|
1
|
Kubová David Vetchý Miroslava Pavelková
Jakub Vysloužil Kateřina: Biological role of copper as an essential
trace element in the human organism. Ceska Slov Farm. 67:143–153.
2018. View Article : Google Scholar
|
|
2
|
Immergluck J, Grant LM and Anilkumar AC:
Wilson disease. StatPearls [Internet] Treasure Island (FL):
StatPearls Publishing; 2025
|
|
3
|
Ramani PK and Parayil Sankaran B: Menkes
disease. StatPearls [Internet] Treasure Island (FL): StatPearls
Publishing; 2025
|
|
4
|
Scheiber I, Dringen R and Mercer JFB:
Copper: Effects of deficiency and overload. Met Ions Life Sci.
13:359–387. 2013.
|
|
5
|
Tsvetkov P, Coy S, Petrova B, Dreishpoon
M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R,
Spangler RD, et al: Copper induces cell death by targeting
lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Santagostino SF and Radaelli E: Special
focus on regulated cell death: Emerging mechanisms and current
perspectives in biology and pathology. Vet Pathol. 58:594–595.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X
and Shi H: From ferroptosis to cuproptosis, and calcicoptosis, to
find more novel metals-mediated distinct form of regulated cell
death. Apoptosis. 29:586–604. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Santagostino SF, Assenmacher CA, Tarrant
JC, Adedeji AO and Radaelli E: Mechanisms of regulated cell death:
Current perspectives. Vet Pathol. 58:596–623. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lucena-Valera A, Ruz-Zafra P and Ampuero
J: Wilson's disease: Overview. Med Clin (Barc). 160:261–267.
2023.In English, Spanish. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fu Y, Hou L, Han K, Zhao C, Hu H and Yin
S: The physiological role of copper: Dietary sources, metabolic
regulation, and safety concerns. Clin Nutr. 48:161–179. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Arredondo M and Núñez MT: Iron and copper
metabolism. Mol Aspects Med. 26:313–327. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Xie J, Yang Y, Gao Y and He J:
Cuproptosis: mechanisms and links with cancers. Mol Cancer.
22:462023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sharp PA: Ctr1 and its role in body copper
homeostasis. Int J Biochem Cell Biol. 35:288–291. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nose Y, Wood LK, Kim BE, Prohaska JR, Fry
RS, Spears JW and Thiele DJ: Ctr1 is an apical copper transporter
in mammalian intestinal epithelial cells in vivo that is controlled
at the level of protein stability. J Biol Chem. 285:32385–32392.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kar S, Sen S, Maji S, Saraf D, Ruturaj,
Paul R, Dutt S, Mondal B, Rodriguez-Boulan E, Schreiner R, et al:
Copper(II) import and reduction are dependent on His-Met clusters
in the extracellular amino terminus of human copper transporter-1.
J Biol Chem. 298:1016312022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Turnlund JR, King JC, Gong B, Keyes WR and
Michel MC: A stable isotope study of copper absorption in young
men: Effect of phytate and alpha-cellulose. Am J Clin Nutr.
42:18–23. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Moriya M, Ho YH, Grana A, Nguyen L,
Alvarez A, Jamil R, Ackland ML, Michalczyk A, Hamer P, Ramos D, et
al: Copper is taken up efficiently from albumin and
alpha2-macroglobulin by cultured human cells by more than one
mechanism. Am J Physiol Cell Physiol. 295:C708–C721. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yang Y, Wu J, Wang L, Ji G and Dang Y:
Copper homeostasis and cuproptosis in health and disease. MedComm
(2020). 5:e7242024. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Singleton C and Le Brun NE: Atx1-like
chaperones and their cognate P-type ATPases: Copper-binding and
transfer. Biometals. 20:275–289. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li Y: Copper homeostasis: Emerging target
for cancer treatment. IUBMB Life. 72:1900–1908. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kim BE, Nevitt T and Thiele DJ: Mechanisms
for copper acquisition, distribution and regulation. Nat Chem Biol.
