
Relationship between amino acid metabolism and inflammation in coronary heart disease (Review)
- Authors:
- Ruxin Shen
- Yingying Zhang
-
Affiliations: Qingdao Medical College, Qingdao University, Qingdao, Shandong 266000, P.R. China, Department of Tuberculosis, Affiliated Nantong Hospital of Shanghai University, Nantong, Jiangsu 226000, P.R. China - Published online on: June 4, 2025 https://doi.org/10.3892/ijmm.2025.5561
- Article Number: 120
-
Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Młynarska E, Czarnik W, Fularski P, Hajdys J, Majchrowicz G, Stabrawa M, Rysz J and Franczyk B: From atherosclerotic plaque to myocardial infarction-the leading cause of coronary artery occlusion. Int J Mol Sci. 25:72952024. View Article : Google Scholar | |
Li J, Huang P, Cheng W and Niu Q: Stilbene-based derivatives as potential inhibitors of trimethylamine (TMA)-lyase affect gut microbiota in coronary heart disease. Food Sci Nutr. 11:93–100. 2022. View Article : Google Scholar | |
Zhou P, Zhao XN, Ma YY, Tang TJ, Wang SS, Wang L and Huang JL: Virtual screening analysis of natural flavonoids as trimethylamine (TMA)-lyase inhibitors for coronary heart disease. J Food Biochem. 46:e143762022. View Article : Google Scholar : PubMed/NCBI | |
Madaudo C, Coppola G, Parlati ALM and Corrado E: Discovering inflammation in atherosclerosis: Insights from pathogenic pathways to clinical practice. Int J Mol Sci. 25:60162024. View Article : Google Scholar : PubMed/NCBI | |
Cimmino G, Muscoli S, De Rosa S, Cesaro A, Perrone MA, Selvaggio S, Selvaggio G, Aimo A, Pedrinelli R, Mercuro G, et al: Evolving concepts in the pathophysiology of atherosclerosis: From endothelial dysfunction to thrombus formation through multiple shades of inflammation. J Cardiovasc Med (Hagerstown). 24(Suppl 2): e156–e167. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lv J, Pan C, Cai Y, Han X, Wang C, Ma J, Pang J, Xu F, Wu S, Kou T, et al: Plasma metabolomics reveals the shared and distinct metabolic disturbances associated with cardiovascular events in coronary artery disease. Nat Commun. 15:57292024. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang J, Zhong J, Liu H, Li W, Chen M, Xu L, Zhang W, Zhang Z, Wei Z, et al: LRG1 promotes atherosclerosis by inducing macrophage M1-like polarization. Proc Natl Acad Sci USA. 121:e24058451212024. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Xia W, Zhou J, Lv J, Dai Q, Li X, Tian Q, Liu X, Du X, Tu R and Liu S: Oxidized low-density lipoprotein induces M2-type differentiation of macrophages to promote the protracted progression of atherosclerotic inflammation in high-fat diet-fed ApoE -/- mice. Cell Mol Biol (Noisy-le-grand). 69:235–248. 2023. View Article : Google Scholar | |
Chen J, Xiang X, Nie L, Guo X, Zhang F, Wen C, Xia Y and Mao L: The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front Immunol. 13:10796682023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li W, Zhao T, Zou Y, Deng T, Yang Z, Yuan Z, Ma L, Yu R, Wang T and Yu C: Interleukin-17-producing CD4+ T cells promote inflammatory response and foster disease progression in hyperlipidemic patients and atherosclerotic mice. Front Cardiovasc Med. 8:6677682021. View Article : Google Scholar | |
Lotfy H and Moaaz M and Moaaz M: The novel role of IL-37 to enhance the anti-inflammatory response of regulatory T cells in patients with peripheral atherosclerosis. Vascular. 28:629–642. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Wei S, Wu X, Li Y and Han X: Neutrophil extracellular traps in acute coronary syndrome. J Inflamm (Lond). 20:172023. View Article : Google Scholar : PubMed/NCBI | |
Klopf J, Brostjan C, Eilenberg W and Neumayer C: Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease. Int J Mol Sci. 22:5592021. View Article : Google Scholar : PubMed/NCBI | |
Kumrić M, Kurir TT, Borovac JA and Božić J: The role of natural killer (NK) cells in acute coronary syndrome: A comprehensive review. Biomolecules. 10:15142020. View Article : Google Scholar | |
Backteman K, Ernerudh J and Jonasson L: Natural killer (NK) cell deficit in coronary artery disease: No aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation. Clin Exp Immunol. 175:104–112. 2014. View Article : Google Scholar : | |
Ma J, Wang X, Jia Y, Tan F, Yuan X and Du J: The roles of B cells in cardiovascular diseases. Mol Immunol. 171:36–46. 2024. View Article : Google Scholar : PubMed/NCBI | |
Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG and Baig MS: Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol. 154:1072822024. View Article : Google Scholar : PubMed/NCBI | |
Carlstrom M, Weitzberg E and Lundberg JO: Nitric oxide signaling and regulation in the cardiovascular system: Recent advances. Pharmacol Rev. 76:1038–1062. 2024. View Article : Google Scholar : PubMed/NCBI | |
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B and Xie J: Nitric oxide: Physiological functions, delivery, and biomedical applications. Adv Sci (Weinh). 10:e23032592023. View Article : Google Scholar : PubMed/NCBI | |
Thengchaisri N, Kuo L and Hein TW: H2O2 mediates VEGF- and flow-induced dilations of coronary arterioles in early type 1 diabetes: Role of vascular arginase and PI3K-linked eNOS uncoupling. Int J Mol Sci. 24:4892022. View Article : Google Scholar | |
Alzayadneh EM, Shatanawi A, Caldwell RW and Caldwell RB: Methylglyoxal-modified albumin effects on endothelial arginase enzyme and vascular function. Cells. 12:7952023. View Article : Google Scholar : PubMed/NCBI | |
Khan M, Singh I and Won J: Asymmetric dimethylarginine-induced oxidative damage leads to cerebrovascular dysfunction. Neural Regen Res. 16:1793–1794. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X and Liu W: Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide. 152:48–57. 2024. View Article : Google Scholar : PubMed/NCBI | |
