You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Hany M, Rehman B, Rizvi A and Chapman J: Schizophrenia. StatPearls. StatPearls Publishing; Treasure Island, FL: 2024 | |
|
Jauhar S, Johnstone M and McKenna PJ: Schizophrenia. Lancet. 399:473–486. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Keshavan MS, Collin G, Guimond S, Kelly S, Prasad KM and Lizano P: Neuroimaging in schizophrenia. Neuroimaging Clin N Am. 30:73–83. 2020. View Article : Google Scholar : | |
|
DeLisi LE, Szulc KU, Bertisch HC, Majcher M and Brown K: Understanding structural brain changes in schizophrenia. Dialogues Clin Neurosci. 8:71–78. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Goldwaser EL, Swanson RL II, Arroyo EJ, Venkataraman V, Kosciuk MC, Nagele RG, Hong LE and Acharya NK: A preliminary report: The hippocampus and surrounding temporal cortex of patients with schizophrenia have impaired blood-brain barrier. Front Hum Neurosci. 16:8369802022. View Article : Google Scholar : PubMed/NCBI | |
|
Goldwaser EL, Wang DJJ, Adhikari BM, Chiappelli J, Shao X, Yu J, Lu T, Chen S, Marshall W, Yuen A, et al: Evidence of neurovascular water exchange and endothelial vascular dysfunction in schizophrenia: An exploratory study. Schizophr Bull. 49:1325–1335. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Pardridge WM: Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 32:1959–1972. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Daneman R and Prat A: The blood-brain barrier. Cold Spring Harb Perspect Biol. 7:a0204122015. View Article : Google Scholar : PubMed/NCBI | |
|
Knox EG, Aburto MR, Clarke G, Cryan JF and O'Driscoll CM: The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry. 27:2659–2673. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Najjar S, Pahlajani S, De Sanctis V, Stern JNH, Najjar A and Chong D: Neurovascular unit dysfunction and blood-brain barrier hyperpermeability contribute to schizophrenia neurobiology: A theoretical integration of clinical and experimental evidence. Front Psychiatry. 8:832017. View Article : Google Scholar : PubMed/NCBI | |
|
Puvogel S, Palma V and Sommer IEC: Brain vasculature disturbance in schizophrenia. Curr Opin Psychiatry. 35:146–156. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Greene C, Kealy J, Humphries MM, Gong Y, Hou J, Hudson N, Cassidy LM, Martiniano R, Shashi V, Hooper SR, et al: Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol Psychiatry. 23:2156–2166. 2018. View Article : Google Scholar : | |
|
Greene C, Hanley N and Campbell M: Blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders. Transl Psychiatry. 10:3732020. View Article : Google Scholar : PubMed/NCBI | |
|
Moussiopoulou J, Yakimov V, Roell L, Rauchmann BS, Toth H, Melcher J, Jäger I, Lutz I, Kallweit MS, Papazov B, et al: Higher blood-brain barrier leakage in schizophrenia-spectrum disorders: A comparative dynamic contrast-enhanced magnetic resonance imaging study with healthy controls. Brain Behav Immun. 128:256–265. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Murray AJ, Rogers JC, Katshu MZUH, Liddle PF and Upthegrove R: Oxidative stress and the pathophysiology and symptom profile of schizophrenia spectrum disorders. Front Psychiatry. 12:7034522021. View Article : Google Scholar : PubMed/NCBI | |
|
Su G, Chen Y, Li X and Shao JW: Virus versus host: Influenza A virus circumvents the immune responses. Front Microbiol. 15:13945102024. View Article : Google Scholar : PubMed/NCBI | |
|
Giordano GM, Bucci P, Mucci A, Pezzella P and Galderisi S: Gender differences in clinical and psychosocial features among persons with schizophrenia: A mini review. Front Psychiatry. 12:7891792021. View Article : Google Scholar | |
|
Maurus I, Wagner S, Campana M, Roell L, Strauss J, Fernando P, Muenz S, Eichhorn P, Schmitt A, Karch S, et al: The relationship between blood-brain barrier dysfunction and neurocognitive impairments in first-episode psychosis: Findings from a retrospective chart analysis. BJPsych Open. 9:e602023. View Article : Google Scholar : PubMed/NCBI | |
|
McCutcheon RA, Reis Marques T and Howes OD: schizophrenia-an overview. JAMA Psychiatry. 77:201–210. 2020. View Article : Google Scholar | |
|
Kay SR, Fiszbein A and Opler LA: The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 13:261–276. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Lim K, Peh OH, Yang Z, Rekhi G, Rapisarda A, See YM, Rashid NAA, Ang MS, Lee SA, Sim K, et al: Large-scale evaluation of the positive and negative syndrome scale (PANSS) symptom architecture in schizophrenia. Asian J Psychiatr. 62:1027322021. View Article : Google Scholar : PubMed/NCBI | |
|
Karlsgodt KH, Sun D and Cannon TD: Structural and functional brain abnormalities in schizophrenia. Curr Dir Psychol Sci. 19:226–231. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Dabiri M, Dehghani Firouzabadi F, Yang K, Barker PB, Lee RR and Yousem DM: Neuroimaging in schizophrenia: A review article. Front Neurosci. 16:10428142022. View Article : Google Scholar : PubMed/NCBI | |
|
Tønnesen S, Kaufmann T, Doan NT, Alnæs D, Córdova-Palomera A, Meer DV, Rokicki J, Moberget T, Gurholt TP, Haukvik UK, et al: White matter aberrations and age-related trajectories in patients with schizophrenia and bipolar disorder revealed by diffusion tensor imaging. Sci Rep. 8:141292018. View Article : Google Scholar : PubMed/NCBI | |
