You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Valastyan S and Weinberg RA: Tumor metastasis: Molecular insights and evolving paradigms. Cell. 147:275–292. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Han Y, Wang D, Peng L, Huang T, He X, Wang J and Ou C: Single-cell sequencing: A promising approach for uncovering the mechanisms of tumor metastasis. J Hematol Oncol. 15:592022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, He X, He Y, Ou C and Cao P: Exosomal circRNAs: Emerging players in tumor metastasis. Front Cell Dev Biol. 9:7862242021. View Article : Google Scholar : PubMed/NCBI | |
|
Liao Z, Nie H, Wang Y, Luo J, Zhou J and Ou C: The emerging landscape of long non-coding RNAs in colorectal cancer metastasis. Front Oncol. 11:6413432021. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XH and Zheng J: Invasion and metastasis in cancer: Molecular insights and therapeutic targets. Signal Transduct Target Ther. 10:572025. View Article : Google Scholar : PubMed/NCBI | |
|
Francoeur AA, Monk BJ and Tewari KS: Treatment advances across the cervical cancer spectrum. Nat Rev Clin Oncol. 22:182–199. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Kaur R, Bhardwaj A and Gupta S: Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol Biol Rep. 50:9663–9676. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Klein CA: Cancer progression and the invisible phase of metastatic colonization. Nat Rev Cancer. 20:681–694. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gerstberger S, Jiang Q and Ganesh K: Metastasis. Cell. 186:1564–1579. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Johan MZ and Samuel MS: Rho-ROCK signaling regulates tumor-microenvironment interactions. Biochem Soc Trans. 47:101–108. 2019. View Article : Google Scholar | |
|
Hall A: Rho family GTPases. Biochem Soc Trans. 40:1378–1382. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Etienne-Manneville S and Hall A: Rho GTPases in cell biology. Nature. 420:629–635. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Chen S, Zhang Y, Zhou X, Wang H, Wang Q and Lan X: Mechanisms of Rho GTPases in regulating tumor proliferation, migration and invasion. Cytokine Growth Factor Rev. 80:168–174. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Alarcon VB and Marikawa Y: Trophectoderm formation: Regulation of morphogenesis and gene expressions by RHO, ROCK, cell polarity, and HIPPO signaling. Reproduction. 164:R75–R86. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Agrawal A, Scott ZC and Koslover EF: Morphology and transport in eukaryotic cells. Annu Rev Biophys. 51:247–266. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ando D, Korabel N, Huang KC and Gopinathan A: Cytoskeletal network morphology regulates intracellular transport dynamics. Biophys J. 109:1574–1582. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fletcher DA and Mullins RD: Cell mechanics and the cytoskeleton. Nature. 463:485–492. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Park J, Wu Y, Kim JS, Byun J, Lee J and Oh YK: Cytoskeleton-modulating nanomaterials and their therapeutic potentials. Adv Drug Deliv Rev. 211:1153622024. View Article : Google Scholar : PubMed/NCBI | |
|
Leduc C and Etienne-Manneville S: Intermediate filaments in cell migration and invasion: The unusual suspects. Curr Opin Cell Biol. 32:102–112. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Peng L, Wang Z, Liu L, Cao M, Cui J, Wu F and Yang J: Roles of the cytoskeleton in human diseases. Mol Biol Rep. 50:2847–2856. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Thapa N, Wen T, Cryns VL and Anderson RA: Regulation of cell adhesion and migration via microtubule cytoskeleton organization, cell polarity, and phosphoinositide signaling. Biomolecules. 13:14302023. View Article : Google Scholar : PubMed/NCBI | |
|
Mangaonkar S, Nath S and Chatterji BP: Microtubule dynamics in cancer metastasis: Harnessing the underappreciated potential for therapeutic interventions. Pharmacol Ther. 263:1087262024. View Article : Google Scholar : PubMed/NCBI | |
|
Fanale D, Bronte G, Passiglia F, Calò V, Castiglia M, Di Piazza F, Barraco N, Cangemi A, Catarella MT, Insalaco L, et al: Stabilizing versus destabilizing the microtubules: A double-edge sword for an effective cancer treatment option? Anal Cell Pathol (Amst). 2015:6909162015.PubMed/NCBI | |
|
Dumontet C, Reichert JM, Senter PD, Lambert JM and Beck A: Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 22:641–661. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cai J, He M, Wang Y, Zhang H, Xu Y, Wang Y, You C and Gao H: Discovery of a novel microtubule destabilizing agent targeting the colchicine site based on molecular docking. Biochem Pharmacol. 234:1168042025. View Article : Google Scholar : PubMed/NCBI | |
|
Castaldo V, Minopoli M, Di Modugno F, Sacconi A, Liguoro D, Frigerio R, Ortolano A, Di Martile M, Gesualdi L, Madonna G, et al: Upregulated expression of miR-4443 and miR-4488 in drug resistant melanomas promotes migratory and invasive phenotypes through downregulation of intermediate filament nestin. J Exp Clin Cancer Res. 42:3172023. View Article : Google Scholar : PubMed/NCBI | |
|
Ishiwata T, Matsuda Y and Naito Z: Nestin in gastrointestinal and other cancers: Effects on cells and tumor angiogenesis. World J Gastroenterol. 17:409–418. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Atianand MK, Caffrey DR and Fitzgerald KA: Immunobiology of long noncoding RNAs. Annu Rev Immunol. 35:177–198. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Han Y, Peng L, Huang T, He X, Wang J and Ou C: Crosstalk between N6-methyladenosine (m6A) modification and noncoding RNA in tumor microenvironment. Int J Biol Sci. 19:2198–2219. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ou C, Sun Z, He X, Li X, Fan S, Zheng X, Peng Q, Li G, Li X and Ma J: Targeting YAP1/LINC00152/FSCN1 signaling axis prevents the progression of colorectal cancer. Adv Sci (Weinh). 7:19013802020. View Article : Google Scholar : PubMed/NCBI | |
|
