|
1
|
Liu S, Deng Z, Zhu J, Ma Z, Tuo B, Li T
and Liu X: Gastric immune homeostasis imbalance: An important
factor in the development of gastric mucosal diseases. Biomed
Pharmacother. 161:1143382023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mills JC and Shivdasani RA: Gastric
epithelial stem cells. Gastroenterology. 140:412–424. 2011.
View Article : Google Scholar
|
|
3
|
Goldenring JR and Nam KT: Oxyntic atrophy,
metaplasia, and gastric cancer. Prog Mol Biol Transl Sci.
96:117–131. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Goldenring JR and Mills JC: Cellular
plasticity, reprogramming, and regeneration: metaplasia in the
stomach and beyond. Gastroenterology. 162:415–430. 2022. View Article : Google Scholar
|
|
5
|
Zhou CB and Fang JY: The role of
pyroptosis in gastrointestinal cancer and immune responses to
intestinal microbial infection. Biochim Biophys Acta Rev Cancer.
1872:1–10. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yang W, Niu L, Zhao X, Duan L, Wang X, Li
Y, Chen J, Zhou W, Zhang Y, Fan D and Hong L: Pyroptosis impacts
the prognosis and treatment response in gastric cancer via immune
system modulation. Am J Cancer Res. 12:1511–1534. 2022.PubMed/NCBI
|
|
7
|
Villarroel-Espindola F, Ejsmentewicz T,
Gonzalez-Stegmaier R, Jorquera RA and Salinas E: Intersections
between innate immune response and gastric cancer development.
World J Gastroenterol. 29:2222–2240. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gobert AP and Wilson KT: Induction and
regulation of the innate immune response in Helicobacter pylori
infection. Cell Mol Gastroenterol Hepatol. 13:1347–1363. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jiao Y, Yan Z and Yang A: The roles of
innate lymphoid cells in the gastric mucosal immunology and
oncogenesis of gastric cancer. Int J Mol Sci. 24:66522023.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ianiro G, Molina-Infante J and Gasbarrini
A: Gastric microbiota. Helicobacter. 20(Suppl 1): S68–S71. 2015.
View Article : Google Scholar
|
|
11
|
Goldenring JR: Pyloric metaplasia,
pseudopyloric metaplasia, ulcer-associated cell lineage and
spasmolytic polypeptide-expressing metaplasia: Reparative lineages
in the gastrointestinal mucosa. J Pathol. 245:132–137. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Barnett KC, Li S, Liang K and Ting JPY: A
360° view of the inflammasome: Mechanisms of activation, cell
death, and diseases. Cell. 186:2288–2312. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li Z, Guo J and Bi L: Role of the NLRP3
inflammasome in autoimmune diseases. Biomed Pharmacother.
130:1105422020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Mridha AR, Wree A, Robertson AAB, Yeh MM,
Johnson CD, Van Rooyen DM, Haczeyni F, Teoh NC, Savard C, Ioannou
GN, et al: NLRP3 inflammasome blockade reduces liver inflammation
and fibrosis in experimental NASH in mice. J Hepatol. 66:1037–1046.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kayagaki N, Kornfeld OS, Lee BL, Stowe IB,
O'Rourke K, Li Q, Sandoval W, Yan D, Kang J, Xu M, et al: NINJ1
mediates plasma membrane rupture during lytic cell death. Nature.
591:131–136. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Fu J and Wu H: Structural mechanisms of
NLRP3 inflammasome assembly and activation. Annu Rev Immunol.
41:301–316. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sekiyama A, Ueda H, Kashiwamura SI,
Sekiyama R, Takeda M, Rokutan K and Okamura H: A stress-induced,
superoxide-mediated caspase-1 activation pathway causes plasma
IL-18 upregulation. Immunity. 22:669–677. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tran LS, Ying L, D'Costa K, Wray-McCann G,
Kerr G, Le L, Allison CC, Ferrand J, Chaudhry H, Emery J, et al:
NOD1 mediates interleukin-18 processing in epithelial cells
responding to Helicobacter pylori infection in mice. Nat Commun.
