
Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review)
- Authors:
- Hong Chen
- Xie Wang
- Jin Xing
- Yue Pu
- Hao Ye
- Ying Ma
- Juan Zhang
-
Affiliations: Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China - Published online on: May 30, 2025 https://doi.org/10.3892/ijmm.2025.5558
- Article Number: 117
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Kubová David Vetchý Miroslava Pavelková Jakub Vysloužil Kateřina: Biological role of copper as an essential trace element in the human organism. Ceska Slov Farm. 67:143–153. 2018. View Article : Google Scholar | |
Immergluck J, Grant LM and Anilkumar AC: Wilson disease. StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2025 | |
Ramani PK and Parayil Sankaran B: Menkes disease. StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2025 | |
Scheiber I, Dringen R and Mercer JFB: Copper: Effects of deficiency and overload. Met Ions Life Sci. 13:359–387. 2013. | |
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
Santagostino SF and Radaelli E: Special focus on regulated cell death: Emerging mechanisms and current perspectives in biology and pathology. Vet Pathol. 58:594–595. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X and Shi H: From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis. 29:586–604. 2024. View Article : Google Scholar : PubMed/NCBI | |
Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO and Radaelli E: Mechanisms of regulated cell death: Current perspectives. Vet Pathol. 58:596–623. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lucena-Valera A, Ruz-Zafra P and Ampuero J: Wilson's disease: Overview. Med Clin (Barc). 160:261–267. 2023.In English, Spanish. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Hou L, Han K, Zhao C, Hu H and Yin S: The physiological role of copper: Dietary sources, metabolic regulation, and safety concerns. Clin Nutr. 48:161–179. 2025. View Article : Google Scholar : PubMed/NCBI | |
Arredondo M and Núñez MT: Iron and copper metabolism. Mol Aspects Med. 26:313–327. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Yang Y, Gao Y and He J: Cuproptosis: mechanisms and links with cancers. Mol Cancer. 22:462023. View Article : Google Scholar : PubMed/NCBI | |
Sharp PA: Ctr1 and its role in body copper homeostasis. Int J Biochem Cell Biol. 35:288–291. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nose Y, Wood LK, Kim BE, Prohaska JR, Fry RS, Spears JW and Thiele DJ: Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. J Biol Chem. 285:32385–32392. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kar S, Sen S, Maji S, Saraf D, Ruturaj, Paul R, Dutt S, Mondal B, Rodriguez-Boulan E, Schreiner R, et al: Copper(II) import and reduction are dependent on His-Met clusters in the extracellular amino terminus of human copper transporter-1. J Biol Chem. 298:1016312022. View Article : Google Scholar : PubMed/NCBI | |
Turnlund JR, King JC, Gong B, Keyes WR and Michel MC: A stable isotope study of copper absorption in young men: Effect of phytate and alpha-cellulose. Am J Clin Nutr. 42:18–23. 1985. View Article : Google Scholar : PubMed/NCBI | |
Moriya M, Ho YH, Grana A, Nguyen L, Alvarez A, Jamil R, Ackland ML, Michalczyk A, Hamer P, Ramos D, et al: Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism. Am J Physiol Cell Physiol. 295:C708–C721. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Wu J, Wang L, Ji G and Dang Y: Copper homeostasis and cuproptosis in health and disease. MedComm (2020). 5:e7242024. View Article : Google Scholar : PubMed/NCBI | |
