Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review)

  • Authors:
    • Hong Chen
    • Xie Wang
    • Jin Xing
    • Yue Pu
    • Hao Ye
    • Ying Ma
    • Juan Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 117
    |
    Published online on: May 30, 2025
       https://doi.org/10.3892/ijmm.2025.5558
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Copper, an indispensable trace element in living organisms, plays a pivotal role in human physiological processes. Wilson's disease (WD), an inherited disorder of copper metabolism, is caused by mutations in the ATP7B gene. This genetic malfunction disrupts the dynamics of copper transport and metabolism, thereby impairing ceruloplasmin synthesis and copper excretion. The resultant accumulation of copper in various tissues and organs precipitates a cascade of cellular demise and functional impairment. Notably, cuproptosis, a recently discovered copper‑dependent regulated cell death mechanism, distinctly deviates from conventional cell death paradigms. This novel mode of cell death involves the interaction of copper with lipoacylated proteins within the tricarboxylic acid cycle, leading to proteinotoxic stress and culminating in cell death. In the realm of pathophysiology, cuproptosis has emerged as a pivotal player in a spectrum of diseases, with WD standing as a paradigm closely intertwined with the dysregulation of copper metabolism. This study aimed to encapsulate the pivotal molecular underpinnings of cuproptosis and delve into its crucial involvement in the etiopathogenesis of WD. By elucidating these mechanisms, the present analysis contributes significantly to the nuanced understanding of the pathological underpinnings of WD, thereby providing fresh insights and evidence that may direct innovative therapeutic strategies for this condition.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Kubová David Vetchý Miroslava Pavelková Jakub Vysloužil Kateřina: Biological role of copper as an essential trace element in the human organism. Ceska Slov Farm. 67:143–153. 2018. View Article : Google Scholar

2 

Immergluck J, Grant LM and Anilkumar AC: Wilson disease. StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2025

3 

Ramani PK and Parayil Sankaran B: Menkes disease. StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2025

4 

Scheiber I, Dringen R and Mercer JFB: Copper: Effects of deficiency and overload. Met Ions Life Sci. 13:359–387. 2013.

5 

Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI

6 

Santagostino SF and Radaelli E: Special focus on regulated cell death: Emerging mechanisms and current perspectives in biology and pathology. Vet Pathol. 58:594–595. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X and Shi H: From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis. 29:586–604. 2024. View Article : Google Scholar : PubMed/NCBI

8 

Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO and Radaelli E: Mechanisms of regulated cell death: Current perspectives. Vet Pathol. 58:596–623. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Lucena-Valera A, Ruz-Zafra P and Ampuero J: Wilson's disease: Overview. Med Clin (Barc). 160:261–267. 2023.In English, Spanish. View Article : Google Scholar : PubMed/NCBI

10 

Fu Y, Hou L, Han K, Zhao C, Hu H and Yin S: The physiological role of copper: Dietary sources, metabolic regulation, and safety concerns. Clin Nutr. 48:161–179. 2025. View Article : Google Scholar : PubMed/NCBI

11 

Arredondo M and Núñez MT: Iron and copper metabolism. Mol Aspects Med. 26:313–327. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Xie J, Yang Y, Gao Y and He J: Cuproptosis: mechanisms and links with cancers. Mol Cancer. 22:462023. View Article : Google Scholar : PubMed/NCBI

13 

Sharp PA: Ctr1 and its role in body copper homeostasis. Int J Biochem Cell Biol. 35:288–291. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Nose Y, Wood LK, Kim BE, Prohaska JR, Fry RS, Spears JW and Thiele DJ: Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. J Biol Chem. 285:32385–32392. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Kar S, Sen S, Maji S, Saraf D, Ruturaj, Paul R, Dutt S, Mondal B, Rodriguez-Boulan E, Schreiner R, et al: Copper(II) import and reduction are dependent on His-Met clusters in the extracellular amino terminus of human copper transporter-1. J Biol Chem. 298:1016312022. View Article : Google Scholar : PubMed/NCBI

16 

Turnlund JR, King JC, Gong B, Keyes WR and Michel MC: A stable isotope study of copper absorption in young men: Effect of phytate and alpha-cellulose. Am J Clin Nutr. 42:18–23. 1985. View Article : Google Scholar : PubMed/NCBI

17 

Moriya M, Ho YH, Grana A, Nguyen L, Alvarez A, Jamil R, Ackland ML, Michalczyk A, Hamer P, Ramos D, et al: Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism. Am J Physiol Cell Physiol. 295:C708–C721. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Yang Y, Wu J, Wang L, Ji G and Dang Y: Copper homeostasis and cuproptosis in health and disease. MedComm (2020). 5:e7242024. View Article : Google Scholar : PubMed/NCBI

