Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Relationship between amino acid metabolism and inflammation in coronary heart disease (Review)

  • Authors:
    • Ruxin Shen
    • Yingying Zhang
  • View Affiliations / Copyright

    Affiliations: Qingdao Medical College, Qingdao University, Qingdao, Shandong 266000, P.R. China, Department of Tuberculosis, Affiliated Nantong Hospital of Shanghai University, Nantong, Jiangsu 226000, P.R. China
    Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 120
    |
    Published online on: June 4, 2025
       https://doi.org/10.3892/ijmm.2025.5561
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

This review delves into the intricate relationship between amino acid metabolism and inflammation in coronary heart disease (CHD). Research shows that disruptions in the metabolism of arginine, glutamate, branched‑chain amino acids (BCAAs) and tryptophan exacerbate CHD inflammation via immunometabolic reprogramming and oxidative stress. Nitric oxide (NO), produced from arginine metabolism, regulates CHD progression multifacetedly. Glutamate metabolism dysregulation harms cardiovascular health, while glutamine exerts cardioprotective effects after myocardial infarction. Elevated BCAA levels are associated with atherosclerosis development, and tryptophan and its metabolites have complex effects on CHD. Notably, amino acid metabolism intersects with the immune system, modulating the functions of T cells, B cells and macrophages. These immune cells are crucial for CHD‑related inflammation. Inflammatory markers like high‑sensitivity C‑reactive protein, interleukin family members, interferon‑γ and monocyte chemoattractant protein‑1 are closely linked to CHD pathogenesis and progression, facilitating risk assessment. Clinical research, including animal and human studies, and technological applications such as metabolomics, offer insights into CHD diagnosis, treatment and prevention. Dietary intervention and drug therapy targeting amino acid metabolism show potential. For example, L‑arginine supplementation has cardioprotective effects and novel NO donors like compound‑N6 hold promise. However, certain substances like triclocarban have adverse impacts, while colchicine is beneficial. In summary, while current research has advanced the understanding of CHD, significant knowledge gaps remain, particularly regarding rare amino acids and the connection between amino acid metabolism and non‑coding RNA. Future research could utilize metabolomics, genomics and artificial intelligence for personalized CHD management, representing a paradigm shift towards individualized precision medicine.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Młynarska E, Czarnik W, Fularski P, Hajdys J, Majchrowicz G, Stabrawa M, Rysz J and Franczyk B: From atherosclerotic plaque to myocardial infarction-the leading cause of coronary artery occlusion. Int J Mol Sci. 25:72952024. View Article : Google Scholar

2 

Li J, Huang P, Cheng W and Niu Q: Stilbene-based derivatives as potential inhibitors of trimethylamine (TMA)-lyase affect gut microbiota in coronary heart disease. Food Sci Nutr. 11:93–100. 2022. View Article : Google Scholar

3 

Zhou P, Zhao XN, Ma YY, Tang TJ, Wang SS, Wang L and Huang JL: Virtual screening analysis of natural flavonoids as trimethylamine (TMA)-lyase inhibitors for coronary heart disease. J Food Biochem. 46:e143762022. View Article : Google Scholar : PubMed/NCBI

4 

Madaudo C, Coppola G, Parlati ALM and Corrado E: Discovering inflammation in atherosclerosis: Insights from pathogenic pathways to clinical practice. Int J Mol Sci. 25:60162024. View Article : Google Scholar : PubMed/NCBI

5 

Cimmino G, Muscoli S, De Rosa S, Cesaro A, Perrone MA, Selvaggio S, Selvaggio G, Aimo A, Pedrinelli R, Mercuro G, et al: Evolving concepts in the pathophysiology of atherosclerosis: From endothelial dysfunction to thrombus formation through multiple shades of inflammation. J Cardiovasc Med (Hagerstown). 24(Suppl 2): e156–e167. 2023. View Article : Google Scholar : PubMed/NCBI

6 

Lv J, Pan C, Cai Y, Han X, Wang C, Ma J, Pang J, Xu F, Wu S, Kou T, et al: Plasma metabolomics reveals the shared and distinct metabolic disturbances associated with cardiovascular events in coronary artery disease. Nat Commun. 15:57292024. View Article : Google Scholar : PubMed/NCBI

7 

Wang J, Wang J, Zhong J, Liu H, Li W, Chen M, Xu L, Zhang W, Zhang Z, Wei Z, et al: LRG1 promotes atherosclerosis by inducing macrophage M1-like polarization. Proc Natl Acad Sci USA. 121:e24058451212024. View Article : Google Scholar : PubMed/NCBI

8 

Zhang B, Xia W, Zhou J, Lv J, Dai Q, Li X, Tian Q, Liu X, Du X, Tu R and Liu S: Oxidized low-density lipoprotein induces M2-type differentiation of macrophages to promote the protracted progression of atherosclerotic inflammation in high-fat diet-fed ApoE -/- mice. Cell Mol Biol (Noisy-le-grand). 69:235–248. 2023. View Article : Google Scholar

9 

Chen J, Xiang X, Nie L, Guo X, Zhang F, Wen C, Xia Y and Mao L: The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front Immunol. 13:10796682023. View Article : Google Scholar : PubMed/NCBI

10 

Wang Y, Li W, Zhao T, Zou Y, Deng T, Yang Z, Yuan Z, Ma L, Yu R, Wang T and Yu C: Interleukin-17-producing CD4+ T cells promote inflammatory response and foster disease progression in hyperlipidemic patients and atherosclerotic mice. Front Cardiovasc Med. 8:6677682021. View Article : Google Scholar

11 

Lotfy H and Moaaz M and Moaaz M: The novel role of IL-37 to enhance the anti-inflammatory response of regulatory T cells in patients with peripheral atherosclerosis. Vascular. 28:629–642. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Wu Y, Wei S, Wu X, Li Y and Han X: Neutrophil extracellular traps in acute coronary syndrome. J Inflamm (Lond). 20:172023. View Article : Google Scholar : PubMed/NCBI

13 

Klopf J, Brostjan C, Eilenberg W and Neumayer C: Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease. Int J Mol Sci. 22:5592021. View Article : Google Scholar : PubMed/NCBI

14 

Kumrić M, Kurir TT, Borovac JA and Božić J: The role of natural killer (NK) cells in acute coronary syndrome: A comprehensive review. Biomolecules. 10:15142020. View Article : Google Scholar

15 

Backteman K, Ernerudh J and Jonasson L: Natural killer (NK) cell deficit in coronary artery disease: No aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation. Clin Exp Immunol. 175:104–112. 2014. View Article : Google Scholar :

16 

Ma J, Wang X, Jia Y, Tan F, Yuan X and Du J: The roles of B cells in cardiovascular diseases. Mol Immunol. 171:36–46. 2024. View Article : Google Scholar : PubMed/NCBI

17 

Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG and Baig MS: Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol. 154:1072822024. View Article : Google Scholar : PubMed/NCBI

18 

Carlstrom M, Weitzberg E and Lundberg JO: Nitric oxide signaling and regulation in the cardiovascular system: Recent advances. Pharmacol Rev. 76:1038–1062. 2024. View Article : Google Scholar : PubMed/NCBI