4:176–185. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Nose Y, Kim BE and Thiele DJ: Ctr1 drives
intestinal copper absorption and is essential for growth, iron
metabolism, and neonatal cardiac function. Cell Metab. 4:235–244.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lutsenko S, Barnes NL, Bartee MY and
Dmitriev OY: Function and regulation of human copper-transporting
ATPases. Physiol Rev. 87:1011–1046. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lutsenko S: Copper trafficking to the
secretory pathway. Metallomics. 8:840–852. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Medeiros DM and Jennings D: Role of copper
in mitochondrial biogenesis via interaction with ATP synthase and
cytochrome c oxidase. J Bioenerg Biomembr. 34:389–395. 2002.
View Article : Google Scholar
|
|
26
|
Gale J and Aizenman E: The physiological
and pathophysiological roles of copper in the nervous system. Eur J
Neurosci. 60:3505–3543. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Pekary AE, Stevens SA and Sattin A:
Valproate and copper accelerate TRH-like peptide synthesis in male
rat pancreas and reproductive tissues. Peptides. 27:2901–2911.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Héraud F, Savineau C and Harmand MF:
Copper modulation of extracellular matrix synthesis by human
articular chondrocytes. Scand J Rheumatol. 31:279–284. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gudkov SV, Burmistrov DE, Fomina PA,
Validov SZ and Kozlov VA: Antibacterial properties of copper oxide
nanoparticles (review). Int J Mol Sci. 25:115632024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li
Y and Peng Z: ROS-induced lipid peroxidation modulates cell death
outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis.
Arch Toxicol. 97:1439–1451. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang B and Burke R: Copper homeostasis
and the ubiquitin proteasome system. Metallomics. 15:mfad0102023.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC
and Tan M: Protein lipoylation: Mitochondria, cuproptosis, and
beyond. Trends Biochem Sci. 49:729–744. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Rowland EA, Snowden CK and Cristea IM:
Protein lipoylation: An evolutionarily conserved metabolic
regulator of health and disease. Curr Opin Chem Biol. 42:76–85.
2018. View Article : Google Scholar :
|
|
34
|
Tang D, Chen X and Kroemer G: Cuproptosis:
A copper-triggered modality of mitochondrial cell death. Cell Res.
32:417–418. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cobine PA and Brady DC: Cuproptosis:
Cellular and molecular mechanisms underlying copper-induced cell
death. Mol Cell. 82:1786–1787. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang D, Tian Z, Zhang P, Zhen L, Meng Q,
Sun B, Xu X, Jia T and Li S: The molecular mechanisms of
cuproptosis and its relevance to cardiovascular disease. Biomed
Pharmacother. 163:1148302023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hu F, Huang J, Bing T, Mou W, Li D, Zhang
H, Chen Y, Jin Q, Yu Y and Yang Z: Stimulus-responsive copper
complex nanoparticles induce cuproptosis for augmented cancer
immunotherapy. Adv Sci (Weinh). 11:e23093882024. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li M, Tang S, Velkov T, Shen J and Dai C:
Copper exposure induces mitochondrial dysfunction and
hepatotoxicity via the induction of oxidative stress and
PERK/ATF4-mediated endoplasmic reticulum stress. Environ Pollut.
352:1241452024. View Article : Google Scholar
|
|
39
|
Zhao G, Sun H, Zhang T and Liu JX: Copper
induce zebrafish retinal developmental defects via triggering
stresses and apoptosis. Cell Commun Signal. 18:452020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liao J, Yang F, Tang Z, Yu W, Han Q, Hu L,
Li Y, Guo J, Pan J, Ma F, et al: Inhibition of caspase-1-dependent
pyroptosis attenuates copper-induced apoptosis in chicken
hepatocytes. Ecotoxicol Environ Saf. 174:110–119. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lu J, Ling X, Sun Y, Liu L, Liu L, Wang X,
Lu C, Ren C, Han X and Yu Z: FDX1 enhances endometriosis cell
cuproptosis via G6PD-mediated redox homeostasis. Apoptosis.
28:1128–1140. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Huang X, Wang T, Ye J, Feng H and Zhang X,
Ma X, Wang B, Huang Y and Zhang X: FDX1 expression predicts
favourable prognosis in clear cell renal cell carcinoma identified
by bioinformatics and tissue microarray analysis. Front Genet.