19 

Singleton C and Le Brun NE: Atx1-like chaperones and their cognate P-type ATPases: Copper-binding and transfer. Biometals. 20:275–289. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Li Y: Copper homeostasis: Emerging target for cancer treatment. IUBMB Life. 72:1900–1908. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Kim BE, Nevitt T and Thiele DJ: Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol. 4:176–185. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Nose Y, Kim BE and Thiele DJ: Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab. 4:235–244. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Lutsenko S, Barnes NL, Bartee MY and Dmitriev OY: Function and regulation of human copper-transporting ATPases. Physiol Rev. 87:1011–1046. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Lutsenko S: Copper trafficking to the secretory pathway. Metallomics. 8:840–852. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Medeiros DM and Jennings D: Role of copper in mitochondrial biogenesis via interaction with ATP synthase and cytochrome c oxidase. J Bioenerg Biomembr. 34:389–395. 2002. View Article : Google Scholar

26 

Gale J and Aizenman E: The physiological and pathophysiological roles of copper in the nervous system. Eur J Neurosci. 60:3505–3543. 2024. View Article : Google Scholar : PubMed/NCBI

27 

Pekary AE, Stevens SA and Sattin A: Valproate and copper accelerate TRH-like peptide synthesis in male rat pancreas and reproductive tissues. Peptides. 27:2901–2911. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Héraud F, Savineau C and Harmand MF: Copper modulation of extracellular matrix synthesis by human articular chondrocytes. Scand J Rheumatol. 31:279–284. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Gudkov SV, Burmistrov DE, Fomina PA, Validov SZ and Kozlov VA: Antibacterial properties of copper oxide nanoparticles (review). Int J Mol Sci. 25:115632024. View Article : Google Scholar : PubMed/NCBI

30 

Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li Y and Peng Z: ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch Toxicol. 97:1439–1451. 2023. View Article : Google Scholar : PubMed/NCBI

31 

Zhang B and Burke R: Copper homeostasis and the ubiquitin proteasome system. Metallomics. 15:mfad0102023. View Article : Google Scholar : PubMed/NCBI

32 

Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC and Tan M: Protein lipoylation: Mitochondria, cuproptosis, and beyond. Trends Biochem Sci. 49:729–744. 2024. View Article : Google Scholar : PubMed/NCBI

33 

Rowland EA, Snowden CK and Cristea IM: Protein lipoylation: An evolutionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol. 42:76–85. 2018. View Article : Google Scholar :

34 

Tang D, Chen X and Kroemer G: Cuproptosis: A copper-triggered modality of mitochondrial cell death. Cell Res. 32:417–418. 2022. View Article : Google Scholar : PubMed/NCBI

35 

Cobine PA and Brady DC: Cuproptosis: Cellular and molecular mechanisms underlying copper-induced cell death. Mol Cell. 82:1786–1787. 2022. View Article : Google Scholar : PubMed/NCBI

36 

Wang D, Tian Z, Zhang P, Zhen L, Meng Q, Sun B, Xu X, Jia T and Li S: The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother. 163:1148302023. View Article : Google Scholar : PubMed/NCBI

37 

Hu F, Huang J, Bing T, Mou W, Li D, Zhang H, Chen Y, Jin Q, Yu Y and Yang Z: Stimulus-responsive copper complex nanoparticles induce cuproptosis for augmented cancer immunotherapy. Adv Sci (Weinh). 11:e23093882024. View Article : Google Scholar : PubMed/NCBI

38 

Li M, Tang S, Velkov T, Shen J and Dai C: Copper exposure induces mitochondrial dysfunction and hepatotoxicity via the induction of oxidative stress and PERK/ATF4-mediated endoplasmic reticulum stress. Environ Pollut. 352:1241452024. View Article : Google Scholar

39 

Zhao G, Sun H, Zhang T and Liu JX: Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun Signal. 18:452020. View Article : Google Scholar : PubMed/NCBI

40 

Liao J, Yang F, Tang Z, Yu W, Han Q, Hu L, Li Y, Guo J, Pan J, Ma F, et al: Inhibition of caspase-1-dependent pyroptosis attenuates copper-induced apoptosis in chicken hepatocytes. Ecotoxicol Environ Saf. 174:110–119. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Lu J, Ling X, Sun Y, Liu L, Liu L, Wang X, Lu C, Ren C, Han X and Yu Z: FDX1 enhances endometriosis cell cuproptosis via G6PD-mediated redox homeostasis. Apoptosis. 28:1128–1140. 2023. View Article : Google Scholar : PubMed/NCBI