19 

Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B and Xie J: Nitric oxide: Physiological functions, delivery, and biomedical applications. Adv Sci (Weinh). 10:e23032592023. View Article : Google Scholar : PubMed/NCBI

20 

Thengchaisri N, Kuo L and Hein TW: H2O2 mediates VEGF- and flow-induced dilations of coronary arterioles in early type 1 diabetes: Role of vascular arginase and PI3K-linked eNOS uncoupling. Int J Mol Sci. 24:4892022. View Article : Google Scholar

21 

Alzayadneh EM, Shatanawi A, Caldwell RW and Caldwell RB: Methylglyoxal-modified albumin effects on endothelial arginase enzyme and vascular function. Cells. 12:7952023. View Article : Google Scholar : PubMed/NCBI

22 

Khan M, Singh I and Won J: Asymmetric dimethylarginine-induced oxidative damage leads to cerebrovascular dysfunction. Neural Regen Res. 16:1793–1794. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X and Liu W: Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide. 152:48–57. 2024. View Article : Google Scholar : PubMed/NCBI

24 

Le Thi P, Tran DL, Park KM, Lee S, Oh DH and Park KD: Biocatalytic nitric oxide generating hydrogels with enhanced anti-inflammatory, cell migration, and angiogenic capabilities for wound healing applications. J Mater Chem B. 12:1538–1549. 2024. View Article : Google Scholar : PubMed/NCBI

25 

Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L and Giorgino F: Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 100:1–19. 2018. View Article : Google Scholar

26 

Son WH, Jeong WM, Park IY and Ha MS: Enhancing inflammatory factors, nitric oxide, and arterial stiffness through aquatic walking for amelioration and disease prevention: Targeting in obese elderly women. Mediators Inflamm. 2024:55209872024. View Article : Google Scholar

27 

Cui X, Zhang L, Lin L, Hu Y, Zhang M, Sun B, Zhang Z, Lu M, Guan X, Hao J, et al: Notoginsenoside R1-Protocatechuic aldehyde reduces vascular inflammation and calcification through increasing the release of nitric oxide to inhibit TGFbetaR1-YAP/TAZ pathway in vascular smooth muscle cells. Int Immunopharmacol. 143:1135742024. View Article : Google Scholar

28 

Sherratt SCR, Libby P, Dawoud H, Bhatt DL and Mason RP: Eicosapentaenoic acid improves endothelial nitric oxide bioavailability via changes in protein expression during inflammation. J Am Heart Assoc. 13:e0340762024. View Article : Google Scholar : PubMed/NCBI

29 

Vanhoutte PM: Nitric oxide: From good to bad. Ann Vasc Dis. 11:41–51. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Gryko A, Głowińska-Olszewska B, Pludowska K, Smithson WH, Owłasiuk A, Żelazowska-Rutkowska B, Wojtkielewicz K, Milewski R and Chlabicz S: Significant differences in parameters of glucose metabolism in children of hypertensive and normotensive parents. Pediatr Endocrinol Diabetes Metab. 23:14–22. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis C and Tousoulis D: Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines. 9:7812021. View Article : Google Scholar : PubMed/NCBI

32 

Batty M, Bennett MR and Yu E: The role of oxidative stress in atherosclerosis. Cells. 11:38432022. View Article : Google Scholar : PubMed/NCBI

33 

Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW and Kalinowski L: Endothelial dysfunction due to eNOS uncoupling: Molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett. 28:212023. View Article : Google Scholar : PubMed/NCBI

34 

Hernandez-Navarro I, Botana L, Diez-Mata J, Tesoro L, Jimenez-Guirado B, Gonzalez-Cucharero C, Alcharani N, Zamorano JL, Saura M and Zaragoza C: Replicative endothelial cell senescence may lead to endothelial dysfunction by increasing the BH2/BH4 ratio induced by oxidative stress, reducing BH4 availability, and decreasing the expression of eNOS. Int J Mol Sci. 25:98902024. View Article : Google Scholar : PubMed/NCBI

35 

Lu L, Jang S, Zhu J, Qin Q, Sun L and Sun J: Nur77 mitigates endothelial dysfunction through activation of both nitric oxide production and anti-oxidant pathways. Redox Biol. 70:1030562024. View Article : Google Scholar : PubMed/NCBI

36 

Cao X, Wu VWY, Han Y, Hong H, Wu Y, Kong APS, Lui KO and Tian XY: Role of argininosuccinate synthase 1-dependent L-arginine biosynthesis in the protective effect of endothelial sirtuin 3 against atherosclerosis. Adv Sci (Weinh). 11:e23072562024. View Article : Google Scholar

37 

Zhang M, Wu Z, Salas SS, Aguilar MM, Trillos-Almanza MC, Buist-Homan M and Moshage H: Arginase 1 expression is increased during hepatic stellate cell activation and facilitates collagen synthesis. J Cell Biochem. 124:808–817. 2023. View Article : Google Scholar : PubMed/NCBI

38 

Marzęta-Assas P, Jacenik D and Zasłona Z: Pathophysiology of arginases in cancer and efforts in their pharmacological inhibition. Int J Mol Sci. 25:97822024. View Article : Google Scholar

39 

Lim HK, Lim HK, Ryoo S, Benjo A, Shuleri K, Miriel V, Baraban E, Camara A, Soucy K, Nyhan D, et al: Mitochondrial arginase II constrains endothelial NOS-3 activity. Am J Physiol Heart Circ Physiol. 293:H3317–H3324. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Ottosson F, Engström G, Orho-Melander M, Melander O, Nilsson PM and Johansson M: Plasma metabolome predicts aortic stiffness and future risk of coronary artery disease and mortality after 23 years of follow-up in the general population. J Am Heart Assoc. 13:e0334422024. View Article : Google Scholar

41 

Vernon ST, Tang O, Kim T, Chan AS, Kott KA, Park J, Hansen T, Koay YC, Grieve SM, O'Sullivan JF, et al: Metabolic signatures in coronary artery disease: Results from the BioHEART-CT study. Cells. 10:9802021. View Article : Google Scholar : PubMed/NCBI

42 

Liu Z, Ajam A, Huang J, Yeh YS and Razani B: Glutamine-glutamate imbalance in the pathogenesis of cardiovascular disease. Nat Cardiovasc Res. 3:1377–1379. 2024. View Article : Google Scholar : PubMed/NCBI

43 

Wang X, Yang R, Zhang W, Wang S, Mu H, Li H, Dong J, Chen W, Yu X and Ji F: Serum glutamate and glutamine-to-glutamate ratio are associated with coronary angiography defined coronary artery disease. Nutr Metab Cardiovasc Dis. 32:186–194. 2022. View Article : Google Scholar

44 

Rom O, Liu Y, Finney AC, Ghrayeb A, Zhao Y, Shukha Y, Wang L, Rajanayake KK, Das S, Rashdan NA, et al: Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis. Redox Biol. 52:1023132022. View Article : Google Scholar : PubMed/NCBI

45 

Mouton AJ, Aitken NM, Morato JG, O'Quinn KR, do Carmo JM, da Silva AA, Omoto ACM, Li X, Wang Z, Schrimpe-Rutledge AC, et al: Glutamine metabolism improves left ventricular function but not macrophage-mediated inflammation following myocardial infarction. Am J Physiol Cell Physiol. 327:C571–C586. 2024. View Article : Google Scholar : PubMed/NCBI