Le Thi P, Tran DL, Park KM, Lee S, Oh DH and Park KD: Biocatalytic nitric oxide generating hydrogels with enhanced anti-inflammatory, cell migration, and angiogenic capabilities for wound healing applications. J Mater Chem B. 12:1538–1549. 2024. View Article : Google Scholar : PubMed/NCBI | |
Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L and Giorgino F: Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 100:1–19. 2018. View Article : Google Scholar | |
Son WH, Jeong WM, Park IY and Ha MS: Enhancing inflammatory factors, nitric oxide, and arterial stiffness through aquatic walking for amelioration and disease prevention: Targeting in obese elderly women. Mediators Inflamm. 2024:55209872024. View Article : Google Scholar | |
Cui X, Zhang L, Lin L, Hu Y, Zhang M, Sun B, Zhang Z, Lu M, Guan X, Hao J, et al: Notoginsenoside R1-Protocatechuic aldehyde reduces vascular inflammation and calcification through increasing the release of nitric oxide to inhibit TGFbetaR1-YAP/TAZ pathway in vascular smooth muscle cells. Int Immunopharmacol. 143:1135742024. View Article : Google Scholar | |
Sherratt SCR, Libby P, Dawoud H, Bhatt DL and Mason RP: Eicosapentaenoic acid improves endothelial nitric oxide bioavailability via changes in protein expression during inflammation. J Am Heart Assoc. 13:e0340762024. View Article : Google Scholar : PubMed/NCBI | |
Vanhoutte PM: Nitric oxide: From good to bad. Ann Vasc Dis. 11:41–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gryko A, Głowińska-Olszewska B, Pludowska K, Smithson WH, Owłasiuk A, Żelazowska-Rutkowska B, Wojtkielewicz K, Milewski R and Chlabicz S: Significant differences in parameters of glucose metabolism in children of hypertensive and normotensive parents. Pediatr Endocrinol Diabetes Metab. 23:14–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis C and Tousoulis D: Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines. 9:7812021. View Article : Google Scholar : PubMed/NCBI | |
Batty M, Bennett MR and Yu E: The role of oxidative stress in atherosclerosis. Cells. 11:38432022. View Article : Google Scholar : PubMed/NCBI | |
Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW and Kalinowski L: Endothelial dysfunction due to eNOS uncoupling: Molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett. 28:212023. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Navarro I, Botana L, Diez-Mata J, Tesoro L, Jimenez-Guirado B, Gonzalez-Cucharero C, Alcharani N, Zamorano JL, Saura M and Zaragoza C: Replicative endothelial cell senescence may lead to endothelial dysfunction by increasing the BH2/BH4 ratio induced by oxidative stress, reducing BH4 availability, and decreasing the expression of eNOS. Int J Mol Sci. 25:98902024. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Jang S, Zhu J, Qin Q, Sun L and Sun J: Nur77 mitigates endothelial dysfunction through activation of both nitric oxide production and anti-oxidant pathways. Redox Biol. 70:1030562024. View Article : Google Scholar : PubMed/NCBI | |
Cao X, Wu VWY, Han Y, Hong H, Wu Y, Kong APS, Lui KO and Tian XY: Role of argininosuccinate synthase 1-dependent L-arginine biosynthesis in the protective effect of endothelial sirtuin 3 against atherosclerosis. Adv Sci (Weinh). 11:e23072562024. View Article : Google Scholar | |
Zhang M, Wu Z, Salas SS, Aguilar MM, Trillos-Almanza MC, Buist-Homan M and Moshage H: Arginase 1 expression is increased during hepatic stellate cell activation and facilitates collagen synthesis. J Cell Biochem. 124:808–817. 2023. View Article : Google Scholar : PubMed/NCBI | |
Marzęta-Assas P, Jacenik D and Zasłona Z: Pathophysiology of arginases in cancer and efforts in their pharmacological inhibition. Int J Mol Sci. 25:97822024. View Article : Google Scholar | |
Lim HK, Lim HK, Ryoo S, Benjo A, Shuleri K, Miriel V, Baraban E, Camara A, Soucy K, Nyhan D, et al: Mitochondrial arginase II constrains endothelial NOS-3 activity. Am J Physiol Heart Circ Physiol. 293:H3317–H3324. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ottosson F, Engström G, Orho-Melander M, Melander O, Nilsson PM and Johansson M: Plasma metabolome predicts aortic stiffness and future risk of coronary artery disease and mortality after 23 years of follow-up in the general population. J Am Heart Assoc. 13:e0334422024. View Article : Google Scholar | |
Vernon ST, Tang O, Kim T, Chan AS, Kott KA, Park J, Hansen T, Koay YC, Grieve SM, O'Sullivan JF, et al: Metabolic signatures in coronary artery disease: Results from the BioHEART-CT study. Cells. 10:9802021. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Ajam A, Huang J, Yeh YS and Razani B: Glutamine-glutamate imbalance in the pathogenesis of cardiovascular disease. Nat Cardiovasc Res. 3:1377–1379. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Yang R, Zhang W, Wang S, Mu H, Li H, Dong J, Chen W, Yu X and Ji F: Serum glutamate and glutamine-to-glutamate ratio are associated with coronary angiography defined coronary artery disease. Nutr Metab Cardiovasc Dis. 32:186–194. 2022. View Article : Google Scholar | |
Rom O, Liu Y, Finney AC, Ghrayeb A, Zhao Y, Shukha Y, Wang L, Rajanayake KK, Das S, Rashdan NA, et al: Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis. Redox Biol. 52:1023132022. View Article : Google Scholar : PubMed/NCBI | |
Mouton AJ, Aitken NM, Morato JG, O'Quinn KR, do Carmo JM, da Silva AA, Omoto ACM, Li X, Wang Z, Schrimpe-Rutledge AC, et al: Glutamine metabolism improves left ventricular function but not macrophage-mediated inflammation following myocardial infarction. Am J Physiol Cell Physiol. 327:C571–C586. 2024. View Article : Google Scholar : PubMed/NCBI | |
