
Molecular mechanisms and intervention approaches of heart failure (Review)
- Authors:
- Shuang Guo
- Yingqing Hu
- Li Ling
- Zhuangzhuang Yang
- Luxuan Wan
- Xiaosong Yang
- Min Lei
- Xiying Guo
- Zhanhong Ren
-
Affiliations: Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China - Published online on: June 13, 2025 https://doi.org/10.3892/ijmm.2025.5566
- Article Number: 125
-
Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Ketabi M, Andishgar A, Fereidouni Z, Sani MM, Abdollahi A, Vali M, Alkamel A and Tabrizi R: Predicting the risk of mortality and rehospitalization in heart failure patients: A retrospective cohort study by machine learning approach. Clin Cardiol. 47:e242392024. View Article : Google Scholar : PubMed/NCBI | |
Xu X and Xu Z; Association between phenotypic age the risk of mortality in patients with heart failure: A retrospective cohort study. Clin Cardiol. 47:e243212024. View Article : Google Scholar | |
Pratley R, Guan X, Moro RJ and do Lago R: Chapter 1: The burden of heart failure. Am J Med. 137(2S): S3–S8. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mulugeta H, Sinclair PM and Wilson A: Prevalence of depression and its association with health-related quality of life in people with heart failure in low- and middle-income countries: A systematic review and meta-analysis. PLoS One. 18:e02831462023. View Article : Google Scholar : PubMed/NCBI | |
Shahim B, Kapelios CJ, Savarese G and Lund LH: Global public health burden of heart failure: An updated review. Card Fail Rev. 9:e112023. View Article : Google Scholar : PubMed/NCBI | |
Emmons-Bell S, Johnson C and Roth G: Prevalence, incidence and survival of heart failure: A systematic review. Heart. 108:1351–1360. 2022. View Article : Google Scholar : PubMed/NCBI | |
Caturano A, Vetrano E, Galiero R, Salvatore T, Docimo G, Epifani R, Alfano M, Sardu C, Marfella R, Rinaldi L and Sasso FC: Cardiac hypertrophy: From pathophysiological mechanisms to heart failure development. Rev Cardiovasc Med. 23:1652022. View Article : Google Scholar : PubMed/NCBI | |
Castiglione V, Aimo A, Vergaro G, Saccaro L, Passino C and Emdin M: Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev. 27:625–643. 2022. View Article : Google Scholar : | |
Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, Anker SD, Atherton J, Böhm M, Butler J, et al: Universal definition and classification of heart failure: A report of the heart failure society of America, heart failure association of the European society of cardiology, Japanese heart failure society and writing committee of the universal definition of heart failure: Endorsed by the Canadian heart failure society, heart failure association of India, cardiac society of Australia and New Zealand, and Chinese heart failure association. Eur J Heart Fail. 23:352–380. 2021. View Article : Google Scholar : PubMed/NCBI | |
Triposkiadis F, Xanthopoulos A, Parissis J, Butler J and Farmakis D: Pathogenesis of chronic heart failure: Cardiovascular aging, risk factors, comorbidities, and disease modifiers. Heart Fail Rev. 27:337–344. 2022. View Article : Google Scholar | |
Huang K, Wu H, Xu X, Wu L, Li Q and Han L: Identification of TGF-β-related genes in cardiac hypertrophy and heart failure based on single cell RNA sequencing. Aging (Albany NY). 15:7187–7218. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gu JJ, Du TJ, Zhang LN, Zhou J, Gu X and Zhu Y: Identification of ferroptosis-related genes in heart failure induced by transverse aortic constriction. J Inflamm Res. 16:4899–4912. 2023. View Article : Google Scholar : PubMed/NCBI | |
Marian AJ: Molecular genetic basis of hypertrophic cardiomyopathy. Circ Res. 128:1533–1553. 2021. View Article : Google Scholar : PubMed/NCBI | |
Madè A, Bibi A, Garcia-Manteiga JM, Tascini AS, Piella SN, Tikhomirov R, Voellenkle C, Gaetano C, Leszek P, Castelvecchio S, et al: circRNA-miRNA-mRNA deregulated network in ischemic heart failure patients. Cells. 12:25782023. View Article : Google Scholar : PubMed/NCBI | |
Wong LL, Wang J, Liew OW, Richards AM and Chen YT: MicroRNA and heart failure. Int J Mol Sci. 17:5022016. View Article : Google Scholar : PubMed/NCBI | |
Park JH and Kho C: MicroRNAs and calcium signaling in heart disease. Int J Mol Sci. 22:105822021. View Article : Google Scholar : PubMed/NCBI | |
Saad NS, Mashali MA, Repas SJ and Janssen PML: Altering calcium sensitivity in heart failure: A crossroads of disease etiology and therapeutic innovation. Int J Mol Sci. 24:175772023. View Article : Google Scholar : PubMed/NCBI | |
Hinton A Jr, Claypool SM, Neikirk K, Senoo N, Wanjalla CN, Kirabo A and Williams CR: Mitochondrial structure and function in human heart failure. Circ Res. 135:372–396. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xue P, Liu Y, Wang H, Huang J and Luo M: miRNA-103-3p-Hlf regulates apoptosis and autophagy by targeting hepatic leukaemia factor in heart failure. ESC Heart Fail. 10:3038–3045. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pagan LU, Gomes MJ, Martinez PF and Okoshi MP: Oxidative stress and heart failure: Mechanisms, signalling pathways, and therapeutics. Oxid Med Cell Longev. 2022:98295052022. View Article : Google Scholar : PubMed/NCBI | |
Hanna A and Frangogiannis NG: Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther. 34:849–863. 2020. View Article : Google Scholar : PubMed/NCBI | |
