Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Molecular mechanisms and intervention approaches of heart failure (Review)

  • Authors:
    • Shuang Guo
    • Yingqing Hu
    • Li Ling
    • Zhuangzhuang Yang
    • Luxuan Wan
    • Xiaosong Yang
    • Min Lei
    • Xiying Guo
    • Zhanhong Ren
  • View Affiliations / Copyright

    Affiliations: Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
    Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 125
    |
    Published online on: June 13, 2025
       https://doi.org/10.3892/ijmm.2025.5566
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Heart failure is a major health issue that threatens life and health. Previous studies have shown that heart failure is the terminal stage of arrhythmia, dilated cardiomyopathy, hypertension, hypertrophic cardiomyopathy and myocardial infarction. The pathological mechanisms through which cardiovascular diseases result in heart failure include myocardial fibrosis and hypertrophy, myocardial cell death, mitochondrial dysfunction, vascular remodeling and calcium dysregulation. However, the detailed molecular mechanisms of heart failure remain elusive because of its complexity, hindering the development of intervention approaches for heart failure. The present study reviewed recent research progress on heart failure and provided references and strategies for the prevention and treatment of heart failure.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Ketabi M, Andishgar A, Fereidouni Z, Sani MM, Abdollahi A, Vali M, Alkamel A and Tabrizi R: Predicting the risk of mortality and rehospitalization in heart failure patients: A retrospective cohort study by machine learning approach. Clin Cardiol. 47:e242392024. View Article : Google Scholar : PubMed/NCBI

2 

Xu X and Xu Z; Association between phenotypic age the risk of mortality in patients with heart failure: A retrospective cohort study. Clin Cardiol. 47:e243212024. View Article : Google Scholar

3 

Pratley R, Guan X, Moro RJ and do Lago R: Chapter 1: The burden of heart failure. Am J Med. 137(2S): S3–S8. 2024. View Article : Google Scholar : PubMed/NCBI

4 

Mulugeta H, Sinclair PM and Wilson A: Prevalence of depression and its association with health-related quality of life in people with heart failure in low- and middle-income countries: A systematic review and meta-analysis. PLoS One. 18:e02831462023. View Article : Google Scholar : PubMed/NCBI

5 

Shahim B, Kapelios CJ, Savarese G and Lund LH: Global public health burden of heart failure: An updated review. Card Fail Rev. 9:e112023. View Article : Google Scholar : PubMed/NCBI

6 

Emmons-Bell S, Johnson C and Roth G: Prevalence, incidence and survival of heart failure: A systematic review. Heart. 108:1351–1360. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Caturano A, Vetrano E, Galiero R, Salvatore T, Docimo G, Epifani R, Alfano M, Sardu C, Marfella R, Rinaldi L and Sasso FC: Cardiac hypertrophy: From pathophysiological mechanisms to heart failure development. Rev Cardiovasc Med. 23:1652022. View Article : Google Scholar : PubMed/NCBI

8 

Castiglione V, Aimo A, Vergaro G, Saccaro L, Passino C and Emdin M: Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev. 27:625–643. 2022. View Article : Google Scholar :

9 

Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, Anker SD, Atherton J, Böhm M, Butler J, et al: Universal definition and classification of heart failure: A report of the heart failure society of America, heart failure association of the European society of cardiology, Japanese heart failure society and writing committee of the universal definition of heart failure: Endorsed by the Canadian heart failure society, heart failure association of India, cardiac society of Australia and New Zealand, and Chinese heart failure association. Eur J Heart Fail. 23:352–380. 2021. View Article : Google Scholar : PubMed/NCBI

10 

Triposkiadis F, Xanthopoulos A, Parissis J, Butler J and Farmakis D: Pathogenesis of chronic heart failure: Cardiovascular aging, risk factors, comorbidities, and disease modifiers. Heart Fail Rev. 27:337–344. 2022. View Article : Google Scholar

11 

Huang K, Wu H, Xu X, Wu L, Li Q and Han L: Identification of TGF-β-related genes in cardiac hypertrophy and heart failure based on single cell RNA sequencing. Aging (Albany NY). 15:7187–7218. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Gu JJ, Du TJ, Zhang LN, Zhou J, Gu X and Zhu Y: Identification of ferroptosis-related genes in heart failure induced by transverse aortic constriction. J Inflamm Res. 16:4899–4912. 2023. View Article : Google Scholar : PubMed/NCBI

13 

Marian AJ: Molecular genetic basis of hypertrophic cardiomyopathy. Circ Res. 128:1533–1553. 2021. View Article : Google Scholar : PubMed/NCBI

14 

Madè A, Bibi A, Garcia-Manteiga JM, Tascini AS, Piella SN, Tikhomirov R, Voellenkle C, Gaetano C, Leszek P, Castelvecchio S, et al: circRNA-miRNA-mRNA deregulated network in ischemic heart failure patients. Cells. 12:25782023. View Article : Google Scholar : PubMed/NCBI

15 

Wong LL, Wang J, Liew OW, Richards AM and Chen YT: MicroRNA and heart failure. Int J Mol Sci. 17:5022016. View Article : Google Scholar : PubMed/NCBI

16 

Park JH and Kho C: MicroRNAs and calcium signaling in heart disease. Int J Mol Sci. 22:105822021. View Article : Google Scholar : PubMed/NCBI

17 

Saad NS, Mashali MA, Repas SJ and Janssen PML: Altering calcium sensitivity in heart failure: A crossroads of disease etiology and therapeutic innovation. Int J Mol Sci. 24:175772023. View Article : Google Scholar : PubMed/NCBI

18 

Hinton A Jr, Claypool SM, Neikirk K, Senoo N, Wanjalla CN, Kirabo A and Williams CR: Mitochondrial structure and function in human heart failure. Circ Res. 135:372–396. 2024. View Article : Google Scholar : PubMed/NCBI

19 

Xue P, Liu Y, Wang H, Huang J and Luo M: miRNA-103-3p-Hlf regulates apoptosis and autophagy by targeting hepatic leukaemia factor in heart failure. ESC Heart Fail. 10:3038–3045. 2023. View Article : Google Scholar : PubMed/NCBI

20 

Pagan LU, Gomes MJ, Martinez PF and Okoshi MP: Oxidative stress and heart failure: Mechanisms, signalling pathways, and therapeutics. Oxid Med Cell Longev. 2022:98295052022. View Article : Google Scholar : PubMed/NCBI

21 

Hanna A and Frangogiannis NG: Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther. 34:849–863. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Manolis AA, Manolis TA and Manolis AS: Neurohumoral activation in heart failure. Int J Mol Sci. 24:154722023. View Article : Google Scholar : PubMed/NCBI