Prechtl L, Carrard J, Gallart-Ayala H, Borreggine R, Teav T, Königstein K, Wagner J, Knaier R, Infanger D, Streese L, et al: Circulating amino acid signature features urea cycle alterations associated with coronary artery disease. Sci Rep. 14:258482024. View Article : Google Scholar : PubMed/NCBI | |
Bonetti L, Horkova V, Grusdat M, Longworth J, Guerra L, Kurniawan H, Franchina DG, Soriano-Baguet L, Binsfeld C, Verschueren C, et al: A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation. Cell Metab. 36:1726–1744.e10. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bopp L, Martinez ML, Schumacher C, Seitz R, Arana MH, Klapproth H, Lukas D, Oh JH, Neumayer D, Lackmann JW, et al: Glutamine promotes human CD8+ T cells and counteracts imiquimod-induced T cell hyporesponsiveness. iScience. 27:1097672024. View Article : Google Scholar | |
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T and Zhang J: NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 9:532024. View Article : Google Scholar | |
Haroon E, Miller AH and Sanacora G: Inflammation, glutamate, and glia: A trio of trouble in mood disorders. Neuropsychopharmacology. 42:193–215. 2017. View Article : Google Scholar | |
Yan M, Li X, Sun C, Tan J, Liu Y, Li M, Qi Z, He J, Wang D and Wu L: Sodium butyrate attenuates AGEs-induced oxidative stress and inflammation by inhibiting autophagy and affecting cellular metabolism in THP-1 cells. Molecules. 27:87152022. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Ma X, Ma H, Li S, Xia Y, Yao L, Wang Y, Pang X, Zhong J, Yao G, et al: High glucose levels accelerate atherosclerosis via NLRP3-IL/MAPK/NF-κB-related inflammation pathways. Biochem Biophys Res Commun. 704:1497022024. View Article : Google Scholar | |
Zhang Y, Peng K, Liu J, Chen X, Wang T, Li M, Chen Y, Xu Y, Lu J, Bi Y, et al: Carotid intima-media thickness and plagues are associated with indicators of peripheral artery diseases in patients with diabetes. Diabetes Res Clin Pract. 144:245–251. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG and Floria M: Duality of branched-chain amino acids in chronic cardiovascular disease: Potential biomarkers versus active pathophysiological promoters. Nutrients. 16:19722024. View Article : Google Scholar : PubMed/NCBI | |
Fine KS, Wilkins JT and Sawicki KT: Circulating branched chain amino acids and cardiometabolic disease. J Am Heart Assoc. 13:e0316172024. View Article : Google Scholar : PubMed/NCBI | |
Dziedzic M, Jozefczuk E, Guzik TJ and Siedlinski M: Interplay between plasma glycine and branched-chain amino acids contributes to the development of hypertension and coronary heart disease. Hypertension. 81:1320–1331. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu Z, Ni Y, Yu Y, Guo F, Lu Y, Wang X, Hao H, Li S, Wei P, et al: Branched-chain amino acids promote occurrence and development of cardiovascular disease dependent on triglyceride metabolism via activation of the mTOR/SREBP-1/betatrophin pathway. Mol Cell Endocrinol. 584:1121642024. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Wang Y and Sun H: The role of branched-chain amino acids and their metabolism in cardiovascular diseases. J Cardiovasc Transl Res. 17:85–90. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gan Z, Guo Y, Zhao M, Ye Y, Liao Y, Liu B, Yin J, Zhou X, Yan Y, Yin Y and Ren W: Excitatory amino acid transporter supports inflammatory macrophage responses. Sci Bull (Beijing). 69:2405–2419. 2024. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Tang C, Fang T, Li T, Li X, Liu Y, Zhang X, Sun B, Sun H and Chen L: Disruption of branched-chain amino acid homeostasis promotes the progression of DKD via enhancing inflammation and fibrosis-associated epithelial-mesenchymal transition. Metabolism. 162:1560372025. View Article : Google Scholar | |
Zhenyukh O, Civantos E, Ruiz-Ortega M, Sánchez MS, Vázquez C, Peiró C, Egido J and Mas S: High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic Biol Med. 104:165–177. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Wang S, Zhang C and Zhao Y: Coordinated modulation of energy metabolism and inflammation by branched-chain amino acids and fatty acids. Front Endocrinol (Lausanne). 11:6172020. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Zhou L, Wang Q, Cao JH, Chen Y, Wang W, Zhu BD, Wei ZH, Li R, Li CY, et al: Elevated branched-chain amino acid promotes atherosclerosis progression by enhancing mitochondrial-to-nuclear H2O2-disulfide HMGB1 in macrophages. Redox Biol. 62:1026962023. View Article : Google Scholar | |
Sun H, Olson KC, Gao C, Prosdocimo DA, Zhou M, Wang Z, Jeyaraj D, Youn JY, Ren S, Liu Y, et al: Catabolic defect of branched-chain amino acids promotes heart failure. Circulation. 133:2038–2049. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Huang T, Zhao J, Zhou Z, Cao Z, Chi Y, Meng S, Huang Y, Xu Y, Xia L, et al: Branched-chain amino acid catabolic defect in vascular smooth muscle cells drives thoracic aortic dissection via mTOR hyperactivation. Free Radic Biol Med. 210:25–41. 2024. View Article : Google Scholar | |
Mehta NN, deGoma E and Shapiro MD: IL-6 and cardiovascular risk: A narrative review. Curr Atheroscler Rep. 27:122024. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Xiong Y, Li X and Yang Y: Cardiac fibrosis: Cellular effectors, molecular pathways, and exosomal roles. Front Cardiovasc Med. 8:7152582021. View Article : Google Scholar : PubMed/NCBI | |
Chen ZW, Qian JY, Ma JY, Chang SF, Yun H, Jin H, Sun AJ, Zou YZ and Ge JB: TNF-α-induced cardiomyocyte apoptosis contributes to cardiac dysfunction after coronary microembolization in mini-pigs. J Cell Mol Med. 18:1953–1963. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Zhang J, Shen J, Cheng B, Bi C and Ma Q: Branched-chain amino acid modulation of lipid metabolism, gluconeogenesis, and inflammation in a finishing pig model: Targeting leucine and valine. Food Funct. 14:10119–10134. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hong W, You G, Luo Z, Zhang M and Chen J: High gestational leucine level dampens WDPCP/MAPK signaling to impair the EMT and migration of cardiac microvascular endothelial cells in congenital heart defects. Pulm Circ. 14:e700132024. View Article : Google Scholar : PubMed/NCBI | |