13:9947412022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Braymer JJ, Freibert SA, Rakwalska-Bange M
and Lill R: Mechanistic concepts of iron-sulfur protein biogenesis
in biology. Biochim Biophys Acta Mol Cell Res. 1868:1188632021.
View Article : Google Scholar
|
|
44
|
Stowe RC, Sun Q, Elsea SH and Scaglia F:
LIPT1 deficiency presenting as early infantile epileptic
encephalopathy, Leigh disease, and secondary pyruvate dehydrogenase
complex deficiency. Am J Med Genet A. 176:1184–1189. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cicchillo RM and Booker SJ: Mechanistic
investigations of lipoic acid biosynthesis in Escherichia coli:
Both sulfur atoms in lipoic acid are contributed by the same lipoyl
synthase polypeptide. J Am Chem Soc. 127:2860–2861. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wieland OH, Hartmann U and Siess EA:
Neurospora crassa pyruvate dehydrogenase: Interconversion by
phosphorylation and dephosphorylation. FEBS Lett. 27:240–244. 1972.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Goguet-Rubio P, Seyran B, Gayte L, Bernex
F, Sutter A, Delpech H, Linares LK, Riscal R, Repond C, Rodier G,
et al: E4F1-mediated control of pyruvate dehydrogenase activity is
essential for skin homeostasis. Proc Natl Acad Sci USA.
113:11004–11009. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li W, Long Q, Wu H, Zhou Y, Duan L, Yuan
H, Ding Y, Huang Y, Wu Y, Huang J, et al: Nuclear localization of
mitochondrial TCA cycle enzymes modulates pluripotency via histone
acetylation. Nat Commun. 13:74142022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang H, Yang Z, He X, Guo F, Sun H, Xu S,
Xu C, Wang Z, Wen H, Teng Z, et al: Cuproptosis related gene PDHB
is identified as a biomarker inversely associated with the
progression of clear cell renal cell carcinoma. BMC Cancer.
23:8042023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Huang M, Zhang Y and Liu X: The mechanism
of cuproptosis in Parkinson's disease. Ageing Res Rev.
95:1022142024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang W, Chen Z and Hua Y: Bioinformatics
prediction and experimental validation identify a novel
cuproptosis-related gene signature in human synovial inflammation
during osteoarthritis progression. Biomolecules. 13:1272023.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu Z, Wang L, Xing Q, Liu X, Hu Y, Li W,
Yan Q, Liu R and Huang N: Identification of GLS as a
cuproptosis-related diagnosis gene in acute myocardial infarction.
Front Cardiovasc Med. 9:10160812022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li Y, Ma J, Wang R, Luo Y, Zheng S and
Wang X: Zinc transporter 1 functions in copper uptake and
cuproptosis. Cell Metab. 36:2118–2129.e6. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jiang M, Liu K, Lu S, Qiu Y, Zou X, Zhang
K, Chen C, Jike Y, Xie M, Dai Y and Bo Z: Verification of
cuproptosis-related diagnostic model associated with immune
infiltration in rheumatoid arthritis. Front Endocrinol (Lausanne).
14:12049262023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang Y, Qian Y, Zhang J, Yan W, Jung YS,
Chen M, Huang E, Lloyd K, Duan Y, Wang J, et al: Ferredoxin
reductase is critical for p53-dependent tumor suppression via iron
regulatory protein 2. Genes Dev. 31:1243–1256. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Funauchi Y, Tanikawa C, Yi Lo PH, Mori J,
Daigo Y, Takano A, Miyagi Y, Okawa A, Nakamura Y and Matsuda K:
Regulation of iron homeostasis by the p53-ISCU pathway. Sci Rep.
5:164972015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sawamoto M, Imai T, Umeda M, Fukuda K,
Kataoka T and Taketani S: The p53-dependent expression of frataxin
controls 5-aminolevulinic acid-induced accumulation of
protoporphyrin IX and photo-damage in cancerous cells. Photochem
Photobiol. 89:163–172. 2013. View Article : Google Scholar
|
|
58
|
Shimizu R, Lan NN, Tai TT, Adachi Y,
Kawazoe A, Mu A and Taketani S: p53 directly regulates the
transcription of the human frataxin gene and its lack of regulation
in tumor cells decreases the utilization of mitochondrial iron.