Singleton C and Le Brun NE: Atx1-like chaperones and their cognate P-type ATPases: Copper-binding and transfer. Biometals. 20:275–289. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li Y: Copper homeostasis: Emerging target for cancer treatment. IUBMB Life. 72:1900–1908. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim BE, Nevitt T and Thiele DJ: Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol. 4:176–185. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nose Y, Kim BE and Thiele DJ: Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab. 4:235–244. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lutsenko S, Barnes NL, Bartee MY and Dmitriev OY: Function and regulation of human copper-transporting ATPases. Physiol Rev. 87:1011–1046. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lutsenko S: Copper trafficking to the secretory pathway. Metallomics. 8:840–852. 2016. View Article : Google Scholar : PubMed/NCBI | |
Medeiros DM and Jennings D: Role of copper in mitochondrial biogenesis via interaction with ATP synthase and cytochrome c oxidase. J Bioenerg Biomembr. 34:389–395. 2002. View Article : Google Scholar | |
Gale J and Aizenman E: The physiological and pathophysiological roles of copper in the nervous system. Eur J Neurosci. 60:3505–3543. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pekary AE, Stevens SA and Sattin A: Valproate and copper accelerate TRH-like peptide synthesis in male rat pancreas and reproductive tissues. Peptides. 27:2901–2911. 2006. View Article : Google Scholar : PubMed/NCBI | |
Héraud F, Savineau C and Harmand MF: Copper modulation of extracellular matrix synthesis by human articular chondrocytes. Scand J Rheumatol. 31:279–284. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gudkov SV, Burmistrov DE, Fomina PA, Validov SZ and Kozlov VA: Antibacterial properties of copper oxide nanoparticles (review). Int J Mol Sci. 25:115632024. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li Y and Peng Z: ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch Toxicol. 97:1439–1451. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang B and Burke R: Copper homeostasis and the ubiquitin proteasome system. Metallomics. 15:mfad0102023. View Article : Google Scholar : PubMed/NCBI | |
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC and Tan M: Protein lipoylation: Mitochondria, cuproptosis, and beyond. Trends Biochem Sci. 49:729–744. 2024. View Article : Google Scholar : PubMed/NCBI | |
Rowland EA, Snowden CK and Cristea IM: Protein lipoylation: An evolutionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol. 42:76–85. 2018. View Article : Google Scholar : | |
Tang D, Chen X and Kroemer G: Cuproptosis: A copper-triggered modality of mitochondrial cell death. Cell Res. 32:417–418. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cobine PA and Brady DC: Cuproptosis: Cellular and molecular mechanisms underlying copper-induced cell death. Mol Cell. 82:1786–1787. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Tian Z, Zhang P, Zhen L, Meng Q, Sun B, Xu X, Jia T and Li S: The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother. 163:1148302023. View Article : Google Scholar : PubMed/NCBI | |
Hu F, Huang J, Bing T, Mou W, Li D, Zhang H, Chen Y, Jin Q, Yu Y and Yang Z: Stimulus-responsive copper complex nanoparticles induce cuproptosis for augmented cancer immunotherapy. Adv Sci (Weinh). 11:e23093882024. View Article : Google Scholar : PubMed/NCBI | |
Li M, Tang S, Velkov T, Shen J and Dai C: Copper exposure induces mitochondrial dysfunction and hepatotoxicity via the induction of oxidative stress and PERK/ATF4-mediated endoplasmic reticulum stress. Environ Pollut. 352:1241452024. View Article : Google Scholar | |
Zhao G, Sun H, Zhang T and Liu JX: Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun Signal. 18:452020. View Article : Google Scholar : PubMed/NCBI | |