14:38042023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li G, Zhu L, Cao Z, Wang J, Zhou F, Wang
X, Li X and Nie G: A new participant in the pathogenesis of
alcoholic gastritis: Pyroptosis. Cell Physiol Biochem. 49:406–418.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zeng X, Yang M, Ye T, Feng J, Xu X, Yang
H, Wang X, Bao L, Li R, Xue B, et al: Mitochondrial GRIM-19 loss in
parietal cells promotes spasmolytic polypeptide-expressing
metaplasia through NLR family pyrin domain-containing 3
(NLRP3)-mediated IL-33 activation via a reactive oxygen species
(ROS)-NRF2-Heme oxygenase-1(HO-1)-NF-кB axis. Free Radic Biol Med.
202:46–61. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wan C, Wang P, Xu Y, Zhu Y, Chen H, Cao X
and Gu Y: Mechanism and role of H. pylori CagA-induced NLRP3
inflammasome in gastric cancer immune cell infiltration. Sci Rep.
15:143352025. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cookson BT and Brennan MA:
Pro-inflammatory programmed cell death. Trends Microbiol.
9:113–114. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ketelut-Carneiro N and Fitzgerald KA:
Apoptosis, pyroptosis, and necroptosis-Oh My! The many ways a cell
can die. J Mol Biol. 434:1673782022. View Article : Google Scholar
|
|
24
|
Shi J, Zhao Y, Wang K, Shi X, Wang Y,
Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by
inflammatory caspases determines pyroptotic cell death. Nature.
526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Van Opdenbosch N, Gurung P, Vande Walle L,
Fossoul A, Kanneganti TD and Lamkanfi M: Activation of the NLRP1b
inflammasome independently of ASC-mediated caspase-1
autoproteolysis and speck formation. Nat Commun. 5:32092014.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Man SM, Hopkins LJ, Nugent E, Cox S, Glück
IM, Tourlomousis P, Wright JA, Cicuta P, Monie TP and Bryant CE:
Inflammasome activation causes dual recruitment of NLRC4 and NLRP3
to the same macromolecular complex. Proc Natl Acad Sci USA.
111:7403–7408. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Berry R and Call ME: Modular activating
receptors in innate and adaptive immunity. Biochemistry.
56:1383–1402. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Que X, Zheng S, Song Q, Pei H and Zhang P:
Fantastic voyage: The journey of NLRP3 inflammasome activation.
Genes Dis. 11:819–829. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rathinam VAK and Fitzgerald KA:
Inflammasome complexes: Emerging mechanisms and effector functions.
Cell. 165:792–800. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Viganò E and Mortellaro A: Caspase-11: The
driving factor for noncanonical inflammasomes. Eur J Immunol.
43:2240–2245. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pérez-Figueroa E, Torres J, Sánchez-Zauco
N, Contreras-Ramos A, Alvarez-Arellano L and Maldonado-Bernal C:
Activation of NLRP3 inflammasome in human neutrophils by
Helicobacter pylori infection. Innate Immun. 22:103–112. 2016.
View Article : Google Scholar
|
|
32
|
Kumar S and Dhiman M: Inflammasome
activation and regulation during Helicobacter pylori pathogenesis.
Microb Pathog. 125:468–474. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yang J, Liu Z, Wang C, Yang R, Rathkey JK,
Pinkard OW, Shi W, Chen Y, Dubyak GR, Abbott DW and Xiao TS:
Mechanism of gasdermin D recognition by inflammatory caspases and
their inhibition by a gasdermin D-derived peptide inhibitor. Proc
Natl Acad Sci USA. 115:6792–6797. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Fink SL and Cookson BT: Pyroptosis and
host cell death responses during Salmonella infection. Cell
Microbiol. 9:2562–2570. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Man SM: Inflammasomes in the
gastrointestinal tract: Infection, cancer and gut microbiota
homeostasis. Nat Rev Gastroenterol Hepatol. 15:721–737. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Toldo S, Mezzaroma E, Buckley LF, Potere
N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW and Abbate A:
Targeting the NLRP3 inflammasome in cardiovascular diseases.