|
Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz FA and Shenton ME: A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res. 41:15–30. 2007. View Article : Google Scholar | |
|
Trifu SC, Kohn B, Vlasie A and Patrichi BE: Genetics of schizophrenia (review). Exp Ther Med. 20:3462–3468. 2020.PubMed/NCBI | |
|
V'Kovski P, Kratzel A, Steiner S, Stalder H and Thiel V: Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol. 19:155–170. 2021. View Article : Google Scholar | |
|
Georgiades A, Almuqrin A, Rubinic P, Mouhitzadeh K, Tognin S and Mechelli A: Psychosocial stress, interpersonal sensitivity, and social withdrawal in clinical high risk for psychosis: A systematic review. Schizophrenia (Heidelb). 9:382023. View Article : Google Scholar : PubMed/NCBI | |
|
Nisha Aji K, Lalang N, Ramos-Jiménez C, Rahimian R, Mechawar N, Turecki G, Chartrand D, Boileau I, Meyer JH, Rusjan PM and Mizrahi R: Evidence of altered monoamine oxidase B, an astroglia marker, in early psychosis and high-risk state. Mol Psychiatry. 30:2049–2058. 2025. View Article : Google Scholar | |
|
Schmitt A, Falkai P and Papiol S: Neurodevelopmental disturbances in schizophrenia: Evidence from genetic and environmental factors. J Neural Transm (Vienna). 130:195–205. 2023. View Article : Google Scholar | |
|
Kotsiri I, Resta P, Spyrantis A, Panotopoulos C, Chaniotis D, Beloukas A and Magiorkinis E: Viral infections and schizophrenia: A comprehensive review. Viruses. 15:13452023. View Article : Google Scholar : PubMed/NCBI | |
|
Selemon LD and Zecevic N: Schizophrenia: A tale of two critical periods for prefrontal cortical development. Transl Psychiatry. 5:e6232015. View Article : Google Scholar : PubMed/NCBI | |
|
Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J, Baum M, Van Doren V, et al: Schizophrenia risk from complex variation of complement component 4. Nature. 530:177–183. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Uliana DL, Zhu X, Gomes FV and Grace AA: Using animal models for the studies of schizophrenia and depression: The value of translational models for treatment and prevention. Front Behav Neurosci. 16:9353202022. View Article : Google Scholar : PubMed/NCBI | |
|
Mei L and Xiong WC: Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci. 9:437–452. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Soares DC, Carlyle BC, Bradshaw NJ and Porteous DJ: DISC1: Structure, function, and therapeutic potential for major mental illness. ACS Chem Neurosci. 2:609–632. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Xu J, Zhu L, Xu P, Chang L, Han Y and Wu Q: Disrupted in schizophrenia 1 reverse ectopic migration of neural precursors in mouse hilus after pilocarpine-induced status epilepticus. Mol Neurobiol. 60:6689–6703. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Breitmeyer R, Vogel S, Heider J, Hartmann SM, Wüst R, Keller AL, Binner A, Fitzgerald JC, Fallgatter AJ and Volkmer H: Regulation of synaptic connectivity in schizophrenia spectrum by mutual neuron-microglia interaction. Commun Biol. 6:4722023. View Article : Google Scholar : PubMed/NCBI | |
|
McGrath J, Saari K, Hakko H, Jokelainen J, Jones P, Järvelin MR, Chant D and Isohanni M: Vitamin D supplementation during the first year of life and risk of schizophrenia: A Finnish birth cohort study. Schizophr Res. 67:237–245. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Duan L, Li S, Chen D, Shi Y, Zhou X and Feng Y: Causality between autoimmune diseases and schizophrenia: A bidirectional Mendelian randomization study. BMC Psychiatry. 24:8172024. View Article : Google Scholar : PubMed/NCBI | |
|
Bondrescu M, Dehelean L, Farcas SS, Papava I, Nicoras V, Podaru CA, Sava M, Bilavu ES, Putnoky S and Andreescu NI: Cognitive impairments related to COMT and neuregulin 1 phenotypes as transdiagnostic markers in schizophrenia spectrum patients. J Clin Med. 13:64052024. View Article : Google Scholar : PubMed/NCBI | |
|
Bergen SE, Fanous AH, Walsh D, O'Neill FA and Kendler KS: Polymorphisms in SLC6A4, PAH, GABRB3, and MAOB and modification of psychotic disorder features. Schizophr Res. 109:94–97. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Yang AC and Tsai SJ: New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci. 18:16892017. View Article : Google Scholar : PubMed/NCBI | |
|
Luvsannyam E, Jain MS, Pormento MKL, Siddiqui H, Balagtas ARA, Emuze BO and Poprawski T: Neurobiology of schizophrenia: A comprehensive review. Cureus. 14:e239592022.PubMed/NCBI | |
|
Wu Q, Huang J and Wu R: Drugs based on NMDAR hypofunction hypothesis in schizophrenia. Front Neurosci. 15:6410472021. View Article : Google Scholar : PubMed/NCBI | |
|
McCutcheon RA, Krystal JH and Howes OD: Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment. World Psychiatry. 19:15–33. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kruse AO and Bustillo JR: Glutamatergic dysfunction in schizophrenia. Transl Psychiatry. 12:5002022. View Article : Google Scholar : PubMed/NCBI | |
|