Manolis AA, Manolis TA and Manolis AS: Neurohumoral activation in heart failure. Int J Mol Sci. 24:154722023. View Article : Google Scholar : PubMed/NCBI | |
Cappola TP and Burke MF: Studying Heart failure through the lens of gene regulation. Circ Heart Fail. 13:e0076472020. View Article : Google Scholar : PubMed/NCBI | |
Levin MG, Tsao NL, Singhal P, Liu C, Vy HMT, Paranjpe I, Backman JD, Bellomo TR, Bone WP, Biddinger KJ, et al: Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure. Nat Commun. 13:69142022. View Article : Google Scholar : PubMed/NCBI | |
Tudurachi BS, Zăvoi A, Leonte A, Țăpoi L, Ureche C, Bîrgoan SG, Chiuariu T, Anghel L, Radu R, Sascău RA and Stătescu C: An update on MYBPC3 gene mutation in hypertrophic cardiomyopathy. Int J Mol Sci. 24:105102023. View Article : Google Scholar : PubMed/NCBI | |
Park J, Packard EA, Levin MG, Judy RL; Regeneron Genetics Center; Damrauer SM, Day SM, Ritchie MD and Rader DJ: A genome-first approach to rare variants in hypertrophic cardiomyopathy genes MYBPC3 and MYH7 in a medical biobank. Hum Mol Genet. 31:827–837. 2022. View Article : Google Scholar : | |
Akboua H, Eghbalzadeh K, Keser U, Wahlers T and Paunel-Görgülü A: Impaired non-canonical transforming growth factor-β signalling prevents profibrotic phenotypes in cultured peptidylarginine deiminase 4-deficient murine cardiac fibroblasts. J Cell Mol Med. 25:9674–9684. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qian L, Xu H, Yuan R, Yun W and Ma Y: Formononetin ameliorates isoproterenol induced cardiac fibrosis through improving mitochondrial dysfunction. Biomed Pharmacother. 170:1160002024. View Article : Google Scholar | |
Roe AT, Frisk M and Louch WE: Targeting cardiomyocyte Ca2+ homeostasis in heart failure. Curr Pharm Des. 21:431–448. 2015. View Article : Google Scholar : | |
Shah K, Seeley S, Schulz C, Fisher J and Gururaja Rao S: Calcium channels in the heart: Disease states and drugs. Cells. 11:9432022. View Article : Google Scholar : PubMed/NCBI | |
Al-Hayali MA, Sozer V, Durmus S, Erdenen F, Altunoglu E, Gelisgen R, Atukeren P, Atak PG and Uzun H: Clinical value of circulating microribonucleic acids miR-1 and miR-21 in evaluating the diagnosis of acute heart failure in asymptomatic type 2 diabetic patients. Biomolecules. 9:1932019. View Article : Google Scholar : PubMed/NCBI | |
Vilella-Figuerola A, Gallinat A, Escate R, Mirabet S, Padró T and Badimon L: Systems biology in chronic heart failure-identification of potential miRNA regulators. Int J Mol Sci. 23:152262022. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Wu J, Yang CJ, Kang L, Ji YY, Li C, Ding ZW and Zou YZ: A circRNA-miRNA-mRNA network analysis underlying pathogenesis of human heart failure. J Geriatr Cardiol. 20:350–360. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gallo G, Rubattu S and Volpe M: Mitochondrial dysfunction in heart failure: From Pathophysiological mechanisms to therapeutic opportunities. Int J Mol Sci. 25:26672024. View Article : Google Scholar : PubMed/NCBI | |
van Empel VPM, Bertrand ATA, Hofstra L, Crijns HJ, Doevendans PA and De Windt LJ: Myocyte apoptosis in heart failure. Cardiovasc Res. 67:21–29. 2005. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Chen Y and Liu Q: Necroptosis in heart disease: Molecular mechanisms and therapeutic implications. J Mol Cell Cardiol. 169:74–83. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kang Y and Wang Q: Potential therapeutic value of necroptosis inhibitor for the treatment of COVID-19. Eur J Med Res. 27:2832022. View Article : Google Scholar : PubMed/NCBI | |
Lu LQ, Tian J, Luo XJ and Peng J: Targeting the pathways of regulated necrosis: A potential strategy for alleviation of cardio-cerebrovascular injury. Cell Mol Life Sci. 78:63–78. 2021. View Article : Google Scholar | |
Zhang H and Dhalla NS: The role of pro-inflammatory cytokines in the pathogenesis of cardiovascular disease. Int J Mol Sci. 25:10822024. View Article : Google Scholar : PubMed/NCBI | |
Bishopric NH, Andreka P, Slepak T and Webster KA: Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol. 1:141–150. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tsutsui H, Kinugawa S and Matsushima S: Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 301:H2181–H2190. 2011. View Article : Google Scholar : PubMed/NCBI | |
Khoynezhad A, Jalali Z and Tortolani AJ: A synopsis of research in cardiac apoptosis and its application to congestive heart failure. Tex Heart Inst J. 34:352–359. 2007.PubMed/NCBI | |
Paulus WJ and Zile MR: From systemic inflammation to myocardial fibrosis: The heart failure with preserved ejection fraction paradigm revisited. Circ Res. 128:1451–1467. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kjaer A and Hesse B: Heart failure and neuroendocrine activation: Diagnostic, prognostic and therapeutic perspectives. Clin Physiol. 21:661–672. 2001. View Article : Google Scholar : PubMed/NCBI | |
Blackwell DJ, Schmeckpeper J and Knollmann BC: Animal models to study cardiac arrhythmias. Circ Res. 130:1926–1964. 2022. View Article : Google Scholar : PubMed/NCBI | |
Reißmann B, Rottner L, Rillig A and Metzner A: Cardiac arrhythmia. MMW Fortschr Med. 163:62–71. 2021.In German. View Article : Google Scholar | |
Fu DG: Cardiac arrhythmias: Diagnosis, symptoms, and treatments. Cell Biochem Biophys. 73:291–296. 2015. View Article : Google Scholar : PubMed/NCBI | |