46 

Prechtl L, Carrard J, Gallart-Ayala H, Borreggine R, Teav T, Königstein K, Wagner J, Knaier R, Infanger D, Streese L, et al: Circulating amino acid signature features urea cycle alterations associated with coronary artery disease. Sci Rep. 14:258482024. View Article : Google Scholar : PubMed/NCBI

47 

Bonetti L, Horkova V, Grusdat M, Longworth J, Guerra L, Kurniawan H, Franchina DG, Soriano-Baguet L, Binsfeld C, Verschueren C, et al: A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation. Cell Metab. 36:1726–1744.e10. 2024. View Article : Google Scholar : PubMed/NCBI

48 

Bopp L, Martinez ML, Schumacher C, Seitz R, Arana MH, Klapproth H, Lukas D, Oh JH, Neumayer D, Lackmann JW, et al: Glutamine promotes human CD8+ T cells and counteracts imiquimod-induced T cell hyporesponsiveness. iScience. 27:1097672024. View Article : Google Scholar

49 

Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T and Zhang J: NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 9:532024. View Article : Google Scholar

50 

Haroon E, Miller AH and Sanacora G: Inflammation, glutamate, and glia: A trio of trouble in mood disorders. Neuropsychopharmacology. 42:193–215. 2017. View Article : Google Scholar

51 

Yan M, Li X, Sun C, Tan J, Liu Y, Li M, Qi Z, He J, Wang D and Wu L: Sodium butyrate attenuates AGEs-induced oxidative stress and inflammation by inhibiting autophagy and affecting cellular metabolism in THP-1 cells. Molecules. 27:87152022. View Article : Google Scholar : PubMed/NCBI

52 

Sun H, Ma X, Ma H, Li S, Xia Y, Yao L, Wang Y, Pang X, Zhong J, Yao G, et al: High glucose levels accelerate atherosclerosis via NLRP3-IL/MAPK/NF-κB-related inflammation pathways. Biochem Biophys Res Commun. 704:1497022024. View Article : Google Scholar

53 

Zhang Y, Peng K, Liu J, Chen X, Wang T, Li M, Chen Y, Xu Y, Lu J, Bi Y, et al: Carotid intima-media thickness and plagues are associated with indicators of peripheral artery diseases in patients with diabetes. Diabetes Res Clin Pract. 144:245–251. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG and Floria M: Duality of branched-chain amino acids in chronic cardiovascular disease: Potential biomarkers versus active pathophysiological promoters. Nutrients. 16:19722024. View Article : Google Scholar : PubMed/NCBI

55 

Fine KS, Wilkins JT and Sawicki KT: Circulating branched chain amino acids and cardiometabolic disease. J Am Heart Assoc. 13:e0316172024. View Article : Google Scholar : PubMed/NCBI

56 

Dziedzic M, Jozefczuk E, Guzik TJ and Siedlinski M: Interplay between plasma glycine and branched-chain amino acids contributes to the development of hypertension and coronary heart disease. Hypertension. 81:1320–1331. 2024. View Article : Google Scholar : PubMed/NCBI

57 

Zhang J, Liu Z, Ni Y, Yu Y, Guo F, Lu Y, Wang X, Hao H, Li S, Wei P, et al: Branched-chain amino acids promote occurrence and development of cardiovascular disease dependent on triglyceride metabolism via activation of the mTOR/SREBP-1/betatrophin pathway. Mol Cell Endocrinol. 584:1121642024. View Article : Google Scholar : PubMed/NCBI

58 

Li Z, Wang Y and Sun H: The role of branched-chain amino acids and their metabolism in cardiovascular diseases. J Cardiovasc Transl Res. 17:85–90. 2024. View Article : Google Scholar : PubMed/NCBI

59 

Gan Z, Guo Y, Zhao M, Ye Y, Liao Y, Liu B, Yin J, Zhou X, Yan Y, Yin Y and Ren W: Excitatory amino acid transporter supports inflammatory macrophage responses. Sci Bull (Beijing). 69:2405–2419. 2024. View Article : Google Scholar : PubMed/NCBI

60 

Deng X, Tang C, Fang T, Li T, Li X, Liu Y, Zhang X, Sun B, Sun H and Chen L: Disruption of branched-chain amino acid homeostasis promotes the progression of DKD via enhancing inflammation and fibrosis-associated epithelial-mesenchymal transition. Metabolism. 162:1560372025. View Article : Google Scholar

61 

Zhenyukh O, Civantos E, Ruiz-Ortega M, Sánchez MS, Vázquez C, Peiró C, Egido J and Mas S: High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic Biol Med. 104:165–177. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Ye Z, Wang S, Zhang C and Zhao Y: Coordinated modulation of energy metabolism and inflammation by branched-chain amino acids and fatty acids. Front Endocrinol (Lausanne). 11:6172020. View Article : Google Scholar : PubMed/NCBI

63 

Zhao S, Zhou L, Wang Q, Cao JH, Chen Y, Wang W, Zhu BD, Wei ZH, Li R, Li CY, et al: Elevated branched-chain amino acid promotes atherosclerosis progression by enhancing mitochondrial-to-nuclear H2O2-disulfide HMGB1 in macrophages. Redox Biol. 62:1026962023. View Article : Google Scholar

64 

Sun H, Olson KC, Gao C, Prosdocimo DA, Zhou M, Wang Z, Jeyaraj D, Youn JY, Ren S, Liu Y, et al: Catabolic defect of branched-chain amino acids promotes heart failure. Circulation. 133:2038–2049. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Yu L, Huang T, Zhao J, Zhou Z, Cao Z, Chi Y, Meng S, Huang Y, Xu Y, Xia L, et al: Branched-chain amino acid catabolic defect in vascular smooth muscle cells drives thoracic aortic dissection via mTOR hyperactivation. Free Radic Biol Med. 210:25–41. 2024. View Article : Google Scholar

66 

Mehta NN, deGoma E and Shapiro MD: IL-6 and cardiovascular risk: A narrative review. Curr Atheroscler Rep. 27:122024. View Article : Google Scholar : PubMed/NCBI

67 

Jiang W, Xiong Y, Li X and Yang Y: Cardiac fibrosis: Cellular effectors, molecular pathways, and exosomal roles. Front Cardiovasc Med. 8:7152582021. View Article : Google Scholar : PubMed/NCBI

68 

Chen ZW, Qian JY, Ma JY, Chang SF, Yun H, Jin H, Sun AJ, Zou YZ and Ge JB: TNF-α-induced cardiomyocyte apoptosis contributes to cardiac dysfunction after coronary microembolization in mini-pigs. J Cell Mol Med. 18:1953–1963. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Zhou X, Zhang J, Shen J, Cheng B, Bi C and Ma Q: Branched-chain amino acid modulation of lipid metabolism, gluconeogenesis, and inflammation in a finishing pig model: Targeting leucine and valine. Food Funct. 14:10119–10134. 2023. View Article : Google Scholar : PubMed/NCBI

