
Research status and future perspectives of IL‑27 in the treatment of stroke (Review)
- Authors:
- Weiqin Liu
- Zhenyou Zou
- Wenyang Li
- Guang Yang
- Jie Zhang
- Zhenyu Zhang
- Hua Yao
-
Affiliations: Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China, Liuzhou Key Laboratory of Psychosis Treatment, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China, Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518000, P.R. China, Second General External Department, Jilin Province First Automobile Works General Hospital, Changchun, Jilin 130011, P.R. China - Published online on: May 30, 2025 https://doi.org/10.3892/ijmm.2025.5557
- Article Number: 116
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Yamada H, Kase Y, Okano Y, Kim D, Goto M, Takahashi S, Okano H and Toda M: Subarachnoid hemorrhage triggers neuroinflammation of the entire cerebral cortex, leading to neuronal cell death. Inflamm Regen. 42:612022. View Article : Google Scholar : PubMed/NCBI | |
Raskob GE, Angchaisuksiri P, Blanco AN, Buller H, Gallus A, Hunt BJ, Hylek EM, Kakkar A, Konstantinides SV, McCumber M, et al: Thrombosis: A major contributor to global disease burden. Arterioscler Thromb Vasc Biol. 34:2363–2371. 2014. View Article : Google Scholar : PubMed/NCBI | |
Boehme AK, Esenwa C and Elkind MSV: Stroke risk factors, genetics, and prevention. Circ Res. 120:472–495. 2017. View Article : Google Scholar : PubMed/NCBI | |
Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM, Abera SF, Abyu GY, Ahmed MB, Aichour AN, Aichour I, et al: Global, regional, and national burden of neurological disorders during 1990-2015: A systematic analysis for the global burden of disease study 2015. Lancet Neurol. 16:877–897. 2017. View Article : Google Scholar | |
Aldayel AY, Alharbi MM, Shadid AM and Zevallos JC: The association between race/ethnicity and the prevalence of stroke among United States adults in 2015: A secondary analysis study using behavioural risk factor surveillance system (BRFSS). Electron Physician. 9:5871–5876. 2017. View Article : Google Scholar | |
Katan M and Luft A: Global burden of stroke. Semin Neurol. 38:208–211. 2018. View Article : Google Scholar : PubMed/NCBI | |
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2021 update: A report from the american heart association. Circulation. 143:e254–e743. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, et al: Heart disease and stroke statistics-2022 update: A report from the American heart association. Circulation. 145:e153–e639. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Li X and Wang H: Application of action observation therapy in stroke rehabilitation: A systematic review. Brain Behav. 13:e31572023. View Article : Google Scholar : PubMed/NCBI | |
Campbell BCV and Khatri P: Stroke. Lancet. 396:129–142. 2020. View Article : Google Scholar : PubMed/NCBI | |
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2020 update: A report from the American heart association. Circulation. 141:e139–e596. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun L, He C, Nair L, Yeung J and Egwuagu CE: Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine. 75:249–255. 2015. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki Y, Fujio K, Okamura T and Yamamoto K: Interleukin-27 in T cell immunity. Int J Mol Sci. 16:2851–2863. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nortey AN, Garces KN and Hackam AS: Exploring the role of interleukin-27 as a regulator of neuronal survival in central nervous system diseases. Neural Regen Res. 17:2149–2152. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sénécal V, Deblois G, Beauseigle D, Schneider R, Brandenburg J, Newcombe J, Moore CS, Prat A, Antel J and Arbour N: Production of IL-27 in multiple sclerosis lesions by astrocytes and myeloid cells: Modulation of local immune responses. Glia. 64:553–569. 2016. View Article : Google Scholar | |
Luo C, Li B, Chen L, Zhao L and Wei Y: IL-27 protects the brain from ischemia-reperfusion injury via the gp130/STAT3 signaling pathway. J Mol Neurosci. 71:1838–1848. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Ting S, Liu C, Sun G, Kruzel M, Roy-O'Reilly M and Aronowski J: Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage. Nat Commun. 8:6022017. View Article : Google Scholar : PubMed/NCBI | |