Liao J, Yang F, Tang Z, Yu W, Han Q, Hu L, Li Y, Guo J, Pan J, Ma F, et al: Inhibition of caspase-1-dependent pyroptosis attenuates copper-induced apoptosis in chicken hepatocytes. Ecotoxicol Environ Saf. 174:110–119. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Ling X, Sun Y, Liu L, Liu L, Wang X, Lu C, Ren C, Han X and Yu Z: FDX1 enhances endometriosis cell cuproptosis via G6PD-mediated redox homeostasis. Apoptosis. 28:1128–1140. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Wang T, Ye J, Feng H and Zhang X, Ma X, Wang B, Huang Y and Zhang X: FDX1 expression predicts favourable prognosis in clear cell renal cell carcinoma identified by bioinformatics and tissue microarray analysis. Front Genet. 13:9947412022. View Article : Google Scholar : PubMed/NCBI | |
Braymer JJ, Freibert SA, Rakwalska-Bange M and Lill R: Mechanistic concepts of iron-sulfur protein biogenesis in biology. Biochim Biophys Acta Mol Cell Res. 1868:1188632021. View Article : Google Scholar | |
Stowe RC, Sun Q, Elsea SH and Scaglia F: LIPT1 deficiency presenting as early infantile epileptic encephalopathy, Leigh disease, and secondary pyruvate dehydrogenase complex deficiency. Am J Med Genet A. 176:1184–1189. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cicchillo RM and Booker SJ: Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: Both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. J Am Chem Soc. 127:2860–2861. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wieland OH, Hartmann U and Siess EA: Neurospora crassa pyruvate dehydrogenase: Interconversion by phosphorylation and dephosphorylation. FEBS Lett. 27:240–244. 1972. View Article : Google Scholar : PubMed/NCBI | |
Goguet-Rubio P, Seyran B, Gayte L, Bernex F, Sutter A, Delpech H, Linares LK, Riscal R, Repond C, Rodier G, et al: E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis. Proc Natl Acad Sci USA. 113:11004–11009. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li W, Long Q, Wu H, Zhou Y, Duan L, Yuan H, Ding Y, Huang Y, Wu Y, Huang J, et al: Nuclear localization of mitochondrial TCA cycle enzymes modulates pluripotency via histone acetylation. Nat Commun. 13:74142022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Yang Z, He X, Guo F, Sun H, Xu S, Xu C, Wang Z, Wen H, Teng Z, et al: Cuproptosis related gene PDHB is identified as a biomarker inversely associated with the progression of clear cell renal cell carcinoma. BMC Cancer. 23:8042023. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Zhang Y and Liu X: The mechanism of cuproptosis in Parkinson's disease. Ageing Res Rev. 95:1022142024. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Chen Z and Hua Y: Bioinformatics prediction and experimental validation identify a novel cuproptosis-related gene signature in human synovial inflammation during osteoarthritis progression. Biomolecules. 13:1272023. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang L, Xing Q, Liu X, Hu Y, Li W, Yan Q, Liu R and Huang N: Identification of GLS as a cuproptosis-related diagnosis gene in acute myocardial infarction. Front Cardiovasc Med. 9:10160812022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Ma J, Wang R, Luo Y, Zheng S and Wang X: Zinc transporter 1 functions in copper uptake and cuproptosis. Cell Metab. 36:2118–2129.e6. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Liu K, Lu S, Qiu Y, Zou X, Zhang K, Chen C, Jike Y, Xie M, Dai Y and Bo Z: Verification of cuproptosis-related diagnostic model associated with immune infiltration in rheumatoid arthritis. Front Endocrinol (Lausanne). 14:12049262023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Qian Y, Zhang J, Yan W, Jung YS, Chen M, Huang E, Lloyd K, Duan Y, Wang J, et al: Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev. 31:1243–1256. 2017. View Article : Google Scholar : PubMed/NCBI | |
Funauchi Y, Tanikawa C, Yi Lo PH, Mori J, Daigo Y, Takano A, Miyagi Y, Okawa A, Nakamura Y and Matsuda K: Regulation of iron homeostasis by the p53-ISCU pathway. Sci Rep. 5:164972015. View Article : Google Scholar : PubMed/NCBI | |