Gene. 551:79–85. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Batzios S, Tal G, DiStasio AT, Peng Y,
Charalambous C, Nicolaides P, Kamsteeg EJ, Korman SH, Mandel H,
Steinbach PJ, et al: Newly identified disorder of copper metabolism
caused by variants in CTR1, a high-affinity copper transporter. Hum
Mol Genet. 31:4121–4130. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Walker JM, Tsivkovskii R and Lutsenko S:
Metallochaperone Atox1 transfers copper to the NH2-terminal domain
of the Wilson's disease protein and regulates its catalytic
activity. J Biol Chem. 277:27953–27959. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Schulz V, Basu S, Freibert SA, Webert H,
Boss L, Mühlenhoff U, Pierrel F, Essen LO, Warui DM, Booker SJ, et
al: Functional spectrum and specificity of mitochondrial
ferredoxins FDX1 and FDX2. Nat Chem Biol. 19:206–217. 2023.
View Article : Google Scholar
|
|
62
|
Kinnier Wilson SA: Progressive lenticular
degeneration: a familial nervous disease associated with cirrhosis
of the liver. Brain. 34:295–507. 1912. View Article : Google Scholar
|
|
63
|
Tanzi RE, Petrukhin K, Chernov I,
Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L,
Brzustowicz LM, et al: The Wilson disease gene is a copper
transporting ATPase with homology to the Menkes disease gene. Nat
Genet. 5:344–350. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bull PC, Thomas GR, Rommens JM, Forbes JR
and Cox DW: The Wilson disease gene is a putative copper
transporting P-type ATPase similar to the Menkes gene. Nat Genet.
5:327–337. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Petrukhin K, Lutsenko S, Chernov I, Ross
BM, Kaplan JH and Gilliam TC: Characterization of the Wilson
disease gene encoding a P-type copper transporting ATPase: Genomic
organization, alternative splicing, and structure/function
predictions. Hum Mol Genet. 3:1647–1656. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lutsenko S, LeShane ES and Shinde U:
Biochemical basis of regulation of human copper-transporting
ATPases. Arch Biochem Biophys. 463:134–148. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li M, Ma J, Wang W, Yang X and Luo K:
Mutation analysis of the ATP7B gene and genotype-phenotype
correlation in Chinese patients with Wilson disease. BMC
Gastroenterol. 21:3392021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Huster D, Kühne A, Bhattacharjee A, Raines
L, Jantsch V, Noe J, Schirrmeister W, Sommerer I, Sabri O, Berr F,
et al: Diverse functional properties of Wilson disease ATP7B
variants. Gastroenterology. 142:947–956.e5. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Członkowska A, Litwin T, Dusek P, Ferenci
P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH and Schilsky ML:
Wilson disease. Nat Rev Dis Primers. 4:212018. View Article : Google Scholar
|
|
70
|
Pronicki M: Wilson disease-liver
pathology. Handb Clin Neurol. 142:71–75. 2017. View Article : Google Scholar
|
|
71
|
Gerosa C, Fanni D, Congiu T, Piras M, Cau
F, Moi M and Faa G: Liver pathology in Wilson's disease: From
copper overload to cirrhosis. J Inorg Biochem. 193:106–111. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Koyama Y and Brenner DA: Liver
inflammation and fibrosis. J Clin Invest. 127:55–64. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Rosselli M, MacNaughtan J, Jalan R and
Pinzani M: Beyond scoring: A modern interpretation of disease
progression in chronic liver disease. Gut. 62:1234–1241. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Poujois A, Mikol J and Woimant F: Wilson
disease: Brain pathology. Handb Clin Neurol. 142:77–89. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Meenakshi-Sundaram S, Mahadevan A, Taly
AB, Arunodaya GR, Swamy HS and Shankar SK: Wilson's disease: A
clinico-neuropathological autopsy study. J Clin Neurosci.