Paludan-Müller C, Vad OB, Stampe NK, Diederichsen SZ, Andreasen L, Monfort LM, Fosbøl EL, Køber L, Torp-Pedersen C, Svendsen JH and Olesen MS: Atrial fibrillation: Age at diagnosis, incident cardiovascular events, and mortality. Eur Heart J. 45:2119–2129. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang W, Luo J, Shi W, Zhang X, Li Z, Qin X, Liu B and Wei Y: TRIM21 deficiency protects against atrial inflammation and remodeling post myocardial infarction by attenuating oxidative stress. Redox Biol. 62:1026792023. View Article : Google Scholar : PubMed/NCBI | |
Bossuyt J, Borst JM, Verberckmoes M, Bailey LRJ, Bers DM and Hegyi B: Protein kinase D1 regulates cardiac hypertrophy, potassium channel remodeling, and arrhythmias in heart failure. J Am Heart Assoc. 11:e0275732022. View Article : Google Scholar : PubMed/NCBI | |
Piccini JP: Atrial fibrillation and heart failure: Too much talk and not enough action. JACC Clin Electrophysiol. 9:581–582. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Chen Y, Zhao S, Wang X, Lu K and Xiao H: Effect of Sox9 on TGF-β1-mediated atrial fibrosis. Acta Biochim Biophys Sin (Shanghai). 53:1450–1458. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wolke C, Antileo E and Lendeckel U: WNT signaling in atrial fibrillation. Exp Biol Med (Maywood). 246:1112–1120. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Huiskes FG, de Groot NMS and Brundel BJJM: The role of immune cells driving electropathology and atrial fibrillation. Cells. 13:3112021. View Article : Google Scholar | |
Yokoyama T, Kuga T, Itoh Y, Otake S, Omata C, Saitoh M and Miyazawa K: Smad2Δexon3 and Smad3 have distinct properties in signal transmission leading to TGF-β-induced cell motility. J Biol Chem. 299:1028202023. View Article : Google Scholar | |
Miyazawa K, Itoh Y, Fu H and Miyazono K: Receptor-activated transcription factors and beyond: Multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem. 300:1072562024. View Article : Google Scholar | |
Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND and Zhao YY: New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 292:76–83. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Li X, Jiang Q, Liang Q, Zhang F, Li S, Zhang R, Luan J, Zhu J, Gu X, et al: PKM2 promotes pulmonary fibrosis by stabilizing TGF-β1 receptor I and enhancing TGF-β1 signaling. Sci Adv. 8:eabo09872022. View Article : Google Scholar | |
Stolfi C, Troncone E, Marafini I and Monteleone G: Role of TGF-beta and Smad7 in gut inflammation, fibrosis and cancer. Biomolecules. 11:172020. View Article : Google Scholar : PubMed/NCBI | |
Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhu F, Meng W, Zhang F, Hong J, Zhang G and Wang F: CYP2J2/EET reduces vulnerability to atrial fibrillation in chronic pressure overload mice. J Cell Mol Med. 24:862–874. 2020. View Article : Google Scholar | |
Wang D, Wang X, Yang T, Tian H, Su Y and Wang Q: Long non-coding RNA Dancr affects myocardial fibrosis in atrial fibrillation mice via the MicroRNA-146b-5p/Smad5 axis. Acta Cardiol Sin. 39:841–853. 2023.PubMed/NCBI | |
Tian L, Wang Y and Jang YY: Wnt signaling in biliary development, proliferation, and fibrosis. Exp Biol Med (Maywood). 247:360–367. 2022. View Article : Google Scholar | |
Somanader DVN, Zhao P, Widdop RE and Samuel CS: The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol. 223:1161302024. View Article : Google Scholar | |
Roberts JD, Murphy NP, Hamilton RM, Lubbers ER, James CA, Kline CF, Gollob MH, Krahn AD, Sturm AC, Musa H, et al: Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy. J Clin Invest. 129:3171–3184. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lorenzon A, Calore M, Poloni G, De Windt LJ, Braghetta P and Rampazzo A: Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget. 8:60640–60655. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lv X, Li J, Hu Y, Wang S, Yang C, Li C and Zhong G: Overexpression of miR-27b-3p targeting Wnt3a regulates the signaling pathway of Wnt/β-catenin and attenuates atrial fibrosis in rats with atrial fibrillation. Oxid Med Cell Longev. 2019:57037642019. View Article : Google Scholar | |
Lai YJ, Tsai FC, Chang GJ, Chang SH, Huang CC, Chen WJ and Yeh YH: miR-181b targets semaphorin 3A to mediate TGF-β-induced endothelial-mesenchymal transition related to atrial fibrillation. J Clin Invest. 132:e1425482022. View Article : Google Scholar | |
Zhang Z, Li L, Hu Z, Zhou L, Zhang Z, Xiong Y and Yao Y: Causal effects between atrial fibrillation and heart failure: Evidence from a bidirectional Mendelian randomization study. BMC Med Genomics. 16:1872023. View Article : Google Scholar : PubMed/NCBI | |
Sagris M, Vardas EP, Theofilis P, Antonopoulos AS, Oikonomou E and Tousoulis D: Atrial fibrillation: Pathogenesis, predisposing factors, and genetics. Int J Mol Sci. 23:62021. View Article : Google Scholar | |
Husti Z, Varró A and Baczkó I: Arrhythmogenic remodeling in the failing heart. Cells. 10:32032021. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Zhou D, Xie X, Wang S, Wang Z, Zhao W, Xu H and Zheng L: Cross-talk between macrophages and atrial myocytes in atrial fibrillation. Basic Res Cardiol. 111:632016. View Article : Google Scholar : PubMed/NCBI | |
Huiskes FG, Creemers EE and Brundel BJJM: Dissecting the molecular mechanisms driving electropathology in atrial fibrillation: Deployment of RNA sequencing and transcriptomic analyses. Cells. 12:22422023. View Article : Google Scholar : PubMed/NCBI | |