70 

Hong W, You G, Luo Z, Zhang M and Chen J: High gestational leucine level dampens WDPCP/MAPK signaling to impair the EMT and migration of cardiac microvascular endothelial cells in congenital heart defects. Pulm Circ. 14:e700132024. View Article : Google Scholar : PubMed/NCBI

71 

Bohler M, van den Berg EH, Almanza MCT, Connelly MA, Bakker SJL, de Meijer VE, Dullaart RPF and Blokzijl H; TransplantLines Investigators: Branched chain amino acids are associated with metabolic complications in liver transplant recipients. Clin Biochem. 102:26–33. 2022. View Article : Google Scholar : PubMed/NCBI

72 

Hao QY, Weng J, Zeng TT, Zeng YH, Guo JB, Li SC, Chen YR, Yang PZ, Gao JW and Li ZH: Dietary branched-chain amino acids intake and coronary artery calcium progression: Insights from the coronary artery risk development in young adults (CARDIA) study. Eur J Nutr. 64:1312025. View Article : Google Scholar : PubMed/NCBI

73 

Rao S, Zhang Y, Xie S, Cao H, Zhang Z and Yang W: Dietary intake of branched-chain amino acids (BCAAs), serum BCAAs, and cardiometabolic risk markers among community-dwelling adults. Eur J Nutr. 63:1835–1845. 2024. View Article : Google Scholar : PubMed/NCBI

74 

Li Z, Xia H, Sharp TE III, LaPenna KB, Elrod JW, Casin KM, Liu K, Calvert JW, Chau VQ, Salloum FN, et al: Mitochondrial H2S regulates BCAA catabolism in heart failure. Circ Res. 131:222–235. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Li Z, Zhang R, Mu H, Zhang W, Zeng J, Li H, Wang S, Zhao X, Chen W, Dong J and Yang R: Oral administration of branched-chain amino acids attenuates atherosclerosis by inhibiting the inflammatory response and regulating the gut microbiota in ApoE-deficient mice. Nutrients. 14:50652022. View Article : Google Scholar : PubMed/NCBI

76 

Teunis CJ, Stroes ESG, Boekholdt SM, Wareham NJ, Murphy AJ, Nieuwdorp M, Hazen SL and Hanssen NMJ: Tryptophan metabolites and incident cardiovascular disease: The EPIC-Norfolk prospective population study. Atherosclerosis. 387:1173442023. View Article : Google Scholar : PubMed/NCBI

77 

Luo Z, Liu Y, Wang X, Fan F, Yang Z and Luo D: Exploring tryptophan metabolism: The transition from disturbed balance to diagnostic and therapeutic potential in metabolic diseases. Biochem Pharmacol. 230:1165542024. View Article : Google Scholar : PubMed/NCBI

78 

Grishanova AY and Perepechaeva ML: Kynurenic acid/AhR signaling at the junction of inflammation and cardiovascular diseases. Int J Mol Sci. 25:69332024. View Article : Google Scholar : PubMed/NCBI

79 

Li K, Li K, He Y, Liang S, Shui X and Lei W: Aryl hydrocarbon receptor: A bridge linking immuno-inflammation and metabolism in atherosclerosis. Biochem Pharmacol. 216:1157442023. View Article : Google Scholar : PubMed/NCBI

80 

Sukka SR, Ampomah PB, Darville LNF, Ngai D, Wang X, Kuriakose G, Xiao Y, Shi J, Koomen JM, McCusker RH and Tabas I: Efferocytosis drives a tryptophan metabolism pathway in macrophages to promote tissue resolution. Nat Metab. 6:1736–1755. 2024. View Article : Google Scholar : PubMed/NCBI

81 

Paeslack N, Mimmler M, Becker S, Gao Z, Khuu MP, Mann A, Malinarich F, Regen T and Reinhardt C: Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids. 54:1339–1356. 2022. View Article : Google Scholar : PubMed/NCBI

82 

Huang K, Wen XQ, Zhang W, Wang JX, Liang Y, Li WQ, Wang YH, Liang MM, Jing AR, Ma J, et al: Predictive value of 5-methoxytryptophan on long-term clinical outcome after PCI in patients with acute myocardial infarction-a prospective cohort study. J Cardiovasc Transl Res. 17:1036–1047. 2024. View Article : Google Scholar : PubMed/NCBI

83 

Liu W, Wang J, Yang H, Li C, Lan W, Chen T and Tang Y: The metabolite indole-3-acetic acid of bacteroides ovatus improves atherosclerosis by restoring the polarisation balance of M1/M2 macrophages and inhibiting inflammation. Adv Sci (Weinh). 12:e24130102025. View Article : Google Scholar : PubMed/NCBI

84 

Liu H, Feng S, Tang M, Tian R and Zhang S: Gut commensal bacteroides thetaiotaomicron promote atherothrombosis via regulating L-tryptophan metabolism. Rev Cardiovasc Med. 25:3952024. View Article : Google Scholar : PubMed/NCBI

85 

Zhang J, Jiang X, Pang B, Li D, Kang L, Zhou T, Wang B, Zheng L, Zhou CM and Zhang L: Association between tryptophan concentrations and the risk of developing cardiovascular diseases: A systematic review and meta-analysis. Nutr Metab (Lond). 21:822024. View Article : Google Scholar : PubMed/NCBI

86 

Li L, Xiao C, Liu H, Chen S, Tang Y, Zhou H, Jiang G and Tian J: A circular network of coregulated L-threonine and L-tryptophan metabolism dictates acute lower limb ischemic injury. Int J Med Sci. 21:2402–2413. 2024. View Article : Google Scholar : PubMed/NCBI

87 

Su Q, Pan XF, Li HB, Xiong LX, Bai J, Wang XM, Qu XY, Zhang NR, Zou GQ, Shen Y, et al: Taurine supplementation alleviates blood pressure via gut-brain communication in spontaneously hypertensive rats. Biomedicines. 12:27112024. View Article : Google Scholar

88 

Wang Q, Lv H, Ainiwan M, Yesitayi G, Abudesimu A, Siti D, Aizitiaili A and Ma X: Untargeted metabolomics identifies indole-3-propionic acid to relieve Ang II-induced endothelial dysfunction in aortic dissection. Mol Cell Biochem. 479:1767–1786. 2024. View Article : Google Scholar : PubMed/NCBI

89 

Sterpetti AV: Inflammatory cytokines and atherosclerotic plaque progression. therapeutic implications. Curr Atheroscler Rep. 22:752020. View Article : Google Scholar : PubMed/NCBI

90 

Poznyak AV, Bharadwaj D, Prasad G, Grechko AV, Sazonova MA and Orekhov AN: Anti-inflammatory therapy for atherosclerosis: Focusing on cytokines. Int J Mol Sci. 22:70612021. View Article : Google Scholar : PubMed/NCBI

91 

Li G, Wen Z and Xiong S: Microenvironmental β-TrCP negates amino acid transport to trigger CD8+ T cell exhaustion in human non-small cell lung cancer. Cell Rep. 44:1151282025. View Article : Google Scholar

92 

Chen S, Li Z, Li H, Zeng X, Yuan H and Li Y: RNA sequencing of whole blood in premature coronary artery disease: Identification of novel biomarkers and involvement of T cell imbalance. J Cardiovasc Transl Res. 17:638–647. 2024. View Article : Google Scholar