Jain R, Chepke C, Davis LL, McIntyre RS and Raskind MA: Dysregulation of noradrenergic activity: Its role in conceptualizing and treating major depressive disorder, schizophrenia, agitation in Alzheimer's disease, and posttraumatic stress disorder. J Clin Psychiatry. 85:plunaro2417ah2024. View Article : Google Scholar : PubMed/NCBI | |
|
Murphy CE, Walker AK and Weickert CS: Neuroinflammation in schizophrenia: The role of nuclear factor kappa B. Transl Psychiatry. 11:5282021. View Article : Google Scholar : PubMed/NCBI | |
|
Hughes H, Brady LJ and Schoonover KE: GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: Implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci. 18:14408342024. View Article : Google Scholar : PubMed/NCBI | |
|
Müller N, Weidinger E, Leitner B and Schwarz MJ: The role of inflammation in schizophrenia. Front Neurosci. 9:3722015. View Article : Google Scholar : PubMed/NCBI | |
|
Borovcanin MM, Jovanovic I, Radosavljevic G, Pantic J, Minic Janicijevic S, Arsenijevic N and Lukic ML: Interleukin-6 in schizophrenia-is there a therapeutic relevance? Front Psychiatry. 8:2212017. View Article : Google Scholar : PubMed/NCBI | |
|
Brown AS: Exposure to prenatal infection and risk of schizophrenia. Front Psychiatry. 2:632011. View Article : Google Scholar : PubMed/NCBI | |
|
Jenkins TA: Perinatal complications and schizophrenia: Involvement of the immune system. Front Neurosci. 7:1102013. View Article : Google Scholar : PubMed/NCBI | |
|
Chandra J: The potential role of the p75 receptor in schizophrenia: Neuroimmunomodulation and making life or death decisions. Brain Behav Immun Health. 38:1007962024. View Article : Google Scholar : PubMed/NCBI | |
|
Hu W, MacDonald ML, Elswick DE and Sweet RA: The glutamate hypothesis of schizophrenia: Evidence from human brain tissue studies. Ann N Y Acad Sci. 1338:38–57. 2015. View Article : Google Scholar : | |
|
Chen L, Zhu L, Xu J, Xu P, Han Y, Chang L and Wu Q: Disrupted in schizophrenia 1 regulates ectopic neurogenesis in the mouse hilus after pilocarpine-induced status epilepticus. Neuroscience. 494:69–81. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J and Howland JG: An overview of animal models related to schizophrenia. Can J Psychiatry. 64:5–17. 2019. View Article : Google Scholar : | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Deserno L, Schlagenhauf F and Heinz A: Striatal dopamine, reward, and decision making in schizophrenia. Dialogues Clin Neurosci. 18:77–89. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Eisenberg DP, Yankowitz L, Ianni AM, Rubinstein DY, Kohn PD, Hegarty CE, Gregory MD, Apud JA and Berman KF: Presynaptic dopamine synthesis capacity in schizophrenia and striatal blood flow change during antipsychotic treatment and medication-free conditions. Neuropsychopharmacology. 42:2232–2241. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bulumulla C, Walpita D, Iyer N, Eddison M, Patel R, Alcor D, Ackerman D and Beyene AG: Synaptic specializations at dopamine release sites orchestrate efficient and precise neuromodulatory signaling. bioRxiv: 2024.09.16.613338. 2024. | |
|
Jahangir M, Zhou JS, Lang B and Wang XP: GABAergic system dysfunction and challenges in schizophrenia research. Front Cell Dev Biol. 9:6638542021. View Article : Google Scholar : PubMed/NCBI | |
|
Cohen SM, Tsien RW, Goff DC and Halassa MM: The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res. 167:98–107. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R and Jones PB: Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment. Lancet Psychiatry. 2:258–270. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Müller N and Schwarz MJ: Immune system and Schizophrenia. Curr Immunol Rev. 6:213–220. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Vallée A: Neuroinflammation in schizophrenia: The key role of the WNT/β-catenin pathway. Int J Mol Sci. 23:28102022. View Article : Google Scholar | |
|
Ebrahimi M, Teymouri K, Chen CC, Mohiuddin AG, Pouget JG, Goncalves VF, Tiwari AK, Zai CC and Kennedy JL: Association study of the complement component C4 gene and suicide risk in schizophrenia. Schizophrenia (Heidelb). 10:142024. View Article : Google Scholar : PubMed/NCBI | |
|
Mokhtari R and Lachman HM: The major histocompatibility complex (MHC) in schizophrenia: A review. J Clin Cell Immunol. 7:4792016. View Article : Google Scholar | |
|
Jeppesen R, Orlovska-Waast S, Sørensen NV, Christensen RHB and Benros ME: Cerebrospinal fluid and blood biomarkers of neuroinflammation and blood-brain barrier in psychotic disorders and individually matched healthy controls. Schizophr Bull. 48:1206–1216. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Orlovska-Waast S, Köhler-Forsberg O, Brix SW, Nordentoft M, Kondziella D, Krogh J and Benros ME: Cerebrospinal fluid markers of inflammation and infections in schizophrenia and affective disorders: A systematic review and meta-analysis. Mol Psychiatry. 24:869–887. 2019. View Article : Google Scholar : | |
|
Chaves C, Dursun SM, Tusconi M and Hallak JEC: Neuroinflammation and schizophrenia-is there a link? Front Psychiatry. 15:13569752024. View Article : Google Scholar | |
|