Maury P, Sanchis K, Djouadi K, Cariou E, Delasnerie H, Boveda S, Fournier P, Itier R, Mondoly P, Voglimacci-Stephan opoli Q, et al: Catheter ablation of atrial arrhythmias in cardiac amyloidosis: Impact on heart failure and mortality. PLoS One. 19:e03017532024. View Article : Google Scholar : PubMed/NCBI | |
Lei M, Wu L, Terrar DA and Huang CL: Modernized classification of cardiac antiarrhythmic drugs. Circulation. 138:1879–1896. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mankad P and Kalahasty G: Antiarrhythmic drugs: Risks and benefits. Med Clin North Am. 103:821–834. 2019. View Article : Google Scholar : PubMed/NCBI | |
Romero G, Martin B, Gabris B and Salama G: Relaxin suppresses atrial fibrillation, reverses fibrosis and reduces inflammation in aged hearts. Biochem Pharmacol. 227:1164072024. View Article : Google Scholar : PubMed/NCBI | |
Martin B, Gabris B, Barakat AF, Henry BL, Giannini M, Reddy RP, Wang X, Romero G and Salama G: Relaxin reverses maladaptive remodeling of the aged heart through Wnt-signaling. Sci Rep. 9:185452019. View Article : Google Scholar : PubMed/NCBI | |
Hao H, Yan S, Zhao X, Han X, Fang N, Zhang Y, Dai C, Li W, Yu H, Gao Y, et al: Atrial myocyte-derived exosomal microRNA contributes to atrial fibrosis in atrial fibrillation. J Transl Med. 20:4072022. View Article : Google Scholar : PubMed/NCBI | |
Benali K, Khairy P, Hammache N, Petzl A, Da Costa A, Verma A, Andrade JG and Macle L: Procedure-related complications of catheter ablation for atrial fibrillation. J Am Coll Cardiol. 81:2089–2099. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Xiao Y, Dai Y, Lin Q and Liu Q: Device therapy for patients with atrial fibrillation and heart failure with preserved ejection fraction. Heart Fail Rev. 29:417–430. 2024. View Article : Google Scholar : | |
Li S, Wang Y, Yang W, Zhou D, Zhuang B, Xu J, He J, Yin G, Fan X, Wu W, et al: Cardiac MRI risk stratification for dilated cardiomyopathy with left ventricular ejection fraction of 35% or higher. Radiology. 306:e2130592023. View Article : Google Scholar | |
Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, Liu PP, Matsumori A, Mazzanti A, McMurray J and Priori SG: Dilated cardiomyopathy. Nat Rev Dis Primers. 5:322019. View Article : Google Scholar : PubMed/NCBI | |
Orphanou N, Papatheodorou E and Anastasakis A: Dilated cardiomyopathy in the era of precision medicine: Latest concepts and developments. Heart Fail Rev. 27:1173–1191. 2022. View Article : Google Scholar | |
Liu M, Zhai L, Yang Z, Li S, Liu T, Chen A, Wang L, Li Y, Li R, Li C, et al: Integrative proteomic analysis reveals the cytoskeleton regulation and mitophagy difference between ischemic cardiomyopathy and dilated cardiomyopathy. Mol Cell Proteomics. 22:1006672023. View Article : Google Scholar : PubMed/NCBI | |
Wang E, Zhou R, Li T, Hua Y, Zhou K, Li Y, Luo S and An Q: The molecular role of immune cells in dilated cardiomyopathy. Medicina (Kaunas). 59:12462023. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Zhang X, Zhan J, Xie R, Fan J, Dai B, Zhao Y, Yin Z, Liu Q, Wang DW, et al: Fibroblast-localized lncRNA CFIRL promotes cardiac fibrosis and dysfunction in dilated cardiomyopathy. Sci China Life Sci. 67:1155–1169. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mado K, Chekulayev V, Shevchuk I, Puurand M, Tepp K and Kaambre T: On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. Am J Physiol Cell Physiol. 316:C657–C667. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Cheng L, Li Z, Li H, Liu Y, Zhan H, Xu H, Huang Y, Feng F and Li Y: Immune cells and related cytokines in dilated cardiomyopathy. Biomed Pharmacother. 171:1161592024. View Article : Google Scholar : PubMed/NCBI | |
Cavusoglu Y, Tahmazov S, Murat S and Akay OM: Immunoadsorption therapy in refractory heart failure patients with dilated cardiomyopathy: A potential therapeutic option. Rev Assoc Med Bras (1992). 69:90–96. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhong G, Chen C, Wu S, Chen J, Han Y, Zhu Q, Xu M, Nie Q and Wang L: Mechanism of angiotensin-converting enzyme inhibitors in the treatment of dilated cardiomyopathy based on a protein interaction network and molecular docking. Cardiovasc Diagn Ther. 13:534–549. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Shen L, Zhou X, Wang Y, Chang S and Lu S: Comparative efficacy of different drugs for the treatment of dilated cardiomyopathy: A systematic review and network meta-analysis. Drugs R D. 23:197–210. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiao M, Wang X, Liang Y, Yang Y, Gu Y, Wang Z, Lv Z and Jin M: Effect of β-blocker therapy on the level of soluble ST2 protein in pediatric dilated cardiomyopathy. Medicina (Kaunas). 58:13392022. View Article : Google Scholar | |
Ferreira JP, Butler J, Zannad F, Filippatos G, Schueler E, Steubl D, Zeller C, Januzzi JL, Pocock S, Packer M and Anker SD: Mineralocorticoid receptor antagonists and empagliflozin in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 79:1129–1137. 2022. View Article : Google Scholar : PubMed/NCBI | |
Eldemire R, Mestroni L and Taylor MRG: Genetics of dilated cardiomyopathy. Annu Rev Med. 75:417–426. 2024. View Article : Google Scholar : | |
Jordan E, Peterson L, Ai T, Asatryan B, Bronicki L, Brown E, Celeghin R, Edwards M, Fan J, Ingles J, et al: Evidence-based assessment of genes in dilated cardiomyopathy. Circulation. 144:7–19. 2021. View Article : Google Scholar : PubMed/NCBI | |