23 

Cappola TP and Burke MF: Studying Heart failure through the lens of gene regulation. Circ Heart Fail. 13:e0076472020. View Article : Google Scholar : PubMed/NCBI

24 

Levin MG, Tsao NL, Singhal P, Liu C, Vy HMT, Paranjpe I, Backman JD, Bellomo TR, Bone WP, Biddinger KJ, et al: Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure. Nat Commun. 13:69142022. View Article : Google Scholar : PubMed/NCBI

25 

Tudurachi BS, Zăvoi A, Leonte A, Țăpoi L, Ureche C, Bîrgoan SG, Chiuariu T, Anghel L, Radu R, Sascău RA and Stătescu C: An update on MYBPC3 gene mutation in hypertrophic cardiomyopathy. Int J Mol Sci. 24:105102023. View Article : Google Scholar : PubMed/NCBI

26 

Park J, Packard EA, Levin MG, Judy RL; Regeneron Genetics Center; Damrauer SM, Day SM, Ritchie MD and Rader DJ: A genome-first approach to rare variants in hypertrophic cardiomyopathy genes MYBPC3 and MYH7 in a medical biobank. Hum Mol Genet. 31:827–837. 2022. View Article : Google Scholar :

27 

Akboua H, Eghbalzadeh K, Keser U, Wahlers T and Paunel-Görgülü A: Impaired non-canonical transforming growth factor-β signalling prevents profibrotic phenotypes in cultured peptidylarginine deiminase 4-deficient murine cardiac fibroblasts. J Cell Mol Med. 25:9674–9684. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Qian L, Xu H, Yuan R, Yun W and Ma Y: Formononetin ameliorates isoproterenol induced cardiac fibrosis through improving mitochondrial dysfunction. Biomed Pharmacother. 170:1160002024. View Article : Google Scholar

29 

Roe AT, Frisk M and Louch WE: Targeting cardiomyocyte Ca2+ homeostasis in heart failure. Curr Pharm Des. 21:431–448. 2015. View Article : Google Scholar :

30 

Shah K, Seeley S, Schulz C, Fisher J and Gururaja Rao S: Calcium channels in the heart: Disease states and drugs. Cells. 11:9432022. View Article : Google Scholar : PubMed/NCBI

31 

Al-Hayali MA, Sozer V, Durmus S, Erdenen F, Altunoglu E, Gelisgen R, Atukeren P, Atak PG and Uzun H: Clinical value of circulating microribonucleic acids miR-1 and miR-21 in evaluating the diagnosis of acute heart failure in asymptomatic type 2 diabetic patients. Biomolecules. 9:1932019. View Article : Google Scholar : PubMed/NCBI

32 

Vilella-Figuerola A, Gallinat A, Escate R, Mirabet S, Padró T and Badimon L: Systems biology in chronic heart failure-identification of potential miRNA regulators. Int J Mol Sci. 23:152262022. View Article : Google Scholar : PubMed/NCBI

33 

Xu R, Wu J, Yang CJ, Kang L, Ji YY, Li C, Ding ZW and Zou YZ: A circRNA-miRNA-mRNA network analysis underlying pathogenesis of human heart failure. J Geriatr Cardiol. 20:350–360. 2023. View Article : Google Scholar : PubMed/NCBI

34 

Gallo G, Rubattu S and Volpe M: Mitochondrial dysfunction in heart failure: From Pathophysiological mechanisms to therapeutic opportunities. Int J Mol Sci. 25:26672024. View Article : Google Scholar : PubMed/NCBI

35 

van Empel VPM, Bertrand ATA, Hofstra L, Crijns HJ, Doevendans PA and De Windt LJ: Myocyte apoptosis in heart failure. Cardiovasc Res. 67:21–29. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Guo X, Chen Y and Liu Q: Necroptosis in heart disease: Molecular mechanisms and therapeutic implications. J Mol Cell Cardiol. 169:74–83. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Kang Y and Wang Q: Potential therapeutic value of necroptosis inhibitor for the treatment of COVID-19. Eur J Med Res. 27:2832022. View Article : Google Scholar : PubMed/NCBI

38 

Lu LQ, Tian J, Luo XJ and Peng J: Targeting the pathways of regulated necrosis: A potential strategy for alleviation of cardio-cerebrovascular injury. Cell Mol Life Sci. 78:63–78. 2021. View Article : Google Scholar

39 

Zhang H and Dhalla NS: The role of pro-inflammatory cytokines in the pathogenesis of cardiovascular disease. Int J Mol Sci. 25:10822024. View Article : Google Scholar : PubMed/NCBI

40 

Bishopric NH, Andreka P, Slepak T and Webster KA: Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol. 1:141–150. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Tsutsui H, Kinugawa S and Matsushima S: Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 301:H2181–H2190. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Khoynezhad A, Jalali Z and Tortolani AJ: A synopsis of research in cardiac apoptosis and its application to congestive heart failure. Tex Heart Inst J. 34:352–359. 2007.PubMed/NCBI

43 

Paulus WJ and Zile MR: From systemic inflammation to myocardial fibrosis: The heart failure with preserved ejection fraction paradigm revisited. Circ Res. 128:1451–1467. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Kjaer A and Hesse B: Heart failure and neuroendocrine activation: Diagnostic, prognostic and therapeutic perspectives. Clin Physiol. 21:661–672. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Blackwell DJ, Schmeckpeper J and Knollmann BC: Animal models to study cardiac arrhythmias. Circ Res. 130:1926–1964. 2022. View Article : Google Scholar : PubMed/NCBI

46 

Reißmann B, Rottner L, Rillig A and Metzner A: Cardiac arrhythmia. MMW Fortschr Med. 163:62–71. 2021.In German. View Article : Google Scholar

47 

Fu DG: Cardiac arrhythmias: Diagnosis, symptoms, and treatments. Cell Biochem Biophys. 73:291–296. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Paludan-Müller C, Vad OB, Stampe NK, Diederichsen SZ, Andreasen L, Monfort LM, Fosbøl EL, Køber L, Torp-Pedersen C, Svendsen JH and Olesen MS: Atrial fibrillation: Age at diagnosis, incident cardiovascular events, and mortality. Eur Heart J. 45:2119–2129. 2024. View Article : Google Scholar : PubMed/NCBI

49 

Liu X, Zhang W, Luo J, Shi W, Zhang X, Li Z, Qin X, Liu B and Wei Y: TRIM21 deficiency protects against atrial inflammation and remodeling post myocardial infarction by attenuating oxidative stress. Redox Biol. 62:1026792023. View Article : Google Scholar : PubMed/NCBI