93 

Liu R, Bao J, Tang Y, Xu D, Shen L and Qin H: Changes in Treg cells and cytokines in the peripheral blood of patients with coronary artery disease combined with type 2 diabetes mellitus. Heart Lung. 69:147–154. 2025. View Article : Google Scholar

94 

Wang X, Huang L, Hu B, Yang B, Wei R, Rong S and Li B: Establishment and evaluation of a risk prediction model for coronary heart disease in primary Sjögren's syndrome based on peripheral blood IL-6 and Treg percentages. Front Immunol. 15:14403702024. View Article : Google Scholar

95 

Johnstone JC, Yazicioglu YF and Clarke AJ: Fuelling B cells: Dynamic regulation of B cell metabolism. Curr Opin Immunol. 91:1024842024. View Article : Google Scholar : PubMed/NCBI

96 

Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H and Zhang N: Metabolic regulation of the immune system in health and diseases: Mechanisms and interventions. Signal Transduct Target Ther. 9:2682024. View Article : Google Scholar : PubMed/NCBI

97 

Liu JQ, Geng XR, Hu TY, Mo LH, Luo XQ, Qiu SY, Liu DB, Liu ZG, Shao JB, Liu ZQ and Yang PC: Glutaminolysis is required in maintaining immune regulatory functions in B cells. Mucosal Immunol. 15:268–278. 2022. View Article : Google Scholar : PubMed/NCBI

98 

Seo SK and Kwon B: Immune regulation through tryptophan metabolism. Exp Mol Med. 55:1371–1379. 2023. View Article : Google Scholar : PubMed/NCBI

99 

Riaz F, Pan F and Wei P: Aryl hydrocarbon receptor: The master regulator of immune responses in allergic diseases. Front Immunol. 13:10575552022. View Article : Google Scholar

100 

Pattarabanjird T, Srikakulapu P, Ransegnola B, Marshall MA, Ghosheh Y, Gulati R, Durant C, Drago F, Taylor AM, Ley K and McNamara CA: Single-cell profiling of CD11c+ B cells in atherosclerosis. Front Immunol. 14:12966682024. View Article : Google Scholar : PubMed/NCBI

101 

Chen Z, Wang Z, Cui Y, Xie H, Yi L, Zhu Z, Ni J, Du R, Wang X, Zhu J, et al: Serum BAFF level is associated with the presence and severity of coronary artery disease and acute myocardial infarction. BMC Cardiovasc Disord. 24:4712024. View Article : Google Scholar : PubMed/NCBI

102 

Pattarabanjird T, Marshall M, Upadhye A, Srikakulapu P, Garmey JC, Haider A, Taylor AM, Lutgens E and McNamara CA: B-1b cells possess unique bHLH-driven P62-dependent self-renewal and atheroprotection. Circ Res. 130:981–993. 2022. View Article : Google Scholar : PubMed/NCBI

103 

Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG and Orekhov AN: Macrophages and their role in atherosclerosis: Pathophysiology and transcriptome analysis. Biomed Res Int. 2016:95824302016. View Article : Google Scholar : PubMed/NCBI

104 

Zhang X, Kapoor D, Jeong SJ, Fappi A, Stitham J, Shabrish V, Sergin I, Yousif E, Rodriguez-Velez A, Yeh YS, et al: Identification of a leucine-mediated threshold effect governing macrophage mTOR signalling and cardiovascular risk. Nat Metab. 6:359–377. 2024. View Article : Google Scholar : PubMed/NCBI

105 

Huang H, Chen H, Yao Y and Lou X: Branched-chain amino acids supplementation induces insulin resistance and pro-inflammatory macrophage polarization via INFGR1/JAK1/STAT1 signal pathway. Mol Med. 30:1492024. View Article : Google Scholar : PubMed/NCBI

106 

Zhou W, Hu G, He J, Wang T, Zuo Y, Cao Y, Zheng Q, Tu J, Ma J, Cai R, et al: SENP1-Sirt3 signaling promotes α-ketoglutarate production during M2 macrophage polarization. Cell Rep. 39:1106602022. View Article : Google Scholar

107 

Ben-Aicha S, Anwar M, Vilahur G, Martino F, Kyriazis PG, de Winter N, Punjabi PP, Angelini GD, Sattler S and Emanueli C: Small extracellular vesicles in the pericardium modulate macrophage immunophenotype in coronary artery disease. JACC Basic Transl Sci. 9:1057–1072. 2024. View Article : Google Scholar : PubMed/NCBI

108 

Quan YZ, Ma A, Ren CQ, An YP, Qiao PS, Gao C, Zhang YK, Li XW, Lin SM, Li NN, et al: Ganoderic acids alleviate atherosclerosis by inhibiting macrophage M1 polarization via TLR4/MyD88/NF-κB signaling pathway. Atherosclerosis. 391:1174782024. View Article : Google Scholar

109 

Peng D, Zhuge F, Wang M, Zhang B, Zhuang Z, Zhou R, Zhang Y, Li J, Yu Z and Shi J: Morus alba L. (Sangzhi) alkaloids mitigate atherosclerosis by regulating M1/M2 macrophage polarization. Phytomedicine. 128:1555262024. View Article : Google Scholar : PubMed/NCBI

110 

Peng X, Sun B, Tang C, Shi C, Xie X, Wang X, Jiang D, Li S, Jia Y, Wang Y, et al: HMOX1-LDHB interaction promotes ferroptosis by inducing mitochondrial dysfunction in foamy macrophages during advanced atherosclerosis. Dev Cell. 60:1070–1086.e8. 2025. View Article : Google Scholar

111 

You Z, Ye X, Jiang M, Gu N and Liang C: lnc-MRGPRF-6:1 promotes ox-LDL-induced macrophage ferroptosis via suppressing GPX4. Mediators Inflamm. 2023:55132452023. View Article : Google Scholar : PubMed/NCBI

112 

Wang J, Du H, Xie W, Bi J, Zhang H, Liu X, Wang Y, Zhang S, Lei A, He C, Yuan H, et al: CAR-macrophage therapy alleviates myocardial ischemia-reperfusion injury. Circ Res. 135:1161–1174. 2024. View Article : Google Scholar : PubMed/NCBI

113 

Pan Z, Lv J, Zhao L, Xing K, Ye R, Zhang Y, Chen S, Yang P, Yu H, Lin Y, et al: CircARCN1 aggravates atherosclerosis by regulating HuR-mediated USP31 mRNA in macrophages. Cardiovasc Res. 120:1531–1549. 2024. View Article : Google Scholar : PubMed/NCBI

114 

Wang J, Da X, Chen Y, Yuan A and Pu J: Glutamine protects against mouse abdominal aortic aneurysm through modulating VSMC apoptosis and M1 macrophage activation. Int J Med Sci. 21:1414–1427. 2024. View Article : Google Scholar : PubMed/NCBI

115 

Grira N, Lahidheb D, Lamine O, Ayoub M, Wassaifi S, Aouni Z, Fehri W and Mazigh C: The association of IL-6, TNFα and CRP gene polymorphisms with coronary artery disease in a tunisian population: A case-control study. Biochem Genet. 59:751–766. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Attiq A, Afzal S, Ahmad W and Kandeel M: Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol. 966:1763382024. View Article : Google Scholar : PubMed/NCBI