Bohler M, van den Berg EH, Almanza MCT, Connelly MA, Bakker SJL, de Meijer VE, Dullaart RPF and Blokzijl H; TransplantLines Investigators: Branched chain amino acids are associated with metabolic complications in liver transplant recipients. Clin Biochem. 102:26–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hao QY, Weng J, Zeng TT, Zeng YH, Guo JB, Li SC, Chen YR, Yang PZ, Gao JW and Li ZH: Dietary branched-chain amino acids intake and coronary artery calcium progression: Insights from the coronary artery risk development in young adults (CARDIA) study. Eur J Nutr. 64:1312025. View Article : Google Scholar : PubMed/NCBI | |
Rao S, Zhang Y, Xie S, Cao H, Zhang Z and Yang W: Dietary intake of branched-chain amino acids (BCAAs), serum BCAAs, and cardiometabolic risk markers among community-dwelling adults. Eur J Nutr. 63:1835–1845. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Xia H, Sharp TE III, LaPenna KB, Elrod JW, Casin KM, Liu K, Calvert JW, Chau VQ, Salloum FN, et al: Mitochondrial H2S regulates BCAA catabolism in heart failure. Circ Res. 131:222–235. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhang R, Mu H, Zhang W, Zeng J, Li H, Wang S, Zhao X, Chen W, Dong J and Yang R: Oral administration of branched-chain amino acids attenuates atherosclerosis by inhibiting the inflammatory response and regulating the gut microbiota in ApoE-deficient mice. Nutrients. 14:50652022. View Article : Google Scholar : PubMed/NCBI | |
Teunis CJ, Stroes ESG, Boekholdt SM, Wareham NJ, Murphy AJ, Nieuwdorp M, Hazen SL and Hanssen NMJ: Tryptophan metabolites and incident cardiovascular disease: The EPIC-Norfolk prospective population study. Atherosclerosis. 387:1173442023. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Liu Y, Wang X, Fan F, Yang Z and Luo D: Exploring tryptophan metabolism: The transition from disturbed balance to diagnostic and therapeutic potential in metabolic diseases. Biochem Pharmacol. 230:1165542024. View Article : Google Scholar : PubMed/NCBI | |
Grishanova AY and Perepechaeva ML: Kynurenic acid/AhR signaling at the junction of inflammation and cardiovascular diseases. Int J Mol Sci. 25:69332024. View Article : Google Scholar : PubMed/NCBI | |
Li K, Li K, He Y, Liang S, Shui X and Lei W: Aryl hydrocarbon receptor: A bridge linking immuno-inflammation and metabolism in atherosclerosis. Biochem Pharmacol. 216:1157442023. View Article : Google Scholar : PubMed/NCBI | |
Sukka SR, Ampomah PB, Darville LNF, Ngai D, Wang X, Kuriakose G, Xiao Y, Shi J, Koomen JM, McCusker RH and Tabas I: Efferocytosis drives a tryptophan metabolism pathway in macrophages to promote tissue resolution. Nat Metab. 6:1736–1755. 2024. View Article : Google Scholar : PubMed/NCBI | |
Paeslack N, Mimmler M, Becker S, Gao Z, Khuu MP, Mann A, Malinarich F, Regen T and Reinhardt C: Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids. 54:1339–1356. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang K, Wen XQ, Zhang W, Wang JX, Liang Y, Li WQ, Wang YH, Liang MM, Jing AR, Ma J, et al: Predictive value of 5-methoxytryptophan on long-term clinical outcome after PCI in patients with acute myocardial infarction-a prospective cohort study. J Cardiovasc Transl Res. 17:1036–1047. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Wang J, Yang H, Li C, Lan W, Chen T and Tang Y: The metabolite indole-3-acetic acid of bacteroides ovatus improves atherosclerosis by restoring the polarisation balance of M1/M2 macrophages and inhibiting inflammation. Adv Sci (Weinh). 12:e24130102025. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Feng S, Tang M, Tian R and Zhang S: Gut commensal bacteroides thetaiotaomicron promote atherothrombosis via regulating L-tryptophan metabolism. Rev Cardiovasc Med. 25:3952024. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Jiang X, Pang B, Li D, Kang L, Zhou T, Wang B, Zheng L, Zhou CM and Zhang L: Association between tryptophan concentrations and the risk of developing cardiovascular diseases: A systematic review and meta-analysis. Nutr Metab (Lond). 21:822024. View Article : Google Scholar : PubMed/NCBI | |
Li L, Xiao C, Liu H, Chen S, Tang Y, Zhou H, Jiang G and Tian J: A circular network of coregulated L-threonine and L-tryptophan metabolism dictates acute lower limb ischemic injury. Int J Med Sci. 21:2402–2413. 2024. View Article : Google Scholar : PubMed/NCBI | |
Su Q, Pan XF, Li HB, Xiong LX, Bai J, Wang XM, Qu XY, Zhang NR, Zou GQ, Shen Y, et al: Taurine supplementation alleviates blood pressure via gut-brain communication in spontaneously hypertensive rats. Biomedicines. 12:27112024. View Article : Google Scholar | |
Wang Q, Lv H, Ainiwan M, Yesitayi G, Abudesimu A, Siti D, Aizitiaili A and Ma X: Untargeted metabolomics identifies indole-3-propionic acid to relieve Ang II-induced endothelial dysfunction in aortic dissection. Mol Cell Biochem. 479:1767–1786. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sterpetti AV: Inflammatory cytokines and atherosclerotic plaque progression. therapeutic implications. Curr Atheroscler Rep. 22:752020. View Article : Google Scholar : PubMed/NCBI | |
Poznyak AV, Bharadwaj D, Prasad G, Grechko AV, Sazonova MA and Orekhov AN: Anti-inflammatory therapy for atherosclerosis: Focusing on cytokines. Int J Mol Sci. 22:70612021. View Article : Google Scholar : PubMed/NCBI | |