He X, Yu B, Kuang G, Wu Y, Zhang M, Cao P and Ou C: Long noncoding RNA DLEU2 affects the proliferative and invasive ability of colorectal cancer cells. J Cancer. 12:428–437. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chan JJ and Tay Y: Noncoding RNA:RNA regulatory networks in cancer. Int J Mol Sci. 19:13102018. View Article : Google Scholar : PubMed/NCBI | |
|
Yan H and Bu P: Non-coding RNA in cancer. Essays Biochem. 65:625–639. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen LL and Kim VN: Small and long non-coding RNAs: Past, present, and future. Cell. 187:6451–6485. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Nadhan R, Isidoro C, Song YS and Dhanasekaran DN: Signaling by LncRNAs: Structure, cellular homeostasis, and disease pathology. Cells. 11:25172022. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammad F, Mondal T and Kanduri C: Epigenetics of imprinted long noncoding RNAs. Epigenetics. 4:277–286. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Heo JB and Sung S: Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science. 331:76–79. 2011. View Article : Google Scholar | |
|
Good MC, Zalatan JG and Lim WA: Scaffold proteins: Hubs for controlling the flow of cellular information. Science. 332:680–686. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Spitale RC, Tsai MC and Chang HY: RNA templating the epigenome: Long noncoding RNAs as molecular scaffolds. Epigenetics. 6:539–543. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao W, Song M, Zhang J, Kuerban M and Wang H: Combined identification of long non-coding RNA CCAT1 and HOTAIR in serum as an effective screening for colorectal carcinoma. Int J Clin Exp Pathol. 8:14131–14140. 2015. | |
|
Shao Y, Ye M, Jiang X, Sun W, Ding X, Liu Z, Ye G, Zhang X, Xiao B and Guo J: Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer. 120:3320–3328. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Wang X, Tang J, Jiang R, Zhang W, Ji J and Sun B: HULC and Linc00152 act as novel biomarkers in predicting diagnosis of hepatocellular carcinoma. Cell Physiol Biochem. 37:687–696. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tong YS, Wang XW, Zhou XL, Liu ZH, Yang TX, Shi WH, Xie HW, Lv J, Wu QQ and Cao XF: Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma. Mol Cancer. 14:32015. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu KD and Shao ZM: Transcriptome analysis of triple-negative breast cancer reveals an integrated mRNA-lncRNA signature with predictive and prognostic value. Cancer Res. 76:2105–2114. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shen L, Chen L, Wang Y, Jiang X, Xia H and Zhuang Z: Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. J Neurooncol. 121:101–108. 2015. View Article : Google Scholar | |
|
Yu W, Ma Y, Hou W, Wang F, Cheng W, Qiu F, Wu P and Zhang G: Identification of immune-related lncRNA prognostic signature and molecular subtypes for glioblastoma. Front Immunol. 12:7069362021. View Article : Google Scholar : PubMed/NCBI | |
|
Kong X, Qi J, Yan Y, Chen L, Zhao Y, Fang Z, Fan J, Liu M and Liu Y: Comprehensive analysis of differentially expressed profiles of lncRNAs, mRNAs, and miRNAs in laryngeal squamous cell carcinoma in order to construct a ceRNA network and identify potential biomarkers. J Cell Biochem. 120:17963–17974. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jing Z, Guo S, Zhang P and Liang Z: LncRNA-Associated ceRNA network reveals novel potential biomarkers of laryngeal squamous cell carcinoma. Technol Cancer Res Treat. 19:15330338209857872020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Zhang N, Wu W, Zhou R, Li S, Wang Z, Dai Z, Zhang L, Liu Z, Zhang J, et al: Machine learning-based tumor-infiltrating immune cell-associated lncRNAs for predicting prognosis and immunotherapy response in patients with glioblastoma. Brief Bioinform. 23:bbac3862022. View Article : Google Scholar : PubMed/NCBI | |
|
Nemeth K, Bayraktar R, Ferracin M and Calin GA: Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar | |
|
Fatica A and Bozzoni I: Long non-coding RNAs: New players in cell differentiation and development. Nat Rev Genet. 15:7–21. 2014. View Article : Google Scholar | |
|
Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, et al: Antisense transcription in the mammalian transcriptome. Science. 309:1564–1566. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bunch H, Lawney BP, Burkholder A, Ma D, Zheng X, Motola S, Fargo DC, Levine SS, Wang YE and Hu G: RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics. 108:64–77. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nojima T and Proudfoot NJ: Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. 23:389–406. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ulitsky I and Bartel DP: lincRNAs: Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Collins FS, Morgan M and Patrinos A: The human genome project: Lessons from large-scale biology. Science. 300:286–290. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Green ED, Watson JD and Collins FS: Human genome project: Twenty-five years of big biology. Nature. 526:29–31. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hombach S and Kretz M: Non-coding RNAs: Classification, biology and functioning. Adv Exp Med Biol. 937:3–17. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Koffler-Brill T, Noy Y and Avraham KB: The long and short: Non-coding RNAs in the mammalian inner ear. Hear Res. 428:1086662023. View Article : Google Scholar : | |
|
Zhao J, Sun BK, Erwin JA, Song JJ and Lee JT: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 322:750–756. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Deng X, Ma W, Berletch JB, Rabaia N, Wei G, Moore JM, Filippova GN, Xu J, Liu Y, et al: The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 16:522015. View Article : Google Scholar : PubMed/NCBI | |
|