Sawamoto M, Imai T, Umeda M, Fukuda K, Kataoka T and Taketani S: The p53-dependent expression of frataxin controls 5-aminolevulinic acid-induced accumulation of protoporphyrin IX and photo-damage in cancerous cells. Photochem Photobiol. 89:163–172. 2013. View Article : Google Scholar | |
Shimizu R, Lan NN, Tai TT, Adachi Y, Kawazoe A, Mu A and Taketani S: p53 directly regulates the transcription of the human frataxin gene and its lack of regulation in tumor cells decreases the utilization of mitochondrial iron. Gene. 551:79–85. 2014. View Article : Google Scholar : PubMed/NCBI | |
Batzios S, Tal G, DiStasio AT, Peng Y, Charalambous C, Nicolaides P, Kamsteeg EJ, Korman SH, Mandel H, Steinbach PJ, et al: Newly identified disorder of copper metabolism caused by variants in CTR1, a high-affinity copper transporter. Hum Mol Genet. 31:4121–4130. 2022. View Article : Google Scholar : PubMed/NCBI | |
Walker JM, Tsivkovskii R and Lutsenko S: Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity. J Biol Chem. 277:27953–27959. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schulz V, Basu S, Freibert SA, Webert H, Boss L, Mühlenhoff U, Pierrel F, Essen LO, Warui DM, Booker SJ, et al: Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat Chem Biol. 19:206–217. 2023. View Article : Google Scholar | |
Kinnier Wilson SA: Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain. 34:295–507. 1912. View Article : Google Scholar | |
Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM, et al: The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet. 5:344–350. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bull PC, Thomas GR, Rommens JM, Forbes JR and Cox DW: The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 5:327–337. 1993. View Article : Google Scholar : PubMed/NCBI | |
Petrukhin K, Lutsenko S, Chernov I, Ross BM, Kaplan JH and Gilliam TC: Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: Genomic organization, alternative splicing, and structure/function predictions. Hum Mol Genet. 3:1647–1656. 1994. View Article : Google Scholar : PubMed/NCBI | |
Lutsenko S, LeShane ES and Shinde U: Biochemical basis of regulation of human copper-transporting ATPases. Arch Biochem Biophys. 463:134–148. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li M, Ma J, Wang W, Yang X and Luo K: Mutation analysis of the ATP7B gene and genotype-phenotype correlation in Chinese patients with Wilson disease. BMC Gastroenterol. 21:3392021. View Article : Google Scholar : PubMed/NCBI | |
Huster D, Kühne A, Bhattacharjee A, Raines L, Jantsch V, Noe J, Schirrmeister W, Sommerer I, Sabri O, Berr F, et al: Diverse functional properties of Wilson disease ATP7B variants. Gastroenterology. 142:947–956.e5. 2012. View Article : Google Scholar : PubMed/NCBI | |
Członkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH and Schilsky ML: Wilson disease. Nat Rev Dis Primers. 4:212018. View Article : Google Scholar | |
Pronicki M: Wilson disease-liver pathology. Handb Clin Neurol. 142:71–75. 2017. View Article : Google Scholar | |
Gerosa C, Fanni D, Congiu T, Piras M, Cau F, Moi M and Faa G: Liver pathology in Wilson's disease: From copper overload to cirrhosis. J Inorg Biochem. 193:106–111. 2019. View Article : Google Scholar : PubMed/NCBI | |
Koyama Y and Brenner DA: Liver inflammation and fibrosis. J Clin Invest. 127:55–64. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rosselli M, MacNaughtan J, Jalan R and Pinzani M: Beyond scoring: A modern interpretation of disease progression in chronic liver disease. Gut. 62:1234–1241. 2013. View Article : Google Scholar : PubMed/NCBI | |