42 

Huang X, Wang T, Ye J, Feng H and Zhang X, Ma X, Wang B, Huang Y and Zhang X: FDX1 expression predicts favourable prognosis in clear cell renal cell carcinoma identified by bioinformatics and tissue microarray analysis. Front Genet. 13:9947412022. View Article : Google Scholar : PubMed/NCBI

43 

Braymer JJ, Freibert SA, Rakwalska-Bange M and Lill R: Mechanistic concepts of iron-sulfur protein biogenesis in biology. Biochim Biophys Acta Mol Cell Res. 1868:1188632021. View Article : Google Scholar

44 

Stowe RC, Sun Q, Elsea SH and Scaglia F: LIPT1 deficiency presenting as early infantile epileptic encephalopathy, Leigh disease, and secondary pyruvate dehydrogenase complex deficiency. Am J Med Genet A. 176:1184–1189. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Cicchillo RM and Booker SJ: Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: Both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. J Am Chem Soc. 127:2860–2861. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Wieland OH, Hartmann U and Siess EA: Neurospora crassa pyruvate dehydrogenase: Interconversion by phosphorylation and dephosphorylation. FEBS Lett. 27:240–244. 1972. View Article : Google Scholar : PubMed/NCBI

47 

Goguet-Rubio P, Seyran B, Gayte L, Bernex F, Sutter A, Delpech H, Linares LK, Riscal R, Repond C, Rodier G, et al: E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis. Proc Natl Acad Sci USA. 113:11004–11009. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Li W, Long Q, Wu H, Zhou Y, Duan L, Yuan H, Ding Y, Huang Y, Wu Y, Huang J, et al: Nuclear localization of mitochondrial TCA cycle enzymes modulates pluripotency via histone acetylation. Nat Commun. 13:74142022. View Article : Google Scholar : PubMed/NCBI

49 

Wang H, Yang Z, He X, Guo F, Sun H, Xu S, Xu C, Wang Z, Wen H, Teng Z, et al: Cuproptosis related gene PDHB is identified as a biomarker inversely associated with the progression of clear cell renal cell carcinoma. BMC Cancer. 23:8042023. View Article : Google Scholar : PubMed/NCBI

50 

Huang M, Zhang Y and Liu X: The mechanism of cuproptosis in Parkinson's disease. Ageing Res Rev. 95:1022142024. View Article : Google Scholar : PubMed/NCBI

51 

Wang W, Chen Z and Hua Y: Bioinformatics prediction and experimental validation identify a novel cuproptosis-related gene signature in human synovial inflammation during osteoarthritis progression. Biomolecules. 13:1272023. View Article : Google Scholar : PubMed/NCBI

52 

Liu Z, Wang L, Xing Q, Liu X, Hu Y, Li W, Yan Q, Liu R and Huang N: Identification of GLS as a cuproptosis-related diagnosis gene in acute myocardial infarction. Front Cardiovasc Med. 9:10160812022. View Article : Google Scholar : PubMed/NCBI

53 

Li Y, Ma J, Wang R, Luo Y, Zheng S and Wang X: Zinc transporter 1 functions in copper uptake and cuproptosis. Cell Metab. 36:2118–2129.e6. 2024. View Article : Google Scholar : PubMed/NCBI

54 

Jiang M, Liu K, Lu S, Qiu Y, Zou X, Zhang K, Chen C, Jike Y, Xie M, Dai Y and Bo Z: Verification of cuproptosis-related diagnostic model associated with immune infiltration in rheumatoid arthritis. Front Endocrinol (Lausanne). 14:12049262023. View Article : Google Scholar : PubMed/NCBI

55 

Zhang Y, Qian Y, Zhang J, Yan W, Jung YS, Chen M, Huang E, Lloyd K, Duan Y, Wang J, et al: Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev. 31:1243–1256. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Funauchi Y, Tanikawa C, Yi Lo PH, Mori J, Daigo Y, Takano A, Miyagi Y, Okawa A, Nakamura Y and Matsuda K: Regulation of iron homeostasis by the p53-ISCU pathway. Sci Rep. 5:164972015. View Article : Google Scholar : PubMed/NCBI