Martha SR, Cheng Q, Fraser JF, Gong L, Collier LA, Davis SM, Lukins D, Alhajeri A, Grupke S and Pennypacker KR: Expression of cytokines and chemokines as predictors of stroke outcomes in acute ischemic stroke. Front Neurol. 10:13912020. View Article : Google Scholar : PubMed/NCBI | |
Montaño A, Hanley DF and Hemphill JC III: Hemorrhagic stroke. Handb Clin Neurol. 176:229–248. 2021. View Article : Google Scholar | |
Feske SK: Ischemic stroke. Am J Med. 134:1457–1464. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hilkens NA, Casolla B, Leung TW and de Leeuw FE: Stroke. Lancet. 403:2820–2836. 2024. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Qiu J, Chen H, Shi X, Yin M, Zhu M and Yang G: Dietary supplementation with N-3 polyunsaturated fatty acid-enriched fish oil promotes wound healing after ultraviolet B-induced sunburn in mice. Food Sci Nutr. 9:3693–3700. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ohashi SN, DeLong JH, Kozberg MG, Mazur-Hart DJ, van Veluw SJ, Alkayed NJ and Sansing LH: Role of inflammatory processes in hemorrhagic stroke. Stroke. 54:605–619. 2023. View Article : Google Scholar : PubMed/NCBI | |
Couch C, Mallah K, Borucki DM, Bonilha HS and Tomlinson S: State of the science in inflammation and stroke recovery: A systematic review. Ann Phys Rehabil Med. 65:1015462022. View Article : Google Scholar : | |
Yang G, Chen H, Chen Q, Qiu J, Qahar M, Fan Z, Chu W, Tredget EE and Wu Y: Injury-induced interleukin-1 alpha promotes Lgr5 hair follicle stem cells de novo regeneration and proliferation via regulating regenerative microenvironment in mice. Inflamm Regen. 43:142023. View Article : Google Scholar : PubMed/NCBI | |
Liang Z, Lou Y, Hao Y, Li H, Feng J and Liu S: The relationship of astrocytes and microglia with different stages of ischemic stroke. Curr Neuropharmacol. 21:2465–2480. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jayaraj RL, Azimullah S, Beiram R, Jalal FY and Rosenberg GA: Neuroinflammation: Friend and foe for ischemic stroke. J Neuroinflammation. 16:1422019. View Article : Google Scholar : PubMed/NCBI | |
Orellana-Urzúa S, Rojas I, Líbano L and Rodrigo R: Pathophysiology of ischemic stroke: Role of oxidative stress. Curr Pharm Des. 26:4246–4260. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Zhu M, Wu X, Xu M, Fan K, Wang J, Zhang L, Yin M, Wu J, Zhu Z and Yang G: Porcine acellular dermal matrix increases fat survival rate after fat grafting in nude mice. Aesthetic Plast Surg. 45:2426–2436. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT and Shi FD: Global brain inflammation in stroke. Lancet Neurol. 18:1058–1066. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yip S and Sastry BR: Effects of hemoglobin and its breakdown products on synaptic transmission in rat hippocampal CA1 neurons. Brain Res. 864:1–12. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hammer A, Yang G, Friedrich J, Kovacs A, Lee DH, Grave K, Jörg S, Alenina N, Grosch J, Winkler J, et al: Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci USA. 113:14109–14114. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Waheed S, Wang C, Shekh M, Li Z and Wu J: Exosomes and their bioengineering strategies in the cutaneous wound healing and related complications: Current knowledge and future perspectives. Int J Biol Sci. 19:1430–1454. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Tan L, Yao H, Xiong Z, Wu J and Huang X: Long-term effects of severe burns on the kidneys: Research advances and potential therapeutic approaches. J Inflamm Res. 16:1905–1921. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, Ji X, Leak RK, Gao Y, Chen J and Hu M: Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke. 47:498–504. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY and Yang Y: Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflammation. 12:262015. View Article : Google Scholar : PubMed/NCBI | |
Ge R, Tornero D, Hirota M, Monni E, Laterza C, Lindvall O and Kokaia Z: Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke. J Neuroinflammation. 14:1532017. View Article : Google Scholar : PubMed/NCBI | |
Amantea D and Bagetta G: Drug repurposing for immune modulation in acute ischemic stroke. Curr Opin Pharmacol. 26:124–130. 2016. View Article : Google Scholar | |