Poujois A, Mikol J and Woimant F: Wilson disease: Brain pathology. Handb Clin Neurol. 142:77–89. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meenakshi-Sundaram S, Mahadevan A, Taly AB, Arunodaya GR, Swamy HS and Shankar SK: Wilson's disease: A clinico-neuropathological autopsy study. J Clin Neurosci. 15:409–417. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mikol J, Vital C, Wassef M, Chappuis P, Poupon J, Lecharpentier M and Woimant F: Extensive cortico-subcortical lesions in Wilson's disease: Clinico-pathological study of two cases. Acta Neuropathol. 110:451–458. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bruha R, Vitek L, Marecek Z, Pospisilova L, Nevsimalova S, Martasek P, Petrtyl J, Urbanek P, Jiraskova A, Malikova I, et al: Decreased serum antioxidant capacity in patients with Wilson disease is associated with neurological symptoms. J Inherit Metab Dis. 35:541–548. 2012. View Article : Google Scholar | |
Anzil AP, Herrlinger H, Blinzinger K and Heldrich A: Ultrastructure of brain and nerve biopsy tissue in Wilson disease. Arch Neurol. 31:94–100. 1974. View Article : Google Scholar : PubMed/NCBI | |
Dang J, Chevalier K, Letavernier E, Tissandier C, Mouawad S, Debray D, Obadia M and Poujois A: Kidney involvement in Wilson's disease: A review of the literature. Clin Kidney J. 17:sfae0582024. View Article : Google Scholar : PubMed/NCBI | |
Niu YY, Zhang YY, Zhu Z, Zhang XQ, Liu X, Zhu SY, Song Y, Jin X, Lindholm B and Yu C: Elevated intracellular copper contributes a unique role to kidney fibrosis by lysyl oxidase mediated matrix crosslinking. Cell Death Dis. 11:2112020. View Article : Google Scholar : PubMed/NCBI | |
Harry J and Tripathi R: Kayser-Fleischer ring: A pathological study. Br J Ophthalmol. 54:794–800. 1970. View Article : Google Scholar : PubMed/NCBI | |
Suvarna JC: Kayser-Fleischer ring. J Postgrad Med. 54:238–240. 2008. View Article : Google Scholar : PubMed/NCBI | |
Factor SM, Cho S, Sternlieb I, Scheinberg IH and Goldfischer S: The cardiomyopathy of Wilson's disease. Myocardial alterations in nine cases. Virchows Arch A Pathol Anat Histol. 397:301–311. 1982. View Article : Google Scholar : PubMed/NCBI | |
Kuan P: Cardiac Wilson's disease. Chest. 91:579–583. 1987. View Article : Google Scholar : PubMed/NCBI | |
Grandis DJ, Nah G, Whitman IR, Vittinghoff E, Dewland TA, Olgin JE and Marcus GM: Wilson's disease and cardiac myopathy. Am J Cardiol. 120:2056–2060. 2017. View Article : Google Scholar : PubMed/NCBI | |
Aydemir B, Kiziler AR, Onaran I, Alici B, Ozkara H and Akyolcu MC: Impact of Cu and Fe concentrations on oxidative damage in male infertility. Biol Trace Elem Res. 112:193–203. 2006. View Article : Google Scholar : PubMed/NCBI | |
Iorio GG, Conforti A, Vallone R, Carbone L, Matarazzo M, De Rosa A, De Rosa P, Picarelli S, Fedele F, Perruolo G, et al: Reproductive function of long-term treated patients with hepatic onset of Wilson's disease: A prospective study. Reprod Biomed Online. 42:835–841. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tarnacka B, Rodo M, Cichy S and Członkowska A: Procreation ability in Wilson's disease. Acta Neurol Scand. 101:395–398. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chenbhanich J, Thongprayoon C, Atsawarungruangkit A, Phupitakphol T and Cheungpasitporn W: Osteoporosis and bone mineral density in patients with Wilson's disease: A systematic review and meta-analysis. Osteoporos Int. 29:315–322. 2018. View Article : Google Scholar | |
Bhadada S, Malhotra B, Shetty A and Mukherjee S: Metabolic bone disease heralding the diagnosis of Wilson's disease. BMJ Case Rep. 16:e2522902023. View Article : Google Scholar : PubMed/NCBI | |