57 

Sawamoto M, Imai T, Umeda M, Fukuda K, Kataoka T and Taketani S: The p53-dependent expression of frataxin controls 5-aminolevulinic acid-induced accumulation of protoporphyrin IX and photo-damage in cancerous cells. Photochem Photobiol. 89:163–172. 2013. View Article : Google Scholar

58 

Shimizu R, Lan NN, Tai TT, Adachi Y, Kawazoe A, Mu A and Taketani S: p53 directly regulates the transcription of the human frataxin gene and its lack of regulation in tumor cells decreases the utilization of mitochondrial iron. Gene. 551:79–85. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Batzios S, Tal G, DiStasio AT, Peng Y, Charalambous C, Nicolaides P, Kamsteeg EJ, Korman SH, Mandel H, Steinbach PJ, et al: Newly identified disorder of copper metabolism caused by variants in CTR1, a high-affinity copper transporter. Hum Mol Genet. 31:4121–4130. 2022. View Article : Google Scholar : PubMed/NCBI

60 

Walker JM, Tsivkovskii R and Lutsenko S: Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity. J Biol Chem. 277:27953–27959. 2002. View Article : Google Scholar : PubMed/NCBI

61 

Schulz V, Basu S, Freibert SA, Webert H, Boss L, Mühlenhoff U, Pierrel F, Essen LO, Warui DM, Booker SJ, et al: Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat Chem Biol. 19:206–217. 2023. View Article : Google Scholar

62 

Kinnier Wilson SA: Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain. 34:295–507. 1912. View Article : Google Scholar

63 

Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM, et al: The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet. 5:344–350. 1993. View Article : Google Scholar : PubMed/NCBI

64 

Bull PC, Thomas GR, Rommens JM, Forbes JR and Cox DW: The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 5:327–337. 1993. View Article : Google Scholar : PubMed/NCBI

65 

Petrukhin K, Lutsenko S, Chernov I, Ross BM, Kaplan JH and Gilliam TC: Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: Genomic organization, alternative splicing, and structure/function predictions. Hum Mol Genet. 3:1647–1656. 1994. View Article : Google Scholar : PubMed/NCBI

66 

Lutsenko S, LeShane ES and Shinde U: Biochemical basis of regulation of human copper-transporting ATPases. Arch Biochem Biophys. 463:134–148. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Li M, Ma J, Wang W, Yang X and Luo K: Mutation analysis of the ATP7B gene and genotype-phenotype correlation in Chinese patients with Wilson disease. BMC Gastroenterol. 21:3392021. View Article : Google Scholar : PubMed/NCBI

68 

Huster D, Kühne A, Bhattacharjee A, Raines L, Jantsch V, Noe J, Schirrmeister W, Sommerer I, Sabri O, Berr F, et al: Diverse functional properties of Wilson disease ATP7B variants. Gastroenterology. 142:947–956.e5. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Członkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH and Schilsky ML: Wilson disease. Nat Rev Dis Primers. 4:212018. View Article : Google Scholar

70 

Pronicki M: Wilson disease-liver pathology. Handb Clin Neurol. 142:71–75. 2017. View Article : Google Scholar

71 

Gerosa C, Fanni D, Congiu T, Piras M, Cau F, Moi M and Faa G: Liver pathology in Wilson's disease: From copper overload to cirrhosis. J Inorg Biochem. 193:106–111. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Koyama Y and Brenner DA: Liver inflammation and fibrosis. J Clin Invest. 127:55–64. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Rosselli M, MacNaughtan J, Jalan R and Pinzani M: Beyond scoring: A modern interpretation of disease progression in chronic liver disease. Gut. 62:1234–1241. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Poujois A, Mikol J and Woimant F: Wilson disease: Brain pathology. Handb Clin Neurol. 142:77–89. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Meenakshi-Sundaram S, Mahadevan A, Taly AB, Arunodaya GR, Swamy HS and Shankar SK: Wilson's disease: A clinico-neuropathological autopsy study. J Clin Neurosci. 15:409–417. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Mikol J, Vital C, Wassef M, Chappuis P, Poupon J, Lecharpentier M and Woimant F: Extensive cortico-subcortical lesions in Wilson's disease: Clinico-pathological study of two cases. Acta Neuropathol. 110:451–458. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Bruha R, Vitek L, Marecek Z, Pospisilova L, Nevsimalova S, Martasek P, Petrtyl J, Urbanek P, Jiraskova A, Malikova I, et al: Decreased serum antioxidant capacity in patients with Wilson disease is associated with neurological symptoms. J Inherit Metab Dis. 35:541–548. 2012. View Article : Google Scholar