15:409–417. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Mikol J, Vital C, Wassef M, Chappuis P,
Poupon J, Lecharpentier M and Woimant F: Extensive
cortico-subcortical lesions in Wilson's disease:
Clinico-pathological study of two cases. Acta Neuropathol.
110:451–458. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Bruha R, Vitek L, Marecek Z, Pospisilova
L, Nevsimalova S, Martasek P, Petrtyl J, Urbanek P, Jiraskova A,
Malikova I, et al: Decreased serum antioxidant capacity in patients
with Wilson disease is associated with neurological symptoms. J
Inherit Metab Dis. 35:541–548. 2012. View Article : Google Scholar
|
|
78
|
Anzil AP, Herrlinger H, Blinzinger K and
Heldrich A: Ultrastructure of brain and nerve biopsy tissue in
Wilson disease. Arch Neurol. 31:94–100. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Dang J, Chevalier K, Letavernier E,
Tissandier C, Mouawad S, Debray D, Obadia M and Poujois A: Kidney
involvement in Wilson's disease: A review of the literature. Clin
Kidney J. 17:sfae0582024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Niu YY, Zhang YY, Zhu Z, Zhang XQ, Liu X,
Zhu SY, Song Y, Jin X, Lindholm B and Yu C: Elevated intracellular
copper contributes a unique role to kidney fibrosis by lysyl
oxidase mediated matrix crosslinking. Cell Death Dis. 11:2112020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Harry J and Tripathi R: Kayser-Fleischer
ring: A pathological study. Br J Ophthalmol. 54:794–800. 1970.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Suvarna JC: Kayser-Fleischer ring. J
Postgrad Med. 54:238–240. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Factor SM, Cho S, Sternlieb I, Scheinberg
IH and Goldfischer S: The cardiomyopathy of Wilson's disease.
Myocardial alterations in nine cases. Virchows Arch A Pathol Anat
Histol. 397:301–311. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kuan P: Cardiac Wilson's disease. Chest.
91:579–583. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Grandis DJ, Nah G, Whitman IR, Vittinghoff
E, Dewland TA, Olgin JE and Marcus GM: Wilson's disease and cardiac
myopathy. Am J Cardiol. 120:2056–2060. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Aydemir B, Kiziler AR, Onaran I, Alici B,
Ozkara H and Akyolcu MC: Impact of Cu and Fe concentrations on
oxidative damage in male infertility. Biol Trace Elem Res.
112:193–203. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Iorio GG, Conforti A, Vallone R, Carbone
L, Matarazzo M, De Rosa A, De Rosa P, Picarelli S, Fedele F,
Perruolo G, et al: Reproductive function of long-term treated
patients with hepatic onset of Wilson's disease: A prospective
study. Reprod Biomed Online. 42:835–841. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tarnacka B, Rodo M, Cichy S and
Członkowska A: Procreation ability in Wilson's disease. Acta Neurol
Scand. 101:395–398. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chenbhanich J, Thongprayoon C,
Atsawarungruangkit A, Phupitakphol T and Cheungpasitporn W:
Osteoporosis and bone mineral density in patients with Wilson's
disease: A systematic review and meta-analysis. Osteoporos Int.
29:315–322. 2018. View Article : Google Scholar
|
|
90
|
Bhadada S, Malhotra B, Shetty A and
Mukherjee S: Metabolic bone disease heralding the diagnosis of
Wilson's disease. BMJ Case Rep. 16:e2522902023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Pop TL, Grama A, Stefanescu AC, Willheim C
and Ferenci P: Acute liver failure with hemolytic anemia in
children with Wilson's disease: Genotype-phenotype correlations?
World J Hepatol. 13:1428–1438. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang SQ, Zhan YQ, Hu X, Zhuang YP, Liu HQ,
Hong MF and Zhong HJ: Anemia is associated with disease severity,
hepatic complications, and progression of wilson disease: A
retrospective cohort study. Dig Dis. 41:632–640. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gunay N, Yildirim C, Karcioglu O, Gunay
NE, Yilmaz M, Usalan C, Kose A and Togun I: A series of patients in
the emergency department diagnosed with copper poisoning:
Recognition equals treatment. Tohoku J Exp Med. 209:243–248. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kumar A, Chaudhary A, Agrahari B,
Chaudhary K, Kumar P and Singh RG: Concurrent Cu(II)-initiated
Fenton-like reaction and glutathione depletion to escalate
chemodynamic therapy. Chem Commun (Camb). 59:14305–14308. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Korotkov SM: Mitochondrial oxidative
stress is the general reason for apoptosis induced by
different-valence heavy metals in cells and mitochondria. Int J Mol
Sci. 24:144592023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Tian Z, Jiang S, Zhou J and Zhang W:
Copper homeostasis and cuproptosis in mitochondria. Life Sci.