50 

Bossuyt J, Borst JM, Verberckmoes M, Bailey LRJ, Bers DM and Hegyi B: Protein kinase D1 regulates cardiac hypertrophy, potassium channel remodeling, and arrhythmias in heart failure. J Am Heart Assoc. 11:e0275732022. View Article : Google Scholar : PubMed/NCBI

51 

Piccini JP: Atrial fibrillation and heart failure: Too much talk and not enough action. JACC Clin Electrophysiol. 9:581–582. 2023. View Article : Google Scholar : PubMed/NCBI

52 

Wang H, Chen Y, Zhao S, Wang X, Lu K and Xiao H: Effect of Sox9 on TGF-β1-mediated atrial fibrosis. Acta Biochim Biophys Sin (Shanghai). 53:1450–1458. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Wolke C, Antileo E and Lendeckel U: WNT signaling in atrial fibrillation. Exp Biol Med (Maywood). 246:1112–1120. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Huang M, Huiskes FG, de Groot NMS and Brundel BJJM: The role of immune cells driving electropathology and atrial fibrillation. Cells. 13:3112021. View Article : Google Scholar

55 

Yokoyama T, Kuga T, Itoh Y, Otake S, Omata C, Saitoh M and Miyazawa K: Smad2Δexon3 and Smad3 have distinct properties in signal transmission leading to TGF-β-induced cell motility. J Biol Chem. 299:1028202023. View Article : Google Scholar

56 

Miyazawa K, Itoh Y, Fu H and Miyazono K: Receptor-activated transcription factors and beyond: Multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem. 300:1072562024. View Article : Google Scholar

57 

Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND and Zhao YY: New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 292:76–83. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Gao S, Li X, Jiang Q, Liang Q, Zhang F, Li S, Zhang R, Luan J, Zhu J, Gu X, et al: PKM2 promotes pulmonary fibrosis by stabilizing TGF-β1 receptor I and enhancing TGF-β1 signaling. Sci Adv. 8:eabo09872022. View Article : Google Scholar

59 

Stolfi C, Troncone E, Marafini I and Monteleone G: Role of TGF-beta and Smad7 in gut inflammation, fibrosis and cancer. Biomolecules. 11:172020. View Article : Google Scholar : PubMed/NCBI

60 

Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Li X, Zhu F, Meng W, Zhang F, Hong J, Zhang G and Wang F: CYP2J2/EET reduces vulnerability to atrial fibrillation in chronic pressure overload mice. J Cell Mol Med. 24:862–874. 2020. View Article : Google Scholar

62 

Wang D, Wang X, Yang T, Tian H, Su Y and Wang Q: Long non-coding RNA Dancr affects myocardial fibrosis in atrial fibrillation mice via the MicroRNA-146b-5p/Smad5 axis. Acta Cardiol Sin. 39:841–853. 2023.PubMed/NCBI

63 

Tian L, Wang Y and Jang YY: Wnt signaling in biliary development, proliferation, and fibrosis. Exp Biol Med (Maywood). 247:360–367. 2022. View Article : Google Scholar

64 

Somanader DVN, Zhao P, Widdop RE and Samuel CS: The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol. 223:1161302024. View Article : Google Scholar

65 

Roberts JD, Murphy NP, Hamilton RM, Lubbers ER, James CA, Kline CF, Gollob MH, Krahn AD, Sturm AC, Musa H, et al: Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy. J Clin Invest. 129:3171–3184. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Lorenzon A, Calore M, Poloni G, De Windt LJ, Braghetta P and Rampazzo A: Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget. 8:60640–60655. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Lv X, Li J, Hu Y, Wang S, Yang C, Li C and Zhong G: Overexpression of miR-27b-3p targeting Wnt3a regulates the signaling pathway of Wnt/β-catenin and attenuates atrial fibrosis in rats with atrial fibrillation. Oxid Med Cell Longev. 2019:57037642019. View Article : Google Scholar

68 

Lai YJ, Tsai FC, Chang GJ, Chang SH, Huang CC, Chen WJ and Yeh YH: miR-181b targets semaphorin 3A to mediate TGF-β-induced endothelial-mesenchymal transition related to atrial fibrillation. J Clin Invest. 132:e1425482022. View Article : Google Scholar

69 

Zhang Z, Li L, Hu Z, Zhou L, Zhang Z, Xiong Y and Yao Y: Causal effects between atrial fibrillation and heart failure: Evidence from a bidirectional Mendelian randomization study. BMC Med Genomics. 16:1872023. View Article : Google Scholar : PubMed/NCBI

70 

Sagris M, Vardas EP, Theofilis P, Antonopoulos AS, Oikonomou E and Tousoulis D: Atrial fibrillation: Pathogenesis, predisposing factors, and genetics. Int J Mol Sci. 23:62021. View Article : Google Scholar

71 

Husti Z, Varró A and Baczkó I: Arrhythmogenic remodeling in the failing heart. Cells. 10:32032021. View Article : Google Scholar : PubMed/NCBI

72 

Sun Z, Zhou D, Xie X, Wang S, Wang Z, Zhao W, Xu H and Zheng L: Cross-talk between macrophages and atrial myocytes in atrial fibrillation. Basic Res Cardiol. 111:632016. View Article : Google Scholar : PubMed/NCBI

73 

Huiskes FG, Creemers EE and Brundel BJJM: Dissecting the molecular mechanisms driving electropathology in atrial fibrillation: Deployment of RNA sequencing and transcriptomic analyses. Cells. 12:22422023. View Article : Google Scholar : PubMed/NCBI

74 

Maury P, Sanchis K, Djouadi K, Cariou E, Delasnerie H, Boveda S, Fournier P, Itier R, Mondoly P, Voglimacci-Stephan opoli Q, et al: Catheter ablation of atrial arrhythmias in cardiac amyloidosis: Impact on heart failure and mortality. PLoS One. 19:e03017532024. View Article : Google Scholar : PubMed/NCBI

75 

Lei M, Wu L, Terrar DA and Huang CL: Modernized classification of cardiac antiarrhythmic drugs. Circulation. 138:1879–1896. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Mankad P and Kalahasty G: Antiarrhythmic drugs: Risks and benefits. Med Clin North Am. 103:821–834. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Romero G, Martin B, Gabris B and Salama G: Relaxin suppresses atrial fibrillation, reverses fibrosis and reduces inflammation in aged hearts. Biochem Pharmacol. 227:1164072024. View Article : Google Scholar : PubMed/NCBI