Garver DL, Tamas RL and Holcomb JA: Elevated interleukin-6 in the cerebrospinal fluid of a previously delineated schizophrenia subtype. Neuropsychopharmacology. 28:1515–1520. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Zhilyaeva TV, Rukavishnikov GV, Manakova EA and Mazo GE: Serum interleukin-6 in schizophrenia: Associations with clinical and sociodemographic characteristics. Consort Psychiatr. 4:5–16. 2023. | |
|
Fond G, Lançon C, Korchia T, Auquier P and Boyer L: The role of inflammation in the treatment of schizophrenia. Front Psychiatry. 11:1602020. View Article : Google Scholar : PubMed/NCBI | |
|
Miller BJ, Buckley P, Seabolt W, Mellor A and Kirkpatrick B: Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol Psychiatry. 70:663–671. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Li YJ and Zhu ZQ: To re-examine the intersection of microglial activation and neuroinflammation in neurodegenerative diseases from the perspective of pyroptosis. Front Aging Neurosci. 15:12842142023. View Article : Google Scholar : PubMed/NCBI | |
|
Salim S: Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 360:201–205. 2017. View Article : Google Scholar : | |
|
Choudhury Z and Lennox B: Maternal immune activation and schizophrenia-evidence for an immune priming disorder. Front Psychiatry. 12:5857422021. View Article : Google Scholar : PubMed/NCBI | |
|
Siafis S, Wu H, Wang D, Burschinski A, Nomura N, Takeuchi H, Schneider-Thoma J, Davis JM and Leucht S: Antipsychotic dose, dopamine D2 receptor occupancy and extrapyramidal side-effects: A systematic review and dose-response meta-analysis. Mol Psychiatry. 28:3267–3277. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kapur S, Zipursky R, Jones C, Remington G and Houle S: Relationship between dopamine D(2) occupancy, clinical response, and side effects: A double-blind PET study of first-episode schizophrenia. Am J Psychiatry. 157:514–520. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Grinchii D and Dremencov E: Mechanism of action of atypical antipsychotic drugs in mood disorders. Int J Mol Sci. 21:95322020. View Article : Google Scholar : PubMed/NCBI | |
|
Richtand NM, Welge JA, Logue AD, Keck PE Jr, Strakowski SM and McNamara RK: Dopamine and serotonin receptor binding and antipsychotic efficacy. Neuropsychopharmacology. 32:1715–1726. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Mørup MF, Kymes SM and Oudin Åström D: PLoS One. 15:e02341212020. View Article : Google Scholar | |
|
Potkin SG, Kane JM, Correll CU, Lindenmayer JP, Agid O, Marder SR, Olfson M and Howes OD: The neurobiology of treatment-resistant schizophrenia: Paths to antipsychotic resistance and a roadmap for future research. NPJ Schizophr. 6:12020. View Article : Google Scholar : PubMed/NCBI | |
|
Müller N, Strassnig M, Schwarz MJ, Ulmschneider M and Riedel M: COX-2 inhibitors as adjunctive therapy in schizophrenia. Expert Opin Investig Drugs. 13:1033–1044. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Deakin B, Suckling J, Barnes TRE, Byrne K, Chaudhry IB, Dazzan P, Drake RJ, Giordano A, Husain N, Jones PB, et al: The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): A randomised, double-blind, placebo-controlled trial. Lancet Psychiatry. 5:885–894. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tenório MCDS, Graciliano NG, Moura FA, Oliveira ACM and Goulart MOF: N-acetylcysteine (NAC): Impacts on human health. Antioxidants (Basel). 10:9672021. View Article : Google Scholar : PubMed/NCBI | |
|
Ghaderi A, Bussu A, Tsang C and Jafarnejad S: Effect of N-acetylcysteine on positive and negative syndrome scale associated with schizophrenia: A meta-analysis. Rev Clin Med. 7:134–144. 2020. | |
|
Titulaer J, Radhe O, Danielsson K, Dutheil S, Marcus MM, Jardemark K, Svensson TH, Snyder GL, Ericson M, Davis RE and Konradsson-Geuken Å: Lumateperone-mediated effects on prefrontal glutamatergic receptor-mediated neurotransmission: A dopamine D1 receptor dependent mechanism. Eur Neuropsychopharmacol. 62:22–35. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Edinoff A, Wu N, deBoisblanc C, Feltner CO, Norder M, Tzoneva V, Kaye AM, Cornett EM, Kaye AD, Viswanath O and Urits I: Lumateperone for the treatment of schizophrenia. Psychopharmacol Bull. 50:32–59. 2020.PubMed/NCBI | |
|
Correll CU, Davis RE, Weingart M, Saillard J, O'Gorman C, Kane JM, Lieberman JA, Tamminga CA, Mates S and Vanover KE: Efficacy and safety of lumateperone for treatment of schizophrenia: A randomized clinical trial. JAMA Psychiatry. 77:3492020. View Article : Google Scholar : PubMed/NCBI | |
|
Krasavin M, Peshkov AA, Lukin A, Komarova K, Vinogradova L, Smirnova D, Kanov EV, Kuvarzin SR, Murtazina RZ, Efimova EV, et al: Discovery and in vivo efficacy of trace amine-associated receptor 1 (TAAR1) agonist 4-(2-Aminoethyl)-N-(3,5-dimethylphenyl)piperidine-1-carboxamide hydrochloride (AP163) for the treatment of psychotic disorders. Int J Mol Sci. 23:115792022. View Article : Google Scholar : PubMed/NCBI | |
|
Achtyes ED, Hopkins SC, Dedic N, Dworak H, Zeni C and Koblan K: Ulotaront: Review of preliminary evidence for the efficacy and safety of a TAAR1 agonist in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 273:1543–1556. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Alajangi HK, Kaur M, Sharma A, Rana S, Thakur S, Chatterjee M, Singla N, Jaiswal PK, Singh G and Barnwal RP: Blood-brain barrier: Emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol Brain. 15:492022. View Article : Google Scholar : PubMed/NCBI | |