Pop TL, Grama A, Stefanescu AC, Willheim C and Ferenci P: Acute liver failure with hemolytic anemia in children with Wilson's disease: Genotype-phenotype correlations? World J Hepatol. 13:1428–1438. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang SQ, Zhan YQ, Hu X, Zhuang YP, Liu HQ, Hong MF and Zhong HJ: Anemia is associated with disease severity, hepatic complications, and progression of wilson disease: A retrospective cohort study. Dig Dis. 41:632–640. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gunay N, Yildirim C, Karcioglu O, Gunay NE, Yilmaz M, Usalan C, Kose A and Togun I: A series of patients in the emergency department diagnosed with copper poisoning: Recognition equals treatment. Tohoku J Exp Med. 209:243–248. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Chaudhary A, Agrahari B, Chaudhary K, Kumar P and Singh RG: Concurrent Cu(II)-initiated Fenton-like reaction and glutathione depletion to escalate chemodynamic therapy. Chem Commun (Camb). 59:14305–14308. 2023. View Article : Google Scholar : PubMed/NCBI | |
Korotkov SM: Mitochondrial oxidative stress is the general reason for apoptosis induced by different-valence heavy metals in cells and mitochondria. Int J Mol Sci. 24:144592023. View Article : Google Scholar : PubMed/NCBI | |
Tian Z, Jiang S, Zhou J and Zhang W: Copper homeostasis and cuproptosis in mitochondria. Life Sci. 334:1222232023. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Zhang Y, Lu L, Zhang H, Zhao C, Pu Y and Yin L: Copper induces microglia-mediated neuroinflammation through ROS/NF-κB pathway and mitophagy disorder. Food Chem Toxicol. 168:1133692022. View Article : Google Scholar | |
Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL and Wang W: Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer. 104:1564–1574. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xiang K, Wu H, Liu Y, Wang S, Li X, Yang B, Zhang Y, Ma L, Lu G, He L, et al: MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury. Theranostics. 13:2721–2733. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K and Valko M: Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 98:1323–1367. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ling P, Yang P, Gao X, Sun X and Gao F: ROS generation strategy based on biomimetic nanosheets by self-assembly of nanozymes. J Mater Chem B. 10:9607–9612. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Sun L, Zhang Y, Wang Y and Zheng J: Imbalanced GSH/ROS and sequential cell death. J Biochem Mol Toxicol. 36:e229422022. View Article : Google Scholar | |
Cao S, Li X, Gao Y, Li F, Li K, Cao X, Dai Y, Mao L, Wang S and Tai X: A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy. Dalton Trans. 49:11851–11858. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ciechanover A: The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol. 16:322–324. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maupin-Furlow J: Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol. 10:100–111. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nandi D, Tahiliani P, Kumar A and Chandu D: The ubiquitin-proteasome system. J Biosci. 31:137–155. 2006. View Article : Google Scholar : PubMed/NCBI | |
Murray AW: Recycling the cell cycle: Cyclins revisited. Cell. 116:221–234. 2004. View Article : Google Scholar : PubMed/NCBI | |
Karin M and Ben-Neriah Y: Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu Rev Immunol. 18:621–663. 2000. View Article : Google Scholar : PubMed/NCBI | |
McDonough H and Patterson C: CHIP: A link between the chaperone and proteasome systems. Cell Stress Chaperones. 8:303–308. 2003. View Article : Google Scholar | |
Konarikova K, Frivaldska J, Gbelcova H, Sveda M, Ruml T, Janubova M and Zitnanova I: Schiff base Cu(II) complexes as inhibitors of proteasome in human cancer cells. Bratisl Lek Listy. 120:646–649. 2019.PubMed/NCBI | |