334:1222232023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhou Q, Zhang Y, Lu L, Zhang H, Zhao C, Pu
Y and Yin L: Copper induces microglia-mediated neuroinflammation
through ROS/NF-κB pathway and mitophagy disorder. Food Chem
Toxicol. 168:1133692022. View Article : Google Scholar
|
|
98
|
Yip NC, Fombon IS, Liu P, Brown S,
Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL and Wang W:
Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast
cancer cells with cancer stem cell-like properties. Br J Cancer.
104:1564–1574. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Xiang K, Wu H, Liu Y, Wang S, Li X, Yang
B, Zhang Y, Ma L, Lu G, He L, et al: MOF-derived bimetallic
nanozyme to catalyze ROS scavenging for protection of myocardial
injury. Theranostics. 13:2721–2733. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Jomova K, Alomar SY, Alwasel SH,
Nepovimova E, Kuca K and Valko M: Several lines of antioxidant
defense against oxidative stress: Antioxidant enzymes,
nanomaterials with multiple enzyme-mimicking activities, and
low-molecular-weight antioxidants. Arch Toxicol. 98:1323–1367.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ling P, Yang P, Gao X, Sun X and Gao F:
ROS generation strategy based on biomimetic nanosheets by
self-assembly of nanozymes. J Mater Chem B. 10:9607–9612. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Liu T, Sun L, Zhang Y, Wang Y and Zheng J:
Imbalanced GSH/ROS and sequential cell death. J Biochem Mol
Toxicol. 36:e229422022. View Article : Google Scholar
|
|
103
|
Cao S, Li X, Gao Y, Li F, Li K, Cao X, Dai
Y, Mao L, Wang S and Tai X: A simultaneously GSH-depleted
bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy.
Dalton Trans. 49:11851–11858. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ciechanover A: The unravelling of the
ubiquitin system. Nat Rev Mol Cell Biol. 16:322–324. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Maupin-Furlow J: Proteasomes and protein
conjugation across domains of life. Nat Rev Microbiol. 10:100–111.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Nandi D, Tahiliani P, Kumar A and Chandu
D: The ubiquitin-proteasome system. J Biosci. 31:137–155. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Murray AW: Recycling the cell cycle:
Cyclins revisited. Cell. 116:221–234. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Karin M and Ben-Neriah Y: Phosphorylation
meets ubiquitination: The control of NF-[kappa]B activity. Annu Rev
Immunol. 18:621–663. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
McDonough H and Patterson C: CHIP: A link
between the chaperone and proteasome systems. Cell Stress
Chaperones. 8:303–308. 2003. View Article : Google Scholar
|
|
110
|
Konarikova K, Frivaldska J, Gbelcova H,
Sveda M, Ruml T, Janubova M and Zitnanova I: Schiff base Cu(II)
complexes as inhibitors of proteasome in human cancer cells.
Bratisl Lek Listy. 120:646–649. 2019.PubMed/NCBI
|
|
111
|
Skrott Z, Mistrik M, Andersen KK, Friis S,
Majera D, Gursky J, Ozdian T, Bartkova J, Turi Z, Moudry P, et al:
Alcohol-abuse drug disulfiram targets cancer via p97 segregase
adaptor NPL4. Nature. 552:194–199. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Li SR, Bu LL and Cai L: Cuproptosis:
Lipoylated TCA cycle proteins-mediated novel cell death pathway.