78 

Anzil AP, Herrlinger H, Blinzinger K and Heldrich A: Ultrastructure of brain and nerve biopsy tissue in Wilson disease. Arch Neurol. 31:94–100. 1974. View Article : Google Scholar : PubMed/NCBI

79 

Dang J, Chevalier K, Letavernier E, Tissandier C, Mouawad S, Debray D, Obadia M and Poujois A: Kidney involvement in Wilson's disease: A review of the literature. Clin Kidney J. 17:sfae0582024. View Article : Google Scholar : PubMed/NCBI

80 

Niu YY, Zhang YY, Zhu Z, Zhang XQ, Liu X, Zhu SY, Song Y, Jin X, Lindholm B and Yu C: Elevated intracellular copper contributes a unique role to kidney fibrosis by lysyl oxidase mediated matrix crosslinking. Cell Death Dis. 11:2112020. View Article : Google Scholar : PubMed/NCBI

81 

Harry J and Tripathi R: Kayser-Fleischer ring: A pathological study. Br J Ophthalmol. 54:794–800. 1970. View Article : Google Scholar : PubMed/NCBI

82 

Suvarna JC: Kayser-Fleischer ring. J Postgrad Med. 54:238–240. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Factor SM, Cho S, Sternlieb I, Scheinberg IH and Goldfischer S: The cardiomyopathy of Wilson's disease. Myocardial alterations in nine cases. Virchows Arch A Pathol Anat Histol. 397:301–311. 1982. View Article : Google Scholar : PubMed/NCBI

84 

Kuan P: Cardiac Wilson's disease. Chest. 91:579–583. 1987. View Article : Google Scholar : PubMed/NCBI

85 

Grandis DJ, Nah G, Whitman IR, Vittinghoff E, Dewland TA, Olgin JE and Marcus GM: Wilson's disease and cardiac myopathy. Am J Cardiol. 120:2056–2060. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Aydemir B, Kiziler AR, Onaran I, Alici B, Ozkara H and Akyolcu MC: Impact of Cu and Fe concentrations on oxidative damage in male infertility. Biol Trace Elem Res. 112:193–203. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Iorio GG, Conforti A, Vallone R, Carbone L, Matarazzo M, De Rosa A, De Rosa P, Picarelli S, Fedele F, Perruolo G, et al: Reproductive function of long-term treated patients with hepatic onset of Wilson's disease: A prospective study. Reprod Biomed Online. 42:835–841. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Tarnacka B, Rodo M, Cichy S and Członkowska A: Procreation ability in Wilson's disease. Acta Neurol Scand. 101:395–398. 2000. View Article : Google Scholar : PubMed/NCBI

89 

Chenbhanich J, Thongprayoon C, Atsawarungruangkit A, Phupitakphol T and Cheungpasitporn W: Osteoporosis and bone mineral density in patients with Wilson's disease: A systematic review and meta-analysis. Osteoporos Int. 29:315–322. 2018. View Article : Google Scholar

90 

Bhadada S, Malhotra B, Shetty A and Mukherjee S: Metabolic bone disease heralding the diagnosis of Wilson's disease. BMJ Case Rep. 16:e2522902023. View Article : Google Scholar : PubMed/NCBI

91 

Pop TL, Grama A, Stefanescu AC, Willheim C and Ferenci P: Acute liver failure with hemolytic anemia in children with Wilson's disease: Genotype-phenotype correlations? World J Hepatol. 13:1428–1438. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Wang SQ, Zhan YQ, Hu X, Zhuang YP, Liu HQ, Hong MF and Zhong HJ: Anemia is associated with disease severity, hepatic complications, and progression of wilson disease: A retrospective cohort study. Dig Dis. 41:632–640. 2023. View Article : Google Scholar : PubMed/NCBI

93 

Gunay N, Yildirim C, Karcioglu O, Gunay NE, Yilmaz M, Usalan C, Kose A and Togun I: A series of patients in the emergency department diagnosed with copper poisoning: Recognition equals treatment. Tohoku J Exp Med. 209:243–248. 2006. View Article : Google Scholar : PubMed/NCBI

94 

Kumar A, Chaudhary A, Agrahari B, Chaudhary K, Kumar P and Singh RG: Concurrent Cu(II)-initiated Fenton-like reaction and glutathione depletion to escalate chemodynamic therapy. Chem Commun (Camb). 59:14305–14308. 2023. View Article : Google Scholar : PubMed/NCBI