78 

Martin B, Gabris B, Barakat AF, Henry BL, Giannini M, Reddy RP, Wang X, Romero G and Salama G: Relaxin reverses maladaptive remodeling of the aged heart through Wnt-signaling. Sci Rep. 9:185452019. View Article : Google Scholar : PubMed/NCBI

79 

Hao H, Yan S, Zhao X, Han X, Fang N, Zhang Y, Dai C, Li W, Yu H, Gao Y, et al: Atrial myocyte-derived exosomal microRNA contributes to atrial fibrosis in atrial fibrillation. J Transl Med. 20:4072022. View Article : Google Scholar : PubMed/NCBI

80 

Benali K, Khairy P, Hammache N, Petzl A, Da Costa A, Verma A, Andrade JG and Macle L: Procedure-related complications of catheter ablation for atrial fibrillation. J Am Coll Cardiol. 81:2089–2099. 2023. View Article : Google Scholar : PubMed/NCBI

81 

Zhang Z, Xiao Y, Dai Y, Lin Q and Liu Q: Device therapy for patients with atrial fibrillation and heart failure with preserved ejection fraction. Heart Fail Rev. 29:417–430. 2024. View Article : Google Scholar :

82 

Li S, Wang Y, Yang W, Zhou D, Zhuang B, Xu J, He J, Yin G, Fan X, Wu W, et al: Cardiac MRI risk stratification for dilated cardiomyopathy with left ventricular ejection fraction of 35% or higher. Radiology. 306:e2130592023. View Article : Google Scholar

83 

Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, Liu PP, Matsumori A, Mazzanti A, McMurray J and Priori SG: Dilated cardiomyopathy. Nat Rev Dis Primers. 5:322019. View Article : Google Scholar : PubMed/NCBI

84 

Orphanou N, Papatheodorou E and Anastasakis A: Dilated cardiomyopathy in the era of precision medicine: Latest concepts and developments. Heart Fail Rev. 27:1173–1191. 2022. View Article : Google Scholar

85 

Liu M, Zhai L, Yang Z, Li S, Liu T, Chen A, Wang L, Li Y, Li R, Li C, et al: Integrative proteomic analysis reveals the cytoskeleton regulation and mitophagy difference between ischemic cardiomyopathy and dilated cardiomyopathy. Mol Cell Proteomics. 22:1006672023. View Article : Google Scholar : PubMed/NCBI

86 

Wang E, Zhou R, Li T, Hua Y, Zhou K, Li Y, Luo S and An Q: The molecular role of immune cells in dilated cardiomyopathy. Medicina (Kaunas). 59:12462023. View Article : Google Scholar : PubMed/NCBI

87 

Yuan S, Zhang X, Zhan J, Xie R, Fan J, Dai B, Zhao Y, Yin Z, Liu Q, Wang DW, et al: Fibroblast-localized lncRNA CFIRL promotes cardiac fibrosis and dysfunction in dilated cardiomyopathy. Sci China Life Sci. 67:1155–1169. 2024. View Article : Google Scholar : PubMed/NCBI

88 

Mado K, Chekulayev V, Shevchuk I, Puurand M, Tepp K and Kaambre T: On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. Am J Physiol Cell Physiol. 316:C657–C667. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Zhang J, Cheng L, Li Z, Li H, Liu Y, Zhan H, Xu H, Huang Y, Feng F and Li Y: Immune cells and related cytokines in dilated cardiomyopathy. Biomed Pharmacother. 171:1161592024. View Article : Google Scholar : PubMed/NCBI

90 

Cavusoglu Y, Tahmazov S, Murat S and Akay OM: Immunoadsorption therapy in refractory heart failure patients with dilated cardiomyopathy: A potential therapeutic option. Rev Assoc Med Bras (1992). 69:90–96. 2023. View Article : Google Scholar : PubMed/NCBI

91 

Zhong G, Chen C, Wu S, Chen J, Han Y, Zhu Q, Xu M, Nie Q and Wang L: Mechanism of angiotensin-converting enzyme inhibitors in the treatment of dilated cardiomyopathy based on a protein interaction network and molecular docking. Cardiovasc Diagn Ther. 13:534–549. 2023. View Article : Google Scholar : PubMed/NCBI

92 

Tong X, Shen L, Zhou X, Wang Y, Chang S and Lu S: Comparative efficacy of different drugs for the treatment of dilated cardiomyopathy: A systematic review and network meta-analysis. Drugs R D. 23:197–210. 2023. View Article : Google Scholar : PubMed/NCBI

93 

Jiao M, Wang X, Liang Y, Yang Y, Gu Y, Wang Z, Lv Z and Jin M: Effect of β-blocker therapy on the level of soluble ST2 protein in pediatric dilated cardiomyopathy. Medicina (Kaunas). 58:13392022. View Article : Google Scholar

94 

Ferreira JP, Butler J, Zannad F, Filippatos G, Schueler E, Steubl D, Zeller C, Januzzi JL, Pocock S, Packer M and Anker SD: Mineralocorticoid receptor antagonists and empagliflozin in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 79:1129–1137. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Eldemire R, Mestroni L and Taylor MRG: Genetics of dilated cardiomyopathy. Annu Rev Med. 75:417–426. 2024. View Article : Google Scholar :

96 

Jordan E, Peterson L, Ai T, Asatryan B, Bronicki L, Brown E, Celeghin R, Edwards M, Fan J, Ingles J, et al: Evidence-based assessment of genes in dilated cardiomyopathy. Circulation. 144:7–19. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Koga-Ikuta A, Fukushima S, Ishibashi-Ueda H, Tadokoro N, Kakuta T, Watanabe T, Fukushima N, Suzuki K, Fukui T and Fujita T: Immunocompetent cells in durable ventricular assist device-implanted non-ischaemic dilated cardiomyopathy. Gen Thorac Cardiovasc Surg. 70:685–693. 2022. View Article : Google Scholar : PubMed/NCBI

98 

Dziekiewicz M, Banaszewski M, Kuć M and Stępińska J: Intra-aortic balloon pump catheter insertion using a novel left external iliac artery approach in a case of chronic heart failure due to dilated cardiomyopathy. Am J Case Rep. 20:1826–1829. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Zhang X, Wei R, Wang X, Zhang W, Li M, Ni T, Weng W and Li Q: The neutrophil-to-lymphocyte ratio is associated with all-cause and cardiovascular mortality among individuals with hypertension. Cardiovasc Diabetol. 23:1172024. View Article : Google Scholar : PubMed/NCBI

100 

Messerli FH, Rimoldi SF and Bangalore S: The transition from hypertension to heart failure: Contemporary update. JACC Heart Fail. 5:543–551. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q and Chen X: Signaling pathways in vascular function and hypertension: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 8:1682023. View Article : Google Scholar : PubMed/NCBI

102 

Konukoglu D and Uzun H: Endothelial dysfunction and hypertension. Hypertension: From basic research to clinical practice. 511–540. 2017.