Martianov I, Ramadass A, Barros AS, Chow N and Akoulitchev A: Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 445:666–670. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bailey C, Pich O, Thol K, Watkins TBK, Luebeck J, Rowan A, Stavrou G, Weiser NE, Dameracharla B, Bentham R, et al: Origins and impact of extrachromosomal DNA. Nature. 635:193–200. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lopez-Pajares V, Qu K, Zhang J, Webster DE, Barajas BC, Siprashvili Z, Zarnegar BJ, Boxer LD, Rios EJ, Tao S, et al: A LncRNA-MAF:MAFB transcription factor network regulates epidermal differentiation. Dev Cell. 32:693–706. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A and Bozzoni I: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 147:358–369. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X and Liu H: Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 25:69–80. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Wu Z, Fu X and Han W: lncRNAs: Insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res. 762:1–21. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM and Chang HY: A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife. 2:e007622013. View Article : Google Scholar : PubMed/NCBI | |
|
Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, et al: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 43:621–629. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S, et al: Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 42:1113–1117. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang M, Zhang S, Yang Z, Lin H, Zhu J, Liu L, Wang W, Liu S, Liu W, Ma Y, et al: Self-Recognition of an inducible host lncRNA by RIG-I feedback restricts innate immune response. Cell. 173:906–919. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrer J and Dimitrova N: Transcription regulation by long non-coding RNAs: Mechanisms and disease relevance. Nat Rev Mol Cell Biol. 25:396–415. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, et al: The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 52:101–112. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Froberg JE and Lee JT: Long noncoding RNAs: Fresh perspectives into the RNA world. Trends Biochem Sci. 39:35–43. 2014. View Article : Google Scholar : | |
|
Wu Y, Zhang L, Zhang L, Wang Y, Li H, Ren X, Wei F, Yu W, Liu T, Wang X, et al: Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma. Int J Oncol. 46:2586–2594. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bonasio R, Tu S and Reinberg D: Molecular signals of epigenetic states. Science. 330:612–616. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ingolia NT, Lareau LF and Weissman JS: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell. 147:789–802. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao S, Meng J and Luan Y: LncRNA-Encoded short peptides identification using feature subset recombination and ensemble learning. Interdiscip Sci. 14:101–112. 2022. View Article : Google Scholar | |
|
Zhao S, Meng J, Kang Q and Luan Y: Identifying LncRNA-encoded short peptides using optimized hybrid features and ensemble learning. IEEE/ACM Trans Comput Biol Bioinform. 19:2873–2881. 2022. View Article : Google Scholar | |
|
Jiang W, Zhang X, Xu Z, Cheng Q, Li X, Zhu Y, Lu F, Dong L, Zeng L, Zhong W, et al: High-throughput single-nucleus RNA profiling of minimal puncture FFPE samples reveals spatiotemporal heterogeneity of cancer. Adv Sci (Weinh). 12:e24107132025. View Article : Google Scholar | |
|
Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E and Chang H: Long noncoding RNA as modular scaffold of histone modification complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wang BR, Chu DX, Cheng MY, Jin Y, Luo HG and Li N: Progress of HOTAIR-microRNA in hepatocellular carcinoma. Hered Cancer Clin Pract. 20:42022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Luo Q, Li X, Guo J, Zhu Q, Lu X, Wei L, Xiang Z, Peng M, Ou C and Zou Y: Novel role of immune-related non-coding RNAs as potential biomarkers regulating tumour immunoresponse via MICA/NKG2D pathway. Biomark Res. 11:862023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou M, He X, Mei C and Ou C: Exosome derived from tumor-associated macrophages: Biogenesis, functions, and therapeutic implications in human cancers. Biomark Res. 11:1002023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Xia Y, Wang Z, Zheng J, Chen Y, Li X, Wang Y and Ming H: Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun. 490:406–414. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Wang Q, Yang Y, Zhou S, Zhang P and Feng T: The role of exosomal lncRNAs in cancer biology and clinical management. Exp Mol Med. 53:1669–1673. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tao Y, Tang Y, Yang Z, Wu F, Wang L, Yang L, Lei L, Jing Y, Jiang X, Jin H, et al: Exploration of serum exosomal LncRNA TBILA and AGAP2-AS1 as promising biomarkers for diagnosis of non-small cell lung cancer. Int J Biol Sci. 16:471–482. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun W, Jiang C, Liu Q, Wang N, Huang R, Jiang G and Yang Y: Exosomal noncoding RNAs: Decoding their role in thyroid cancer progression. Front Endocrinol (Lausanne). 15:13372262024. View Article : Google Scholar : PubMed/NCBI | |
|
Hanifa M, Singh M, Randhawa PK, Jaggi AS and Bali A: A focus on Rho/ROCK signaling pathway: An emerging therapeutic target in depression. Eur J Pharmacol. 946:1756482023. View Article : Google Scholar : PubMed/NCBI | |
|
Narumiya S, Tanji M and Ishizaki T: Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev. 28:65–76. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chin VT, Nagrial AM, Chou A, Biankin AV, Gill AJ, Timpson P and Pajic M: Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. Expert Rev Mol Med. 17:e172015. View Article : Google Scholar : PubMed/NCBI | |
|
Burridge K and Wennerberg K: Rho and Rac take center stage. Cell. 116:167–179. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y: Dbl family guanine nucleotide exchange factors. Trends Biochem Sci. 26:724–732. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Moon SY and Zheng Y: Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13:13–22. 2003. View Article : Google Scholar | |
|