Pharmacol Ther. 236:1080532022. View Article : Google Scholar :
|
|
37
|
Wen J, Xuan B, Liu Y, Wang L, He L, Meng
X, Zhou T and Wang Y: NLRP3 inflammasome-induced pyroptosis in
digestive system tumors. Front Immunol. 14:10746062023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li S, Liang X, Ma L, Shen L, Li T, Zheng
L, Sun A, Shang W, Chen C, Zhao W and Jia J: MiR-22 sustains NLRP3
expression and attenuates H. pylori-induced gastric carcinogenesis.
Oncogene. 37:884–896. 2018. View Article : Google Scholar
|
|
39
|
Zhao Y, Deng Z, Ma Z, Zhang M, Wang H, Tuo
B, Li T and Liu X: Expression alteration and dysfunction of ion
channels/transporters in the parietal cells induces gastric
diffused mucosal injury. Biomed Pharmacother. 148:1126602022.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu X, Ma Z, Deng Z, Yi Z, Tuo B, Li T and
Liu X: Role of spasmolytic polypeptide-expressing metaplasia in
gastric mucosal diseases. Am J Cancer Res. 13:1667–1681.
2023.PubMed/NCBI
|
|
41
|
Meyer AR and Goldenring JR: Injury,
repair, inflammation and metaplasia in the stomach. J Physiol.
596:3861–3867. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Brzozowski T, Zwirska-Korczala K, Konturek
PC, Konturek SJ, Sliwowski Z, Pawlik M, Kwiecien S, Drozdowicz D,
Mazurkiewicz-Janik M, Bielanski W and Pawlik WW: Role of circadian
rhythm and endogenous melatonin in pathogenesis of acute gastric
bleeding erosions induced by stress. J Physiol Pharmacol. 58(Suppl
6): S53–S64. 2007.
|
|
43
|
Nithiwathanapong C, Reungrongrat S and
Ukarapol N: Prevalence and risk factors of stress-induced
gastrointestinal bleeding in critically ill children. World J
Gastroenterol. 11:6839–6842. 2005. View Article : Google Scholar
|
|
44
|
Kromin AA and Zenina OI: Hypothalamic
control of the myoelectric activity of the gastric antrum in
rabbits during acute emotional stress. Eksp Klin Gastroenterol.
71-76:1652007.In Russian.
|
|
45
|
Bregonzio C, Armando I, Ando H, Jezova M,
Baiardi G and Saavedra JM: Anti-inflammatory effects of angiotensin
II AT1 receptor antagonism prevent stress-induced gastric injury.
Am J Physiol Gastrointest Liver Physiol. 285:G414–G423. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Olaleye SB, Adaramoye OA, Erigbali PP and
Adeniyi OS: Lead exposure increases oxidative stress in the gastric
mucosa of HCl/ethanol-exposed rats. World J Gastroenterol.
13:5121–5126. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Seino H, Ueda H, Kokai M, Tsuji NM,
Kashiwamura S, Morita Y and Okamura H: IL-18 mediates the formation
of stress-induced, histamine-dependent gastric lesions. Am J
Physiol Gastrointest Liver Physiol. 292:G262–G267. 2007. View Article : Google Scholar
|
|
48
|
Das D, Bandyopadhyay D, Bhattacharjee M
and Banerjee RK: Hydroxyl radical is the major causative factor in
stress-induced gastric ulceration. Free Radic Biol Med. 23:8–18.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang Z, Xue H, Dong Y, Hu J, Jiang T, Shi
L and Du J: Inhibition of GKN2 attenuates acute gastric lesions
through the NLRP3 inflammasome. Adv Wound Care (New Rochelle).
9:219–232. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang F, Wang L, Wang JJ, Luo PF, Wang XT
and Xia ZF: The caspase-1 inhibitor AC-YVAD-CMK attenuates acute
gastric injury in mice: Involvement of silencing NLRP3 inflammasome
activities. Sci Rep. 6:241662016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Higashimori A, Watanabe T, Nadatani Y,
Nakata A, Otani K, Hosomi S, Tanaka F, Kamata N, Taira K, Nagami Y,
et al: Role of nucleotide binding oligomerization domain-like
receptor protein 3 inflammasome in stress-induced gastric injury. J
Gastroenterol Hepatol. 36:740–750. 2021. View Article : Google Scholar
|
|
52
|
Bojanowicz K, Zubowski A, Durasiewicz Z
and Szeszenia N: Gastric or duodenal ulcer location and the more
important internal and environmental factors. Przegl Lek.
