. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hu A, Ding M, Zhu J, Liu JQ, Pan X,
Ghoshal K and Bai XF: Intra-tumoral delivery of IL-27 using
adeno-associated virus stimulates anti-tumor immunity and enhances
the efficacy of immunotherapy. Front Cell Dev Biol. 8:2102020.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu JQ, Zhu J, Hu A, Zhang A, Yang C, Yu
J, Ghoshal K, Basu S and Bai XF: Is AAV-delivered IL-27 a potential
immunotherapeutic for cancer. Am J Cancer Res. 10:3565–3574.
2020.
|
|
88
|
Yoshimoto T, Chiba Y, Furusawa JI, Xu M,
Tsunoda R, Higuchi K and Mizoguchi I: Potential clinical
application of interleukin-27 as an antitumor agent. Cancer Sci.
106:1103–1110. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Tian HY, Lei YX, Zhou JT, Liu LJ, Yang T,
Zhou Y, Ge JW, Xu C and Mei ZG: Insight into interplay between
PANoptosis and autophagy: novel therapeutics in ischemic stroke.
Front Mol Neurosci. 17:14820152025. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wan H, Ban X, He Y, Yang Y, Hu X, Shang L,
Wan X, Zhang Q and Xiong K: Voltage-dependent anion channel 1
oligomerization regulates PANoptosis in retinal
ischemia-reperfusion injury. Neural Regen Res. Jan 13–2025.Epub
ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tajalli-Nezhad S, Karimian M, Beyer C,
Atlasi MA and Azami Tameh AA: The regulatory role of Toll-like
receptors after ischemic stroke: Neurosteroids as TLR modulators
with the focus on TLR2/4. Cell Mol Life Sci. 76:523–537. 2019.
View Article : Google Scholar
|
|
92
|
Wu Y, Li W and Zhou C, Lu F, Gao T, Liu Y,
Cao J, Zhang Y, Zhang Y and Zhou C: Ketamine inhibits
lipopolysaccharide-induced astrocytes activation by suppressing
TLR4/NF-ĸB pathway. Cell Physiol Biochem. 30:609–617. 2012.
View Article : Google Scholar
|
|
93
|
Peltzer N and Walczak H: Cell death and
inflammation-a vital but dangerous liaison. Trends Immunol.
40:387–402. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Fritsch M, Günther SD, Schwarzer R, Albert
MC, Schorn F, Werthenbach JP, Schiffmann LM, Stair N, Stocks H,
Seeger JM, et al: Caspase-8 is the molecular switch for apoptosis,
necroptosis and pyroptosis. Nature. 575:683–687. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Mandal R, Barrón JC, Kostova I, Becker S
and Strebhardt K: Caspase-8: The double-edged sword. Biochim
Biophys Acta Rev Cancer. 1873:1883572020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Shi Y, Liu Q, Chen W, Wang R, Wang L, Liu
ZQ, Duan XC, Zhang Y, Shen A, Peng D, et al: Protection of Taohong
Siwu Decoction on PC12 cells injured by oxygen glucose
deprivation/reperfusion via mitophagy-NLRP3 inflammasome pathway in
vitro. J Ethnopharmacol. 301:1157842023. View Article : Google Scholar
|
|
97
|
Yang YD, Li ZX, Hu XM, Wan H, Zhang Q,
Xiao R and Xiong K: Insight into crosstalk between mitophagy and
apoptosis/necroptosis: mechanisms and clinical applications in
ischemic stroke. Curr Med Sci. 42:237–248. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang H, Ye J, Peng Y, Ma W, Chen H, Sun H,
Feng Z, He W, Li G, Chu S, et al: CKLF induces microglial
activation via triggering defective mitophagy and mitochondrial
dysfunction. Autophagy. 20:590–613. 2024. View Article : Google Scholar :
|
|
99
|
Zhao J, Qiu YK, Xie YX, Li XY, Li YB, Wu
B, Wang YW, Tian XY, Lv YL, Zhang LH, et al: Imbalance of
mitochondrial quality control regulated by STING and PINK1 affects
cyfluthrin-induced neuroinflammation. Sci Total Environ.
946:1743132024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li F, Yifei W and Zheng K: Microglial
mitophagy integrates the microbiota-gut-brain axis to restrain
neuroinflammation during neurotropic herpesvirus infection.