Zi L, Zhou W, Xu J, Li J, Li N, Xu J, You C, Wang C and Tian M: Rosuvastatin nanomicelles target neuroinflammation and improve neurological deficit in a mouse model of intracerebral hemorrhage. Int J Nanomedicine. 16:2933–2947. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chernykh ER, Shevela EY, Starostina NM, Morozov SA, Davydova MN, Menyaeva EV and Ostanin AA: Safety and therapeutic potential of M2-macrophages in stroke treatment. Cell Transplant. 25:1461–1471. 2016. View Article : Google Scholar | |
Jin Y, Fyfe PK, Gardner S, Wilmes S, Bubeck D and Moraga I: Structural insights into the assembly and activation of the IL-27 signaling complex. EMBO Rep. 23:e554502022. View Article : Google Scholar : PubMed/NCBI | |
Yoshida H and Hunter CA: The immunobiology of interleukin-27. Annu Rev Immunol. 33:417–443. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Q and Liu J: Regulation and immune function of IL-27. Adv Exp Med Biol. 941:191–211. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schneider R, Yaneva T, Beauseigle D, El-Khoury L and Arbour N: IL-27 increases the proliferation and effector functions of human naïve CD8+ T lymphocytes and promotes their development into Tc1 cells. Eur J Immunol. 41:47–59. 2011. View Article : Google Scholar | |
Hibi M, Murakami M, Saito M, Hirano T, Taga T and Kishimoto T: Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell. 63:1149–1157. 1990. View Article : Google Scholar : PubMed/NCBI | |
Pflanz S, Hibbert L, Mattson J, Rosales R, Vaisberg E, Bazan JF, Phillips JH, McClanahan TK, de Waal Malefyt R and Kastelein RA: WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol. 172:2225–2231. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wan X, Zhang Y, Tang H, Li M, Jiang T, He J, Bao C, Wang J, Song Y, Xiao P, et al: IL-27 signaling negatively regulates FcεRI-mediated mast cell activation and allergic response. J Leukoc Biol. 112:411–424. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han L, Chen Z, Yu K, Yan J, Li T, Ba X, Lin W, Huang Y, Shen P, Huang Y, et al: Interleukin 27 signaling in rheumatoid arthritis patients: Good or evil? Front Immunol. 12:7872522022. View Article : Google Scholar : PubMed/NCBI | |
Valdés-López JF, Fernandez GJ and Urcuqui-Inchima S: Synergistic effects of toll-like receptor 1/2 and toll-like receptor 3 signaling triggering interleukin 27 gene expression in chikungunya virus-infected macrophages. Front Cell Dev Biol. 10:8121102022. View Article : Google Scholar : PubMed/NCBI | |
Beizavi Z, Zohouri M, Asadipour M and Ghaderi A: IL-27, a pleiotropic cytokine for fine-tuning the immune response in cancer. Int Rev Immunol. 40:319–329. 2021. View Article : Google Scholar | |
Frangieh M, McHenry A, Phillips R, Ye C, Bernier A, Laffel L, Elyaman W and Bradshaw EM: IL-27: An endogenous constitutive repressor of human monocytes. Clin Immunol. 217:1084982020. View Article : Google Scholar : PubMed/NCBI | |
Andrews C, McLean MH, Hixon JA, Pontejo SM, Starr T, Malo C, Cam M, Ridnour L, Hickman H, Steele-Mortimer O, et al: IL-27 induces an IFN-like signature in murine macrophages which in turn modulate colonic epithelium. Front Immunol. 14:10218242023. View Article : Google Scholar : PubMed/NCBI | |
Frank AC, Zhang X, Katsounas A, Bharucha JP, Kottilil S and Imamichi T: Interleukin-27, an anti-HIV-1 cytokine, inhibits replication of hepatitis C virus. J Interferon Cytokine Res. 30:427–431. 2010. View Article : Google Scholar : PubMed/NCBI | |
Imamichi T, Yang J, Huang DW, Brann TW, Fullmer BA, Adelsberger JW, Lempicki RA, Baseler MW and Lane HC: IL-27, a novel anti-HIV cytokine, activates multiple interferon-inducible genes in macrophages. AIDS. 22:39–45. 2008. View Article : Google Scholar | |
Wang X, Liu D, Zhang X, Yang L, Xia Z and Zhang Q: Exosomes from adipose-derived mesenchymal stem cells alleviate sepsis-induced lung injury in mice by inhibiting the secretion of IL-27 in macrophages. Cell Death Discov. 8:182022. View Article : Google Scholar : PubMed/NCBI | |
Kalliolias GD and Ivashkiv LB: IL-27 activates human monocytes via STAT1 and suppresses IL-10 production but the inflammatory functions of IL-27 are abrogated by TLRs and p38. J Immunol. 180:6325–6333. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Lin D, Xiong XS, Dai XX and Lin T: Expression and regulation of interleukin-9 in chronic rhinosinusitis. Am J Rhinol Allergy. 29:e18–e23. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dong Z, Lu X, Yang Y, Zhang T, Li Y, Chai Y, Lei W, Li C, Ai L and Tai W: IL-27 alleviates the bleomycin-induced pulmonary fibrosis by regulating the Th17 cell differentiation. BMC Pulm Med. 15:132015. View Article : Google Scholar : PubMed/NCBI | |