28:457–460. 1971.In Polish.
|
|
53
|
Yu Q, Shi H, Ding Z, Wang Z, Yao H and Lin
R: The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome
activation in Helicobacter pylori-associated gastritis by
regulating ROS and autophagy. Cell Commun Signal. 21:12023.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zaslona Z, Flis E, Nulty C, Kearney J,
Fitzgerald R, Douglas AR, McNamara D, Smith S, O'Neill LAJ and
Creagh EM: Caspase-4: A therapeutic target for peptic ulcer
disease. Immunohorizons. 4:627–633. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yuan XY, Zhang Y, Zhao X, Chen A and Liu
P: IL-1β, an important cytokine affecting Helicobacter
pylori-mediated gastric carcinogenesis. Microb Pathog.
174:1059332023. View Article : Google Scholar
|
|
56
|
Alzokaky AA, Abdelkader EM, El-Dessouki
AM, Khaleel SA and Raslan NA: C-phycocyanin protects against
ethanol-induced gastric ulcers in rats: Role of HMGB1/NLRP3/NF-κB
pathway. Basic Clin Pharmacol Toxicol. 127:265–277. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sims GP, Rowe DC, Rietdijk ST, Herbst R
and Coyle AJ: HMGB1 and RAGE in inflammation and cancer. Annu Rev
Immunol. 28:367–388. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yang H, Wang H and Andersson U: Targeting
inflammation Driven by HMGB1. Front Immunol. 11:4842020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
El-Gendy ZA, Taher RF, Elgamal AM, Serag
A, Hassan A, Jaleel GAA, Farag MA and Elshamy AI: Metabolites
profiling and bioassays reveal bassia indica ethanol extract
protective effect against stomach ulcers development via
HMGB1/TLR-4/NF-κB pathway. Antioxidants (Basel). 12:12632023.
View Article : Google Scholar
|
|
60
|
Elbaz EM, Abdel Rahman AAS, El-Gazar AA
and Ali BM: Protective effect of dimethyl fumarate against
ethanol-provoked gastric ulcers in rats via regulation of
HMGB1/TLR4/NF-κB, and PPARγ/SIRT1/Nrf2 pathways: Involvement of
miR-34a-5p. Arch Biochem Biophys. 759:1101032024. View Article : Google Scholar
|
|
61
|
Xie J, Fan L, Xiong L, Chen P, Wang H,
Chen H, Zhao J, Xu Z, Geng L, Xu W and Gong S: Rabeprazole inhibits
inflammatory reaction by inhibition of cell pyroptosis in gastric
epithelial cells. BMC Pharmacol Toxicol. 22:442021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Selim HM, Negm WA, Hawwal MF, Hussein IA,
Elekhnawy E, Ulber R and Zayed A: Fucoidan mitigates gastric ulcer
injury through managing inflammation, oxidative stress, and
NLRP3-mediated pyroptosis. Int Immunopharmacol. 120:1103352023.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang Y, Yuan Z, Chai J, Zhu D, Miao X,
Zhou J and Gu X: ALDH2 ameliorates ethanol-induced gastric ulcer
through suppressing NLPR3 inflammasome activation and ferroptosis.