103 

Watson T, Goon PKY and Lip GYH: Endothelial progenitor cells, endothelial dysfunction, inflammation, and oxidative stress in hypertension. Antioxid Redox Signal. 10:1079–1088. 2008. View Article : Google Scholar : PubMed/NCBI

104 

Zhu N, Guo ZF, Kazama K, Yi B, Tongmuang N, Yao H, Yang R, Zhang C, Qin Y, Han L and Sun J: Epigenetic regulation of vascular smooth muscle cell phenotypic switch and neointimal formation by PRMT5. Cardiovasc Res. 119:2244–2255. 2023. View Article : Google Scholar : PubMed/NCBI

105 

Liard JF and Peters G: Role of the retention of water and sodium in two types of experimental renovascular hypertension in the rat. Pflugers Arch. 344:93–108. 1973. View Article : Google Scholar : PubMed/NCBI

106 

Hu Y, Lin L, Zhang L, Li Y, Cui X, Lu M, Zhang Z, Guan X, Zhang M, Hao J, et al: Identification of circulating plasma proteins as a mediator of hypertension-driven cardiac remodeling: A mediation mendelian randomization study. Hypertension. 81:1132–1144. 2024. View Article : Google Scholar : PubMed/NCBI

107 

Wang M, Han X, Yu T, Wang M, Luo W, Zou C, Li X, Li G, Wu G, Wang Y and Liang G: OTUD1 promotes pathological cardiac remodeling and heart failure by targeting STAT3 in cardiomyocytes. Theranostics. 13:2263–2280. 2023. View Article : Google Scholar : PubMed/NCBI

108 

Holopainen T, Räsänen M, Anisimov A, Tuomainen T, Zheng W, Tvorogov D, Hulmi JJ, Andersson LC, Cenni B, Tavi P, et al: Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling. Proc Natl Acad Sci USA. 112:13063–13068. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Li L, Fu W, Gong X, Chen Z, Tang L, Yang D, Liao Q, Xia X, Wu H, Liu C, et al: The role of G protein-coupled receptor kinase 4 in cardiomyocyte injury after myocardial infarction. Eur Heart J. 42:1415–1430. 2021. View Article : Google Scholar :

110 

Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K and Ahmadian MR: The microenvironment of the pathogenesis of cardiac hypertrophy. Cells. 12:17802023. View Article : Google Scholar : PubMed/NCBI

111 

Nakamura M and Sadoshima J: Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 15:387–407. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Bertaud A, Joshkon A, Heim X, Bachelier R, Bardin N, Leroyer AS and Blot-Chabaud M: Signaling pathways and potential therapeutic strategies in cardiac fibrosis. Int J Mol Sci. 24:17562023. View Article : Google Scholar : PubMed/NCBI

113 

Zhang W, Wang Q, Feng Y, Chen X, Yang L, Xu M, Wang X, Li W, Niu X and Gao D: MicroRNA-26a protects the heart against hypertension-induced myocardial fibrosis. J Am Heart Assoc. 9:e0179702020. View Article : Google Scholar : PubMed/NCBI

114 

Failer T, Amponsah-Offeh M, Neuwirth A, Kourtzelis I, Subramanian P, Mirtschink P, Peitzsch M, Matschke K, Tugtekin SM, Kajikawa T, et al: Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation. J Clin Invest. 132:e1261552022. View Article : Google Scholar : PubMed/NCBI

115 

Rai R, Sun T, Ramirez V, Lux E, Eren M, Vaughan DE and Ghosh AK: Acetyltransferase p300 inhibitor reverses hypertension-induced cardiac fibrosis. J Cell Mol Med. 23:3026–3031. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Lv SL, Zeng ZF, Gan WQ, Wang WQ, Li TG, Hou YF, Yan Z, Zhang RX and Yang M: Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation. Acta Pharmacol Sin. 42:2016–2032. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Johnson MT, Gudlur A, Zhang X, Xin P, Emrich SM, Yoast RE, Courjaret R, Nwokonko RM, Li W, Hempel N, et al: L-type Ca2+ channel blockers promote vascular remodeling through activation of STIM proteins. Proc Natl Acad Sci USA. 117:17369–17380. 2020. View Article : Google Scholar

118 

Zhang Y, Murugesan P, Huang K and Cai H: NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol. 17:170–194. 2020. View Article : Google Scholar

119 

Nardoianni G, Pala B, Scoccia A, Volpe M, Barbato E and Tocci G: Systematic review article: New drug strategies for treating resistant hypertension-the importance of a mechanistic, personalized approach. High Blood Press Cardiovasc Prev. 31:99–112. 2024. View Article : Google Scholar : PubMed/NCBI

120 

Zhang ZY, Yu YL, Asayama K, Hansen TW, Maestre GE and Staessen JA: Starting antihypertensive drug treatment with combination therapy: Controversies in hypertension-con side of the argument. Hypertension. 77:788–798. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, Dearani JA, Rowin EJ, Maron MS and Sherrid MV: Management of hypertrophic cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 79:390–414. 2022. View Article : Google Scholar : PubMed/NCBI

122 

Maron BA, Wang RS, Carnethon MR, Rowin EJ, Loscalzo J, Maron BJ and Maron MS: What causes hypertrophic cardiomyopathy? Am J Cardiol. 179:74–82. 2022. View Article : Google Scholar : PubMed/NCBI

123 

Cirino AL, Channaoui N and Ho C: Nonsyndromic hypertrophic cardiomyopathy overview. GeneReviews® [Internet]. Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE and Amemiya A: University of Washington; Seattle, WA: 1993

124 

Bazan SGZ, Oliveira GO, Silveira CFDSMPD, Reis FM, Malagutte KNDS, Tinasi LSN, Bazan R, Hueb JC and Okoshi K: Hypertrophic cardiomyopathy: A review. Arq Bras Cardiol. 115:927–935. 2020.In English, Portuguese. View Article : Google Scholar : PubMed/NCBI

125 

Homburger JR, Green EM, Caleshu C, Sunitha MS, Taylor RE, Ruppel KM, Metpally RP, Colan SD, Michels M, Day SM, et al: Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation. Proc Natl Acad Sci USA. 113:6701–6706. 2016. View Article : Google Scholar