Li G, Wen Z and Xiong S: Microenvironmental β-TrCP negates amino acid transport to trigger CD8+ T cell exhaustion in human non-small cell lung cancer. Cell Rep. 44:1151282025. View Article : Google Scholar | |
Chen S, Li Z, Li H, Zeng X, Yuan H and Li Y: RNA sequencing of whole blood in premature coronary artery disease: Identification of novel biomarkers and involvement of T cell imbalance. J Cardiovasc Transl Res. 17:638–647. 2024. View Article : Google Scholar | |
Liu R, Bao J, Tang Y, Xu D, Shen L and Qin H: Changes in Treg cells and cytokines in the peripheral blood of patients with coronary artery disease combined with type 2 diabetes mellitus. Heart Lung. 69:147–154. 2025. View Article : Google Scholar | |
Wang X, Huang L, Hu B, Yang B, Wei R, Rong S and Li B: Establishment and evaluation of a risk prediction model for coronary heart disease in primary Sjögren's syndrome based on peripheral blood IL-6 and Treg percentages. Front Immunol. 15:14403702024. View Article : Google Scholar | |
Johnstone JC, Yazicioglu YF and Clarke AJ: Fuelling B cells: Dynamic regulation of B cell metabolism. Curr Opin Immunol. 91:1024842024. View Article : Google Scholar : PubMed/NCBI | |
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H and Zhang N: Metabolic regulation of the immune system in health and diseases: Mechanisms and interventions. Signal Transduct Target Ther. 9:2682024. View Article : Google Scholar : PubMed/NCBI | |
Liu JQ, Geng XR, Hu TY, Mo LH, Luo XQ, Qiu SY, Liu DB, Liu ZG, Shao JB, Liu ZQ and Yang PC: Glutaminolysis is required in maintaining immune regulatory functions in B cells. Mucosal Immunol. 15:268–278. 2022. View Article : Google Scholar : PubMed/NCBI | |
Seo SK and Kwon B: Immune regulation through tryptophan metabolism. Exp Mol Med. 55:1371–1379. 2023. View Article : Google Scholar : PubMed/NCBI | |
Riaz F, Pan F and Wei P: Aryl hydrocarbon receptor: The master regulator of immune responses in allergic diseases. Front Immunol. 13:10575552022. View Article : Google Scholar | |
Pattarabanjird T, Srikakulapu P, Ransegnola B, Marshall MA, Ghosheh Y, Gulati R, Durant C, Drago F, Taylor AM, Ley K and McNamara CA: Single-cell profiling of CD11c+ B cells in atherosclerosis. Front Immunol. 14:12966682024. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Wang Z, Cui Y, Xie H, Yi L, Zhu Z, Ni J, Du R, Wang X, Zhu J, et al: Serum BAFF level is associated with the presence and severity of coronary artery disease and acute myocardial infarction. BMC Cardiovasc Disord. 24:4712024. View Article : Google Scholar : PubMed/NCBI | |
Pattarabanjird T, Marshall M, Upadhye A, Srikakulapu P, Garmey JC, Haider A, Taylor AM, Lutgens E and McNamara CA: B-1b cells possess unique bHLH-driven P62-dependent self-renewal and atheroprotection. Circ Res. 130:981–993. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG and Orekhov AN: Macrophages and their role in atherosclerosis: Pathophysiology and transcriptome analysis. Biomed Res Int. 2016:95824302016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Kapoor D, Jeong SJ, Fappi A, Stitham J, Shabrish V, Sergin I, Yousif E, Rodriguez-Velez A, Yeh YS, et al: Identification of a leucine-mediated threshold effect governing macrophage mTOR signalling and cardiovascular risk. Nat Metab. 6:359–377. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Chen H, Yao Y and Lou X: Branched-chain amino acids supplementation induces insulin resistance and pro-inflammatory macrophage polarization via INFGR1/JAK1/STAT1 signal pathway. Mol Med. 30:1492024. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Hu G, He J, Wang T, Zuo Y, Cao Y, Zheng Q, Tu J, Ma J, Cai R, et al: SENP1-Sirt3 signaling promotes α-ketoglutarate production during M2 macrophage polarization. Cell Rep. 39:1106602022. View Article : Google Scholar | |
Ben-Aicha S, Anwar M, Vilahur G, Martino F, Kyriazis PG, de Winter N, Punjabi PP, Angelini GD, Sattler S and Emanueli C: Small extracellular vesicles in the pericardium modulate macrophage immunophenotype in coronary artery disease. JACC Basic Transl Sci. 9:1057–1072. 2024. View Article : Google Scholar : PubMed/NCBI | |
Quan YZ, Ma A, Ren CQ, An YP, Qiao PS, Gao C, Zhang YK, Li XW, Lin SM, Li NN, et al: Ganoderic acids alleviate atherosclerosis by inhibiting macrophage M1 polarization via TLR4/MyD88/NF-κB signaling pathway. Atherosclerosis. 391:1174782024. View Article : Google Scholar | |
Peng D, Zhuge F, Wang M, Zhang B, Zhuang Z, Zhou R, Zhang Y, Li J, Yu Z and Shi J: Morus alba L. (Sangzhi) alkaloids mitigate atherosclerosis by regulating M1/M2 macrophage polarization. Phytomedicine. 128:1555262024. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Sun B, Tang C, Shi C, Xie X, Wang X, Jiang D, Li S, Jia Y, Wang Y, et al: HMOX1-LDHB interaction promotes ferroptosis by inducing mitochondrial dysfunction in foamy macrophages during advanced atherosclerosis. Dev Cell. 60:1070–1086.e8. 2025. View Article : Google Scholar | |
You Z, Ye X, Jiang M, Gu N and Liang C: lnc-MRGPRF-6:1 promotes ox-LDL-induced macrophage ferroptosis via suppressing GPX4. Mediators Inflamm. 2023:55132452023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Du H, Xie W, Bi J, Zhang H, Liu X, Wang Y, Zhang S, Lei A, He C, Yuan H, et al: CAR-macrophage therapy alleviates myocardial ischemia-reperfusion injury. Circ Res. 135:1161–1174. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pan Z, Lv J, Zhao L, Xing K, Ye R, Zhang Y, Chen S, Yang P, Yu H, Lin Y, et al: CircARCN1 aggravates atherosclerosis by regulating HuR-mediated USP31 mRNA in macrophages. Cardiovasc Res. 120:1531–1549. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Da X, Chen Y, Yuan A and Pu J: Glutamine protects against mouse abdominal aortic aneurysm through modulating VSMC apoptosis and M1 macrophage activation. Int J Med Sci. 21:1414–1427. 2024. View Article : Google Scholar : PubMed/NCBI | |