117 

Song Y, Wang M, Li Y and Lian Y: The evaluation value of atherogenic index of plasma and high-sensitivity C-reactive protein for the degree of coronary artery lesion in premature coronary artery disease. BMC Cardiovasc Disord. 24:4102024. View Article : Google Scholar : PubMed/NCBI

118 

Iwata H, Miyauchi K, Naito R Iimuro S, Ozaki Y, Sakuma I, Nakagawa Y, Hibi K, Hiro T, Fukumoto Y, et al: Significance of persistent inflammation in patients with chronic coronary syndrome: Insights from the REAL-CAD study. JACC Adv. 3:1009962024. View Article : Google Scholar : PubMed/NCBI

119 

Håland AB, Mattsson E, Videm V, Albrektsen G and Nyrønning LÅ: Elevated high sensitivity C reactive protein and risk of abdominal aortic aneurysm: A prospective population based study in the norwegian HUNT study. Eur J Vasc Endovasc Surg. 69:733–741. 2025. View Article : Google Scholar : PubMed/NCBI

120 

Nazarian B, Fazeli Moghadam E, Asbaghi O, Zeinali Khosroshahi M, Choghakhori R and Abbasnezhad A: Effect of l-arginine supplementation on C-reactive protein and other inflammatory biomarkers: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 47:1022262019. View Article : Google Scholar : PubMed/NCBI

121 

Nemati A, Alipanah-Moghadam R, Molazadeh L and Naghizadeh Baghi A: The effect of glutamine supplementation on oxidative stress and matrix metalloproteinase 2 and 9 after exhaustive exercise. Drug Des Devel Ther. 13:4215–4223. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Jennings A, MacGregor A, Pallister T, Spector T and Cassidy A: Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: A twin study. Int J Cardiol. 223:992–998. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Mallmann NH, Lima ES and Lalwani P: Dysregulation of tryptophan catabolism in metabolic syndrome. Metab Syndr Relat Disord. 16:135–142. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Kim ES, Kim SY, Koh M, Lee HM, Kim K, Jung J, Kim HS, Moon WK, Hwang S and Moon A: C-reactive protein binds to integrin α2 and Fcγ receptor I, leading to breast cell adhesion and breast cancer progression. Oncogene. 37:28–38. 2018. View Article : Google Scholar

125 

Amin MN, Siddiqui SA, Ibrahim M, Hakim ML, Ahammed MS, Kabir A and Sultana F: Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med. 8:20503121209657522020. View Article : Google Scholar : PubMed/NCBI

126 

Salica A, Cammisotto V, Scaffa R, Folino G, De Paulis R, Carnevale R, Benedetto U, Saade W, Marullo A, Sciarretta S, et al: Different oxidative stress and inflammation patterns of diseased left anterior descending coronary artery versus internal thoracic artery. Antioxidants (Basel). 13:11802024. View Article : Google Scholar : PubMed/NCBI

127 

Xie Q, Wang J, Li R, Liu H, Zhong Y, Xu Q, Ge Y, Li C, Sun L and Zhu J: IL-6 signaling accelerates iron overload by upregulating DMT1 in endothelial cells to promote aortic dissection. Int J Biol Sci. 20:4222–4237. 2024. View Article : Google Scholar : PubMed/NCBI

128 

Fang C, Du L, Gao S, Chen Y, Chen Z, Wu Z, Li L, Li J, Zeng X, Li M, et al: Association between premature vascular smooth muscle cells senescence and vascular inflammation in Takayasu's arteritis. Ann Rheum Dis. 83:1522–1535. 2024. View Article : Google Scholar : PubMed/NCBI

129 

Jang E, Ho TWW, Brumell JH, Lefebvre F, Wang C and Lee WL: IL-1β induces LDL transcytosis by a novel pathway involving LDLR and Rab27a. Arterioscler Thromb Vasc Biol. 44:2053–2068. 2024. View Article : Google Scholar : PubMed/NCBI

130 

Correia AF, de Oliveira CGC, de Oliveira DC Jr, Pereira MC, Carvalho FA, Martins ECC and de Oliveira DC: Circulating interleukin-22 in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. J Clin Med. 13:49712024. View Article : Google Scholar : PubMed/NCBI

131 

Zhang L, Wang H, Wang Z, Xu J, Wang M, Wang W, He Q, Yu Y, Yuan D, Bu G, et al: Resveratrol promotes cholesterol efflux from dendritic cells and controls costimulation and T-cell activation in high-fat and lipopolysaccharide-driven atherosclerotic mice. Front Cardiovasc Med. 11:14508982024. View Article : Google Scholar

132 

Yu J, Li Y, Hu J and Wang Y: Interleukin-33 induces angiogenesis after myocardial infarction via AKT/eNOS signaling pathway. Int Immunopharmacol. 143:1134332024. View Article : Google Scholar : PubMed/NCBI

133 

Lou L, Detering L, Luehmann H, Amrute JM, Sultan D, Ma P, Li A, Lahad D, Bredemeyer A, Zhang X, et al: Visualizing immune checkpoint inhibitors derived inflammation in atherosclerosis. Circ Res. 135:990–1003. 2024. View Article : Google Scholar : PubMed/NCBI

134 

Wang Y, Zou Y, Jiang Q, Li W, Chai X, Zhao T, Liu S, Yuan Z, Yu C and Wang T: Ox-LDL-induced CD80+ macrophages expand pro-atherosclerotic NKT cells via CD1d in atherosclerotic mice and hyperlipidemic patients. Am J Physiol Cell Physiol. 326:C1563–C1572. 2024. View Article : Google Scholar

135 

Gastanadui MG, Margaroli C, Litovsky S, Richter RP, Wang D, Xing D, Wells JM, Gaggar A, Nanda V, Patel RP and Payne GA: Spatial transcriptomic approach to understanding coronary atherosclerotic plaque stability. Arterioscler Thromb Vasc Biol. 44:e264–e276. 2024. View Article : Google Scholar : PubMed/NCBI

136 

Posadas-Sánchez R, Velázquez-Sánchez F, Reyes-Barrera J, Cardoso-Saldaña G, Velázquez-Argueta F, Antonio-Villa NE, Fragoso JM and Vargas-Alarcón G: MCP-1 rs1024611 polymorphism MCP-1 concentrations and premature coronary artery disease: Results of the genetics of atherosclerotic disease (GEA) Mexican study. Biomedicines. 12:12922024. View Article : Google Scholar

137 

Ma X, Gao HJ, Ge HZ, Zhang Q and Bu BT: Interleukin-6 trans-signalling regulates monocyte chemoattractant protein-1 production in immune-mediated necrotizing myopathy. Rheumatology (Oxford). 64:849–859. 2025. View Article : Google Scholar

138 

Sproston NR and Ashworth JJ: Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 9:7542018. View Article : Google Scholar : PubMed/NCBI

139 

Yanni AE, Agrogiannis G, Nomikos T, Fragopoulou E, Pantopoulou A, Antonopoulou S and Perrea D: Oral supplementation with L-aspartate and L-glutamate inhibits atherogenesis and fatty liver disease in cholesterol-fed rabbit. Amino Acids. 38:1323–1331. 2010. View Article : Google Scholar