Koga-Ikuta A, Fukushima S, Ishibashi-Ueda H, Tadokoro N, Kakuta T, Watanabe T, Fukushima N, Suzuki K, Fukui T and Fujita T: Immunocompetent cells in durable ventricular assist device-implanted non-ischaemic dilated cardiomyopathy. Gen Thorac Cardiovasc Surg. 70:685–693. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dziekiewicz M, Banaszewski M, Kuć M and Stępińska J: Intra-aortic balloon pump catheter insertion using a novel left external iliac artery approach in a case of chronic heart failure due to dilated cardiomyopathy. Am J Case Rep. 20:1826–1829. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wei R, Wang X, Zhang W, Li M, Ni T, Weng W and Li Q: The neutrophil-to-lymphocyte ratio is associated with all-cause and cardiovascular mortality among individuals with hypertension. Cardiovasc Diabetol. 23:1172024. View Article : Google Scholar : PubMed/NCBI | |
Messerli FH, Rimoldi SF and Bangalore S: The transition from hypertension to heart failure: Contemporary update. JACC Heart Fail. 5:543–551. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q and Chen X: Signaling pathways in vascular function and hypertension: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 8:1682023. View Article : Google Scholar : PubMed/NCBI | |
Konukoglu D and Uzun H: Endothelial dysfunction and hypertension. Hypertension: From basic research to clinical practice. 511–540. 2017. | |
Watson T, Goon PKY and Lip GYH: Endothelial progenitor cells, endothelial dysfunction, inflammation, and oxidative stress in hypertension. Antioxid Redox Signal. 10:1079–1088. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhu N, Guo ZF, Kazama K, Yi B, Tongmuang N, Yao H, Yang R, Zhang C, Qin Y, Han L and Sun J: Epigenetic regulation of vascular smooth muscle cell phenotypic switch and neointimal formation by PRMT5. Cardiovasc Res. 119:2244–2255. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liard JF and Peters G: Role of the retention of water and sodium in two types of experimental renovascular hypertension in the rat. Pflugers Arch. 344:93–108. 1973. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Lin L, Zhang L, Li Y, Cui X, Lu M, Zhang Z, Guan X, Zhang M, Hao J, et al: Identification of circulating plasma proteins as a mediator of hypertension-driven cardiac remodeling: A mediation mendelian randomization study. Hypertension. 81:1132–1144. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Han X, Yu T, Wang M, Luo W, Zou C, Li X, Li G, Wu G, Wang Y and Liang G: OTUD1 promotes pathological cardiac remodeling and heart failure by targeting STAT3 in cardiomyocytes. Theranostics. 13:2263–2280. 2023. View Article : Google Scholar : PubMed/NCBI | |
Holopainen T, Räsänen M, Anisimov A, Tuomainen T, Zheng W, Tvorogov D, Hulmi JJ, Andersson LC, Cenni B, Tavi P, et al: Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling. Proc Natl Acad Sci USA. 112:13063–13068. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li L, Fu W, Gong X, Chen Z, Tang L, Yang D, Liao Q, Xia X, Wu H, Liu C, et al: The role of G protein-coupled receptor kinase 4 in cardiomyocyte injury after myocardial infarction. Eur Heart J. 42:1415–1430. 2021. View Article : Google Scholar : | |
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K and Ahmadian MR: The microenvironment of the pathogenesis of cardiac hypertrophy. Cells. 12:17802023. View Article : Google Scholar : PubMed/NCBI | |
Nakamura M and Sadoshima J: Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 15:387–407. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bertaud A, Joshkon A, Heim X, Bachelier R, Bardin N, Leroyer AS and Blot-Chabaud M: Signaling pathways and potential therapeutic strategies in cardiac fibrosis. Int J Mol Sci. 24:17562023. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Wang Q, Feng Y, Chen X, Yang L, Xu M, Wang X, Li W, Niu X and Gao D: MicroRNA-26a protects the heart against hypertension-induced myocardial fibrosis. J Am Heart Assoc. 9:e0179702020. View Article : Google Scholar : PubMed/NCBI | |
Failer T, Amponsah-Offeh M, Neuwirth A, Kourtzelis I, Subramanian P, Mirtschink P, Peitzsch M, Matschke K, Tugtekin SM, Kajikawa T, et al: Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation. J Clin Invest. 132:e1261552022. View Article : Google Scholar : PubMed/NCBI | |
Rai R, Sun T, Ramirez V, Lux E, Eren M, Vaughan DE and Ghosh AK: Acetyltransferase p300 inhibitor reverses hypertension-induced cardiac fibrosis. J Cell Mol Med. 23:3026–3031. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lv SL, Zeng ZF, Gan WQ, Wang WQ, Li TG, Hou YF, Yan Z, Zhang RX and Yang M: Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation. Acta Pharmacol Sin. 42:2016–2032. 2021. View Article : Google Scholar : PubMed/NCBI | |
Johnson MT, Gudlur A, Zhang X, Xin P, Emrich SM, Yoast RE, Courjaret R, Nwokonko RM, Li W, Hempel N, et al: L-type Ca2+ channel blockers promote vascular remodeling through activation of STIM proteins. Proc Natl Acad Sci USA. 117:17369–17380. 2020. View Article : Google Scholar | |
Zhang Y, Murugesan P, Huang K and Cai H: NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol. 17:170–194. 2020. View Article : Google Scholar | |
Nardoianni G, Pala B, Scoccia A, Volpe M, Barbato E and Tocci G: Systematic review article: New drug strategies for treating resistant hypertension-the importance of a mechanistic, personalized approach. High Blood Press Cardiovasc Prev. 31:99–112. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZY, Yu YL, Asayama K, Hansen TW, Maestre GE and Staessen JA: Starting antihypertensive drug treatment with combination therapy: Controversies in hypertension-con side of the argument. Hypertension. 77:788–798. 2021. View Article : Google Scholar : PubMed/NCBI | |
Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, Dearani JA, Rowin EJ, Maron MS and Sherrid MV: Management of hypertrophic cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 79:390–414. 2022. View Article : Google Scholar : PubMed/NCBI | |
Maron BA, Wang RS, Carnethon MR, Rowin EJ, Loscalzo J, Maron BJ and Maron MS: What causes hypertrophic cardiomyopathy? Am J Cardiol. 179:74–82. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cirino AL, Channaoui N and Ho C: Nonsyndromic hypertrophic cardiomyopathy overview. GeneReviews® [Internet]. Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE and Amemiya A: University of Washington; Seattle, WA: 1993 | |
Bazan SGZ, Oliveira GO, Silveira CFDSMPD, Reis FM, Malagutte KNDS, Tinasi LSN, Bazan R, Hueb JC and Okoshi K: Hypertrophic cardiomyopathy: A review. Arq Bras Cardiol. 115:927–935. 2020.In English, Portuguese. View Article : Google Scholar : PubMed/NCBI | |
Homburger JR, Green EM, Caleshu C, Sunitha MS, Taylor RE, Ruppel KM, Metpally RP, Colan SD, Michels M, Day SM, et al: Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation. Proc Natl Acad Sci USA. 113:6701–6706. 2016. View Article : Google Scholar | |
Lin LR, Hu XQ, Lu LH, Dai JZ, Lin NN, Wang RH, Xie ZX and Chen XM: MicroRNA expression profiles in familial hypertrophic cardiomyopathy with myosin-binding protein C3 (MYBPC3) gene mutations. BMC Cardiovasc Disord. 22:2782022. View Article : Google Scholar : PubMed/NCBI | |
Parbhudayal RY, Harms HJ, Michels M, van Rossum AC, Germans T and van der Velden J: Increased myocardial oxygen consumption precedes contractile dysfunction in hypertrophic cardiomyopathy caused by pathogenic TNNT2 gene variants. J Am Heart Assoc. 9:e0153162020. View Article : Google Scholar : PubMed/NCBI | |
Fahed AC, Nemer G, Bitar FF, Arnaout S, Abchee AB, Batrawi M, Khalil A, Abou Hassan OK, DePalma SR, McDonough B, et al: Founder mutation in N terminus of cardiac troponin i causes malignant hypertrophic cardiomyopathy. Circ Genom Precis Med. 13:444–452. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schulz EM, Wilder T, Chowdhury SA, Sheikh HN, Wolska BM, Solaro RJ and Wieczorek DF: Decreasing tropomyosin phosphorylation rescues tropomyosin-induced familial hypertrophic cardiomyopathy. J Biol Chem. 288:28925–28935. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wijnker PJM and van der Velden J: Mutation-specific pathology and treatment of hypertrophic cardiomyopathy in patients, mouse models and human engineered heart tissue. Biochim Biophys Acta Mol Basis Dis. 1866:1657742020. View Article : Google Scholar : PubMed/NCBI | |
Enriquez AD and Goldman ME: Management of hypertrophic cardiomyopathy. Ann Glob Health. 80:35–45. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lehman SJ, Crocini C and Leinwand LA: Targeting the sarcomere in inherited cardiomyopathies. Nat Rev Cardiol. 19:353–363. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pradeep R, Akram A, Proute MC, Kothur NR, Georgiou P, Serhiyenia T, Shi W, Kerolos ME and Mostafa JA: Understanding the genetic and molecular basis of familial hypertrophic cardiomyopathy and the current trends in gene therapy for its management. Cureus. 13:e175482021.PubMed/NCBI | |
Liu T, Hao Y, Zhang Z, Zhou H, Peng S, Zhang D, Li K, Chen Y and Chen M: Advanced cardiac patches for the treatment of myocardial infarction. Circulation. 149:2002–2020. 2024. View Article : Google Scholar : PubMed/NCBI | |
Golforoush P, Yellon DM and Davidson SM: Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol. 115:732020. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Fang T and Cheng Z: Mechanism of heart failure after myocardial infarction. J Int Med Res. 51:30006052312025732023. View Article : Google Scholar : PubMed/NCBI | |
Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J, Adámková V and Wohlfahrt P: Heart failure after myocardial infarction: Incidence and predictors. ESC Heart Fail. 8:222–237. 2021. View Article : Google Scholar | |
Feng R, Wang D, Li T, Liu X, Peng T, Liu M, Ren G, Xu H, Luo H, Lu D, et al: Elevated SLC40A1 impairs cardiac function and exacerbates mitochondrial dysfunction, oxidative stress, and apoptosis in ischemic myocardia. Int J Biol Sci. 20:414–432. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dharmakumar R, Nair AR, Kumar A and Francis J: Myocardial infarction and the fine balance of iron. JACC Basic Transl Sci. 6:581–583. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao WK, Zhou Y, Xu TT and Wu Q: Ferroptosis: Opportunities and challenges in myocardial ischemia-reperfusion injury. Oxid Med Cell Longev. 2021:99296872021. View Article : Google Scholar : PubMed/NCBI | |
Marunouchi T, Onda S, Kurasawa M and Tanonaka K: Angiotensin II is involved in MLKL activation during the development of heart failure following myocardial infarction in rats. Biol Pharm Bull. 47:809–817. 2024. View Article : Google Scholar : PubMed/NCBI | |
Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO and Radaelli E: Mechanisms of regulated cell death: Current perspectives. Vet Pathol. 58:596–623. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li A, Gao M, Liu B, Qin Y, Chen L, Liu H, Wu H and Gong G: Mitochondrial autophagy: Molecular mechanisms and implications for cardiovascular disease. Cell Death Dis. 13:4442022. View Article : Google Scholar : PubMed/NCBI | |