95 

Korotkov SM: Mitochondrial oxidative stress is the general reason for apoptosis induced by different-valence heavy metals in cells and mitochondria. Int J Mol Sci. 24:144592023. View Article : Google Scholar : PubMed/NCBI

96 

Tian Z, Jiang S, Zhou J and Zhang W: Copper homeostasis and cuproptosis in mitochondria. Life Sci. 334:1222232023. View Article : Google Scholar : PubMed/NCBI

97 

Zhou Q, Zhang Y, Lu L, Zhang H, Zhao C, Pu Y and Yin L: Copper induces microglia-mediated neuroinflammation through ROS/NF-κB pathway and mitophagy disorder. Food Chem Toxicol. 168:1133692022. View Article : Google Scholar

98 

Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL and Wang W: Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer. 104:1564–1574. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Xiang K, Wu H, Liu Y, Wang S, Li X, Yang B, Zhang Y, Ma L, Lu G, He L, et al: MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury. Theranostics. 13:2721–2733. 2023. View Article : Google Scholar : PubMed/NCBI

100 

Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K and Valko M: Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 98:1323–1367. 2024. View Article : Google Scholar : PubMed/NCBI

101 

Ling P, Yang P, Gao X, Sun X and Gao F: ROS generation strategy based on biomimetic nanosheets by self-assembly of nanozymes. J Mater Chem B. 10:9607–9612. 2022. View Article : Google Scholar : PubMed/NCBI

102 

Liu T, Sun L, Zhang Y, Wang Y and Zheng J: Imbalanced GSH/ROS and sequential cell death. J Biochem Mol Toxicol. 36:e229422022. View Article : Google Scholar

103 

Cao S, Li X, Gao Y, Li F, Li K, Cao X, Dai Y, Mao L, Wang S and Tai X: A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy. Dalton Trans. 49:11851–11858. 2020. View Article : Google Scholar : PubMed/NCBI

104 

Ciechanover A: The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol. 16:322–324. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Maupin-Furlow J: Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol. 10:100–111. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Nandi D, Tahiliani P, Kumar A and Chandu D: The ubiquitin-proteasome system. J Biosci. 31:137–155. 2006. View Article : Google Scholar : PubMed/NCBI

107 

Murray AW: Recycling the cell cycle: Cyclins revisited. Cell. 116:221–234. 2004. View Article : Google Scholar : PubMed/NCBI

108 

Karin M and Ben-Neriah Y: Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu Rev Immunol. 18:621–663. 2000. View Article : Google Scholar : PubMed/NCBI

109 

McDonough H and Patterson C: CHIP: A link between the chaperone and proteasome systems. Cell Stress Chaperones. 8:303–308. 2003. View Article : Google Scholar

110 

Konarikova K, Frivaldska J, Gbelcova H, Sveda M, Ruml T, Janubova M and Zitnanova I: Schiff base Cu(II) complexes as inhibitors of proteasome in human cancer cells. Bratisl Lek Listy. 120:646–649. 2019.PubMed/NCBI

111 

Skrott Z, Mistrik M, Andersen KK, Friis S, Majera D, Gursky J, Ozdian T, Bartkova J, Turi Z, Moudry P, et al: Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 552:194–199. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Li SR, Bu LL and Cai L: Cuproptosis: Lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct Target Ther. 7:1582022. View Article : Google Scholar : PubMed/NCBI

113 

Bian Z, Fan R and Xie L: A novel cuproptosis-related prognostic gene signature and validation of differential expression in clear cell renal cell carcinoma. Genes (Basel). 13:8512022. View Article : Google Scholar : PubMed/NCBI

114 

Pan C, Ji Z, Wang Q, Zhang Z, Wang Z, Li C, Lu S and Ge P: Cuproptosis: Mechanisms, biological significance, and advances in disease treatment-A systematic review. CNS Neurosci Ther. 30:e700392024. View Article : Google Scholar : PubMed/NCBI

115 

Hetz C, Zhang K and Kaufman RJ: Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 21:421–438. 2020. View Article : Google Scholar : PubMed/NCBI

116 

Haynes CM and Ron D: The mitochondrial UPR-protecting organelle protein homeostasis. J Cell Sci. 123:3849–3855. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Ghai S, Shrestha R, Hegazi A, Boualoy V, Liu SH and Su KH: The role of heat shock factor 1 in preserving proteomic integrity during copper-induced cellular toxicity. Int J Mol Sci. 25:116572024. View Article : Google Scholar : PubMed/NCBI