|
Greene C, Hanley N and Campbell M: Claudin-5: Gatekeeper of neurological function. Fluids Barriers CNS. 16:32019. View Article : Google Scholar : PubMed/NCBI | |
|
Zapata-Acevedo JF, García-Pérez V, Cabezas-Pérez R, Losada-Barragán M, Vargas-Sánchez K and González-Reyes RE: Laminin as a biomarker of blood-brain barrier disruption under neuroinflammation: A systematic review. Int J Mol Sci. 23:67882022. View Article : Google Scholar : PubMed/NCBI | |
|
Baeten KM and Akassoglou K: Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 71:1018–1039. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Serlin Y, Shelef I, Knyazer B and Friedman A: Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol. 38:2–6. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kadry H, Noorani B and Cucullo L: A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 17:692020. View Article : Google Scholar : PubMed/NCBI | |
|
Löscher W and Potschka H: Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2:86–98. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang F, Zhang J, Wang X, Han M, Fei Y and Wang J: Blood-brain barrier disruption in schizophrenia: Insights, mechanisms, and future directions. Int J Mol Sci. 26:8732025. View Article : Google Scholar : PubMed/NCBI | |
|
Oviedo-Salcedo T, Wagner E, Campana M, Gagsteiger A, Strube W, Eichhorn P, Louiset ML, Luykx J, de Witte LD, Kahn RS, et al: Cerebrospinal fluid abnormalities in first- and multi-episode schizophrenia-spectrum disorders: Impact of clinical and demographical variables. Transl Psychiatry. 11:6212021. View Article : Google Scholar : PubMed/NCBI | |
|
Koh SXT and Lee JKW: S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med. 44:369–385. 2014. View Article : Google Scholar | |
|
Rempe RG, Hartz AMS and Bauer B: Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab. 36:1481–1507. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Turner RJ and Sharp FR: Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci. 10:562016. View Article : Google Scholar : PubMed/NCBI | |
|
Omidinia E, Mashayekhi Mazar F, Shahamati P, Kianmehr A and Shahbaz Mohammadi H: Polymorphism of the CLDN5 gene and schizophrenia in an iranian population. Iran J Public Health. 43:79–83. 2014.PubMed/NCBI | |
|
Usta A, Kılıç F, Demirdaş A, Işık Ü, Doğuç DK and Bozkurt M: Serum zonulin and claudin-5 levels in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci. 271:767–773. 2021. View Article : Google Scholar | |
|
Zengil S and Laloğlu E: Evaluation of serum zonulin and occludin levels in bipolar disorder. Psychiatry Investig. 20:382–389. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fasano A: All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 9:F1000 Faculty Rev-69. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Puvogel S, Alsema A, Kracht L, Webster MJ, Weickert CS, Sommer IEC and Eggen BJL: Single-nucleus RNA sequencing of midbrain blood-brain barrier cells in schizophrenia reveals subtle transcriptional changes with overall preservation of cellular proportions and phenotypes. Mol Psychiatry. 27:4731–4740. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kornhuber J, Wiltfang J, Riederer P and Bleich S: Neuroleptic drugs in the human brain: Clinical impact of persistence and region-specific distribution. Eur Arch Psychiatry Clin Neurosci. 256:274–280. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kalaria RN, Akinyemi R and Ihara M: Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta. 1862:915–925. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kanbay M, Ozbek L, Guldan M, Abdel-Rahman SM, Sisman U, Mallamaci F and Zoccali C: Nutrition, cognition and chronic kidney disease: A comprehensive review of interactions and interventions. Eur J Clin Invest. 55:e700452025. View Article : Google Scholar : PubMed/NCBI | |
|
Case M, Stauffer VL, Ascher-Svanum H, Conley R, Kapur S, Kane JM, Kollack-Walker S, Jacob J and Kinon BJ: The heterogeneity of antipsychotic response in the treatment of schizophrenia. Psychol Med. 41:1291–1300. 2011. View Article : Google Scholar : | |
|
Kirch DG, Alexander RC, Suddath RL, Papadopoulos NM, Kaufmann CA, Daniel DG and Wyatt RJ: Blood-CSF barrier permeability and central nervous system immunoglobulin G in schizophrenia. J Neural Transm Gen Sect. 89:219–2132. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Rowsthorn E, Pham W, Nazem-Zadeh MR, Law M, Pase MP and Harding IH: Imaging the neurovascular unit in health and neurodegeneration: A scoping review of interdependencies between MRI measures. Fluids Barriers CNS. 20:972023. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Wang T, Zhang T, Yi S, Zhao S, Li N, Yang Y, Zhang F, Xu L, Shan B, et al: Increased blood-brain barrier permeability of the thalamus correlated with symptom severity and brain volume alterations in patients with schizophrenia. Biol Psychiatry Cogn Neurosci Neuroimaging. 7:1025–1034. 2022.PubMed/NCBI | |
|
Chung KJ, Abdelhafez YG, Spencer BA, Jones T, Tran Q, Nardo L, Chen MS Jr, Sarkar S, Medici V, Lyo V, et al: Quantitative PET imaging and modeling of molecular blood-brain barrier permeability. medRxiv [Preprint]: 2024.07.26.24311027. 2024. | |