Grira N, Lahidheb D, Lamine O, Ayoub M, Wassaifi S, Aouni Z, Fehri W and Mazigh C: The association of IL-6, TNFα and CRP gene polymorphisms with coronary artery disease in a tunisian population: A case-control study. Biochem Genet. 59:751–766. 2021. View Article : Google Scholar : PubMed/NCBI | |
Attiq A, Afzal S, Ahmad W and Kandeel M: Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol. 966:1763382024. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Wang M, Li Y and Lian Y: The evaluation value of atherogenic index of plasma and high-sensitivity C-reactive protein for the degree of coronary artery lesion in premature coronary artery disease. BMC Cardiovasc Disord. 24:4102024. View Article : Google Scholar : PubMed/NCBI | |
Iwata H, Miyauchi K, Naito R Iimuro S, Ozaki Y, Sakuma I, Nakagawa Y, Hibi K, Hiro T, Fukumoto Y, et al: Significance of persistent inflammation in patients with chronic coronary syndrome: Insights from the REAL-CAD study. JACC Adv. 3:1009962024. View Article : Google Scholar : PubMed/NCBI | |
Håland AB, Mattsson E, Videm V, Albrektsen G and Nyrønning LÅ: Elevated high sensitivity C reactive protein and risk of abdominal aortic aneurysm: A prospective population based study in the norwegian HUNT study. Eur J Vasc Endovasc Surg. 69:733–741. 2025. View Article : Google Scholar : PubMed/NCBI | |
Nazarian B, Fazeli Moghadam E, Asbaghi O, Zeinali Khosroshahi M, Choghakhori R and Abbasnezhad A: Effect of l-arginine supplementation on C-reactive protein and other inflammatory biomarkers: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 47:1022262019. View Article : Google Scholar : PubMed/NCBI | |
Nemati A, Alipanah-Moghadam R, Molazadeh L and Naghizadeh Baghi A: The effect of glutamine supplementation on oxidative stress and matrix metalloproteinase 2 and 9 after exhaustive exercise. Drug Des Devel Ther. 13:4215–4223. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jennings A, MacGregor A, Pallister T, Spector T and Cassidy A: Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: A twin study. Int J Cardiol. 223:992–998. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mallmann NH, Lima ES and Lalwani P: Dysregulation of tryptophan catabolism in metabolic syndrome. Metab Syndr Relat Disord. 16:135–142. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim ES, Kim SY, Koh M, Lee HM, Kim K, Jung J, Kim HS, Moon WK, Hwang S and Moon A: C-reactive protein binds to integrin α2 and Fcγ receptor I, leading to breast cell adhesion and breast cancer progression. Oncogene. 37:28–38. 2018. View Article : Google Scholar | |
Amin MN, Siddiqui SA, Ibrahim M, Hakim ML, Ahammed MS, Kabir A and Sultana F: Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med. 8:20503121209657522020. View Article : Google Scholar : PubMed/NCBI | |
Salica A, Cammisotto V, Scaffa R, Folino G, De Paulis R, Carnevale R, Benedetto U, Saade W, Marullo A, Sciarretta S, et al: Different oxidative stress and inflammation patterns of diseased left anterior descending coronary artery versus internal thoracic artery. Antioxidants (Basel). 13:11802024. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Wang J, Li R, Liu H, Zhong Y, Xu Q, Ge Y, Li C, Sun L and Zhu J: IL-6 signaling accelerates iron overload by upregulating DMT1 in endothelial cells to promote aortic dissection. Int J Biol Sci. 20:4222–4237. 2024. View Article : Google Scholar : PubMed/NCBI | |
Fang C, Du L, Gao S, Chen Y, Chen Z, Wu Z, Li L, Li J, Zeng X, Li M, et al: Association between premature vascular smooth muscle cells senescence and vascular inflammation in Takayasu's arteritis. Ann Rheum Dis. 83:1522–1535. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jang E, Ho TWW, Brumell JH, Lefebvre F, Wang C and Lee WL: IL-1β induces LDL transcytosis by a novel pathway involving LDLR and Rab27a. Arterioscler Thromb Vasc Biol. 44:2053–2068. 2024. View Article : Google Scholar : PubMed/NCBI | |
Correia AF, de Oliveira CGC, de Oliveira DC Jr, Pereira MC, Carvalho FA, Martins ECC and de Oliveira DC: Circulating interleukin-22 in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. J Clin Med. 13:49712024. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang H, Wang Z, Xu J, Wang M, Wang W, He Q, Yu Y, Yuan D, Bu G, et al: Resveratrol promotes cholesterol efflux from dendritic cells and controls costimulation and T-cell activation in high-fat and lipopolysaccharide-driven atherosclerotic mice. Front Cardiovasc Med. 11:14508982024. View Article : Google Scholar | |
Yu J, Li Y, Hu J and Wang Y: Interleukin-33 induces angiogenesis after myocardial infarction via AKT/eNOS signaling pathway. Int Immunopharmacol. 143:1134332024. View Article : Google Scholar : PubMed/NCBI | |
Lou L, Detering L, Luehmann H, Amrute JM, Sultan D, Ma P, Li A, Lahad D, Bredemeyer A, Zhang X, et al: Visualizing immune checkpoint inhibitors derived inflammation in atherosclerosis. Circ Res. 135:990–1003. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zou Y, Jiang Q, Li W, Chai X, Zhao T, Liu S, Yuan Z, Yu C and Wang T: Ox-LDL-induced CD80+ macrophages expand pro-atherosclerotic NKT cells via CD1d in atherosclerotic mice and hyperlipidemic patients. Am J Physiol Cell Physiol. 326:C1563–C1572. 2024. View Article : Google Scholar | |
Gastanadui MG, Margaroli C, Litovsky S, Richter RP, Wang D, Xing D, Wells JM, Gaggar A, Nanda V, Patel RP and Payne GA: Spatial transcriptomic approach to understanding coronary atherosclerotic plaque stability. Arterioscler Thromb Vasc Biol. 44:e264–e276. 2024. View Article : Google Scholar : PubMed/NCBI | |
Posadas-Sánchez R, Velázquez-Sánchez F, Reyes-Barrera J, Cardoso-Saldaña G, Velázquez-Argueta F, Antonio-Villa NE, Fragoso JM and Vargas-Alarcón G: MCP-1 rs1024611 polymorphism MCP-1 concentrations and premature coronary artery disease: Results of the genetics of atherosclerotic disease (GEA) Mexican study. Biomedicines. 12:12922024. View Article : Google Scholar | |