118 

Fujimoto M, Takii R, Hayashida N and Nakai A: Analysis of the heat shock factor complex in mammalian HSP70 promoter. Methods Mol Biol. 1292:53–65. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Garde R, Dea A, Herwig MF, Ali A and Pincus D: Feedback control of the heat shock response by spatiotemporal regulation of Hsp70. J Cell Biol. 223:e2024010822024. View Article : Google Scholar : PubMed/NCBI

120 

Zhang J, Ma Y, Xie D, Bao Y, Yang W, Wang H, Jiang H, Han H and Dong T: Differentially expressed lncRNAs in liver tissues of TX mice with hepatolenticular degeneration. Sci Rep. 11:13772021. View Article : Google Scholar : PubMed/NCBI

121 

Zhang C, Zeng Y, Guo X, Shen H, Zhang J, Wang K, Ji M and Huang S: Pan-cancer analyses confirmed the cuproptosis-related gene FDX1 as an immunotherapy predictor and prognostic biomarker. Front Genet. 13:9237372022. View Article : Google Scholar : PubMed/NCBI

122 

Wu P, Dong J, Cheng N, Yang R and Han Y and Han Y: Inflammatory cytokines expression in Wilson's disease. Neurol Sci. 40:1059–1066. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Zhao D, Wu L, Fang X, Wang L, Liu Q, Jiang P, Ji Z, Zhang N, Yin M and Han H: Copper exposure induces inflammation and PANoptosis through the TLR4/NF-κB signaling pathway, leading to testicular damage and impaired spermatogenesis in Wilson disease. Chem Biol Interact. 396:1110602024. View Article : Google Scholar

124 

Li Y and Zeng X: A novel cuproptosis-related prognostic gene signature and validation of differential expression in hepatocellular carcinoma. Front Pharmacol. 13:10819522023. View Article : Google Scholar : PubMed/NCBI

125 

Tort F, Ferrer-Cortès X, Thió M, Navarro-Sastre A, Matalonga L, Quintana E, Bujan N, Arias A, García-Villoria J, Acquaviva C, et al: Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes. Hum Mol Genet. 23:1907–1915. 2014. View Article : Google Scholar

126 

Zischka H and Lichtmannegger J: Pathological mitochondrial copper overload in livers of Wilson's disease patients and related animal models. Ann N Y Acad Sci. 1315:6–15. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Zhao Y, Yan T, Xiong C, Chang M, Gao Q, Yao S, Wu W, Yi X and Xu G: Overexpression of lipoic acid synthase gene alleviates diabetic nephropathy of Leprdb/db mice. BMJ Open Diabetes Res Care. 9:e0022602021. View Article : Google Scholar

128 

Wang X, Shao N, Zhang X, Chen H, Chang Z, Xie D and Zhang J: Ferulic acid activates SIRT1-mediated ferroptosis signaling pathway to improve cognition dysfunction in Wilson's disease. Neuropsychiatr Dis Treat. 19:2681–2696. 2023. View Article : Google Scholar : PubMed/NCBI

129 

Ahmad W: Dihydrolipoamide dehydrogenase suppression induces human tau phosphorylation by increasing whole body glucose levels in a C. elegans model of Alzheimer's disease. Exp Brain Res. 236:2857–2866. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Goh WQ, Ow GS, Kuznetsov VA, Chong S and Lim YP: DLAT subunit of the pyruvate dehydrogenase complex is upregulated in gastric cancer-implications in cancer therapy. Am J Transl Res. 7:1140–1151. 2015.PubMed/NCBI

131 

Ma Y, Bao Y, Wang H, Jiang H, Zhou L, Yang B, Huang X, Yang W, Xie D and Zhang J: 1H-NMR-based metabolomics to dissect the traditional Chinese medicine promotes mesenchymal stem cell homing as intervention in liver fibrosis in mouse model of Wilson's disease. J Pharm Pharmacol. 76:656–671. 2024. View Article : Google Scholar : PubMed/NCBI

132 

Dung VM, Suong DNA, Okamaoto Y, Hiramatsu Y, Thao DTP, Yoshida H, Takashima H and Yamaguchi M: Neuron-specific knockdown of Drosophila PDHB induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting. Exp Cell Res. 366:92–102. 2018. View Article : Google Scholar : PubMed/NCBI

133 

Kikuchi D, Minamishima YA and Nakayama K: Prolyl-hydroxylase PHD3 interacts with pyruvate dehydrogenase (PDH)-E1β and regulates the cellular PDH activity. Biochem Biophys Res Commun. 451:288–294. 2014. View Article : Google Scholar : PubMed/NCBI