Autophagy. 19:734–736. 2023. View Article : Google Scholar :
|
|
101
|
Zhou X, Wang J, Yu L, Qiao G, Qin D,
Yuen-Kwan Law B, Ren F, Wu J and Wu A: Mitophagy and cGAS-STING
crosstalk in neuroinflammation. Acta Pharm Sin B. 14:3327–3361.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Majumder D, Sarkar C, Debnath R, Tribedi P
and Maiti D: Mechanistic insight into the synergism of IL-27 and
IL-28B in regulation of benzo(a)pyrene-induced lung carcinogenesis
associated ROS/NF-κB/NLRP3 crosstalk. Chem Biol Interact.
354:1098072022. View Article : Google Scholar
|
|
103
|
Persidsky Y, Ramirez SH, Haorah J and
Kanmogne GD: Blood-brain barrier: Structural components and
function under physiologic and pathologic conditions. J Neuroimmune
Pharmacol. 1:223–236. 2006. View Article : Google Scholar
|
|
104
|
Pardridge WM: A historical review of brain
drug delivery. Pharmaceutics. 14:12832022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Dong X: Current strategies for brain drug
delivery. Theranostics. 8:1481–1493. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Venkat P, Chopp M and Chen J: Cell-based
and exosome therapy in diabetic stroke. Stem Cells Transl Med.
7:451–455. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chen J and Chopp M: Exosome therapy for
stroke. Stroke. 49:1083–1090. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Giovannelli L, Bari E, Jommi C, Tartara F,
Armocida D, Garbossa D, Cofano F, Torre ML and Segale L:
Mesenchymal stem cell secretome and extracellular vesicles for
neurodegenerative diseases: Risk-benefit profile and next steps for
the market access. Bioact Mater. 29:16–35. 2023.PubMed/NCBI
|
|
109
|
Yang H, Tu Z, Yang D, Hu M, Zhou L, Li Q,
Yu B and Hou S: Exosomes from hypoxic pre-treated ADSCs attenuate
acute ischemic stroke-induced brain injury via delivery of
circ-Rps5 and promote M2 microglia/macrophage polarization.
Neurosci Lett. 769:1363892022. View Article : Google Scholar
|
|
110
|
Wang C, Börger V, Mohamud Yusuf A, Tertel
T, Stambouli O, Murke F, Freund N, Kleinschnitz C, Herz J, Gunzer
M, et al: Postischemic neuroprotection associated with
anti-inflammatory effects by mesenchymal stromal cell-derived small
extracellular vesicles in aged mice. Stroke. 53:e14–e18. 2022.
View Article : Google Scholar :
|
|
111
|
Zhou L, Liang J and Xiong T: Research
progress of mesenchymal stem cell-derived exosomes on inflammatory
response after ischemic stroke. Zhejiang Da Xue Xue Bao Yi Xue Ban.
51:500–506. 2022.
|
|
112
|
Hirsch Y, Geraghty JR, Reiter CR, Katz EA,
Little CF, Tobin MK and Testai FD: Unpacking the role of
extracellular vesicles in ischemic and hemorrhagic stroke:
Pathophysiology and therapeutic implications. Transl Stroke Res.
14:146–159. 2023. View Article : Google Scholar
|
|
113
|
Huang Z, Guo L, Huang L, Shi Y, Liang J
and Zhao L: Baicalin-loaded macrophage-derived exosomes ameliorate
ischemic brain injury via the antioxidative pathway. Mater Sci Eng
C Mater Biol Appl. 126:1121232021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Li F, Zhao L, Shi Y and Liang J:
Edaravone-loaded macrophage-derived exosomes enhance
neuroprotection in the rat permanent middle cerebral artery
occlusion model of stroke. Mol Pharm. 17:3192–3201. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Tao B, Du R, Zhang X, Jia B, Gao Y, Zhao Y
and Liu Y: Engineering CAR-NK cell derived exosome disguised
nano-bombs for enhanced HER2 positive breast cancer brain
metastasis therapy. J Control Release. 363:692–706. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wang J, Tang W, Yang M, Yin Y, Li H, Hu F,
Tang L, Ma X, Zhang Y and Wang Y: Inflammatory tumor
microenvironment responsive neutrophil exosomes-based drug delivery
system for targeted glioma therapy. Biomaterials. 273:1207842021.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi
C, Huang NP, Xiao ZD, Lu ZH, Tannous BA and Gao J: Surface
functionalized exosomes as targeted drug delivery vehicles for
cerebral ischemia therapy. Biomaterials. 150:137–149. 2018.
View Article : Google Scholar
|
|
118
|
Wu T, Liu Y, Cao Y and Liu Z: Engineering
macrophage exosome disguised biodegradable nanoplatform for
enhanced sonodynamic therapy of glioblastoma. Adv Mater.