Ma X, Gao HJ, Ge HZ, Zhang Q and Bu BT: Interleukin-6 trans-signalling regulates monocyte chemoattractant protein-1 production in immune-mediated necrotizing myopathy. Rheumatology (Oxford). 64:849–859. 2025. View Article : Google Scholar | |
Sproston NR and Ashworth JJ: Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 9:7542018. View Article : Google Scholar : PubMed/NCBI | |
Yanni AE, Agrogiannis G, Nomikos T, Fragopoulou E, Pantopoulou A, Antonopoulou S and Perrea D: Oral supplementation with L-aspartate and L-glutamate inhibits atherogenesis and fatty liver disease in cholesterol-fed rabbit. Amino Acids. 38:1323–1331. 2010. View Article : Google Scholar | |
Wang W, Zhang F, Xia Y, Zhao S, Yan W, Wang H, Lee Y, Li C, Zhang L, Lian K, et al: Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol. 311:H1160–H1169. 2016. View Article : Google Scholar : PubMed/NCBI | |
Green CL, Trautman ME, Chaiyakul K, Jain R, Alam YH, Babygirija R, Pak HH, Sonsalla MM, Calubag MF, Yeh CY, et al: Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. Cell Metab. 35:1976–1995.e6. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chajadine M, Laurans L, Radecke T, Mouttoulingam N, Al-Rifai R, Bacquer E, Delaroque C, Rytter H, Bredon M, Knosp C, et al: Harnessing intestinal tryptophan catabolism to relieve atherosclerosis in mice. Nat Commun. 15:63902024. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Yang L, Zhu T, Fan F, Wang X, Liu Y, Zhan H, Luo D and Guo J: Aucubin ameliorates atherosclerosis by modulating tryptophan metabolism and inhibiting endothelial-mesenchymal transitions via gut microbiota regulation. Phytomedicine. 135:1561222024. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Ding Y, Huang Q, Zhang C, Zhao Z, Zhou H, Li D and Zhou G: Relationship between arginine methylation and vascular calcification. Cell Signal. 119:1111892024. View Article : Google Scholar : PubMed/NCBI | |
Bingöl G, Huraıbat A, Ayduk Gövdeli E, Ser ÖS, Ünlü S, Çelik M, Bulut L, Özden Ö, Özmen E and Kılıçkesmez K: Effect of homoarginine on coronary artery complexity and atherosclerotic burden in patients with STEMI. J Clin Med. 14:15012025. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Zhang C, Nagenborg J, Juhasz P, Ruder AV, Sikkink CJJM, Mees BME, Waring O, Sluimer JC, Neumann D, et al: Genome-scale metabolic network of human carotid plaque reveals the pivotal role of glutamine/glutamate metabolism in macrophage modulating plaque inflammation and vulnerability. Cardiovasc Diabetol. 23:2402024. View Article : Google Scholar : PubMed/NCBI | |
Murcy F, Borowczyk C, Gourion-Arsiquaud S, Torrino S, Ouahrouche N, Barouillet T, Dussaud S, Couralet M, Vaillant N, Merlin J, et al: GLS2 links glutamine metabolism and atherosclerosis by remodeling artery walls. Nat Cardiovasc Res. 3:1454–1467. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ruiz-Canela M, Toledo E, Clish CB, Hruby A, Liang L, Salas-Salvadó J, Razquin C, Corella D, Estruch R, Ros E, et al: Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin Chem. 62:582–592. 2016. View Article : Google Scholar : PubMed/NCBI | |
Laferrère B, Reilly D, Arias S, Swerdlow N, Gorroochurn P, Bawa B, Bose M, Teixeira J, Stevens RD, Wenner BR, et al: Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci Transl Med. 3:80re22011. View Article : Google Scholar : PubMed/NCBI | |
Katz LEL, Gidding SS, Otvos JD, Drews KL, Bacha F, Willi S, Marcovina S, McKay S and Weinstock RS; TODAY Study Group: Atherogenic lipoproteins associate with loss of glycemic control in youth-onset type 2 diabetes: Results from the TODAY study. J Clin Lipidol. Feb 6–2025.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Chi C, Li W, Zhang Y, Yang S, Xu R and Liu R: Metabolomics and lipidomics combined with serum pharmacochemistry uncover the potential mechanism of Huang-Lian-Jie-Du decoction alleviates atherosclerosis in ApoE(-/-) mice. J Ethnopharmacol. 324:1177482024. View Article : Google Scholar : PubMed/NCBI | |
Botello-Marabotto M, Plana E, Martinez-Bisbal MC, Medina P, Bernardos A, Martínez-Máñez R and Miralles M: Metabolomic study for the identification of symptomatic carotid plaque biomarkers. Talanta. 284:1272112025. View Article : Google Scholar | |
du Toit WL, Kruger R, Gafane-Matemane LF, Schutte AE, Louw R and Mels CMC: Markers of arterial stiffness and urinary metabolomics in young adults with early cardiovascular risk: The African-PREDICT study. Metabolomics. 19:282023. View Article : Google Scholar : PubMed/NCBI | |
Wang SJ, Liu BR, Zhang F, Su XR, Li YP, Yang CT, Zhang ZH and Cong B: The amino acid metabolomics signature of differentiating myocardial infarction from strangulation death in mice models. Sci Rep. 13:149992023. View Article : Google Scholar : PubMed/NCBI | |
Mei Z, Xu L, Huang Q, Lin C, Yu M, Shali S, Wu H, Lu Y, Wu R, Wang Z, et al: Metabonomic biomarkers of plaque burden and instability in patients with coronary atherosclerotic disease after moderate lipid-lowering therapy. J Am Heart Assoc. 13:e0369062024. View Article : Google Scholar : PubMed/NCBI | |
Ren W, Zhang Z, Wang Y, Wang J, Li L, Shi L, Zhai T and Huang J: Coronary health index based on immunoglobulin light chains to assess coronary heart disease risk with machine learning: A diagnostic trial. J Transl Med. 23:222025. View Article : Google Scholar : PubMed/NCBI | |
Santana E, Ibrahimi E, Ntalianis E, Cauwenberghs N and Kuznetsova T: Integrating metabolomics domain knowledge with explainable machine learning in atherosclerotic cardiovascular disease classification. Int J Mol Sci. 25:129052024. View Article : Google Scholar : PubMed/NCBI | |