Jirmo AC, Daluege K, Happle C, Albrecht M, Dittrich AM, Busse M, Habener A, Skuljec J and Hansen G: IL-27 is essential for suppression of experimental allergic asthma by the TLR7/8 agonist R848 (resiquimod). J Immunol. 197:4219–4227. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rückerl D, Heßmann M, Yoshimoto T, Ehlers S and Hölscher C: Alternatively activated macrophages express the IL-27 receptor alpha chain WSX-1. Immunobiology. 211:427–436. 2006. View Article : Google Scholar : PubMed/NCBI | |
Watzlawick R, Kenngott EE, Liu FD, Schwab JM and Hamann A: Anti-inflammatory effects of IL-27 in zymosan-induced peritonitis: Inhibition of neutrophil recruitment partially explained by impaired mobilization from bone marrow and reduced chemokine levels. PLoS One. 10:e01376512015. View Article : Google Scholar : PubMed/NCBI | |
Luck ME, Li X, Herrnreiter CJ, Cannon AR and Choudhry MA: IL-27 promotes intestinal barrier integrity following ethanol intoxication and burn injury. ImmunoHorizons. 6:600–613. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jouhault Q, Cherqaoui B, Jobart-Malfait A, Glatigny S, Lauraine M, Hulot A, Morelle G, Hagege B, Ermoza K, El Marjou A, et al: Interleukin 27 is a novel cytokine with anti-inflammatory effects against spondyloarthritis through the suppression of Th17 responses. Front Immunol. 13:10724202023. View Article : Google Scholar : PubMed/NCBI | |
Zou X, Zhang Y, Wang S, Wang X, Yang W and Li Y: Attenuate ICOSL and IL-27 in Aire-overexpressing DC2.4 cells suppress TFH cell differentiation. Immunobiology. 226:1521472021. View Article : Google Scholar : PubMed/NCBI | |
Pan L, Wang J, Liu J, Guo L and Yang S: Deficiency in the frequency and function of Tr1 cells in IgAV and the possible role of IL-27. Rheumatology (Oxford). 60:3432–3442. 2021. View Article : Google Scholar | |
Gerhardt L, Hong MMY, Yousefi Y, Figueredo R and Maleki Vareki S: IL-12 and IL-27 promote CD39 expression on CD8+ T cells and differentially regulate the CD39+CD8+ T cell phenotype. J Immunol. 210:1598–1606. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mei Y, Ran Y, Liu Z, Zhou Y, He J, Yin N and Qi H: IL-27 mediates Th1 cells infiltration in fetal membranes in preterm labor. Reprod Sci. 29:1764–1775. 2022. View Article : Google Scholar | |
Cox JH, Kljavin NM, Ramamoorthi N, Diehl L, Batten M and Ghilardi N: IL-27 promotes T cell-dependent colitis through multiple mechanisms. J Exp Med. 208:115–123. 2011. View Article : Google Scholar : | |
Chen X, Deng R, Chi W, Hua X, Lu F, Bian F, Gao N, Li Z, Pflugfelder SC, de Paiva CS and Li DQ: IL-27 signaling deficiency develops Th17-enhanced Th2-dominant inflammation in murine allergic conjunctivitis model. Allergy. 74:910–921. 2019. View Article : Google Scholar | |
Gong H, Ma S, Chen J, Yang B, Liu S, Liu X, Han J, Wu X, Lei L, Yin Z, et al: Dendritic cell-derived IL-27 p28 regulates T cell program in pathogenicity and alleviates acute graft-versus-host disease. Signal Transduc Target Ther. 7:3192022. View Article : Google Scholar | |
Park YJ, Ryu H, Choi G, Kim BS, Hwang ES, Kim HS and Chung Y: IL-27 confers a protumorigenic activity of regulatory T cells via CD39. Proc Natl Acad Sci USA. 116:3106–3111. 2019. View Article : Google Scholar : PubMed/NCBI | |
Le HT, Keslar K, Nguyen QT, Blazar BR, Hamilton BK and Min B: Interleukin-27 enforces regulatory T cell functions to prevent graft-versus-host disease. Front Immunol. 11:1812020. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Li XQ, Zhou ZH and Chen HS: Identification of cytokines for early prediction of malignant middle cerebral artery infarction. Int J Neurosci. 127:86–91. 2017. View Article : Google Scholar | |
Zhou Z, Zhang J, Li X, Xia C, Han Y and Chen H: Protein microarray analysis identifies key cytokines associated with malignant middle cerebral artery infarction. Brain Behav. 7:e007462017. View Article : Google Scholar : PubMed/NCBI | |