Arch Biochem Biophys. 743:1096212023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Arab HH, Ashour AM, Gad AM, Mahmoud AM and
Kabel AM: Activation of AMPK/mTOR-driven autophagy and inhibition
of NLRP3 inflammasome by saxagliptin ameliorate ethanol-induced
gastric mucosal damage. Life Sci. 280:1197432021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Arab HH, Eid AH, El-Sheikh AAK, Arafa EA
and Ashour AM: Irbesartan reprofiling for the amelioration of
ethanol-induced gastric mucosal injury in rats: Role of
inflammation, apoptosis, and autophagy. Life Sci. 308:1209392022.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Suleyman H, Albayrak A, Bilici M, Cadirci
E and Halici Z: Different mechanisms in formation and prevention of
indomethacin-induced gastric ulcers. Inflammation. 33:224–234.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mehrotra P, Maschalidi S, Boeckaerts L,
Maueröder C, Tixeira R, Pinney J, Burgoa Cardás J, Sukhov V, Incik
Y, Anderson CJ, et al: Oxylipins and metabolites from pyroptotic
cells act as promoters of tissue repair. Nature. 631:207–215. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Soykan İ, Er RE, Baykara Y and Kalkan C:
Unraveling the mysteries of autoimmune gastritis. Turk J
Gastroenterol. 36:135–144. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jove A, Lin C, Hwang JH, Balasubramanian
V, Fernandez-Becker NQ and Huang RJ: Serum gastrin levels are
associated with prevalent neuroendocrine tumors in autoimmune
metaplastic atrophic gastritis. Am J Gastroenterol. 120:1140–1143.
2025. View Article : Google Scholar
|
|
70
|
Huang J, Fang M, Wu C and Qiao Z:
Autoimmune atrophic gastritis complicated with oxyntic gland
adenoma and low-grade intraepithelial neoplasia. Asian J Surg. Sep
12–2024.Epub ahead of print.
|
|
71
|
Park JY, Lam-Himlin D and Vemulapalli R:
Review of autoimmune metaplastic atrophic gastritis. Gastrointest
Endosc. 77:284–292. 2013. View Article : Google Scholar
|
|
72
|
Neumann WL, Coss E, Rugge M and Genta RM:
Autoimmune atrophic gastritis-pathogenesis, pathology and
management. Nat Rev Gastroenterol Hepatol. 10:529–541. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
D'Elios MM, Bergman MP, Azzurri A, Amedei
A, Benagiano M, De Pont JJ, Cianchi F, Vandenbroucke-Grauls CM,
Romagnani S, Appelmelk BJ and Del Prete G: H(+),K(+)-atpase (proton
pump) is the target autoantigen of Th1-type cytotoxic T cells in
autoimmune gastritis. Gastroenterology. 120:377–386. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Toh BH, Sentry JW and Alderuccio F: The
causative H+/K+ ATPase antigen in the pathogenesis of autoimmune
gastritis. Immunol Today. 21:348–354. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hu Z and Chai J: Structural mechanisms in
NLR inflammasome assembly and signaling. Curr Top Microbiol
Immunol. 397:23–42. 2016.PubMed/NCBI
|
|
76
|
van Driel IR, Baxter AG, Laurie KL, Zwar
TD, La Gruta NL, Judd LM, Scarff KL, Silveira PA and Gleeson PA:
Immunopathogenesis, loss of T cell tolerance and genetics of
autoimmune gastritis. Autoimmun Rev. 1:290–297. 2002. View Article : Google Scholar
|
|
77
|
Benítez J, Marra R, Reyes J and Calvete O:
A genetic origin for acid-base imbalance triggers the mitochondrial
damage that explains the autoimmune response and drives to gastric
neuroendocrine tumours. Gastric Cancer. 23:52–63. 2020. View Article : Google Scholar
|
|
78
|
Arbore G, West EE, Spolski R, Robertson
AAB, Klos A, Rheinheimer C, Dutow P, Woodruff TM, Yu ZX, O'Neill
LA, et al: T helper 1 immunity requires complement-driven NLRP3
inflammasome activity in CD4+ T cells. Science.
352:aad12102016. View Article : Google Scholar
|
|
79
|
Lee GR: The balance of Th17 versus Treg
cells in autoimmunity. Int J Mol Sci. 19:7302018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lei L, Sun J, Han J, Jiang X, Wang Z and
Chen L: Interleukin-17 induces pyroptosis in osteoblasts through
the NLRP3 inflammasome pathway in vitro. Int Immunopharmacol.