Skrott Z, Mistrik M, Andersen KK, Friis S, Majera D, Gursky J, Ozdian T, Bartkova J, Turi Z, Moudry P, et al: Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 552:194–199. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li SR, Bu LL and Cai L: Cuproptosis: Lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct Target Ther. 7:1582022. View Article : Google Scholar : PubMed/NCBI | |
Bian Z, Fan R and Xie L: A novel cuproptosis-related prognostic gene signature and validation of differential expression in clear cell renal cell carcinoma. Genes (Basel). 13:8512022. View Article : Google Scholar : PubMed/NCBI | |
Pan C, Ji Z, Wang Q, Zhang Z, Wang Z, Li C, Lu S and Ge P: Cuproptosis: Mechanisms, biological significance, and advances in disease treatment-A systematic review. CNS Neurosci Ther. 30:e700392024. View Article : Google Scholar : PubMed/NCBI | |
Hetz C, Zhang K and Kaufman RJ: Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 21:421–438. 2020. View Article : Google Scholar : PubMed/NCBI | |
Haynes CM and Ron D: The mitochondrial UPR-protecting organelle protein homeostasis. J Cell Sci. 123:3849–3855. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ghai S, Shrestha R, Hegazi A, Boualoy V, Liu SH and Su KH: The role of heat shock factor 1 in preserving proteomic integrity during copper-induced cellular toxicity. Int J Mol Sci. 25:116572024. View Article : Google Scholar : PubMed/NCBI | |
Fujimoto M, Takii R, Hayashida N and Nakai A: Analysis of the heat shock factor complex in mammalian HSP70 promoter. Methods Mol Biol. 1292:53–65. 2015. View Article : Google Scholar : PubMed/NCBI | |
Garde R, Dea A, Herwig MF, Ali A and Pincus D: Feedback control of the heat shock response by spatiotemporal regulation of Hsp70. J Cell Biol. 223:e2024010822024. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Ma Y, Xie D, Bao Y, Yang W, Wang H, Jiang H, Han H and Dong T: Differentially expressed lncRNAs in liver tissues of TX mice with hepatolenticular degeneration. Sci Rep. 11:13772021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zeng Y, Guo X, Shen H, Zhang J, Wang K, Ji M and Huang S: Pan-cancer analyses confirmed the cuproptosis-related gene FDX1 as an immunotherapy predictor and prognostic biomarker. Front Genet. 13:9237372022. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Dong J, Cheng N, Yang R and Han Y and Han Y: Inflammatory cytokines expression in Wilson's disease. Neurol Sci. 40:1059–1066. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Wu L, Fang X, Wang L, Liu Q, Jiang P, Ji Z, Zhang N, Yin M and Han H: Copper exposure induces inflammation and PANoptosis through the TLR4/NF-κB signaling pathway, leading to testicular damage and impaired spermatogenesis in Wilson disease. Chem Biol Interact. 396:1110602024. View Article : Google Scholar | |
Li Y and Zeng X: A novel cuproptosis-related prognostic gene signature and validation of differential expression in hepatocellular carcinoma. Front Pharmacol. 13:10819522023. View Article : Google Scholar : PubMed/NCBI | |
Tort F, Ferrer-Cortès X, Thió M, Navarro-Sastre A, Matalonga L, Quintana E, Bujan N, Arias A, García-Villoria J, Acquaviva C, et al: Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes. Hum Mol Genet. 23:1907–1915. 2014. View Article : Google Scholar | |
Zischka H and Lichtmannegger J: Pathological mitochondrial copper overload in livers of Wilson's disease patients and related animal models. Ann N Y Acad Sci. 1315:6–15. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yan T, Xiong C, Chang M, Gao Q, Yao S, Wu W, Yi X and Xu G: Overexpression of lipoic acid synthase gene alleviates diabetic nephropathy of Leprdb/db mice. BMJ Open Diabetes Res Care. 9:e0022602021. View Article : Google Scholar | |