Jin D, Durgan J and Hall A: Functional cross-talk between Cdc42 and two downstream targets, Par6B and PAK4. Biochem J. 467:293–302. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Seetharaman S and Etienne-Manneville S: Cytoskeletal crosstalk in cell migration. Trends Cell Biol. 30:720–735. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Navarro-Lérida I, Sánchez-Álvarez M and Del Pozo M: Post-Translational modification and subcellular compartmentalization: Emerging concepts on the regulation and physiopathological relevance of RhoGTPases. Cells. 10:19902021. View Article : Google Scholar : PubMed/NCBI | |
|
Fukata Y, Amano M and Kaibuchi K: Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 22:32–39. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hall A: Rho GTPases and the control of cell behaviour. Biochem Soc Trans. 33:891–895. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bishop AL and Hall A: Rho GTPases and their effector proteins. Biochem J. 348:241–255. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Ridley AJ, Paterson HF, Johnston CL, Diekmann D and Hall A: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 70:401–410. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Patel S, McKeon D, Sao K, Yang C, Naranjo NM, Svitkina TM and Petrie RJ: Myosin II and Arp2/3 cross-talk governs intracellular hydraulic pressure and lamellipodia formation. Mol Biol Cell. 32:579–589. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Eckenstaler R, Hauke M and Benndorf RA: A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol. 206:1153212022. View Article : Google Scholar : PubMed/NCBI | |
|
Lou Y, Jiang Y, Liang Z, Liu B, Li T and Zhang D: Role of RhoC in cancer cell migration. Cancer Cell Int. 21:5272021. View Article : Google Scholar : PubMed/NCBI | |
|
Steffen A, Koestler SA and Rottner K: Requirements for and consequences of Rac-dependent protrusion. Eur J Cell Biol. 93:184–193. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Acevedo A and González-Billault C: Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med. 116:101–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Donkó A, Sharapova SO, Kabat J, Ganesan S, Hauck FH, Bergerson JRE, Marois L, Abbott J, Moshous D, Williams KW, et al: Clinical and functional spectrum of RAC2-related immunodeficiency. Blood. 143:1476–1487. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Donnelly SK, Cabrera R, Mao SPH, Christin JR, Wu B, Guo W, Bravo-Cordero JJ, Condeelis JS, Segall JE and Hodgson L: Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. J Cell Biol. 216:4331–4349. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
He D, Xu L, Wu Y, Yuan Y, Wang Y, Liu Z, Zhang C, Xie W, Zhang L, Geng Z, et al: Rac3, but not Rac1, promotes ox-LDL induced endothelial dysfunction by downregulating autophagy. J Cell Physiol. 235:1531–1542. 2020. View Article : Google Scholar | |
|
Nobes CD and Hall A: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 81:53–62. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Nobes CD and Hall A: Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol. 144:1235–1244. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM and Narumiya S: p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16:3044–3056. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Jerrell RJ and Parekh A: Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2. Biomaterials. 84:119–129. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kubo T, Yamaguchi A, Iwata N and Yamashita T: The therapeutic effects of Rho-ROCK inhibitors on CNS disorders. Ther Clin Risk Manag. 4:605–615. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Oka M, Fagan KA, Jones PL and McMurtry IF: Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol. 155:444–454. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Naxerova K: Evolutionary paths towards metastasis. Nat Rev Cancer. 25:545–560. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Majidpoor J and Mortezaee K: Steps in metastasis: An updated review. Med Oncol. 38:32021. View Article : Google Scholar : PubMed/NCBI | |
|
Steeg PS: Tumor metastasis: Mechanistic insights and clinical challenges. Nat Med. 12:895–904. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Bakir B, Chiarella AM, Pitarresi JR and Rustgi AK: EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 30:764–776. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Guo S, Huang J, Li G, Chen W, Li Z and Lei J: The role of extracellular vesicles in circulating tumor cell-mediated distant metastasis. Mol Cancer. 22:1932023. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuoka T and Yashiro M: Rho/ROCK signaling in motility and metastasis of gastric cancer. World J Gastroenterol. 20:13756–13766. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz JL, George SL, Maiques O, Barcelo J and Sanz-Moreno V: Rho GTPase signaling in cancer progression and dissemination. Physiol Rev. 102:455–510. 2022. View Article : Google Scholar | |
|
Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T and Narumiya S: An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med. 5:221–225. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Tang Q, Xu F, Xue Y, Zhen Z, Deng Y, Liu M, Chen J, Liu S, Qiu M, et al: RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Mol Cancer Res. 7:570–580. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kazmi N, Robinson T, Zheng J, Kar S, Martin RM and Ridley AJ: Rho GTPase gene expression and breast cancer risk: A mendelian randomization analysis. Sci Rep. 12:14632022. View Article : Google Scholar : PubMed/NCBI | |
|
Cadamuro M, Nardo G, Indraccolo S, Dall'olmo L, Sambado L, Moserle L, Franceschet I, Colledan M, Massani M, Stecca T, et al: Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology. 58:1042–1053. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bridges MC, Daulagala AC and Kourtidis A: LNCcation: lncRNA localization and function. J Cell Biol. 220:e2020090452021. View Article : Google Scholar : PubMed/NCBI | |
|