Held PH, Yusuf S and Furberg CD: Calcium channel blockers in acute myocardial infarction and unstable angina: An overview. BMJ. 299:1187–1192. 1989. View Article : Google Scholar : PubMed/NCBI | |
Makarewich CA, Zhang H, Davis J, Correll RN, Trappanese DM, Hoffman NE, Troupes CD, Berretta RM, Kubo H, Madesh M, et al: Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction. Circ Res. 115:567–580. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cui T, Liu W, Yu C, Ren J, Li Y, Shi X, Li Q and Zhang J: Protective effects of allicin on acute myocardial infarction in rats via hydrogen sulfide-mediated regulation of coronary arterial vasomotor function and myocardial calcium transport. Front Pharmacol. 12:7522442022. View Article : Google Scholar : PubMed/NCBI | |
Pietrzykowski Ł, Michalski P, Kosobucka A, Kasprzak M, Fabiszak T, Stolarek W, Siller-Matula JM and Kubica A: Medication adherence and its determinants in patients after myocardial infarction. Sci Rep. 10:120282020. View Article : Google Scholar : PubMed/NCBI | |
Heart Outcomes Prevention Evaluation Study Investigators; Yusuf S, Sleight P, Pogue J, Bosch J, Davies R and Dagenais G: Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 342:145–153. 2000. View Article : Google Scholar : PubMed/NCBI | |
Khan SU, Singh M, Valavoor S, Khan MU, Lone AN, Khan MZ, Khan MS, Mani P, Kapadia SR, Michos ED, et al: Dual antiplatelet therapy after percutaneous coronary intervention and drug-eluting stents: A systematic review and network meta-analysis. Circulation. 142:1425–1436. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yandrapalli S, Andries G, Gupta S, Dajani AR and Aronow WS: Investigational drugs for the treatment of acute myocardial infarction: Focus on antiplatelet and anticoagulant agents. Expert Opin Investig Drugs. 28:223–234. 2019. View Article : Google Scholar | |
AIM-HIGH Investigators; Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, McBride R, Teo K and Weintraub W: Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 365:2255–2267. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tsai IT and Sun CK: Stem cell therapy against ischemic heart disease. Int J Mol Sci. 25:37782024. View Article : Google Scholar : PubMed/NCBI | |
Broch K, Anstensrud AK, Woxholt S, Sharma K, Tøllefsen IM, Bendz B, Aakhus S, Ueland T, Amundsen BH, Damås JK, et al: Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J Am Coll Cardiol. 77:1845–1855. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi S, Chen Y, Luo Z, Nie G and Dai Y: Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun Signal. 21:612023. View Article : Google Scholar : PubMed/NCBI | |
Ye X, Li Y, Lv B, Qiu B, Zhang S, Peng H, Kong W, Tang C, Huang Y, Du J and Jin H: Endogenous hydrogen sulfide persulfidates caspase-3 at cysteine 163 to inhibit doxorubicin-induced cardiomyocyte apoptosis. Oxid Med Cell Longev. 2022:61537722022. View Article : Google Scholar : PubMed/NCBI | |
Gammella E, Recalcati S, Rybinska I, Buratti P and Cairo G: Iron-induced damage in cardiomyopathy: Oxidative-dependent and independent mechanisms. Oxid Med Cell Longev. 2015:2301822015. View Article : Google Scholar : PubMed/NCBI | |
Cheng CF and Lian WS: Prooxidant mechanisms in iron overload cardiomyopathy. Biomed Res Int. 2013:7405732013. View Article : Google Scholar : PubMed/NCBI | |
Fatmi A, Saadi W, Beltrán-García J, García-Giménez JL and Pallardó FV: The endothelial glycocalyx and neonatal sepsis. Int J Mol Sci. 24:3642022. View Article : Google Scholar | |
Carthy CM, Yang D, Anderson DR, Wilson JE and McManus BM: Myocarditis as systemic disease: New perspectives on pathogenesis. Clin Exp Pharmacol Physiol. 24:997–1003. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lasrado N and Reddy J: An overview of the immune mechanisms of viral myocarditis. Rev Med Virol. 30:1–14. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dimitropoulos G, Tahrani AA and Stevens MJ: Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes. 5:17–39. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Dai S, Lin J, Liang X, Wang W, Huang W, Ye B and Hong X: Oridonin relieves angiotensin II-induced cardiac remodeling via inhibiting GSDMD-mediated inflammation. Cardiovasc Ther. 2022:31679592022. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Huang Z, Liang Y, Zhao X, Aobuliksimu X, Wang B, He Y, Kang Y, Huang H, Li Q, et al: Five-year mortality of heart failure with preserved, mildly reduced, and reduced ejection fraction in a 4880 Chinese cohort. ESC Heart Fail. 9:2336–2347. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu M, López de Juan Abad B and Cheng K: Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev. 173:504–519. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J and González A: Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med. 93:1011942023. View Article : Google Scholar : PubMed/NCBI | |
Martin TG, Juarros MA and Leinwand LA: Regression of cardiac hypertrophy in health and disease: Mechanisms and therapeutic potential. Nat Rev Cardiol. 20:347–363. 2023. View Article : Google Scholar : PubMed/NCBI | |
Su Z, Yang Z, Xu Y, Chen Y and Yu Q: Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 14:482015. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Liu C, Zhao Y, Ponnusamy M, Li P and Wang K: Role of noncoding RNAs in regulation of cardiac cell death and cardiovascular diseases. Cell Mol Life Sci. 75:291–300. 2018. View Article : Google Scholar | |