Lowe DW, Hollis BW, Wagner CL, Bass T, Kaufman DA, Horgan MJ, Givelichian LM, Sankaran K, Yager JY, Katikaneni LD, et al: Vitamin D insufficiency in neonatal hypoxic-ischemic encephalopathy. Pediatr Res. 82:55–62. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lind L, Siegbahn A, Lindahl B, Stenemo M, Sundström J and Ärnlöv J: Discovery of new risk markers for ischemic stroke using a novel targeted proteomics chip. Stroke. 46:3340–3347. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sweeney CM, Lonergan R, Basdeo SA, Kinsella K, Dungan LS, Higgins SC, Kelly PJ, Costelloe L, Tubridy N, Mills KHG and Fletcher JM: IL-27 mediates the response to IFN-β therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun. 25:1170–1181. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meka RR, Venkatesha SH, Dudics S, Acharya B and Moudgil KD: IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmun Rev. 14:1131–1141. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kouchaki E, Kakhaki RD, Tamtaji OR, Dadgostar E, Behnam M, Nikoueinejad H and Akbari H: Increased serum levels of TNF-α and decreased serum levels of IL-27 in patients with Parkinson disease and their correlation with disease severity. Clin Neurol Neurosurg. 166:76–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
Casella G, Finardi A, Descamps H, Colombo F, Maiorino C, Ruffini F, Patrone M, Degano M, Martino G, Muzio L, et al: IL-27, but not IL-35, inhibits neuroinflammation through modulating GM-CSF expression. Sci Rep. 7:165472017. View Article : Google Scholar : PubMed/NCBI | |
Casella G, Rasouli J, Thome R, Descamps HC, Vattikonda A, Ishikawa L, Boehm A, Hwang D, Zhang WF, Xiao D, et al: Interferon-γ/Interleukin-27 axis induces programmed death ligand 1 expression in monocyte-derived dendritic cells and restores immune tolerance in central nervous system autoimmunity. Front Immunol. 11:5767522020. View Article : Google Scholar | |
Garces K, Carmy T, Illiano P, Brambilla R and Hackam AS: Increased neuroprotective microglia and photoreceptor survival in the retina from a peptide inhibitor of myeloid differentiation factor 88 (MyD88). J Mol Neurosci. 70:968–980. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nortey A, Garces K, Carmy-Bennun T and Hackam AS: The cytokine IL-27 reduces inflammation and protects photoreceptors in a mouse model of retinal degeneration. J Neuroinflammation. 19:2162022. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Obana M, Mohri T, Ebara M, Otani Y, Maeda M and Fujio Y: Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells. Cytokine. 75:365–372. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu A, Ding M, Zhu J, Liu JQ, Pan X, Ghoshal K and Bai XF: Intra-tumoral delivery of IL-27 using adeno-associated virus stimulates anti-tumor immunity and enhances the efficacy of immunotherapy. Front Cell Dev Biol. 8:2102020. View Article : Google Scholar : PubMed/NCBI | |
Liu JQ, Zhu J, Hu A, Zhang A, Yang C, Yu J, Ghoshal K, Basu S and Bai XF: Is AAV-delivered IL-27 a potential immunotherapeutic for cancer. Am J Cancer Res. 10:3565–3574. 2020. | |
Yoshimoto T, Chiba Y, Furusawa JI, Xu M, Tsunoda R, Higuchi K and Mizoguchi I: Potential clinical application of interleukin-27 as an antitumor agent. Cancer Sci. 106:1103–1110. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tian HY, Lei YX, Zhou JT, Liu LJ, Yang T, Zhou Y, Ge JW, Xu C and Mei ZG: Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke. Front Mol Neurosci. 17:14820152025. View Article : Google Scholar : PubMed/NCBI | |
Wan H, Ban X, He Y, Yang Y, Hu X, Shang L, Wan X, Zhang Q and Xiong K: Voltage-dependent anion channel 1 oligomerization regulates PANoptosis in retinal ischemia-reperfusion injury. Neural Regen Res. Jan 13–2025.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Tajalli-Nezhad S, Karimian M, Beyer C, Atlasi MA and Azami Tameh AA: The regulatory role of Toll-like receptors after ischemic stroke: Neurosteroids as TLR modulators with the focus on TLR2/4. Cell Mol Life Sci. 76:523–537. 2019. View Article : Google Scholar | |
Wu Y, Li W and Zhou C, Lu F, Gao T, Liu Y, Cao J, Zhang Y, Zhang Y and Zhou C: Ketamine inhibits lipopolysaccharide-induced astrocytes activation by suppressing TLR4/NF-ĸB pathway. Cell Physiol Biochem. 30:609–617. 2012. View Article : Google Scholar | |
Peltzer N and Walczak H: Cell death and inflammation-a vital but dangerous liaison. Trends Immunol. 40:387–402. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fritsch M, Günther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, Schiffmann LM, Stair N, Stocks H, Seeger JM, et al: Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 575:683–687. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mandal R, Barrón JC, Kostova I, Becker S and Strebhardt K: Caspase-8: The double-edged sword. Biochim Biophys Acta Rev Cancer. 1873:1883572020. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Liu Q, Chen W, Wang R, Wang L, Liu ZQ, Duan XC, Zhang Y, Shen A, Peng D, et al: Protection of Taohong Siwu Decoction on PC12 cells injured by oxygen glucose deprivation/reperfusion via mitophagy-NLRP3 inflammasome pathway in vitro. J Ethnopharmacol. 301:1157842023. View Article : Google Scholar | |