34:21103642022. View Article : Google Scholar
|
|
119
|
Liu J, Sun Y, Zeng X, Liu Y, Liu C, Zhou
Y, Liu Y, Sun G and Guo M: Engineering and characterization of an
artificial drug-carrying vesicles nanoplatform for enhanced
specifically targeted therapy of glioblastoma. Adv Mater.
35:23036602023. View Article : Google Scholar
|
|
120
|
Jia G, Han Y, An Y, Ding Y, He C, Wang X
and Tang Q: NRP-1 targeted and cargo-loaded exosomes facilitate
simultaneous imaging and therapy of glioma in vitro and in vivo.
Biomaterials. 178:302–316. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Li B, Chen X, Qiu W, Zhao R, Duan J, Zhang
S, Pan Z, Zhao S, Guo Q, Qi Y, et al: Synchronous disintegration of
ferroptosis defense axis via engineered exosome-conjugated magnetic
nanoparticles for glioblastoma therapy. Adv Sci (Weinh).
9:21054512022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wang R, Wang X, Zhao H, Li N, Li J, Zhang
H and Di L: Targeted delivery of hybrid nanovesicles for enhanced
brain penetration to achieve synergistic therapy of glioma. J
Control Release. 365:331–347. 2024. View Article : Google Scholar
|
|
123
|
Kang M, Yadav MK, Mbanefo EC, Yu CR and
Egwuagu CE: IL-27-containing exosomes secreted by innate B-1a cells
suppress and ameliorate uveitis. Front Immunol. 14:10711622023.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Ha D, Yang N and Nadithe V: Exosomes as
therapeutic drug carriers and delivery vehicles across biological
membranes: Current perspectives and future challenges. Acta Pharm
Sin B. 6:287–296. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Alavian F and Shams N: Oral and
intra-nasal administration of nanoparticles in the cerebral
ischemia treatment in animal experiments: Considering its
advantages and disadvantages. Curr Clin Pharmacol. 15:20–29.
2020.
|
|
126
|
Jang SF, Liu WH, Song WS, Chiang KL, Ma
HI, Kao CL and Chen MT: Nanomedicine-based neuroprotective
strategies in patient specific-iPSC and personalized medicine. Int
J Mol Sci. 15:3904–3925. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Otsuka R, Wada H, Murata T and Seino KI:
Immune reaction and regulation in transplantation based on
pluripotent stem cell technology. Inflamm Regen. 40:122020.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y
and Zheng Y: Engineered exosomes: Desirable target-tracking
characteristics for cerebrovascular and neurodegenerative disease
therapies. Theranostics. 11:8926–8944. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Chen J, Li P, Zhang T, Xu Z, Huang X, Wang
R and Du L: Review on strategies and technologies for exosome
isolation and purification. Front Bioeng Biotechnol. 9:8119712022.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Murugaiyan G and Saha B: IL-27 in tumor
immunity and immunotherapy. Trends Mol Med. 19:108–116. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Oniki S, Nagai H, Horikawa T, Furukawa J,
Belladonna ML, Yoshimoto T, Hara I and Nishigori C: Interleukin-23
and interleukin-27 exert quite different antitumor and vaccine
effects on poorly immunogenic melanoma. Cancer Res. 66:6395–6404.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Zhu J, Liu JQ, Shi M, Cheng X, Ding M,
Zhang JC, Davis JP, Varikuti S, Satoskar AR, Lu L, et al: IL-27
gene therapy induces depletion of Tregs and enhances the efficacy
of cancer immunotherapy. JCI Insight. 3:e987452018. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Jevševar S, Kunstelj M and Porekar VG:
PEGylation of therapeutic proteins. Biotechnol J. 5:113–128. 2010.
View Article : Google Scholar
|
|
134
|
Levin D, Golding B, Strome SE and Sauna
ZE: Fc fusion as a platform technology: Potential for modulating
immunogenicity. Trends Biotechnol. 33:27–34. 2015. View Article : Google Scholar
|
|
135
|
Fabbi M, Carbotti G and Ferrini S: Dual
roles of IL-27 in cancer biology and immunotherapy. Mediators
Inflamm. 2017:39580692017. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Gonin J, Carlotti A, Dietrich C, Audebourg
A, Radenen-Bussière B, Caignard A, Avril MF, Vacher-Lavenu MC,
Larousserie F and Devergne O: Expression of IL-27 by tumor cells in
invasive cutaneous and metastatic melanomas [corrected]. PLoS One.
8:e756942013. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Kourko O, Seaver K, Odoardi N, Basta S and
Gee K: IL-27, IL-30, and IL-35: A cytokine triumvirate in cancer.