Wang X, Shao N, Zhang X, Chen H, Chang Z, Xie D and Zhang J: Ferulic acid activates SIRT1-mediated ferroptosis signaling pathway to improve cognition dysfunction in Wilson's disease. Neuropsychiatr Dis Treat. 19:2681–2696. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ahmad W: Dihydrolipoamide dehydrogenase suppression induces human tau phosphorylation by increasing whole body glucose levels in a C. elegans model of Alzheimer's disease. Exp Brain Res. 236:2857–2866. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goh WQ, Ow GS, Kuznetsov VA, Chong S and Lim YP: DLAT subunit of the pyruvate dehydrogenase complex is upregulated in gastric cancer-implications in cancer therapy. Am J Transl Res. 7:1140–1151. 2015.PubMed/NCBI | |
Ma Y, Bao Y, Wang H, Jiang H, Zhou L, Yang B, Huang X, Yang W, Xie D and Zhang J: 1H-NMR-based metabolomics to dissect the traditional Chinese medicine promotes mesenchymal stem cell homing as intervention in liver fibrosis in mouse model of Wilson's disease. J Pharm Pharmacol. 76:656–671. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dung VM, Suong DNA, Okamaoto Y, Hiramatsu Y, Thao DTP, Yoshida H, Takashima H and Yamaguchi M: Neuron-specific knockdown of Drosophila PDHB induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting. Exp Cell Res. 366:92–102. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kikuchi D, Minamishima YA and Nakayama K: Prolyl-hydroxylase PHD3 interacts with pyruvate dehydrogenase (PDH)-E1β and regulates the cellular PDH activity. Biochem Biophys Res Commun. 451:288–294. 2014. View Article : Google Scholar : PubMed/NCBI | |
Karthikkeyan G, Pervaje R, Pervaje SK, Prasad TSK and Modi PK: Prevention of MEK-ERK-1/2 hyper-activation underlines the neuroprotective effect of Glycyrrhiza glabra L. (Yashtimadhu) against rotenone-induced cellular and molecular aberrations. J Ethnopharmacol. 274:1140252021. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Luo X, Li J, Zhou Y, Li Y, Song L, Zhang X and Chen T: Pyruvate dehydrogenase B promoted the growth and migration of the nasopharyngeal carcinoma cells. Tumour Biol. 37:10563–10569. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Wu L, Chen Q, Chen K, Tan F, Liu J, Liu X and Han H: Copper deposition in Wilson's disease causes male fertility decline by impairing reproductive hormone release through inducing apoptosis and inhibiting ERK signal in hypothalamic-pituitary of mice. Front Endocrinol (Lausanne). 13:9617482022. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Newman H, Shen L, Sharma D, Hu G, Mirando AJ, Zhang H, Knudsen E, Zhang GF, Hilton MJ and Karner CM: Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 29:966–978.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R and Newsholme P: Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients. 10:15642018. View Article : Google Scholar : PubMed/NCBI | |
Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, Maseda D, Liberti MV, Paz K, Kishton RJ, et al: Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell. 175:1780–1795.e19. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yong L, Shi Y, Wu HL, Dong QY, Guo J, Hu LS, Wang WH, Guan ZP and Yu BS: p53 inhibits CTR1-mediated cisplatin absorption by suppressing SP1 nuclear translocation in osteosarcoma. Front Oncol. 12:10471942023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Fan L, Lu C, Yin S and Hu H: Functional role of p53 in the regulation of chemical-induced oxidative stress. Oxid Med Cell Longev. 2020:60397692020.PubMed/NCBI | |
Formigari A, Gregianin E and Irato P: The effect of zinc and the role of p53 in copper-induced cellular stress responses. J Appl Toxicol. 33:527–536. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tavera-Montañez C, Hainer SJ, Cangussu D, Gordon SJV, Xiao Y, Reyes-Gutierrez P, Imbalzano AN, Navea JG, Fazzio TG and Padilla-Benavides T: The classic metal-sensing transcription factor MTF1 promotes myogenesis in response to copper. FASEB J. 33:14556–14574. 2019. View Article : Google Scholar : PubMed/NCBI |