|
Crockett AM, Ryan SK, Vásquez AH, Canning C, Kanyuch N, Kebir H, Ceja G, Gesualdi J, Zackai E, McDonald-McGinn D, et al: Disruption of the blood-brain barrier in 22q11.2 deletion syndrome. Brain. 144:1351–1360. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto Y, Greene C, Munnich A and Campbell M: The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS. 20:222023. View Article : Google Scholar : PubMed/NCBI | |
|
Casas BS, Arancibia-Altamirano D, Acevedo-La Rosa F, Garrido-Jara D, Maksaev V, Pérez-Monje D and Palma V: It takes two to tango: Widening our understanding of the onset of schizophrenia from a neuro-angiogenic perspective. Front Cell Dev Biol. 10:9467062022. View Article : Google Scholar : PubMed/NCBI | |
|
Laksitorini MD, Yathindranath V, Xiong W, Hombach-Klonisch S and Miller DW: Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci Rep. 9:197182019. View Article : Google Scholar | |
|
Liu X, Low SK, Atkins JR, Wu JQ, Reay WR, Cairns HM, Green MJ, Schall U, Jablensky A, Mowry B, et al: Wnt receptor gene FZD1 was associated with schizophrenia in genome-wide SNP analysis of the Australian schizophrenia research bank cohort. Aust N Z J Psychiatry. 54:902–908. 2020. View Article : Google Scholar | |
|
Fusaro A, Zecchin B, Giussani E, Palumbo E, Agüero-García M, Bachofen C, Bálint Á, Banihashem F, Banyard AC, Beerens N, et al: High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe-why trends of virus evolution are more difficult to predict. Virus Evol. 10:veae0272024. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Ji C and Shao A: Neurovascular unit dysfunction and neurodegenerative disorders. Front Neurosci. 14:3342020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao FY, Fu QQ, Spencer SJ, Kennedy GA, Conduit R, Zhang WJ and Zheng Z: Acupuncture: A promising approach for comorbid depression and insomnia in perimenopause. Nat Sci Sleep. 13:1823–1863. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Xue K, Yang M, Wang K, Xu Y, Wen B, Cheng J, Han S and Wei Y: Altered coupling of cerebral blood flow and functional connectivity strength in first-episode schizophrenia patients with auditory verbal hallucinations. Front Neurosci. 16:8210782022. View Article : Google Scholar : PubMed/NCBI | |
|
Sukumar N, Sabesan P, Anazodo U and Palaniyappan L: Neurovascular uncoupling in schizophrenia: A bimodal meta-analysis of brain perfusion and glucose metabolism. Front Psychiatry. 11:7542020. View Article : Google Scholar : PubMed/NCBI | |
|
Iadecola C: The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron. 96:17–42. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Matrisciano F: Functional nutrition as integrated intervention for in- and outpatient with schizophrenia. Curr Neuropharmacol. 21:2409–2423. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shebl N: Neuroinflammation and microglial activation in schizophrenia: An overview. Handbook of Neurodegenerative Disorders. Mohamed E: Springer Nature Singapore; Singapore: pp. 1–16. 2023 | |
|
Stanca S, Rossetti M, Bokulic Panichi L and Bongioanni P: The cellular dysfunction of the brain-blood barrier from endothelial cells to astrocytes: The pathway towards neurotransmitter impairment in schizophrenia. Int J Mol Sci. 25:12502024. View Article : Google Scholar : PubMed/NCBI | |
|
Bitanihirwe BK and Woo TU: Oxidative stress in schizophrenia: An integrated approach. Neurosci Biobehav Rev. 35:878–893. 2011. View Article : Google Scholar : | |
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P and Do KQ: Caught in vicious circles: A perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry. 27:1886–1897. 2022. View Article : Google Scholar : | |
|
Zang X, Chen S, Zhu J, Ma J and Zhai Y: The emerging role of central and peripheral immune systems in neurodegenerative diseases. Front Aging Neurosci. 14:8721342022. View Article : Google Scholar : PubMed/NCBI | |
|
Hammer C, Zerche M, Schneider A, Begemann M, Nave KA and Ehrenreich H: Apolipoprotein E4 carrier status plus circulating anti-NMDAR1 autoantibodies: Association with schizoaffective disorder. Mol Psychiatry. 19:1054–1056. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ladépêche L, Planagumà J, Thakur S, Suárez I, Hara M, Borbely JS, Sandoval A, Laparra-Cuervo L, Dalmau J and Lakadamyali M: NMDA receptor autoantibodies in autoimmune encephalitis cause a subunit-specific nanoscale redistribution of NMDA receptors. Cell Rep. 23:3759–3768. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hawkins RA, Mans AM, Hibbard LS, Davis DW and Biebuyck JF: Regional transport of some essential nutrients across the blood-brain barrier in normal and diseased states. Ann N Y Acad Sci. 529:40–49. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Srivastav S, Cui X, Varela RB, Kesby JP and Eyles D: Increasing dopamine synthesis in nigrostriatal circuits increases phasic dopamine release and alters dorsal striatal connectivity: Implications for schizophrenia. Schizophrenia (Heidelb). 9:692023. View Article : Google Scholar : PubMed/NCBI | |
|
Pollak TA, Drndarski S, Stone JM, David AS, McGuire P and Abbott NJ: The blood-brain barrier in psychosis. Lancet Psychiatry. 5:79–92. 2018. View Article : Google Scholar | |
|