Ke Y, Yue J, He J and Liu G: Integrating machine learning algorithms and single-cell analysis to identify gut microbiota-related macrophage biomarkers in atherosclerotic plaques. Front Cell Infect Microbiol. 14:13957162024. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Wu B, Guan K, Chen L, Chai K, Ying M, Li D and Zhao W: Identification of lipid metabolism related immune markers in atherosclerosis through machine learning and experimental analysis. Front Immunol. 16:15491502025. View Article : Google Scholar : PubMed/NCBI | |
Gao Z, Du Z, Hou Y, Hua K, Tu P, Ai X and Jiang Y: A microfluidic coculture model for mapping signaling perturbations and precise drug screening against macrophage-mediated dynamic myocardial injury. Acta Pharm Sin B. 14:5393–5406. 2024. View Article : Google Scholar | |
Lin J, Chen S, Zhang C, Liao J, Chen Y, Deng S, Mao Z, Zhang T, Tian N, Song Y and Zeng T: Recent advances in microfluidic technology of arterial thrombosis investigations. Platelets. 35:23167432024. View Article : Google Scholar : PubMed/NCBI | |
Maringanti R, van Dijk CGM, Meijer EM, Brandt MM, Li M, Tiggeloven VPC, Krebber MM, Chrifi I, Duncker DJ, Verhaar MC and Cheng C: Atherosclerosis on a chip: A 3-dimensional microfluidic model of early arterial events in human plaques. Arterioscler Thromb Vasc Biol. 44:2453–2472. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lai A, Hawke A, Mohammed M, Thurgood P, Concilia G, Peter K, Khoshmanesh K and Baratchi S: A microfluidic model to study the effects of arrhythmic flows on endothelial cells. Lab Chip. 24:2347–2357. 2024. View Article : Google Scholar : PubMed/NCBI | |
Thakur MR, Nachane SS and Tupe RS: Alleviation of albumin glycation-induced diabetic cardiomyopathy by L-arginine: Insights into Nrf-2 signaling. Int J Biol Macromol. 264:1304782024. View Article : Google Scholar : PubMed/NCBI | |
Kaya S and Yalcin T: In an experimental myocardial infarction model, L-arginine pre-intervention may exert cardioprotective effects by regulating OTULIN levels and mitochondrial dynamics. Cell Stress Chaperones. 28:811–820. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wang C, Sun H, Zhou T, Ma C, Han X, Zhang T and Xia J: Glutamine supplementation alleviated aortic atherosclerosis in mice model and in vitro. Proteomics. 24:e23001792024. View Article : Google Scholar | |
Grajeda-Iglesias C and Aviram M: Specific amino acids affect cardiovascular diseases and atherogenesis via protection against macrophage foam cell formation: Review article. Rambam Maimonides Med J. 9:e00222018. View Article : Google Scholar : PubMed/NCBI | |
Ouyang L, Yu C, Xie Z, Su X, Xu Z, Song P, Li J, Huang H, Ding Y and Zou MH: Indoleamine 2,3-dioxygenase 1 deletion-mediated kynurenine insufficiency in vascular smooth muscle cells exacerbates arterial calcification. Circulation. 145:1784–1798. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xue H, Chen X, Yu C, Deng Y, Zhang Y, Chen S, Chen X, Chen K, Yang Y and Ling W: Gut microbially produced indole-3-propionic acid inhibits atherosclerosis by promoting reverse cholesterol transport and its deficiency is causally related to atherosclerotic cardiovascular disease. Circ Res. 131:404–420. 2022. View Article : Google Scholar : PubMed/NCBI | |
Miao Y, Wang Y, Yan P, Li Y, Chen Z, Tong N and Wan Q: Association between the fatty liver index (FLI) and incident coronary heart disease: Insights from a cohort study on the Chinese population. Front Endocrinol (Lausanne). 15:13678532024. View Article : Google Scholar | |
Song J, Liu Y, Liu Y, Liu Y, Zhou Q, Chen J, Meng X, Wang W and Tang YD: MAFLD as a predictor of adverse cardiovascular events among CHD patients with LDL-C<1.8 mmol/l. Nutr Metab Cardiovasc Dis. 35:1037982025. View Article : Google Scholar | |
Liao Y, Chen Q, Liu L, Huang H, Sun J, Bai X, Jin C, Li H, Sun F, Xiao X, et al: Amino acid is a major carbon source for hepatic lipogenesis. Cell Metab. 36:2437–2448.e8. 2024. View Article : Google Scholar : PubMed/NCBI | |
Katsiki N, Kolovou G and Vrablik M: Metabolic dysfunction associated-steatotic liver disease (MASLD) and cardiovascular risk: Embrace all facets of the disease. Curr Cardiol Rep. 27:192025. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Feng W, Huang H, Chen Y and Yang S: Macrophagetargeting Antisenescence nanomedicine enables in-Situ NO induction for Gaseous and antioxidative atherosclerosis intervention. Bioact Mater. 48:294–312. 2025.PubMed/NCBI | |
Yang W, Zhou W and Gou S: Hypoxia activated nitric oxide donor compounds for the prevention and treatment of myocardial hypoxia-induced injury. J Med Chem. 68:491–505. 2025. View Article : Google Scholar | |
Fu C, Li Q, Li M, Zhang J, Zhou F, Li Z, He D, Hu X, Ning X, Guo W, et al: An integrated arterial remodeling hydrogel for preventing restenosis after angioplasty. Adv Sci (Weinh). 11:e23070632024. View Article : Google Scholar : PubMed/NCBI | |
Yang N, Chen J, Zhu Y, Shan W, Cao Z, Fu Y, Cao H, Li Y, Xiang Y, Ding S, et al: Human cardiac organoid model reveals antibacterial triclocarban promotes myocardial hypertrophy by interfering with endothelial cell metabolism. Sci Bull (Beijing). 70:342–346. 2025. View Article : Google Scholar | |
Yu M, Yang Y, Dong SL, Zhao C, Yang F, Yuan YF, Liao YH, He SL, Liu K, Wei F, et al: Effect of colchicine on coronary plaque stability in acute coronary syndrome as assessed by optical coherence tomography: The COLOCT randomized clinical trial. Circulation. 150:981–993. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zaric BL, Radovanovic JN, Gluvic Z, Stewart AJ, Essack M, Motwalli O, Gojobori T and Isenovic ER: Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes. Front Immunol. 11:5517582020. View Article : Google Scholar : PubMed/NCBI |