Signal Transduct Target Ther. 7:1582022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Bian Z, Fan R and Xie L: A novel
cuproptosis-related prognostic gene signature and validation of
differential expression in clear cell renal cell carcinoma. Genes
(Basel). 13:8512022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Pan C, Ji Z, Wang Q, Zhang Z, Wang Z, Li
C, Lu S and Ge P: Cuproptosis: Mechanisms, biological significance,
and advances in disease treatment-A systematic review. CNS Neurosci
Ther. 30:e700392024. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Hetz C, Zhang K and Kaufman RJ:
Mechanisms, regulation and functions of the unfolded protein
response. Nat Rev Mol Cell Biol. 21:421–438. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Haynes CM and Ron D: The mitochondrial
UPR-protecting organelle protein homeostasis. J Cell Sci.
123:3849–3855. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ghai S, Shrestha R, Hegazi A, Boualoy V,
Liu SH and Su KH: The role of heat shock factor 1 in preserving
proteomic integrity during copper-induced cellular toxicity. Int J
Mol Sci. 25:116572024. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Fujimoto M, Takii R, Hayashida N and Nakai
A: Analysis of the heat shock factor complex in mammalian HSP70
promoter. Methods Mol Biol. 1292:53–65. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Garde R, Dea A, Herwig MF, Ali A and
Pincus D: Feedback control of the heat shock response by
spatiotemporal regulation of Hsp70. J Cell Biol.
223:e2024010822024. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang J, Ma Y, Xie D, Bao Y, Yang W, Wang
H, Jiang H, Han H and Dong T: Differentially expressed lncRNAs in
liver tissues of TX mice with hepatolenticular degeneration. Sci
Rep. 11:13772021. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zhang C, Zeng Y, Guo X, Shen H, Zhang J,
Wang K, Ji M and Huang S: Pan-cancer analyses confirmed the
cuproptosis-related gene FDX1 as an immunotherapy predictor and
prognostic biomarker. Front Genet. 13:9237372022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wu P, Dong J, Cheng N, Yang R and Han Y
and Han Y: Inflammatory cytokines expression in Wilson's disease.
Neurol Sci. 40:1059–1066. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhao D, Wu L, Fang X, Wang L, Liu Q, Jiang
P, Ji Z, Zhang N, Yin M and Han H: Copper exposure induces
inflammation and PANoptosis through the TLR4/NF-κB signaling
pathway, leading to testicular damage and impaired spermatogenesis
in Wilson disease. Chem Biol Interact. 396:1110602024. View Article : Google Scholar
|
|
124
|
Li Y and Zeng X: A novel
cuproptosis-related prognostic gene signature and validation of
differential expression in hepatocellular carcinoma. Front
Pharmacol. 13:10819522023. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Tort F, Ferrer-Cortès X, Thió M,
Navarro-Sastre A, Matalonga L, Quintana E, Bujan N, Arias A,
García-Villoria J, Acquaviva C, et al: Mutations in the
lipoyltransferase LIPT1 gene cause a fatal disease associated with
a specific lipoylation defect of the 2-ketoacid dehydrogenase
complexes. Hum Mol Genet. 23:1907–1915. 2014. View Article : Google Scholar
|
|
126
|
Zischka H and Lichtmannegger J:
Pathological mitochondrial copper overload in livers of Wilson's
disease patients and related animal models. Ann N Y Acad Sci.
1315:6–15. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhao Y, Yan T, Xiong C, Chang M, Gao Q,
Yao S, Wu W, Yi X and Xu G: Overexpression of lipoic acid synthase
gene alleviates diabetic nephropathy of Leprdb/db mice.
BMJ Open Diabetes Res Care. 9:e0022602021. View Article : Google Scholar
|
|
128
|
Wang X, Shao N, Zhang X, Chen H, Chang Z,
Xie D and Zhang J: Ferulic acid activates SIRT1-mediated
ferroptosis signaling pathway to improve cognition dysfunction in
Wilson's disease. Neuropsychiatr Dis Treat. 19:2681–2696. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Ahmad W: Dihydrolipoamide dehydrogenase
suppression induces human tau phosphorylation by increasing whole
body glucose levels in a C. elegans model of Alzheimer's disease.