96:1077812021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Stummvoll GH, DiPaolo RJ, Huter EN,
Davidson TS, Glass D, Ward JM and Shevach EM: Th1, Th2, and Th17
effector T cell-induced autoimmune gastritis differs in
pathological pattern and in susceptibility to suppression by
regulatory T cells. J Immunol. 181:1908–1916. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Feng WQ, Zhang YC, Xu ZQ, Yu SY, Huo JT,
Tuersun A, Zheng MH, Zhao JK, Zong YP and Lu AG: IL-17A-mediated
mitochondrial dysfunction induces pyroptosis in colorectal cancer
cells and promotes CD8+ T-cell tumour infiltration. J
Transl Med. 21:3352023. View Article : Google Scholar
|
|
83
|
Faure E, Mear JB, Faure K, Normand S,
Couturier-Maillard A, Grandjean T, Balloy V, Ryffel B, Dessein R,
Chignard M, et al: Pseudomonas aeruginosa type-3 secretion system
dampens host defense by exploiting the NLRC4-coupled inflammasome.
Am J Respir Crit Care Med. 189:799–811. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kitamura A, Sasaki Y, Abe T, Kano H and
Yasutomo K: An inherited mutation in NLRC4 causes autoinflammation
in human and mice. J Exp Med. 211:2385–2396. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kay C, Wang R, Kirkby M and Man SM:
Molecular mechanisms activating the NAIP-NLRC4 inflammasome:
Implications in infectious disease, autoinflammation, and cancer.
Immunol Rev. 297:67–82. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Triantafilou K, Ward CJK, Czubala M,
Ferris RG, Koppe E, Haffner C, Piguet V, Patel VK, Amrine-Madsen H,
Modis LK, et al: Differential recognition of HIV-stimulated IL-1β
and IL-18 secretion through NLR and NAIP signalling in
monocyte-derived macrophages. PLoS Pathog. 17:e10094172021.
View Article : Google Scholar
|
|
87
|
Zhao Y and Shao F: The NAIP-NLRC4
inflammasome in innate immune detection of bacterial flagellin and
type III secretion apparatus. Immunol Rev. 265:85–102. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Romberg N, Al Moussawi K, Nelson-Williams
C, Stiegler AL, Loring E, Choi M, Overton J, Meffre E, Khokha MK,
Huttner AJ, et al: Mutation of NLRC4 causes a syndrome of
enterocolitis and autoinflammation. Nat Genet. 46:1135–1139. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Willet SG, Thanintorn N, McNeill H, Huh
SH, Ornitz DM, Huh WJ, Hoft SG, DiPaolo RJ and Mills JC: SOX9
governs gastric mucous neck cell identity and is required for
injury-induced metaplasia. Cell Mol Gastroenterol Hepatol.
16:325–339. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Petersen CP, Weis VG, Nam KT, Sousa JF,
Fingleton B and Goldenring JR: Macrophages promote progression of
spasmolytic polypeptide-expressing metaplasia after acute loss of
parietal cells. Gastroenterology. 146:1727–1738.e8. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chen W, Chen S, Yan C, Zhang Y, Zhang R,
Chen M, Zhong S, Fan W, Zhu S, Zhang D, et al: Allergen
protease-activated stress granule assembly and gasdermin D
fragmentation control interleukin-33 secretion. Nat Immunol.
23:1021–1030. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kita H: Gasdermin D pores for IL-33
release. Nat Immunol. 23:989–991. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chauvin C, Retnakumar SV and Bayry J:
Gasdermin D as a cellular switch to orientate immune responses via
IL-33 or IL-1β. Cell Mol Immunol. 20:8–10. 2023. View Article : Google Scholar
|
|
94
|
Bernink JH, Germar K and Spits H: The role
of ILC2 in pathology of type 2 inflammatory diseases. Curr Opin
Immunol. 31:115–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Meyer AR, Engevik AC, Madorsky T, Belmont
E, Stier MT, Norlander AE, Pilkinton MA, McDonnell WJ, Weis JA,
Jang B, et al: Group 2 innate lymphoid cells coordinate damage
response in the stomach. Gastroenterology. 159:2077–2091.e8. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sheng M, Weng Y, Cao Y, Zhang C, Lin Y and
Yu W: Caspase 6/NR4A1/SOX9 signaling axis regulates hepatic
inflammation and pyroptosis in ischemia-stressed fatty liver. Cell
Death Discov. 9:1062023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Qiang R, Li Y, Dai X and Lv W: NLRP3
inflammasome in digestive diseases: From mechanism to therapy.