Yang YD, Li ZX, Hu XM, Wan H, Zhang Q, Xiao R and Xiong K: Insight into crosstalk between mitophagy and apoptosis/necroptosis: mechanisms and clinical applications in ischemic stroke. Curr Med Sci. 42:237–248. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Ye J, Peng Y, Ma W, Chen H, Sun H, Feng Z, He W, Li G, Chu S, et al: CKLF induces microglial activation via triggering defective mitophagy and mitochondrial dysfunction. Autophagy. 20:590–613. 2024. View Article : Google Scholar : | |
Zhao J, Qiu YK, Xie YX, Li XY, Li YB, Wu B, Wang YW, Tian XY, Lv YL, Zhang LH, et al: Imbalance of mitochondrial quality control regulated by STING and PINK1 affects cyfluthrin-induced neuroinflammation. Sci Total Environ. 946:1743132024. View Article : Google Scholar : PubMed/NCBI | |
Li F, Yifei W and Zheng K: Microglial mitophagy integrates the microbiota-gut-brain axis to restrain neuroinflammation during neurotropic herpesvirus infection. Autophagy. 19:734–736. 2023. View Article : Google Scholar : | |
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J and Wu A: Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B. 14:3327–3361. 2024. View Article : Google Scholar : PubMed/NCBI | |
Majumder D, Sarkar C, Debnath R, Tribedi P and Maiti D: Mechanistic insight into the synergism of IL-27 and IL-28B in regulation of benzo(a)pyrene-induced lung carcinogenesis associated ROS/NF-κB/NLRP3 crosstalk. Chem Biol Interact. 354:1098072022. View Article : Google Scholar | |
Persidsky Y, Ramirez SH, Haorah J and Kanmogne GD: Blood-brain barrier: Structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 1:223–236. 2006. View Article : Google Scholar | |
Pardridge WM: A historical review of brain drug delivery. Pharmaceutics. 14:12832022. View Article : Google Scholar : PubMed/NCBI | |
Dong X: Current strategies for brain drug delivery. Theranostics. 8:1481–1493. 2018. View Article : Google Scholar : PubMed/NCBI | |
Venkat P, Chopp M and Chen J: Cell-based and exosome therapy in diabetic stroke. Stem Cells Transl Med. 7:451–455. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen J and Chopp M: Exosome therapy for stroke. Stroke. 49:1083–1090. 2018. View Article : Google Scholar : PubMed/NCBI | |
Giovannelli L, Bari E, Jommi C, Tartara F, Armocida D, Garbossa D, Cofano F, Torre ML and Segale L: Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater. 29:16–35. 2023.PubMed/NCBI | |
Yang H, Tu Z, Yang D, Hu M, Zhou L, Li Q, Yu B and Hou S: Exosomes from hypoxic pre-treated ADSCs attenuate acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promote M2 microglia/macrophage polarization. Neurosci Lett. 769:1363892022. View Article : Google Scholar | |
Wang C, Börger V, Mohamud Yusuf A, Tertel T, Stambouli O, Murke F, Freund N, Kleinschnitz C, Herz J, Gunzer M, et al: Postischemic neuroprotection associated with anti-inflammatory effects by mesenchymal stromal cell-derived small extracellular vesicles in aged mice. Stroke. 53:e14–e18. 2022. View Article : Google Scholar : | |
Zhou L, Liang J and Xiong T: Research progress of mesenchymal stem cell-derived exosomes on inflammatory response after ischemic stroke. Zhejiang Da Xue Xue Bao Yi Xue Ban. 51:500–506. 2022. | |
Hirsch Y, Geraghty JR, Reiter CR, Katz EA, Little CF, Tobin MK and Testai FD: Unpacking the role of extracellular vesicles in ischemic and hemorrhagic stroke: Pathophysiology and therapeutic implications. Transl Stroke Res. 14:146–159. 2023. View Article : Google Scholar | |
Huang Z, Guo L, Huang L, Shi Y, Liang J and Zhao L: Baicalin-loaded macrophage-derived exosomes ameliorate ischemic brain injury via the antioxidative pathway. Mater Sci Eng C Mater Biol Appl. 126:1121232021. View Article : Google Scholar : PubMed/NCBI | |