140 

Wang W, Zhang F, Xia Y, Zhao S, Yan W, Wang H, Lee Y, Li C, Zhang L, Lian K, et al: Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol. 311:H1160–H1169. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Green CL, Trautman ME, Chaiyakul K, Jain R, Alam YH, Babygirija R, Pak HH, Sonsalla MM, Calubag MF, Yeh CY, et al: Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. Cell Metab. 35:1976–1995.e6. 2023. View Article : Google Scholar : PubMed/NCBI

142 

Chajadine M, Laurans L, Radecke T, Mouttoulingam N, Al-Rifai R, Bacquer E, Delaroque C, Rytter H, Bredon M, Knosp C, et al: Harnessing intestinal tryptophan catabolism to relieve atherosclerosis in mice. Nat Commun. 15:63902024. View Article : Google Scholar : PubMed/NCBI

143 

Luo Z, Yang L, Zhu T, Fan F, Wang X, Liu Y, Zhan H, Luo D and Guo J: Aucubin ameliorates atherosclerosis by modulating tryptophan metabolism and inhibiting endothelial-mesenchymal transitions via gut microbiota regulation. Phytomedicine. 135:1561222024. View Article : Google Scholar : PubMed/NCBI

144 

Chen C, Ding Y, Huang Q, Zhang C, Zhao Z, Zhou H, Li D and Zhou G: Relationship between arginine methylation and vascular calcification. Cell Signal. 119:1111892024. View Article : Google Scholar : PubMed/NCBI

145 

Bingöl G, Huraıbat A, Ayduk Gövdeli E, Ser ÖS, Ünlü S, Çelik M, Bulut L, Özden Ö, Özmen E and Kılıçkesmez K: Effect of homoarginine on coronary artery complexity and atherosclerotic burden in patients with STEMI. J Clin Med. 14:15012025. View Article : Google Scholar : PubMed/NCBI

146 

Jin H, Zhang C, Nagenborg J, Juhasz P, Ruder AV, Sikkink CJJM, Mees BME, Waring O, Sluimer JC, Neumann D, et al: Genome-scale metabolic network of human carotid plaque reveals the pivotal role of glutamine/glutamate metabolism in macrophage modulating plaque inflammation and vulnerability. Cardiovasc Diabetol. 23:2402024. View Article : Google Scholar : PubMed/NCBI

147 

Murcy F, Borowczyk C, Gourion-Arsiquaud S, Torrino S, Ouahrouche N, Barouillet T, Dussaud S, Couralet M, Vaillant N, Merlin J, et al: GLS2 links glutamine metabolism and atherosclerosis by remodeling artery walls. Nat Cardiovasc Res. 3:1454–1467. 2024. View Article : Google Scholar : PubMed/NCBI

148 

Ruiz-Canela M, Toledo E, Clish CB, Hruby A, Liang L, Salas-Salvadó J, Razquin C, Corella D, Estruch R, Ros E, et al: Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin Chem. 62:582–592. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Laferrère B, Reilly D, Arias S, Swerdlow N, Gorroochurn P, Bawa B, Bose M, Teixeira J, Stevens RD, Wenner BR, et al: Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci Transl Med. 3:80re22011. View Article : Google Scholar : PubMed/NCBI

150 

Katz LEL, Gidding SS, Otvos JD, Drews KL, Bacha F, Willi S, Marcovina S, McKay S and Weinstock RS; TODAY Study Group: Atherogenic lipoproteins associate with loss of glycemic control in youth-onset type 2 diabetes: Results from the TODAY study. J Clin Lipidol. Feb 6–2025.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

151 

Yang X, Chi C, Li W, Zhang Y, Yang S, Xu R and Liu R: Metabolomics and lipidomics combined with serum pharmacochemistry uncover the potential mechanism of Huang-Lian-Jie-Du decoction alleviates atherosclerosis in ApoE(-/-) mice. J Ethnopharmacol. 324:1177482024. View Article : Google Scholar : PubMed/NCBI

152 

Botello-Marabotto M, Plana E, Martinez-Bisbal MC, Medina P, Bernardos A, Martínez-Máñez R and Miralles M: Metabolomic study for the identification of symptomatic carotid plaque biomarkers. Talanta. 284:1272112025. View Article : Google Scholar

153 

du Toit WL, Kruger R, Gafane-Matemane LF, Schutte AE, Louw R and Mels CMC: Markers of arterial stiffness and urinary metabolomics in young adults with early cardiovascular risk: The African-PREDICT study. Metabolomics. 19:282023. View Article : Google Scholar : PubMed/NCBI

154 

Wang SJ, Liu BR, Zhang F, Su XR, Li YP, Yang CT, Zhang ZH and Cong B: The amino acid metabolomics signature of differentiating myocardial infarction from strangulation death in mice models. Sci Rep. 13:149992023. View Article : Google Scholar : PubMed/NCBI

155 

Mei Z, Xu L, Huang Q, Lin C, Yu M, Shali S, Wu H, Lu Y, Wu R, Wang Z, et al: Metabonomic biomarkers of plaque burden and instability in patients with coronary atherosclerotic disease after moderate lipid-lowering therapy. J Am Heart Assoc. 13:e0369062024. View Article : Google Scholar : PubMed/NCBI

156 

Ren W, Zhang Z, Wang Y, Wang J, Li L, Shi L, Zhai T and Huang J: Coronary health index based on immunoglobulin light chains to assess coronary heart disease risk with machine learning: A diagnostic trial. J Transl Med. 23:222025. View Article : Google Scholar : PubMed/NCBI

157 

Santana E, Ibrahimi E, Ntalianis E, Cauwenberghs N and Kuznetsova T: Integrating metabolomics domain knowledge with explainable machine learning in atherosclerotic cardiovascular disease classification. Int J Mol Sci. 25:129052024. View Article : Google Scholar : PubMed/NCBI

158 

Ke Y, Yue J, He J and Liu G: Integrating machine learning algorithms and single-cell analysis to identify gut microbiota-related macrophage biomarkers in atherosclerotic plaques. Front Cell Infect Microbiol. 14:13957162024. View Article : Google Scholar : PubMed/NCBI

159 

Chen H, Wu B, Guan K, Chen L, Chai K, Ying M, Li D and Zhao W: Identification of lipid metabolism related immune markers in atherosclerosis through machine learning and experimental analysis. Front Immunol. 16:15491502025. View Article : Google Scholar : PubMed/NCBI

160 

Gao Z, Du Z, Hou Y, Hua K, Tu P, Ai X and Jiang Y: A microfluidic coculture model for mapping signaling perturbations and precise drug screening against macrophage-mediated dynamic myocardial injury. Acta Pharm Sin B. 14:5393–5406. 2024. View Article : Google Scholar

161 

Lin J, Chen S, Zhang C, Liao J, Chen Y, Deng S, Mao Z, Zhang T, Tian N, Song Y and Zeng T: Recent advances in microfluidic technology of arterial thrombosis investigations. Platelets. 35:23167432024. View Article : Google Scholar : PubMed/NCBI