126 

Lin LR, Hu XQ, Lu LH, Dai JZ, Lin NN, Wang RH, Xie ZX and Chen XM: MicroRNA expression profiles in familial hypertrophic cardiomyopathy with myosin-binding protein C3 (MYBPC3) gene mutations. BMC Cardiovasc Disord. 22:2782022. View Article : Google Scholar : PubMed/NCBI

127 

Parbhudayal RY, Harms HJ, Michels M, van Rossum AC, Germans T and van der Velden J: Increased myocardial oxygen consumption precedes contractile dysfunction in hypertrophic cardiomyopathy caused by pathogenic TNNT2 gene variants. J Am Heart Assoc. 9:e0153162020. View Article : Google Scholar : PubMed/NCBI

128 

Fahed AC, Nemer G, Bitar FF, Arnaout S, Abchee AB, Batrawi M, Khalil A, Abou Hassan OK, DePalma SR, McDonough B, et al: Founder mutation in N terminus of cardiac troponin i causes malignant hypertrophic cardiomyopathy. Circ Genom Precis Med. 13:444–452. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Schulz EM, Wilder T, Chowdhury SA, Sheikh HN, Wolska BM, Solaro RJ and Wieczorek DF: Decreasing tropomyosin phosphorylation rescues tropomyosin-induced familial hypertrophic cardiomyopathy. J Biol Chem. 288:28925–28935. 2013. View Article : Google Scholar : PubMed/NCBI

130 

Wijnker PJM and van der Velden J: Mutation-specific pathology and treatment of hypertrophic cardiomyopathy in patients, mouse models and human engineered heart tissue. Biochim Biophys Acta Mol Basis Dis. 1866:1657742020. View Article : Google Scholar : PubMed/NCBI

131 

Enriquez AD and Goldman ME: Management of hypertrophic cardiomyopathy. Ann Glob Health. 80:35–45. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Lehman SJ, Crocini C and Leinwand LA: Targeting the sarcomere in inherited cardiomyopathies. Nat Rev Cardiol. 19:353–363. 2022. View Article : Google Scholar : PubMed/NCBI

133 

Pradeep R, Akram A, Proute MC, Kothur NR, Georgiou P, Serhiyenia T, Shi W, Kerolos ME and Mostafa JA: Understanding the genetic and molecular basis of familial hypertrophic cardiomyopathy and the current trends in gene therapy for its management. Cureus. 13:e175482021.PubMed/NCBI

134 

Liu T, Hao Y, Zhang Z, Zhou H, Peng S, Zhang D, Li K, Chen Y and Chen M: Advanced cardiac patches for the treatment of myocardial infarction. Circulation. 149:2002–2020. 2024. View Article : Google Scholar : PubMed/NCBI

135 

Golforoush P, Yellon DM and Davidson SM: Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol. 115:732020. View Article : Google Scholar : PubMed/NCBI

136 

Jiang H, Fang T and Cheng Z: Mechanism of heart failure after myocardial infarction. J Int Med Res. 51:30006052312025732023. View Article : Google Scholar : PubMed/NCBI

137 

Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J, Adámková V and Wohlfahrt P: Heart failure after myocardial infarction: Incidence and predictors. ESC Heart Fail. 8:222–237. 2021. View Article : Google Scholar

138 

Feng R, Wang D, Li T, Liu X, Peng T, Liu M, Ren G, Xu H, Luo H, Lu D, et al: Elevated SLC40A1 impairs cardiac function and exacerbates mitochondrial dysfunction, oxidative stress, and apoptosis in ischemic myocardia. Int J Biol Sci. 20:414–432. 2024. View Article : Google Scholar : PubMed/NCBI

139 

Dharmakumar R, Nair AR, Kumar A and Francis J: Myocardial infarction and the fine balance of iron. JACC Basic Transl Sci. 6:581–583. 2021. View Article : Google Scholar : PubMed/NCBI

140 

Zhao WK, Zhou Y, Xu TT and Wu Q: Ferroptosis: Opportunities and challenges in myocardial ischemia-reperfusion injury. Oxid Med Cell Longev. 2021:99296872021. View Article : Google Scholar : PubMed/NCBI

141 

Marunouchi T, Onda S, Kurasawa M and Tanonaka K: Angiotensin II is involved in MLKL activation during the development of heart failure following myocardial infarction in rats. Biol Pharm Bull. 47:809–817. 2024. View Article : Google Scholar : PubMed/NCBI

142 

Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO and Radaelli E: Mechanisms of regulated cell death: Current perspectives. Vet Pathol. 58:596–623. 2021. View Article : Google Scholar : PubMed/NCBI

143 

Li A, Gao M, Liu B, Qin Y, Chen L, Liu H, Wu H and Gong G: Mitochondrial autophagy: Molecular mechanisms and implications for cardiovascular disease. Cell Death Dis. 13:4442022. View Article : Google Scholar : PubMed/NCBI

144 

Held PH, Yusuf S and Furberg CD: Calcium channel blockers in acute myocardial infarction and unstable angina: An overview. BMJ. 299:1187–1192. 1989. View Article : Google Scholar : PubMed/NCBI

145 

Makarewich CA, Zhang H, Davis J, Correll RN, Trappanese DM, Hoffman NE, Troupes CD, Berretta RM, Kubo H, Madesh M, et al: Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction. Circ Res. 115:567–580. 2014. View Article : Google Scholar : PubMed/NCBI

146 

Cui T, Liu W, Yu C, Ren J, Li Y, Shi X, Li Q and Zhang J: Protective effects of allicin on acute myocardial infarction in rats via hydrogen sulfide-mediated regulation of coronary arterial vasomotor function and myocardial calcium transport. Front Pharmacol. 12:7522442022. View Article : Google Scholar : PubMed/NCBI

147 

Pietrzykowski Ł, Michalski P, Kosobucka A, Kasprzak M, Fabiszak T, Stolarek W, Siller-Matula JM and Kubica A: Medication adherence and its determinants in patients after myocardial infarction. Sci Rep. 10:120282020. View Article : Google Scholar : PubMed/NCBI

148 

Heart Outcomes Prevention Evaluation Study Investigators; Yusuf S, Sleight P, Pogue J, Bosch J, Davies R and Dagenais G: Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 342:145–153. 2000. View Article : Google Scholar : PubMed/NCBI

149 

Khan SU, Singh M, Valavoor S, Khan MU, Lone AN, Khan MZ, Khan MS, Mani P, Kapadia SR, Michos ED, et al: Dual antiplatelet therapy after percutaneous coronary intervention and drug-eluting stents: A systematic review and network meta-analysis. Circulation. 142:1425–1436. 2020. View Article : Google Scholar : PubMed/NCBI