Fang K, Wen B, Niu L, Wan B and Zhang W: Higher brain structural heterogeneity in schizophrenia. Front Psychiatry. 13:10173992022. View Article : Google Scholar : PubMed/NCBI | |
|
Gammon D, Cheng C, Volkovinskaia A, Baker GB and Dursun SM: Clozapine: Why is it so uniquely effective in the treatment of a range of neuropsychiatric disorders? Biomolecules. 11:10302021. View Article : Google Scholar : PubMed/NCBI | |
|
Brown AS: The environment and susceptibility to schizophrenia. Prog Neurobiol. 93:23–58. 2011. View Article : Google Scholar | |
|
Wang YI, Abaci HE and Shuler ML: Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 114:184–194. 2017. View Article : Google Scholar | |
|
Brown TD, Nowak M, Bayles AV, Prabhakarpandian B, Karande P, Lahann J, Helgeson ME and Mitragotri S: A microfluidic model of human brain (μHuB) for assessment of blood brain barrier. Bioeng Transl Med. 4:e101262019. View Article : Google Scholar | |
|
Kawakita S, Mandal K, Mou L, Mecwan MM, Zhu Y, Li S, Sharma S, Hernandez AL, Nguyen HT, Maity S, et al: Organ-On-A-chip models of the blood-brain barrier: Recent advances and future prospects. Small. 18:e22014012022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Liu C, Muok L, Zeng C and Li Y: Dynamic 3D On-chip BBB model design, development, and applications in neurological diseases. Cells. 10:31832021. View Article : Google Scholar : PubMed/NCBI | |
|
Stankovic I, Notaras M, Wolujewicz P, Lu T, Lis R, Ross ME and Colak D: Schizophrenia endothelial cells exhibit higher permeability and altered angiogenesis patterns in patient-derived organoids. Transl Psychiatry. 14:532024. View Article : Google Scholar : PubMed/NCBI | |
|
Dao L, You Z, Lu L, Xu T, Sarkar AK, Zhu H, Liu M, Calandrelli R, Yoshida G, Lin P, et al: Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell. 31:818–833.e11. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kiparizoska S and Ikuta T: Disrupted olfactory integration in schizophrenia: Functional connectivity study. Int J Neuropsychopharmacol. 20:740–746. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Moberg PJ, Agrin R, Gur RE, Gur RC, Turetsky BI and Doty RL: Olfactory dysfunction in schizophrenia: A qualitative and quantitative review. Neuropsychopharmacology. 21:325–340. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Cascella NG, Takaki M, Lin S and Sawa A: Neurodevelopmental involvement in schizophrenia: The olfactory epithelium as an alternative model for research. J Neurochem. 102:587–594. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Tung VSK, Mathews F, Boruk M, Suppa G, Foronjy R, Pato MT, Pato CN, Knowles JA and Evgrafov OV: Cultured mesenchymal cells from nasal turbinate as a cellular model of the neurodevelopmental component of schizophrenia etiology. Int J Mol Sci. 24:153392023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang K, Hasegawa Y, Bhattarai JP, Hua J, Dower M, Etyemez S, Prasad N, Duvall L, Paez A, Smith A, et al: Inflammation-related pathology in the olfactory epithelium: Its impact on the olfactory system in psychotic disorders. Mol Psychiatry. 29:1453–1464. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Deng H, Kahlon RS, Mohite S, Amin PA, Zunta-Soares G, Colpo GD, Stertz L, Fries GR, Walss-Bass C, Soares JC and Okusaga OO: Elevated plasma S100B, psychotic symptoms, and cognition in schizophrenia. Psychiatr Q. 89:53–60. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Langeh U and Singh S: Targeting S100B protein as a surrogate biomarker and its role in various neurological disorders. Curr Neuropharmacol. 19:265–277. 2021. View Article : Google Scholar : | |
|
Chen L, Sutharsan R, Lee JL, Cruz E, Asnicar B, Palliyaguru T, Wasielewska JM, Gaudin A, Song J, Leinenga G and Götz J: Claudin-5 binder enhances focused ultrasound-mediated opening in an in vitro blood-brain barrier model. Theranostics. 12:1952–1970. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan S, Liu KJ and Qi Z: Occludin regulation of blood-brain barrier and potential therapeutic target in ischemic stroke. Brain Circ. 6:152–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dancy C, Heintzelman KE and Katt ME: The glycocalyx: The importance of sugar coating the blood-brain barrier. Int J Mol Sci. 25:84042024. View Article : Google Scholar : PubMed/NCBI | |
|
Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A and Chekhonin V: Nano carrier drug delivery systems for the treatment of neuropsychiatric disorders: Advantages and limitations. Molecules. 25:52942020. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto Y and Campbell M: Tight junction modulation at the blood-brain barrier: Current and future perspectives. Biochim Biophys Acta Biomembr. 1862:1832982020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Wu J, Yao X, Zhang Y, Wang Y, Han Y, Wu Y, Xu Z, Lan J, Han S, et al: The aldose reductase inhibitor epalrestat maintains blood-brain barrier integrity by enhancing endothelial cell function during cerebral ischemia. Mol Neurobiol. 60:3741–3757. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shi SM, Suh RJ, Shon DJ, Garcia FJ, Buff JK, Atkins M, Li L, Lu N, Sun B, Luo J, et al: Glycocalyx dysregulation impairs blood-brain barrier in ageing and disease. Nature. 639:985–994. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Ding J, Lee SJ, Vlahos L, Yuki K, Rada CC, van Unen V, Vuppalapaty M, Chen H, Sura A, McCormick AK, et al: Therapeutic blood-brain barrier modulation and stroke treatment by a bioengineered FZD4-selective WNT surrogate in mice. Nat Commun. 14:29472023. View Article : Google Scholar | |