Exp Brain Res. 236:2857–2866. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Goh WQ, Ow GS, Kuznetsov VA, Chong S and
Lim YP: DLAT subunit of the pyruvate dehydrogenase complex is
upregulated in gastric cancer-implications in cancer therapy. Am J
Transl Res. 7:1140–1151. 2015.PubMed/NCBI
|
|
131
|
Ma Y, Bao Y, Wang H, Jiang H, Zhou L, Yang
B, Huang X, Yang W, Xie D and Zhang J: 1H-NMR-based metabolomics to
dissect the traditional Chinese medicine promotes mesenchymal stem
cell homing as intervention in liver fibrosis in mouse model of
Wilson's disease. J Pharm Pharmacol. 76:656–671. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Dung VM, Suong DNA, Okamaoto Y, Hiramatsu
Y, Thao DTP, Yoshida H, Takashima H and Yamaguchi M:
Neuron-specific knockdown of Drosophila PDHB induces reduction of
lifespan, deficient locomotive ability, abnormal morphology of
motor neuron terminals and photoreceptor axon targeting. Exp Cell
Res. 366:92–102. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Kikuchi D, Minamishima YA and Nakayama K:
Prolyl-hydroxylase PHD3 interacts with pyruvate dehydrogenase
(PDH)-E1β and regulates the cellular PDH activity. Biochem Biophys
Res Commun. 451:288–294. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Karthikkeyan G, Pervaje R, Pervaje SK,
Prasad TSK and Modi PK: Prevention of MEK-ERK-1/2 hyper-activation
underlines the neuroprotective effect of Glycyrrhiza glabra L.
(Yashtimadhu) against rotenone-induced cellular and molecular
aberrations. J Ethnopharmacol. 274:1140252021. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Tang H, Luo X, Li J, Zhou Y, Li Y, Song L,
Zhang X and Chen T: Pyruvate dehydrogenase B promoted the growth
and migration of the nasopharyngeal carcinoma cells. Tumour Biol.
37:10563–10569. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Wang T, Wu L, Chen Q, Chen K, Tan F, Liu
J, Liu X and Han H: Copper deposition in Wilson's disease causes
male fertility decline by impairing reproductive hormone release
through inducing apoptosis and inhibiting ERK signal in
hypothalamic-pituitary of mice. Front Endocrinol (Lausanne).
13:9617482022. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Yu Y, Newman H, Shen L, Sharma D, Hu G,
Mirando AJ, Zhang H, Knudsen E, Zhang GF, Hilton MJ and Karner CM:
Glutamine metabolism regulates proliferation and lineage allocation
in skeletal stem cells. Cell Metab. 29:966–978.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Cruzat V, Macedo Rogero M, Noel Keane K,
Curi R and Newsholme P: Glutamine: Metabolism and immune function,
supplementation and clinical translation. Nutrients. 10:15642018.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Johnson MO, Wolf MM, Madden MZ, Andrejeva
G, Sugiura A, Contreras DC, Maseda D, Liberti MV, Paz K, Kishton
RJ, et al: Distinct regulation of Th17 and Th1 cell differentiation
by glutaminase-dependent metabolism. Cell. 175:1780–1795.e19. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Yong L, Shi Y, Wu HL, Dong QY, Guo J, Hu
LS, Wang WH, Guan ZP and Yu BS: p53 inhibits CTR1-mediated
cisplatin absorption by suppressing SP1 nuclear translocation in
osteosarcoma. Front Oncol. 12:10471942023. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Liu X, Fan L, Lu C, Yin S and Hu H:
Functional role of p53 in the regulation of chemical-induced
oxidative stress. Oxid Med Cell Longev. 2020:60397692020.PubMed/NCBI
|
|
142
|
Formigari A, Gregianin E and Irato P: The
effect of zinc and the role of p53 in copper-induced cellular
stress responses. J Appl Toxicol. 33:527–536. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Tavera-Montañez C, Hainer SJ, Cangussu D,
Gordon SJV, Xiao Y, Reyes-Gutierrez P, Imbalzano AN, Navea JG,
Fazzio TG and Padilla-Benavides T: The classic metal-sensing
transcription factor MTF1 promotes myogenesis in response to
copper. FASEB J. 33:14556–14574. 2019. View Article : Google Scholar : PubMed/NCBI
|