150 

Yandrapalli S, Andries G, Gupta S, Dajani AR and Aronow WS: Investigational drugs for the treatment of acute myocardial infarction: Focus on antiplatelet and anticoagulant agents. Expert Opin Investig Drugs. 28:223–234. 2019. View Article : Google Scholar

151 

AIM-HIGH Investigators; Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, McBride R, Teo K and Weintraub W: Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 365:2255–2267. 2011. View Article : Google Scholar : PubMed/NCBI

152 

Tsai IT and Sun CK: Stem cell therapy against ischemic heart disease. Int J Mol Sci. 25:37782024. View Article : Google Scholar : PubMed/NCBI

153 

Broch K, Anstensrud AK, Woxholt S, Sharma K, Tøllefsen IM, Bendz B, Aakhus S, Ueland T, Amundsen BH, Damås JK, et al: Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J Am Coll Cardiol. 77:1845–1855. 2021. View Article : Google Scholar : PubMed/NCBI

154 

Shi S, Chen Y, Luo Z, Nie G and Dai Y: Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun Signal. 21:612023. View Article : Google Scholar : PubMed/NCBI

155 

Ye X, Li Y, Lv B, Qiu B, Zhang S, Peng H, Kong W, Tang C, Huang Y, Du J and Jin H: Endogenous hydrogen sulfide persulfidates caspase-3 at cysteine 163 to inhibit doxorubicin-induced cardiomyocyte apoptosis. Oxid Med Cell Longev. 2022:61537722022. View Article : Google Scholar : PubMed/NCBI

156 

Gammella E, Recalcati S, Rybinska I, Buratti P and Cairo G: Iron-induced damage in cardiomyopathy: Oxidative-dependent and independent mechanisms. Oxid Med Cell Longev. 2015:2301822015. View Article : Google Scholar : PubMed/NCBI

157 

Cheng CF and Lian WS: Prooxidant mechanisms in iron overload cardiomyopathy. Biomed Res Int. 2013:7405732013. View Article : Google Scholar : PubMed/NCBI

158 

Fatmi A, Saadi W, Beltrán-García J, García-Giménez JL and Pallardó FV: The endothelial glycocalyx and neonatal sepsis. Int J Mol Sci. 24:3642022. View Article : Google Scholar

159 

Carthy CM, Yang D, Anderson DR, Wilson JE and McManus BM: Myocarditis as systemic disease: New perspectives on pathogenesis. Clin Exp Pharmacol Physiol. 24:997–1003. 1997. View Article : Google Scholar : PubMed/NCBI

160 

Lasrado N and Reddy J: An overview of the immune mechanisms of viral myocarditis. Rev Med Virol. 30:1–14. 2020. View Article : Google Scholar : PubMed/NCBI

161 

Dimitropoulos G, Tahrani AA and Stevens MJ: Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes. 5:17–39. 2014. View Article : Google Scholar : PubMed/NCBI

162 

Lin S, Dai S, Lin J, Liang X, Wang W, Huang W, Ye B and Hong X: Oridonin relieves angiotensin II-induced cardiac remodeling via inhibiting GSDMD-mediated inflammation. Cardiovasc Ther. 2022:31679592022. View Article : Google Scholar : PubMed/NCBI

163 

Chen S, Huang Z, Liang Y, Zhao X, Aobuliksimu X, Wang B, He Y, Kang Y, Huang H, Li Q, et al: Five-year mortality of heart failure with preserved, mildly reduced, and reduced ejection fraction in a 4880 Chinese cohort. ESC Heart Fail. 9:2336–2347. 2022. View Article : Google Scholar : PubMed/NCBI

164 

Liu M, López de Juan Abad B and Cheng K: Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev. 173:504–519. 2021. View Article : Google Scholar : PubMed/NCBI

165 

Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J and González A: Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med. 93:1011942023. View Article : Google Scholar : PubMed/NCBI

166 

Martin TG, Juarros MA and Leinwand LA: Regression of cardiac hypertrophy in health and disease: Mechanisms and therapeutic potential. Nat Rev Cardiol. 20:347–363. 2023. View Article : Google Scholar : PubMed/NCBI

167 

Su Z, Yang Z, Xu Y, Chen Y and Yu Q: Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 14:482015. View Article : Google Scholar : PubMed/NCBI

168 

Dong Y, Liu C, Zhao Y, Ponnusamy M, Li P and Wang K: Role of noncoding RNAs in regulation of cardiac cell death and cardiovascular diseases. Cell Mol Life Sci. 75:291–300. 2018. View Article : Google Scholar

169 

Cai K, Jiang H, Zou Y, Song C, Cao K, Chen S, Wu Y, Zhang Z, Geng D, Zhang N, et al: Programmed death of cardiomyocytes in cardiovascular disease and new therapeutic approaches. Pharmacol Res. 206:1072812024. View Article : Google Scholar : PubMed/NCBI

170 

Chiong M, Wang ZV, Pedrozo Z, Cao DJ, Troncoso R, Ibacache M, Criollo A, Nemchenko A, Hill JA and Lavandero S: Cardiomyocyte death: Mechanisms and translational implications. Cell Death Dis. 2:e2442011. View Article : Google Scholar : PubMed/NCBI

171 

Topriceanu CC, Pereira AC, Moon JC, Captur G and Ho CY: Meta-analysis of penetrance and systematic review on transition to disease in genetic hypertrophic cardiomyopathy. Circulation. 149:107–123. 2024. View Article : Google Scholar :

172 

Ye C, Zheng F, Wu N, Zhu GQ and Li XZ: Extracellular vesicles in vascular remodeling. Acta Pharmacol Sin. 43:2191–2201. 2022. View Article : Google Scholar : PubMed/NCBI

173 

Jordan-Rios A, Cannatà A, Bromage D and McDonagh T: Challenges in the implementation of medical therapy in heart failure. JACC Heart Fail. 11:607–609. 2023. View Article : Google Scholar : PubMed/NCBI

174 

Pacesa M, Pelea O and Jinek M: Past, present, and future of CRISPR genome editing technologies. Cell. 187:1076–1100. 2024. View Article : Google Scholar : PubMed/NCBI

175 

Xiao Y, Zhao J, Tuazon JP, Borlongan CV and Yu G: MicroRNA-133a and myocardial infarction. Cell Transplant. 28:831–838. 2019. View Article : Google Scholar : PubMed/NCBI

176 

Reichart D, Newby GA, Wakimoto H, Lun M, Gorham JM, Curran JJ, Raguram A, DeLaughter DM, Conner DA, Marsiglia JDC, et al: Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat Med. 29:412–421. 2023. View Article : Google Scholar : PubMed/NCBI

177 

Morris KV and Mattick JS: The rise of regulatory RNA. Nat Rev Genet. 15:423–437. 2014. View Article : Google Scholar : PubMed/NCBI

178 

Shim JS, Song WJ and Morice AH: Drug-induced cough. Physiol Res. 69(Suppl 1): S81–S92. 2020. View Article : Google Scholar : PubMed/NCBI

179 

Wong GW and Wright JM: Blood pressure lowering efficacy of nonselective beta-blockers for primary hypertension. Cochrane Database Syst Rev. 2014:CD0074522024.