|
Sakamoto K, Iwata S, Jin Z, Chen L, Miyaoka T, Yamada M, Katahira K, Yokoyama R, Ono A, Asano S, et al: Cyclic peptides KS-133 and KS-487 multifunctionalized nanoparticles enable efficient brain targeting for treating schizophrenia. JACS Au. 4:2811–2817. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Pacchioni AM, Gabriele A, Donovan JL, DeVane CL and See RE: P-glycoprotein inhibition potentiates the behavioural and neurochemical actions of risperidone in rats. Int J Neuropsychopharmacol. 13:1067–1077. 2010. View Article : Google Scholar | |
|
Brzozowska NI, de Tonnerre EJ, Li KM, Wang XS, Boucher AA, Callaghan PD, Kuligowski M, Wong A and Arnold JC: The differential binding of antipsychotic drugs to the ABC transporter P-glycoprotein predicts cannabinoid-antipsychotic drug interactions. Neuropsychopharmacology. 42:2222–2231. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lin YC, Ellingrod VL, Bishop JR and Miller DD: The relationship between P-glycoprotein (PGP) polymorphisms and response to olanzapine treatment in schizophrenia. Ther Drug Monit. 28:668–672. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Miyama T, Takanaga H, Matsuo H, Yamano K, Yamamoto K, Iga T, Naito M, Tsuruo T, Ishizuka H, Kawahara Y and Sawada Y: P-glycoprotein-mediated transport of itraconazole across the blood-brain barrier. Antimicrob Agents Chemother. 42:1738–1744. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Qosa H, Miller DS, Pasinelli P and Trotti D: Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res. 1628:298–316. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Al Shuhaimi L, Henman M, McCallion P, McCarron M and O'Dwyer M: The adverse effects of long-term exposure to anticholinergics among people with intellectual disabilities: A scoping review. HRB Open Res. 5:632022. View Article : Google Scholar | |
|
Peng A, Chai J, Wu H, Bai B, Yang H, He W and Zhao Y: New therapeutic targets and drugs for schizophrenia beyond dopamine D2 receptor antagonists. Neuropsychiatr Dis Treat. 20:607–620. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Dhuria SV, Hanson LR and Frey WH II: Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J Pharm Sci. 99:1654–1673. 2010. View Article : Google Scholar | |
|
Teleanu DM, Negut I, Grumezescu V, Grumezescu AM and Teleanu RI: Nanomaterials for drug delivery to the central nervous system. Nanomaterials (Basel). 9:3712019. View Article : Google Scholar : PubMed/NCBI | |
|
Harper SQ: Progress and challenges in RNA interference therapy for Huntington disease. Arch Neurol. 66:933–938. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Loch-Neckel G, Matos AT, Vaz AR and Brites D: Challenges in the development of drug delivery systems based on small extracellular vesicles for therapy of brain diseases. Front Pharmacol. 13:8397902022. View Article : Google Scholar : PubMed/NCBI | |
|
Alkhalifa AE, Al-Ghraiybah NF, Odum J, Shunnarah JG, Austin N and Kaddoumi A: Blood-brain barrier breakdown in Alzheimer's disease: Mechanisms and targeted strategies. Int J Mol Sci. 24:162882023. View Article : Google Scholar : PubMed/NCBI | |
|
Moons T, de Roo M, Claes S and Dom G: Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics. 12:1193–1211. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hardy RE, Chung I, Yu Y, Loh SHY, Morone N, Soleilhavoup C, Travaglio M, Serreli R, Panman L, Cain K, et al: The antipsychotic medications aripiprazole, brexpiprazole and cariprazine are off-target respiratory chain complex I inhibitors. Biol Direct. 18:432023. View Article : Google Scholar : PubMed/NCBI | |
|
Sykes DA, Moore H, Stott L, Holliday N, Javitch JA, Lane JR and Charlton SJ: Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors. Nat Commun. 8:7632017. View Article : Google Scholar | |
|
Elschot EP, Backes WH, Postma AA, van Oostenbrugge RJ, Staals J, Rouhl RPW and Jansen JFA: A comprehensive view on MRI techniques for imaging blood-brain barrier integrity. Invest Radiol. 56:10–19. 2021. View Article : Google Scholar | |
|
Tenchov R, Bird R, Curtze AE and Zhou Q: Lipid nanoparticles-rom liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 15:16982–17015. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Huntley MA, Bien-Ly N, Daneman R and Watts RJ: Dissecting gene expression at the blood-brain barrier. Front Neurosci. 8:3552014. View Article : Google Scholar : PubMed/NCBI | |
|
Futtrup J, Margolinsky R, Benros ME, Moos T, Routhe LJ, Rungby J and Krogh J: Blood-brain barrier pathology in patients with severe mental disorders: A systematic review and meta-analysis of biomarkers in case-control studies. Brain Behav Immun Health. 6:1001022020. View Article : Google Scholar : PubMed/NCBI | |
|
Xinchen Y, Jing T and Jiaoqiong G: Lipid-based nanoparticles via nose-to-brain delivery: A mini review. Front Cell Dev Biol. 11:12144502023. View Article : Google Scholar : PubMed/NCBI |