Nie H, Liao Z, Wang Y, Zhou J, He X and Ou C: Exosomal long non-coding RNAs: Emerging players in cancer metastasis and potential diagnostic biomarkers for personalized oncology. Genes Dis. 8:769–780. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Nie H, He X, Liao Z, Zhou Y, Zhou J and Ou C: The emerging role of super enhancer-derived noncoding RNAs in human cancer. Theranostics. 10:11049–11062. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kimura T, Horikoshi Y, Kuriyagawa C and Niiyama Y: Rho/ROCK pathway and noncoding RNAs: Implications in ischemic stroke and spinal cord injury. Int J Mol Sci. 22:115732021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu X, Wang X, Geng C, Nie X and Bai C: Long-chain non-coding RNA DAPK1 targeting miR-182 regulates pancreatic cancer invasion and metastasis through ROCK-1/rhoa signaling pathway. Int J Clin Exp Pathol. 10:9273–9283. 2017.PubMed/NCBI | |
|
Liu J, Zhu Y and Ge C: LncRNA ZFAS1 promotes pancreatic adenocarcinoma metastasis via the RHOA/ROCK2 pathway by sponging miR-3924. Cancer Cell Int. 20:2492020. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Wang X, Wen C, Huo Z, Wang W, Zhan Q, Cheng D, Chen H, Deng X, Peng C and Shen B: Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelial-mesenchymal transition to promote metastasis in pancreatic cancer. Mol Cancer. 16:1692017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wang Y, Fu X and Lu Z: Long non-coding RNA NEAT1 promoted ovarian cancer cells' metastasis through regulation of miR-382-3p/ROCK1 axial. Cancer Sci. 109:2188–2198. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Ren C, Fang Y, Li P, Zhang H, Zuo L, Zhang J and Zhao J: MiR-490-3p sponged by lncRNA NEAT1 can attenuate lung adenocarcinoma progression by suppressing the RhoA/ROCK signaling pathway. Ann Clin Lab Sci. 53:42–51. 2023.PubMed/NCBI | |
|
Zhang X, Wang DJ, Jia L and Zhang W: N6-methyladenosine-mediated LINC01087 promotes lung adenocarcinoma progression by regulating miR-514a-3p to upregulate centrosome protein 55. Kaohsiung J Med Sci. 40:801–818. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zeng X, Wang N, Zhao W, Zhang X, Teng S, Zhang Y and Lu Z: Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma. Mol Cancer. 17:892018. View Article : Google Scholar : PubMed/NCBI | |
|
Shao Y, Tong Z, Wei J and Yang T: LncRNA-zinc finger protein 281 downregulates rho-associated coiled-coil containing protein kinase 1 by upregulating miR-144 in osteosarcoma. Oncol Lett. 20:792020. View Article : Google Scholar : PubMed/NCBI | |
|
Deng R, Zhang J and Chen J: lncRNA SNHG1 negatively regulates miRNA-101-3p to enhance the expression of ROCK1 and promote cell proliferation, migration and invasion in osteosarcoma. Int J Mol Med. 43:1157–1166. 2019. | |
|
Wang Z, Wang Z, Liu J and Yang H: Long non-coding RNA SNHG5 sponges miR-26a to promote the tumorigenesis of osteosarcoma by targeting ROCK1. Biomed Pharmacother. 107:598–605. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Huang X, Wang W, Xie H, Li J, Hu Z, Zheng Z, Li H and Teng L: LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging (Albany NY). 10:3371–3381. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dong S, Wang W, Liao Z, Fan Y, Wang Q and Zhang L: MYC-activated LINC00607 promotes hepatocellular carcinoma progression by regulating the miR-584-3p/ROCK1 axis. J Gene Med. 25:e34772023. View Article : Google Scholar : PubMed/NCBI | |
|
Li R, Wan T, Qu J, Yu Y and Zheng R: Long non-coding RNA DLEUI promotes papillary thyroid carcinoma progression by sponging miR-421 and increasing ROCK1 expression. Aging (Albany NY). 12:20127–20138. 2020.PubMed/NCBI | |
|
Lian Y, Xiong F, Yang L, Bo H, Gong Z, Wang Y, Wei F, Tang Y, Li X, Liao Q, et al: Long noncoding RNA AFAP1-AS1 acts as a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the Rho/Rac pathway. J Exp Clin Cancer Res. 37:2532018. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Z, Li X, Qiu M, Luo R, Lin J and Liu B: LncRNA EGFR-AS1 upregulates ROCK1 by sponging miR-145 to promote esophageal squamous cell carcinoma cell invasion and migration. Cancer Biother Radiopharm. 35:66–71. 2020. | |
|
Zhou Y, Si L, Liu Z, Shi Y and Agula B: Long noncoding RNA zfas1 promotes progression of NSCLC via regulating of miR-590-3p. Cell Transplant. 29:9636897209194352020. View Article : Google Scholar : PubMed/NCBI | |
|
Song S, Bian WG, Qin Z, Zeng D, Xu JJ and Tang HC: LncRNA BCYRN1 promotes cell migration and invasion of non-small cell lung cancer via the miR-30b-3p/ROCK1 axis. Neoplasma. 69:583–593. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Qiu Q, Qian X, Yi J, Jiao Y, Yu M, Li X, Li J, Mi C, Zhang J, et al: Long noncoding RNA LCAT1 functions as a ceRNA to regulate RAC1 function by sponging miR-4715-5p in lung cancer. Mol Cancer. 18:1712019. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao H, Zhu Q and Zhou J: Long non-coding RNA MALAT1 interaction with miR-429 regulates the proliferation and EMT of lung adenocarcinoma cells through RhoA. Int J Clin Exp Pathol. 12:419–430. 2019. | |
|
Chen K and Zhang L: LINC00339 regulates ROCK1 by miR-152 to promote cell proliferation and migration in hepatocellular carcinoma. J Cell Biochem. 120:14431–14443. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Yang T, Li D, Huang Y, Bai G and Li Q: LINC00491 promotes cell growth and metastasis through miR-324-5p/ROCK1 in liver cancer. J Transl Med. 19:5042021. View Article : Google Scholar : PubMed/NCBI | |
|
You LN, Tai QW, Xu L, Hao Y, Guo WJ, Zhang Q, Tong Q, Zhang H and Huang WK: Exosomal LINC00161 promotes angiogenesis and metastasis via regulating miR-590-3p/ROCK axis in hepatocellular carcinoma. Cancer Gene Ther. 28:719–736. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Fan RG, Qin CL, Jia J, Wu XD and Zha WZ: LncRNA-H19 activates CDC42/PAK1 pathway to promote cell proliferation, migration and invasion by targeting miR-15b in hepatocellular carcinoma. Genomics. 111:1862–1872. 2019. View Article : Google Scholar | |
|