Front Oncol. 9:9692019. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Składanowska K, Bloch Y, Strand J, White
KF, Hua J, Aldridge D, Welin M, Logan DT, Soete A and Merceron R:
Structural basis of activation and antagonism of receptor signaling
mediated by interleukin-27. Cell Rep. 41:1114902022. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Xu WD, Wang DC, Zhao M and Huang AF: An
updated advancement of bifunctional IL-27 in inflammatory
autoimmune diseases. Front Immunol. 15:13663772024. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Chen Q, Ghilardi N, Wang H, Baker T, Xie
MH, Gurney A, Grewal IS and de Sauvage FJ: Development of Th1-type
immune responses requires the type I cytokine receptor TCCR.
Nature. 407:916–920. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Lucas S, Ghilardi N, Li J and de Sauvage
FJ: IL-27 regulates IL-12 responsiveness of naive CD4+ T cells
through Stat1-dependent and -independent mechanisms. Proc Natl Acad
Sci USA. 100:15047–15052. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Huang D, Ran Y, Liu Z, He J, Yin N and Qi
H: IL-27 mediates pro-inflammatory effects via the ERK signaling
pathway during preterm labor. Front Immunol. 12:7092292021.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Hunter CA and Kastelein R: Interleukin-27:
Balancing protective and pathological immunity. Immunity.
37:960–969. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Petes C, Mariani MK, Yang Y, Grandvaux N
and Gee K: Interleukin (IL)-6 inhibits IL-27- and IL-30-mediated
inflammatory responses in human monocytes. Front Immunol.
9:2562018. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Olson BM, Sullivan JA and Burlingham WJ:
Interleukin 35: A key mediator of suppression and the propagation
of infectious tolerance. Front Immunol. 4:3152013. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Takeda A, Hamano S, Yamanaka A, Hanada T,
Ishibashi T, Mak TW, Yoshimura A and Yoshida H: Cutting edge: Role
of IL-27/WSX-1 signaling for induction of T-bet through activation
of STAT1 during initial Th1 commitment. J Immunol. 170:4886–4890.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Sas AR, Carbajal KS, Jerome AD, Menon R,
Yoon C, Kalinski AL, Giger RJ and Segal BM: A new neutrophil subset
promotes CNS neuron survival and axon regeneration. Nat Immunol.
21:1496–1505. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Martin SS, Aday AW, Almarzooq ZI, Anderson
CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ
and Boehme AK: 2024 Heart disease and stroke statistics: A report
of US and global data from the American heart association.
Circulation. 149:e347–e913. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Uzdensky AB: Photothrombotic stroke as a
model of ischemic stroke. Transl Stroke Res. 9:437–451. 2018.
View Article : Google Scholar
|
|
150
|
Fluri F, Schuhmann MK and Kleinschnitz C:
Animal models of ischemic stroke and their application in clinical
research. Drug Des Devel Ther. 9:3445–3454. 2015.PubMed/NCBI
|
|
151
|
Rose-John S: Interleukin-6 family
cytokines. Cold Spring Harb Perspect Biol. 10:a0284152018.
View Article : Google Scholar
|
|
152
|
Bongartz H, Seiß EA, Bock J and Schaper F:
Glucocorticoids attenuate interleukin-6-induced c-Fos and Egr1
expression and impair neuritogenesis in PC12 cells. J Neurochem.
157:532–549. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Urrutia P, Aguirre P, Esparza A, Tapia V,
Mena NP, Arredondo M, González-Billault C and Núñez MT:
Inflammation alters the expression of DMT1, FPN1 and hepcidin, and
it causes iron accumulation in central nervous system cells. J
Neurochem. 126:541–549. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Furukawa T, Miyake Y, Ito H, Ogata A,
Maeyama H, Nakahara Y, Yoshioka F, Masuoka J, Yoshida H and Abe T:
Interleukin-27 deletion has neuroprotective effects in the acute
ischemic stage of cerebral infarction. Biochem Biophys Res Commun.
755:1515812025. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Li S, Overman JJ, Katsman D, Kozlov SV,
Donnelly CJ, Twiss JL, Giger RJ, Coppola G, Geschwind DH and
Carmichael ST: An age-related sprouting transcriptome provides
molecular control of axonal sprouting after stroke. Nat Neurosci.
13:1496–1504. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Li S, Nie EH, Yin Y, Benowitz LI, Tung S,
Vinters HV, Bahjat FR, Stenzel-Poore MP, Kawaguchi R, Coppola G and
Carmichael ST: GDF10 is a signal for axonal sprouting and
functional recovery after stroke. Nat Neurosci. 18:1737–1745. 2015.
View Article : Google Scholar : PubMed/NCBI
|