Li F, Zhao L, Shi Y and Liang J: Edaravone-loaded macrophage-derived exosomes enhance neuroprotection in the rat permanent middle cerebral artery occlusion model of stroke. Mol Pharm. 17:3192–3201. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tao B, Du R, Zhang X, Jia B, Gao Y, Zhao Y and Liu Y: Engineering CAR-NK cell derived exosome disguised nano-bombs for enhanced HER2 positive breast cancer brain metastasis therapy. J Control Release. 363:692–706. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Tang W, Yang M, Yin Y, Li H, Hu F, Tang L, Ma X, Zhang Y and Wang Y: Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials. 273:1207842021. View Article : Google Scholar : PubMed/NCBI | |
Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA and Gao J: Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 150:137–149. 2018. View Article : Google Scholar | |
Wu T, Liu Y, Cao Y and Liu Z: Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma. Adv Mater. 34:21103642022. View Article : Google Scholar | |
Liu J, Sun Y, Zeng X, Liu Y, Liu C, Zhou Y, Liu Y, Sun G and Guo M: Engineering and characterization of an artificial drug-carrying vesicles nanoplatform for enhanced specifically targeted therapy of glioblastoma. Adv Mater. 35:23036602023. View Article : Google Scholar | |
Jia G, Han Y, An Y, Ding Y, He C, Wang X and Tang Q: NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials. 178:302–316. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li B, Chen X, Qiu W, Zhao R, Duan J, Zhang S, Pan Z, Zhao S, Guo Q, Qi Y, et al: Synchronous disintegration of ferroptosis defense axis via engineered exosome-conjugated magnetic nanoparticles for glioblastoma therapy. Adv Sci (Weinh). 9:21054512022. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Wang X, Zhao H, Li N, Li J, Zhang H and Di L: Targeted delivery of hybrid nanovesicles for enhanced brain penetration to achieve synergistic therapy of glioma. J Control Release. 365:331–347. 2024. View Article : Google Scholar | |
Kang M, Yadav MK, Mbanefo EC, Yu CR and Egwuagu CE: IL-27-containing exosomes secreted by innate B-1a cells suppress and ameliorate uveitis. Front Immunol. 14:10711622023. View Article : Google Scholar : PubMed/NCBI | |
Ha D, Yang N and Nadithe V: Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm Sin B. 6:287–296. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alavian F and Shams N: Oral and intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments: Considering its advantages and disadvantages. Curr Clin Pharmacol. 15:20–29. 2020. | |
Jang SF, Liu WH, Song WS, Chiang KL, Ma HI, Kao CL and Chen MT: Nanomedicine-based neuroprotective strategies in patient specific-iPSC and personalized medicine. Int J Mol Sci. 15:3904–3925. 2014. View Article : Google Scholar : PubMed/NCBI | |
Otsuka R, Wada H, Murata T and Seino KI: Immune reaction and regulation in transplantation based on pluripotent stem cell technology. Inflamm Regen. 40:122020. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y and Zheng Y: Engineered exosomes: Desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics. 11:8926–8944. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R and Du L: Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol. 9:8119712022. View Article : Google Scholar : PubMed/NCBI | |
Murugaiyan G and Saha B: IL-27 in tumor immunity and immunotherapy. Trends Mol Med. 19:108–116. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oniki S, Nagai H, Horikawa T, Furukawa J, Belladonna ML, Yoshimoto T, Hara I and Nishigori C: Interleukin-23 and interleukin-27 exert quite different antitumor and vaccine effects on poorly immunogenic melanoma. Cancer Res. 66:6395–6404. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Liu JQ, Shi M, Cheng X, Ding M, Zhang JC, Davis JP, Varikuti S, Satoskar AR, Lu L, et al: IL-27 gene therapy induces depletion of Tregs and enhances the efficacy of cancer immunotherapy. JCI Insight. 3:e987452018. View Article : Google Scholar : PubMed/NCBI | |
Jevševar S, Kunstelj M and Porekar VG: PEGylation of therapeutic proteins. Biotechnol J. 5:113–128. 2010. View Article : Google Scholar | |
Levin D, Golding B, Strome SE and Sauna ZE: Fc fusion as a platform technology: Potential for modulating immunogenicity. Trends Biotechnol. 33:27–34. 2015. View Article : Google Scholar | |
Fabbi M, Carbotti G and Ferrini S: Dual roles of IL-27 in cancer biology and immunotherapy. Mediators Inflamm. 2017:39580692017. View Article : Google Scholar : PubMed/NCBI | |