Guo D, Li Y, Chen Y, Zhang D, Wang X, Lu G, Ren M, Lu X and He S: DANCR promotes HCC progression and regulates EMT by sponging miR-27a-3p via ROCK1/LIMK1/COFILIN1 pathway. Cell Prolif. 52:e126282019. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Y, Xue Y, Liu X, Qu C, Cai H, Wang P, Li Z, Li Z and Liu Y: SNHG15 affects the growth of glioma microvascular endothelial cells by negatively regulating miR-153. Oncol Rep. 38:3265–3277. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li HL, Han PH, Pan DQ, Chen G, Lu XH and Li J: LncRNA XIST regulates cell proliferation, migration and invasion of glioblastoma via regulating miR-448 and ROCK1. J Biol Regul Homeost Agents. 34:2049–2058. 2020.PubMed/NCBI | |
|
Chen X, Li D, Chen L, Hao B, Gao Y, Li L, Zhou C, He X and Cao Y: Long noncoding RNA LINC00346 promotes glioma cell migration, invasion and proliferation by up-regulating ROCK1. J Cell Mol Med. 24:13010–13019. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Han Y, Li Q, Wang B and Ma J: LncRNA DLGAP1-AS1 accelerates glioblastoma cell proliferation through targeting miR-515-5p/ROCK1/NFE2L1 axis and activating Wnt signaling pathway. Brain Behav. 11:e23212021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Gao X and Tian X: High expression of long intergenic non-coding RNA LINC00662 contributes to malignant growth of acute myeloid leukemia cells by upregulating ROCK1 via sponging microRNA-340-5p. Eur J Pharmacol. 859:1725352019. View Article : Google Scholar : PubMed/NCBI | |
|
Bai H, Li X and Wu S: Up-regulation of long non-coding RNA LOXL1-AS1 functions as an oncogene in cervical squamous cell carcinoma by sponging miR-21. Arch Physiol Biochem. 129:143–147. 2023. View Article : Google Scholar | |
|
Chen X, Zhang Z, Ma Y, Su H, Xie P and Ran J: LINC02381 promoted cell viability and migration via targeting miR-133b in cervical cancer cells. Cancer Manag Res. 12:3971–3979. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yao X, Li X, Luo Y, Xu X, Liu J and Bu J: LncRNA GAS5 regulates osteosarcoma cell proliferation, migration, and invasion by regulating RHOB via sponging miR-663a. Cancer Manag Res. 12:8253–8261. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yang T, Zhang Z, Lu M, Zhao W, Zeng X and Zhang W: Long non-coding RNA TUG1 promotes migration and invasion by acting as a ceRNA of miR-335-5p in osteosarcoma cells. Cancer Sci. 108:859–867. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cui M, Wang J, Li Q, Zhang J, Jia J and Zhan X: Long non-coding RNA HOXA11-AS functions as a competing endogenous RNA to regulate ROCK1 expression by sponging miR-124-3p in osteosarcoma. Biomed Pharmacother. 92:437–444. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Wang D, Wang X, Sun S, Zhang Y, Wang S, Miao R, Xu X and Qu X: CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA signaling by sponging miR-133a-3p. J Exp Clin Cancer Res. 38:322019. View Article : Google Scholar : PubMed/NCBI | |
|
Kong W, Li H, Xie L, Cui G, Gu W, Zhang H, Ma W and Zhou Y: LncRNA MCF2L-AS1 aggravates the malignant development of colorectal cancer via targeting miR-105-5p/RAB22A axis. BMC Cancer. 21:10692021. View Article : Google Scholar : PubMed/NCBI | |
|
Horita K, Kurosaki H, Nakatake M, Ito M, Kono H and Nakamura T: Long noncoding RNA UCA1 enhances sensitivity to oncolytic vaccinia virus by sponging miR-18a/miR-182 and modulating the Cdc42/filopodia axis in colorectal cancer. Biochem Biophys Res Commun. 516:831–838. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tian Y, Zhong L, Gao S, Yu Y, Sun D, Liu X, Ji J, Yao Y, Liu Y and Jiang Z: LncRNA LINC00974 downregulates miR-122 to upregulate RhoA in oral squamous cell carcinoma. Cancer Biother Radiopharm. 36:18–22. 2021. | |
|
Yang J, Wang WG and Zhang KQ: LINC00452 promotes ovarian carcinogenesis through increasing ROCK1 by sponging miR-501-3p and suppressing ubiquitin-mediated degradation. Aging (Albany NY). 12:21129–21146. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Q and Dong YJ: LncRNA SNHG20 promotes migration and invasion of ovarian cancer via modulating the microRNA-148a/ROCK1 axis. J Ovarian Res. 14:1682021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Wang LL, Sun KX, Xiu YL, Zong ZH, Chen X and Zhao Y: The role of the long non-coding RNA TDRG1 in epithelial ovarian carcinoma tumorigenesis and progression through miR-93/RhoC pathway. Mol Carcinog. 57:225–234. 2018. View Article : Google Scholar | |
|
Liu Y, Zong ZH, Guan X, Wang LL and Zhao Y: The role of long non-coding RNA PCA3 in epithelial ovarian carcinoma tumorigenesis and progression. Gene. 633:42–47. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li HL, Wang CP, Zhang Y, Du JX, Han LH and Yang HY: Long non-coding RNA PVT1 facilitates cell migration and invasion by regulating miR-148a-3p and ROCK1 in breast cancer. Clin Transl Oncol. 24:882–891. 2022. View Article : Google Scholar | |
|
Chou J, Wang B, Zheng T, Li X, Zheng L, Hu J, Zhang Y, Xing Y and Xi T: MALAT1 induced migration and invasion of human breast cancer cells by competitively binding miR-1 with cdc42. Biochem Biophys Res Commun. 472:262–269. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Sheng HG, Deng FM and Cai LL: Downregulation of the long noncoding RNA SNHG1 inhibits tumor cell migration and invasion by sponging miR-195 through targeting Cdc42 in oesophageal cancer. Kaohsiung J Med Sci. 37:181–191. 2021. View Article : Google Scholar | |
|
Wang Z, Liu J, Wang R, Wang Q, Liang R and Tang J: Long non-coding RNA taurine upregulated gene 1 (TUG1) downregulation constrains cell proliferation and invasion through regulating cell division cycle 42 (CDC42) expression Via MiR-498 in esophageal squamous cell carcinoma cells. Med Sci Monit. 26:e9197142020.PubMed/NCBI | |
|
Zong W, Feng W, Jiang Y, Cao Y, Ke Y, Shi X, Ju S, Cong H, Wang X, Cui M and Jing R: LncRNA CTC-497E21.4 promotes the progression of gastric cancer via modulating miR-22/NET1 axis through RhoA signaling pathway. Gastric Cancer. 23:228–240. 2020. View Article : Google Scholar | |
|