162 

Maringanti R, van Dijk CGM, Meijer EM, Brandt MM, Li M, Tiggeloven VPC, Krebber MM, Chrifi I, Duncker DJ, Verhaar MC and Cheng C: Atherosclerosis on a chip: A 3-dimensional microfluidic model of early arterial events in human plaques. Arterioscler Thromb Vasc Biol. 44:2453–2472. 2024. View Article : Google Scholar : PubMed/NCBI

163 

Lai A, Hawke A, Mohammed M, Thurgood P, Concilia G, Peter K, Khoshmanesh K and Baratchi S: A microfluidic model to study the effects of arrhythmic flows on endothelial cells. Lab Chip. 24:2347–2357. 2024. View Article : Google Scholar : PubMed/NCBI

164 

Thakur MR, Nachane SS and Tupe RS: Alleviation of albumin glycation-induced diabetic cardiomyopathy by L-arginine: Insights into Nrf-2 signaling. Int J Biol Macromol. 264:1304782024. View Article : Google Scholar : PubMed/NCBI

165 

Kaya S and Yalcin T: In an experimental myocardial infarction model, L-arginine pre-intervention may exert cardioprotective effects by regulating OTULIN levels and mitochondrial dynamics. Cell Stress Chaperones. 28:811–820. 2023. View Article : Google Scholar : PubMed/NCBI

166 

Zhang H, Wang C, Sun H, Zhou T, Ma C, Han X, Zhang T and Xia J: Glutamine supplementation alleviated aortic atherosclerosis in mice model and in vitro. Proteomics. 24:e23001792024. View Article : Google Scholar

167 

Grajeda-Iglesias C and Aviram M: Specific amino acids affect cardiovascular diseases and atherogenesis via protection against macrophage foam cell formation: Review article. Rambam Maimonides Med J. 9:e00222018. View Article : Google Scholar : PubMed/NCBI

168 

Ouyang L, Yu C, Xie Z, Su X, Xu Z, Song P, Li J, Huang H, Ding Y and Zou MH: Indoleamine 2,3-dioxygenase 1 deletion-mediated kynurenine insufficiency in vascular smooth muscle cells exacerbates arterial calcification. Circulation. 145:1784–1798. 2022. View Article : Google Scholar : PubMed/NCBI

169 

Xue H, Chen X, Yu C, Deng Y, Zhang Y, Chen S, Chen X, Chen K, Yang Y and Ling W: Gut microbially produced indole-3-propionic acid inhibits atherosclerosis by promoting reverse cholesterol transport and its deficiency is causally related to atherosclerotic cardiovascular disease. Circ Res. 131:404–420. 2022. View Article : Google Scholar : PubMed/NCBI

170 

Miao Y, Wang Y, Yan P, Li Y, Chen Z, Tong N and Wan Q: Association between the fatty liver index (FLI) and incident coronary heart disease: Insights from a cohort study on the Chinese population. Front Endocrinol (Lausanne). 15:13678532024. View Article : Google Scholar

171 

Song J, Liu Y, Liu Y, Liu Y, Zhou Q, Chen J, Meng X, Wang W and Tang YD: MAFLD as a predictor of adverse cardiovascular events among CHD patients with LDL-C<1.8 mmol/l. Nutr Metab Cardiovasc Dis. 35:1037982025. View Article : Google Scholar

172 

Liao Y, Chen Q, Liu L, Huang H, Sun J, Bai X, Jin C, Li H, Sun F, Xiao X, et al: Amino acid is a major carbon source for hepatic lipogenesis. Cell Metab. 36:2437–2448.e8. 2024. View Article : Google Scholar : PubMed/NCBI

173 

Katsiki N, Kolovou G and Vrablik M: Metabolic dysfunction associated-steatotic liver disease (MASLD) and cardiovascular risk: Embrace all facets of the disease. Curr Cardiol Rep. 27:192025. View Article : Google Scholar : PubMed/NCBI

174 

Peng Y, Feng W, Huang H, Chen Y and Yang S: Macrophagetargeting Antisenescence nanomedicine enables in-Situ NO induction for Gaseous and antioxidative atherosclerosis intervention. Bioact Mater. 48:294–312. 2025.PubMed/NCBI

175 

Yang W, Zhou W and Gou S: Hypoxia activated nitric oxide donor compounds for the prevention and treatment of myocardial hypoxia-induced injury. J Med Chem. 68:491–505. 2025. View Article : Google Scholar

176 

Fu C, Li Q, Li M, Zhang J, Zhou F, Li Z, He D, Hu X, Ning X, Guo W, et al: An integrated arterial remodeling hydrogel for preventing restenosis after angioplasty. Adv Sci (Weinh). 11:e23070632024. View Article : Google Scholar : PubMed/NCBI

177 

Yang N, Chen J, Zhu Y, Shan W, Cao Z, Fu Y, Cao H, Li Y, Xiang Y, Ding S, et al: Human cardiac organoid model reveals antibacterial triclocarban promotes myocardial hypertrophy by interfering with endothelial cell metabolism. Sci Bull (Beijing). 70:342–346. 2025. View Article : Google Scholar

178 

Yu M, Yang Y, Dong SL, Zhao C, Yang F, Yuan YF, Liao YH, He SL, Liu K, Wei F, et al: Effect of colchicine on coronary plaque stability in acute coronary syndrome as assessed by optical coherence tomography: The COLOCT randomized clinical trial. Circulation. 150:981–993. 2024. View Article : Google Scholar : PubMed/NCBI

179 

Zaric BL, Radovanovic JN, Gluvic Z, Stewart AJ, Essack M, Motwalli O, Gojobori T and Isenovic ER: Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes. Front Immunol. 11:5517582020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shen R and Zhang Y: Relationship between amino acid metabolism and inflammation in coronary heart disease (Review). Int J Mol Med 56: 120, 2025.
APA
Shen, R., & Zhang, Y. (2025). Relationship between amino acid metabolism and inflammation in coronary heart disease (Review). International Journal of Molecular Medicine, 56, 120. https://doi.org/10.3892/ijmm.2025.5561
MLA
Shen, R., Zhang, Y."Relationship between amino acid metabolism and inflammation in coronary heart disease (Review)". International Journal of Molecular Medicine 56.2 (2025): 120.
Chicago
Shen, R., Zhang, Y."Relationship between amino acid metabolism and inflammation in coronary heart disease (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 120. https://doi.org/10.3892/ijmm.2025.5561
Copy and paste a formatted citation
x
Spandidos Publications style
Shen R and Zhang Y: Relationship between amino acid metabolism and inflammation in coronary heart disease (Review). Int J Mol Med 56: 120, 2025.
APA
Shen, R., & Zhang, Y. (2025). Relationship between amino acid metabolism and inflammation in coronary heart disease (Review). International Journal of Molecular Medicine, 56, 120. https://doi.org/10.3892/ijmm.2025.5561
MLA
Shen, R., Zhang, Y."Relationship between amino acid metabolism and inflammation in coronary heart disease (Review)". International Journal of Molecular Medicine 56.2 (2025): 120.
Chicago
Shen, R., Zhang, Y."Relationship between amino acid metabolism and inflammation in coronary heart disease (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 120. https://doi.org/10.3892/ijmm.2025.5561
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team