180 

Cheng CJ, Rodan AR and Huang CL: Emerging targets of diuretic therapy. Clin Pharmacol Ther. 102:420–435. 2017. View Article : Google Scholar : PubMed/NCBI

181 

Haley KE, Almas T, Shoar S, Shaikh S, Azhar M, Cheema FH and Hameed A: The role of anti-inflammatory drugs and nanoparticle-based drug delivery models in the management of ischemia-induced heart failure. Biomed Pharmacother. 142:1120142021. View Article : Google Scholar : PubMed/NCBI

182 

Pala R, Anju VT, Dyavaiah M, Busi S and Nauli SM: Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases. Int J Nanomedicine. 15:3741–3769. 2020. View Article : Google Scholar : PubMed/NCBI

183 

Qiu R, Han S, Wei X, Zhong C, Li M, Hu J, Wang P, Zhao C, Chen J and Shang H: Development of a core outcome set for the benefits and adverse events of acute heart failure in clinical trials of traditional Chinese medicine and western medicine: A study protocol. Front Med (Lausanne). 8:6770682021. View Article : Google Scholar : PubMed/NCBI

184 

Chen X, Ma Y, Li J, Yao L, Gui M, Lu B, Zhou X, Wang M and Fu D: The efficacy of ginseng-containing traditional Chinese medicine in patients with acute decompensated heart failure: A systematic review and meta-analysis. Front Pharmacol. 13:10830012023. View Article : Google Scholar : PubMed/NCBI

185 

Ji MY, Bo A, Yang M, Xu JF, Jiang LL, Zhou BC and Li MH: The pharmacological effects and health benefits of platycodon grandiflorus-a medicine food homology species. Foods. 9:1422020. View Article : Google Scholar : PubMed/NCBI

186 

Tang MM, Zhao ST, Li RQ and Hou W: Therapeutic mechanisms of ginseng in coronary heart disease. Front Pharmacol. 14:12710292023. View Article : Google Scholar : PubMed/NCBI

187 

Yang L, Jiang H, Wang S, Hou A, Man W, Zhang J, Guo X, Yang B, Kuang H and Wang Q: Discovering the major antitussive, expectorant, and anti-inflammatory bioactive constituents in Tussilago farfara L. based on the spectrum-effect relationship combined with chemometrics. Molecules. 25:6202020. View Article : Google Scholar : PubMed/NCBI

188 

Tan D, Tseng HHL, Zhong Z, Wang S, Vong CT and Wang Y: Glycyrrhizic acid and its derivatives: Promising candidates for the management of type 2 diabetes mellitus and its complications. Int J Mol Sci. 23:109882022. View Article : Google Scholar : PubMed/NCBI

189 

Feng Q, Ling L, Yuan H, Guo Z and Ma J: Ginsenoside Rd: A promising target for ischemia-reperfusion injury therapy (A mini review). Biomed Pharmacother. 171:1161112024. View Article : Google Scholar : PubMed/NCBI

190 

MacRitchie N and Maffia P: Light sheet fluorescence microscopy for quantitative three-dimensional imaging of vascular remodelling. Cardiovasc Res. 117:348–350. 2021. View Article : Google Scholar :

191 

Yu B, Lu Q, Li J, Cheng X, Hu H, Li Y, Che T, Hua Y, Jiang H, Zhang Y, et al: Cryo-EM structure of human HCN3 channel and its regulation by cAMP. J Biol Chem. 300:1072882024. View Article : Google Scholar : PubMed/NCBI

192 

Li H, Zhang X, Wang F, Zhou L, Yin Z, Fan J, Nie X, Wang P, Fu XD, Chen C and Wang DW: MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation. Circulation. 134:734–751. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Guo S, Hu Y, Ling L, Yang Z, Wan L, Yang X, Lei M, Guo X and Ren Z: Molecular mechanisms and intervention approaches of heart failure (Review). Int J Mol Med 56: 125, 2025.
APA
Guo, S., Hu, Y., Ling, L., Yang, Z., Wan, L., Yang, X. ... Ren, Z. (2025). Molecular mechanisms and intervention approaches of heart failure (Review). International Journal of Molecular Medicine, 56, 125. https://doi.org/10.3892/ijmm.2025.5566
MLA
Guo, S., Hu, Y., Ling, L., Yang, Z., Wan, L., Yang, X., Lei, M., Guo, X., Ren, Z."Molecular mechanisms and intervention approaches of heart failure (Review)". International Journal of Molecular Medicine 56.2 (2025): 125.
Chicago
Guo, S., Hu, Y., Ling, L., Yang, Z., Wan, L., Yang, X., Lei, M., Guo, X., Ren, Z."Molecular mechanisms and intervention approaches of heart failure (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 125. https://doi.org/10.3892/ijmm.2025.5566
Copy and paste a formatted citation
x
Spandidos Publications style
Guo S, Hu Y, Ling L, Yang Z, Wan L, Yang X, Lei M, Guo X and Ren Z: Molecular mechanisms and intervention approaches of heart failure (Review). Int J Mol Med 56: 125, 2025.
APA
Guo, S., Hu, Y., Ling, L., Yang, Z., Wan, L., Yang, X. ... Ren, Z. (2025). Molecular mechanisms and intervention approaches of heart failure (Review). International Journal of Molecular Medicine, 56, 125. https://doi.org/10.3892/ijmm.2025.5566
MLA
Guo, S., Hu, Y., Ling, L., Yang, Z., Wan, L., Yang, X., Lei, M., Guo, X., Ren, Z."Molecular mechanisms and intervention approaches of heart failure (Review)". International Journal of Molecular Medicine 56.2 (2025): 125.
Chicago
Guo, S., Hu, Y., Ling, L., Yang, Z., Wan, L., Yang, X., Lei, M., Guo, X., Ren, Z."Molecular mechanisms and intervention approaches of heart failure (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 125. https://doi.org/10.3892/ijmm.2025.5566
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team