Chen Z, Xu C, Pan X, Cheng G, Liu M, Li J and Mei Y: lncRNA DSCR8 mediates miR-137/Cdc42 to regulate gastric cancer cell proliferation, invasion, and cell cycle as a competitive endogenous RNA. Mol Ther Oncolytics. 22:468–482. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, He Z, Xu J, Chen P and Jiang J: Long noncoding RNA LINC00941 promotes pancreatic cancer progression by competitively binding miR-335-5p to regulate ROCK1-mediated LIMK1/Cofilin-1 signaling. Cell Death Dis. 12:362021. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrè F, Colantoni A and Helmer-Citterich M: Revealing protein-lncRNA interaction. Brief Bioinform. 17:106–116. 2016. View Article : Google Scholar | |
|
Ren S, Zhang N, Shen L, Lu Y, Chang Y, Lin Z, Sun N, Zhang Y, Xu J, Huang H and Jin H: Lnc00892 competes with c-Jun to block NCL transcription, reducing the stability of RhoA/RhoC mRNA and impairing bladder cancer invasion. Oncogene. 40:6579–6589. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Shen QW, Niu YX, Chen XY, Liu HW and Shen XY: LncNORAD interference inhibits tumor growth and lung cancer cell proliferation, invasion and migration by down-regulating CXCR4 to suppress RhoA/ROCK signaling pathway. Eur Rev Med Pharmacol Sci. 24:5446–5455. 2020.PubMed/NCBI | |
|
Hu X, Xiang L, He D, Zhu R, Fang J, Wang Z and Cao K: The long noncoding RNA KTN1-AS1 promotes bladder cancer tumorigenesis via KTN1 cis-activation and the consequent initiation of Rho GTPase-mediated signaling. Clin Sci (Lond). 135:555–574. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ge Z, Cheng Z, Yang X, Huo X, Wang N, Wang H, Wang C, Gu D, Zhao F, Yao M, et al: Long noncoding RNA SchLAH suppresses metastasis of hepatocellular carcinoma through interacting with fused in sarcoma. Cancer Sci. 108:653–662. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dai R, Zhou Y, Chen Z, Zou Z, Pan Z, Liu P and Gao X: Lnc-MUC20-9 binds to ROCK1 and functions as a tumor suppressor in bladder cancer. J Cell Biochem. 121:4214–4225. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu DD, Chen X, Sun KX, Wang LL, Chen S and Zhao Y: Role of the lncRNA ABHD11-AS(1) in the tumorigenesis and progression of epithelial ovarian cancer through targeted regulation of RhoC. Mol Cancer. 16:1382017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Zhao Y, Huan L, Zhao J, Zhou Y, Xu L, Hu Z, Liu Y, Chen Z, Wang L, et al: An LTR retrotransposon-derived long noncoding RNA lncMER52A promotes hepatocellular carcinoma progression by binding p120-catenin. Cancer Res. 80:976–987. 2020. View Article : Google Scholar | |
|
Shi D, Wu F, Mu S, Hu B, Zhong B, Gao F, Qing X, Liu J, Zhang Z and Shao Z: LncRNA AFAP1-AS1 promotes tumorigenesis and epithelial-mesenchymal transition of osteosarcoma through RhoC/ROCK1/p38MAPK/Twist1 signaling pathway. J Exp Clin Cancer Res. 38:3752019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Hong W and Wei X: The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 15:1292022. View Article : Google Scholar : PubMed/NCBI | |
|
Kunc M, Skrzypkowska P, Pęksa R and Biernat W: Tumor-to-tumor metastases: Systematic review and meta-analysis of 685 reported cases. Clin Exp Metastasis. 42:142025. View Article : Google Scholar : PubMed/NCBI | |
|
Peng L, Wang D, Han Y, Huang T, He X, Wang J and Ou C: Emerging role of cancer-associated fibroblasts-derived exosomes in tumorigenesis. Front Immunol. 12:7953722021. View Article : Google Scholar | |
|
Zhang JY, Weng MZ, Song FB, Xu YG, Liu Q, Wu JY, Qin J, Jin T and Xu J: Long noncoding RNA AFAP1-AS1 indicates a poor prognosis of hepatocellular carcinoma and promotes cell proliferation and invasion via upregulation of the RhoA/Rac2 signaling. Int J Oncol. 48:1590–1598. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fan C, Tang Y, Wang J, Wang Y, Xiong F, Zhang S, Li X, Xiang B, Wu X, Guo C, et al: Long non-coding RNA LOC284454 promotes migration and invasion of nasopharyngeal carcinoma via modulating the Rho/Rac signaling pathway. Carcinogenesis. 40:380–391. 2019. View Article : Google Scholar | |
|
Hu Q, Lin X, Ding L, Zeng Y, Pang D, Ouyang N, Xiang Y and Yao H: ARHGAP42 promotes cell migration and invasion involving PI3K/Akt signaling pathway in nasopharyngeal carcinoma. Cancer Med. 7:3862–3874. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Fang G, Wang J, Sun X, Xu R, Zhao X, Shao L, Sun C and Wang Y: LncRNA MAGI2-AS3 is downregulated in the distant recurrence of hepatocellular carcinoma after surgical resection and affects migration and invasion via ROCK2. Ann Hepatol. 19:535–540. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Xiao Y, Ma L and Wang J: Regulating of cell cycle progression by the lncRNA CDKN2B-AS1/miR-324-5p/ROCK1 axis in laryngeal squamous cell cancer. Int J Biol Markers. 35:47–56. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma T, Ma H, Zou Z, He X, Liu Y, Shuai Y, Xie M and Zhang Z: The long intergenic noncoding RNA 00707 promotes lung adenocarcinoma cell proliferation and migration by regulating Cdc42. Cell Physiol Biochem. 45:1566–1580. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Song L, Wang L, Pan X and Yang C: lncRNA OIP5-AS1 targets ROCK1 to promote cell proliferation and inhibit cell apoptosis through a mechanism involving miR-143-3p in cervical cancer. Braz J Med Biol Res. 53:e88832020. View Article : Google Scholar : PubMed/NCBI | |
|
Pan L, Meng Q, Li H, Liang K and Li B: LINC00339 promotes cell proliferation, migration, and invasion of ovarian cancer cells via miR-148a-3p/ROCK1 axes. Biomed Pharmacother. 120:1094232019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Wang LL, Sun KX, Liu Y, Guan X, Zong ZH and Zhao Y: LncRNA PCGEM1 induces ovarian carcinoma tumorigenesis and progression through RhoA pathway. Cell Physiol Biochem. 47:1578–1588. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan S, Luan X, Chen H, Shi X and Zhang X: Long non-coding RNA EGFR-AS1 sponges micorRNA-381 to upregulate ROCK2 in bladder cancer. Oncol Lett. 19:1899–1905. 2020.PubMed/NCBI | |
|
Shang W, Yang Y, Zhang J and Wu Q: Long noncoding RNA BDNF-AS is a potential biomarker and regulates cancer development in human retinoblastoma. Biochem Biophys Res Commun. 497:1142–1148. 2018. View Article : Google Scholar | |