134 

Karthikkeyan G, Pervaje R, Pervaje SK, Prasad TSK and Modi PK: Prevention of MEK-ERK-1/2 hyper-activation underlines the neuroprotective effect of Glycyrrhiza glabra L. (Yashtimadhu) against rotenone-induced cellular and molecular aberrations. J Ethnopharmacol. 274:1140252021. View Article : Google Scholar : PubMed/NCBI

135 

Tang H, Luo X, Li J, Zhou Y, Li Y, Song L, Zhang X and Chen T: Pyruvate dehydrogenase B promoted the growth and migration of the nasopharyngeal carcinoma cells. Tumour Biol. 37:10563–10569. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Wang T, Wu L, Chen Q, Chen K, Tan F, Liu J, Liu X and Han H: Copper deposition in Wilson's disease causes male fertility decline by impairing reproductive hormone release through inducing apoptosis and inhibiting ERK signal in hypothalamic-pituitary of mice. Front Endocrinol (Lausanne). 13:9617482022. View Article : Google Scholar : PubMed/NCBI

137 

Yu Y, Newman H, Shen L, Sharma D, Hu G, Mirando AJ, Zhang H, Knudsen E, Zhang GF, Hilton MJ and Karner CM: Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 29:966–978.e4. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Cruzat V, Macedo Rogero M, Noel Keane K, Curi R and Newsholme P: Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients. 10:15642018. View Article : Google Scholar : PubMed/NCBI

139 

Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, Maseda D, Liberti MV, Paz K, Kishton RJ, et al: Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell. 175:1780–1795.e19. 2018. View Article : Google Scholar : PubMed/NCBI

140 

Yong L, Shi Y, Wu HL, Dong QY, Guo J, Hu LS, Wang WH, Guan ZP and Yu BS: p53 inhibits CTR1-mediated cisplatin absorption by suppressing SP1 nuclear translocation in osteosarcoma. Front Oncol. 12:10471942023. View Article : Google Scholar : PubMed/NCBI

141 

Liu X, Fan L, Lu C, Yin S and Hu H: Functional role of p53 in the regulation of chemical-induced oxidative stress. Oxid Med Cell Longev. 2020:60397692020.PubMed/NCBI

142 

Formigari A, Gregianin E and Irato P: The effect of zinc and the role of p53 in copper-induced cellular stress responses. J Appl Toxicol. 33:527–536. 2013. View Article : Google Scholar : PubMed/NCBI

143 

Tavera-Montañez C, Hainer SJ, Cangussu D, Gordon SJV, Xiao Y, Reyes-Gutierrez P, Imbalzano AN, Navea JG, Fazzio TG and Padilla-Benavides T: The classic metal-sensing transcription factor MTF1 promotes myogenesis in response to copper. FASEB J. 33:14556–14574. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen H, Wang X, Xing J, Pu Y, Ye H, Ma Y and Zhang J: Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review). Int J Mol Med 56: 117, 2025.
APA
Chen, H., Wang, X., Xing, J., Pu, Y., Ye, H., Ma, Y., & Zhang, J. (2025). Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review). International Journal of Molecular Medicine, 56, 117. https://doi.org/10.3892/ijmm.2025.5558
MLA
Chen, H., Wang, X., Xing, J., Pu, Y., Ye, H., Ma, Y., Zhang, J."Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review)". International Journal of Molecular Medicine 56.2 (2025): 117.
Chicago
Chen, H., Wang, X., Xing, J., Pu, Y., Ye, H., Ma, Y., Zhang, J."Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 117. https://doi.org/10.3892/ijmm.2025.5558
Copy and paste a formatted citation
x
Spandidos Publications style
Chen H, Wang X, Xing J, Pu Y, Ye H, Ma Y and Zhang J: Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review). Int J Mol Med 56: 117, 2025.
APA
Chen, H., Wang, X., Xing, J., Pu, Y., Ye, H., Ma, Y., & Zhang, J. (2025). Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review). International Journal of Molecular Medicine, 56, 117. https://doi.org/10.3892/ijmm.2025.5558
MLA
Chen, H., Wang, X., Xing, J., Pu, Y., Ye, H., Ma, Y., Zhang, J."Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review)". International Journal of Molecular Medicine 56.2 (2025): 117.
Chicago
Chen, H., Wang, X., Xing, J., Pu, Y., Ye, H., Ma, Y., Zhang, J."Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 117. https://doi.org/10.3892/ijmm.2025.5558
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team