Front Immunol. 13:9781902022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Shadab A, Mahjoor M, Abbasi-Kolli M,
Afkhami H, Moeinian P and Safdarian AR: Divergent functions of
NLRP3 inflammasomes in cancer: A review. Cell Commun Signal.
21:2322023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Si Y, Liu L and Fan Z: Mechanisms and
effects of NLRP3 in digestive cancers. Cell Death Discov.
10:102024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liu W, Peng J, Xiao M, Cai Y, Peng B,
Zhang W, Li J, Kang F, Hong Q, Liang Q, et al: The implication of
pyroptosis in cancer immunology: Current advances and prospects.
Genes Dis. 10:2339–2350. 2023. View Article : Google Scholar :
|
|
101
|
Zhang X, Li C, Chen D, He X, Zhao Y, Bao
L, Wang Q, Zhou J and Xie Y: H. pylori CagA activates the NLRP3
inflammasome to promote gastric cancer cell migration and invasion.
Inflamm Res. 71:141–155. 2022. View Article : Google Scholar
|
|
102
|
Li YT, Tan XY, Ma LX, Li HH, Zhang SH,
Zeng CM, Huang LN, Xiong JX and Fu L: Targeting LGSN restores
sensitivity to chemotherapy in gastric cancer stem cells by
triggering pyroptosis. Cell Death Dis. 14:5452023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li C, Qiu J and Xue Y: Low-dose
Diosbulbin-B (DB) activates tumor-intrinsic PD-L1/NLRP3 signaling
pathway mediated pyroptotic cell death to increase
cisplatin-sensitivity in gastric cancer (GC). Cell Biosci.
11:382021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
West AJ, Deswaerte V, West AC, Gearing LJ,
Tan P and Jenkins BJ: Inflammasome-associated gastric tumorigenesis
is independent of the NLRP3 pattern recognition receptor. Front
Oncol. 12:8303502022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Raderer M, Kiesewetter B and Ferreri AJ:
Clinicopathologic characteristics and treatment of marginal zone
lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). CA
Cancer J Clin. 66:153–171. 2016.PubMed/NCBI
|
|
106
|
Kuo SH, Wu MS, Yeh KH, Lin CW, Hsu PN,
Chen LT and Cheng AL: Novel insights of lymphomagenesis of
Helicobacter pylori-dependent gastric mucosa-associated lymphoid
tissue lymphoma. Cancers (Basel). 11:5472019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kiesewetter B and Raderer M:
Immunomodulatory treatment for mucosa-associated lymphoid tissue
lymphoma (MALT lymphoma). Hematol Oncol. 38:417–424. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Della Bella C, Soluri MF, Puccio S,
Benagiano M, Grassi A, Bitetti J, Cianchi F, Sblattero D, Peano C
and D'Elios MM: The Helicobacter pylori CagY protein drives gastric
Th1 and Th17 inflammation and B cell proliferation in gastric MALT
lymphoma. Int J Mol Sci. 22:94592021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Chonwerawong M, Ferrand J, Chaudhry HM,
Higgins C, Tran LS, Lim SS, Walker MM, Bhathal PS, Dev A, Moore GT,
et al: Innate immune molecule NLRC5 protects mice from
helicobacter-induced formation of gastric lymphoid tissue.
Gastroenterology. 159:169–182.e8. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Deng Y, Fu Y, Sheng L, Hu Y, Su L, Luo J,
Yan C and Chi W: The regulatory NOD-like receptor NLRC5 promotes
ganglion cell death in ischemic retinopathy by inducing microglial
pyroptosis. Front Cell Dev Biol. 9:6696962021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ying L, Liu P, Ding Z, Wray-McCann G,
Emery J, Colon N, Le LH, Tran LS, Xu P, Yu L, et al: Anti-CD40L
therapy prevents the formation of precursor lesions to gastric
B-cell MALT lymphoma in a mouse model. J Pathol. 259:402–414. 2023.
View Article : Google Scholar : PubMed/NCBI
|