Gonin J, Carlotti A, Dietrich C, Audebourg A, Radenen-Bussière B, Caignard A, Avril MF, Vacher-Lavenu MC, Larousserie F and Devergne O: Expression of IL-27 by tumor cells in invasive cutaneous and metastatic melanomas [corrected]. PLoS One. 8:e756942013. View Article : Google Scholar : PubMed/NCBI | |
Kourko O, Seaver K, Odoardi N, Basta S and Gee K: IL-27, IL-30, and IL-35: A cytokine triumvirate in cancer. Front Oncol. 9:9692019. View Article : Google Scholar : PubMed/NCBI | |
Składanowska K, Bloch Y, Strand J, White KF, Hua J, Aldridge D, Welin M, Logan DT, Soete A and Merceron R: Structural basis of activation and antagonism of receptor signaling mediated by interleukin-27. Cell Rep. 41:1114902022. View Article : Google Scholar : PubMed/NCBI | |
Xu WD, Wang DC, Zhao M and Huang AF: An updated advancement of bifunctional IL-27 in inflammatory autoimmune diseases. Front Immunol. 15:13663772024. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Ghilardi N, Wang H, Baker T, Xie MH, Gurney A, Grewal IS and de Sauvage FJ: Development of Th1-type immune responses requires the type I cytokine receptor TCCR. Nature. 407:916–920. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lucas S, Ghilardi N, Li J and de Sauvage FJ: IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc Natl Acad Sci USA. 100:15047–15052. 2003. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Ran Y, Liu Z, He J, Yin N and Qi H: IL-27 mediates pro-inflammatory effects via the ERK signaling pathway during preterm labor. Front Immunol. 12:7092292021. View Article : Google Scholar : PubMed/NCBI | |
Hunter CA and Kastelein R: Interleukin-27: Balancing protective and pathological immunity. Immunity. 37:960–969. 2012. View Article : Google Scholar : PubMed/NCBI | |
Petes C, Mariani MK, Yang Y, Grandvaux N and Gee K: Interleukin (IL)-6 inhibits IL-27- and IL-30-mediated inflammatory responses in human monocytes. Front Immunol. 9:2562018. View Article : Google Scholar : PubMed/NCBI | |
Olson BM, Sullivan JA and Burlingham WJ: Interleukin 35: A key mediator of suppression and the propagation of infectious tolerance. Front Immunol. 4:3152013. View Article : Google Scholar : PubMed/NCBI | |
Takeda A, Hamano S, Yamanaka A, Hanada T, Ishibashi T, Mak TW, Yoshimura A and Yoshida H: Cutting edge: Role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol. 170:4886–4890. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sas AR, Carbajal KS, Jerome AD, Menon R, Yoon C, Kalinski AL, Giger RJ and Segal BM: A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nat Immunol. 21:1496–1505. 2020. View Article : Google Scholar : PubMed/NCBI | |
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ and Boehme AK: 2024 Heart disease and stroke statistics: A report of US and global data from the American heart association. Circulation. 149:e347–e913. 2024. View Article : Google Scholar : PubMed/NCBI | |
Uzdensky AB: Photothrombotic stroke as a model of ischemic stroke. Transl Stroke Res. 9:437–451. 2018. View Article : Google Scholar | |
Fluri F, Schuhmann MK and Kleinschnitz C: Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 9:3445–3454. 2015.PubMed/NCBI | |
Rose-John S: Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol. 10:a0284152018. View Article : Google Scholar | |
Bongartz H, Seiß EA, Bock J and Schaper F: Glucocorticoids attenuate interleukin-6-induced c-Fos and Egr1 expression and impair neuritogenesis in PC12 cells. J Neurochem. 157:532–549. 2021. View Article : Google Scholar : PubMed/NCBI | |
Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, González-Billault C and Núñez MT: Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem. 126:541–549. 2013. View Article : Google Scholar : PubMed/NCBI | |
Furukawa T, Miyake Y, Ito H, Ogata A, Maeyama H, Nakahara Y, Yoshioka F, Masuoka J, Yoshida H and Abe T: Interleukin-27 deletion has neuroprotective effects in the acute ischemic stage of cerebral infarction. Biochem Biophys Res Commun. 755:1515812025. View Article : Google Scholar : PubMed/NCBI | |
Li S, Overman JJ, Katsman D, Kozlov SV, Donnelly CJ, Twiss JL, Giger RJ, Coppola G, Geschwind DH and Carmichael ST: An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci. 13:1496–1504. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li S, Nie EH, Yin Y, Benowitz LI, Tung S, Vinters HV, Bahjat FR, Stenzel-Poore MP, Kawaguchi R, Coppola G and Carmichael ST: GDF10 is a signal for axonal sprouting and functional recovery after stroke. Nat Neurosci. 18:1737–1745. 2015. View Article : Google Scholar : PubMed/NCBI |