Cai K, Jiang H, Zou Y, Song C, Cao K, Chen S, Wu Y, Zhang Z, Geng D, Zhang N, et al: Programmed death of cardiomyocytes in cardiovascular disease and new therapeutic approaches. Pharmacol Res. 206:1072812024. View Article : Google Scholar : PubMed/NCBI | |
Chiong M, Wang ZV, Pedrozo Z, Cao DJ, Troncoso R, Ibacache M, Criollo A, Nemchenko A, Hill JA and Lavandero S: Cardiomyocyte death: Mechanisms and translational implications. Cell Death Dis. 2:e2442011. View Article : Google Scholar : PubMed/NCBI | |
Topriceanu CC, Pereira AC, Moon JC, Captur G and Ho CY: Meta-analysis of penetrance and systematic review on transition to disease in genetic hypertrophic cardiomyopathy. Circulation. 149:107–123. 2024. View Article : Google Scholar : | |
Ye C, Zheng F, Wu N, Zhu GQ and Li XZ: Extracellular vesicles in vascular remodeling. Acta Pharmacol Sin. 43:2191–2201. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jordan-Rios A, Cannatà A, Bromage D and McDonagh T: Challenges in the implementation of medical therapy in heart failure. JACC Heart Fail. 11:607–609. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pacesa M, Pelea O and Jinek M: Past, present, and future of CRISPR genome editing technologies. Cell. 187:1076–1100. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Zhao J, Tuazon JP, Borlongan CV and Yu G: MicroRNA-133a and myocardial infarction. Cell Transplant. 28:831–838. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reichart D, Newby GA, Wakimoto H, Lun M, Gorham JM, Curran JJ, Raguram A, DeLaughter DM, Conner DA, Marsiglia JDC, et al: Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat Med. 29:412–421. 2023. View Article : Google Scholar : PubMed/NCBI | |
Morris KV and Mattick JS: The rise of regulatory RNA. Nat Rev Genet. 15:423–437. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shim JS, Song WJ and Morice AH: Drug-induced cough. Physiol Res. 69(Suppl 1): S81–S92. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wong GW and Wright JM: Blood pressure lowering efficacy of nonselective beta-blockers for primary hypertension. Cochrane Database Syst Rev. 2014:CD0074522024. | |
Cheng CJ, Rodan AR and Huang CL: Emerging targets of diuretic therapy. Clin Pharmacol Ther. 102:420–435. 2017. View Article : Google Scholar : PubMed/NCBI | |
Haley KE, Almas T, Shoar S, Shaikh S, Azhar M, Cheema FH and Hameed A: The role of anti-inflammatory drugs and nanoparticle-based drug delivery models in the management of ischemia-induced heart failure. Biomed Pharmacother. 142:1120142021. View Article : Google Scholar : PubMed/NCBI | |
Pala R, Anju VT, Dyavaiah M, Busi S and Nauli SM: Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases. Int J Nanomedicine. 15:3741–3769. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qiu R, Han S, Wei X, Zhong C, Li M, Hu J, Wang P, Zhao C, Chen J and Shang H: Development of a core outcome set for the benefits and adverse events of acute heart failure in clinical trials of traditional Chinese medicine and western medicine: A study protocol. Front Med (Lausanne). 8:6770682021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Ma Y, Li J, Yao L, Gui M, Lu B, Zhou X, Wang M and Fu D: The efficacy of ginseng-containing traditional Chinese medicine in patients with acute decompensated heart failure: A systematic review and meta-analysis. Front Pharmacol. 13:10830012023. View Article : Google Scholar : PubMed/NCBI | |
Ji MY, Bo A, Yang M, Xu JF, Jiang LL, Zhou BC and Li MH: The pharmacological effects and health benefits of platycodon grandiflorus-a medicine food homology species. Foods. 9:1422020. View Article : Google Scholar : PubMed/NCBI | |
Tang MM, Zhao ST, Li RQ and Hou W: Therapeutic mechanisms of ginseng in coronary heart disease. Front Pharmacol. 14:12710292023. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Jiang H, Wang S, Hou A, Man W, Zhang J, Guo X, Yang B, Kuang H and Wang Q: Discovering the major antitussive, expectorant, and anti-inflammatory bioactive constituents in Tussilago farfara L. based on the spectrum-effect relationship combined with chemometrics. Molecules. 25:6202020. View Article : Google Scholar : PubMed/NCBI | |
Tan D, Tseng HHL, Zhong Z, Wang S, Vong CT and Wang Y: Glycyrrhizic acid and its derivatives: Promising candidates for the management of type 2 diabetes mellitus and its complications. Int J Mol Sci. 23:109882022. View Article : Google Scholar : PubMed/NCBI | |
Feng Q, Ling L, Yuan H, Guo Z and Ma J: Ginsenoside Rd: A promising target for ischemia-reperfusion injury therapy (A mini review). Biomed Pharmacother. 171:1161112024. View Article : Google Scholar : PubMed/NCBI | |
MacRitchie N and Maffia P: Light sheet fluorescence microscopy for quantitative three-dimensional imaging of vascular remodelling. Cardiovasc Res. 117:348–350. 2021. View Article : Google Scholar : | |
Yu B, Lu Q, Li J, Cheng X, Hu H, Li Y, Che T, Hua Y, Jiang H, Zhang Y, et al: Cryo-EM structure of human HCN3 channel and its regulation by cAMP. J Biol Chem. 300:1072882024. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhang X, Wang F, Zhou L, Yin Z, Fan J, Nie X, Wang P, Fu XD, Chen C and Wang DW: MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation. Circulation. 134:734–751. 2016. View Article : Google Scholar : PubMed/NCBI |