|
Nikanjam M, Kato S and Kurzrock R: Liquid biopsy: Current technology and clinical applications. J Hematol Oncol. 15:1312022. View Article : Google Scholar : PubMed/NCBI | |
|
He X, Kuang G, Wu Y and Ou C: Emerging roles of exosomal miRNAs in diabetes mellitus. Clin Transl Med. 11:e4682021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuang T, Wang S, Yu X, He X, Guo H and Ou C: Current status and future perspectives of platelet-derived extracellular vesicles in cancer diagnosis and treatment. Biomark Res. 12:882024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Cui Y, Zhao H, Xiao X, Gong L, Xu H, Zhou Q, Ma D and Li X: Trophoblast exosomal UCA1 induces endothelial Injury through the PFN1-RhoA/ROCK pathway in preeclampsia: A human-specific adaptive pathogenic mechanism. Oxid Med Cell Longev. 2022:21989232022. View Article : Google Scholar : PubMed/NCBI | |
|
Ding AX, Wang H, Zhang JM, Yang W and Kuang YT: lncRNA BANCR promotes the colorectal cancer metastasis through accelerating exosomes-mediated M2 macrophage polarization via regulating RhoA/ROCK signaling. Mol Cell Biochem. 479:13–27. 2024. View Article : Google Scholar | |
|
Horita K, Kurosaki H, Nakatake M, Kuwano N, Oishi T, Itamochi H, Sato S, Kono H, Ito M, Hasegawa K, et al: lncRNA UCA1-mediated Cdc42 signaling promotes oncolytic vaccinia virus cell-to-cell spread in ovarian cancer. Mol Ther Oncolytics. 13:35–48. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liang L, Gu W, Li M, Gao R, Zhang X, Guo C and Mi S: The long noncoding RNA HOTAIRM1 controlled by AML1 enhances glucocorticoid resistance by activating RHOA/ROCK1 pathway through suppressing ARHGAP18. Cell Death Dis. 12:7022021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu K, Tian H, Zhao S, Yuan D, Jiang L, Liu X, Zou B and Zhang J: Long noncoding RNA LOC441178 reduces the invasion and migration of squamous carcinoma cells by targeting ROCK1. Biomed Res Int. 2018:43576472018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Yu T and Geng W: Long non-coding RNA CCHE1 participates in postoperative distant recurrence but not local recurrence of osteosarcoma possibly by interacting with ROCK1. BMC Musculoskelet Disord. 21:4622020. View Article : Google Scholar : PubMed/NCBI | |
|
Maldonado MDM and Dharmawardhane S: Targeting Rac and Cdc42 GTPases in cancer. Cancer Res. 78:3101–3111. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Guo X, Stafford LJ, Bryan B, Xia C, Ma W, Wu X, Liu D, Songyang Z and Liu M: A Rac/Cdc42-specific exchange factor, GEFT, induces cell proliferation, transformation, and migration. J Biol Chem. 278:13207–13215. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Hosseini K, Frenzel A and Fischer-Friedrich E: EMT induces characteristic changes of Rho GTPases and downstream effectors with a mitosis-specific twist. Phys Biol. 20:2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou W, Li X, Zhang B, Peng H, Quan C, Xiao X, Luo M, Huang Y, Xu D, Huang K, et al: The long non-coding RNA CCAT1 promotes erlotinib resistance in cholangiocarcinoma by inducing epithelial-mesenchymal transition via the miR-181a-5p/ROCK2 axis. Am J Cancer Res. 14:2852–2867. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Abulwerdi FA, Xu W, Ageeli AA, Yonkunas MJ, Arun G, Nam H, Schneekloth JS Jr, Dayie TK, Spector D, Baird N and Le Grice SFJ: Selective small-molecule targeting of a triple helix encoded by the long noncoding RNA, MALAT1. ACS Chem Biol. 14:223–235. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cruz-Collazo A, Ruiz-Calderon JF, Picon H, Borrero-Garcia LD, Lopez I, Castillo-Pichardo L, Del Mar Maldonado M, Duconge J, Medina JI, Bayro MJ, et al: Efficacy of Rac and Cdc42 inhibitor MBQ-167 in triple-negative breast cancer. Mol Cancer Ther. 20:2420–2432. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Moon GT, Lee JH, Jeong SH, Jin SW and Park YM: NecroX-5 can suppress melanoma metastasis by reducing the expression of Rho-family GTPases. J Clin Med. 10:27902021. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Ding X, Xie M, Huang Z, Han P, Tian D and Xia L: CAMSAP2-mediated noncentrosomal microtubule acetylation drives hepatocellular carcinoma metastasis. Theranostics. 10:3749–3766. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gastonguay A, Berg T, Hauser AD, Schuld N, Lorimer E and Williams CL: The role of Rac1 in the regulation of NF-κB activity, cell proliferation, and cell migration in non-small cell lung carcinoma. Cancer Biol Ther. 13:647–656. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou M, He X, Zhang J, Mei C, Zhong B and Ou C: tRNA-derived small RNAs in human cancers: Roles, mechanisms, and clinical application. Mol Cancer. 23:762024. View Article : Google Scholar : PubMed/NCBI | |
|
Sarfi M, Abbastabar M and Khalili E: Long noncoding RNAs biomarker-based cancer assessment. J Cell Physiol. 234:16971–16986. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mouraviev V, Lee B, Patel V, Albala D, Johansen TE, Partin A, Ross A and Perera RJ: Clinical prospects of long noncoding RNAs as novel biomarkers and therapeutic targets in prostate cancer. Prostate Cancer Prostatic Dis. 19:14–20. 2016. View Article : Google Scholar | |
|
Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB and Gupta SC: Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer. 1875:1885022021. View Article : Google Scholar : PubMed/NCBI | |
|
Alix-Panabières C and Pantel K: Liquid biopsy: From discovery to clinical application. Cancer Discov. 11:858–873. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Diez-Fraile A, Ceulaer J, Derpoorter C, Spaas C, Backer T, Lamoral P, Abeloos J and Lammens T: Circulating non-coding RNAs in head and neck cancer: Roles in diagnosis, prognosis, and therapy monitoring. Cells. 10:482020. View Article : Google Scholar | |
|
Guo X, Peng Y, Song Q, Wei J, Wang X, Ru Y, Xu S, Cheng X, Li X, Wu D, et al: A liquid biopsy signature for the early detection of gastric cancer in patients. Gastroenterology. 165:402–413. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf ZSKM, Bedhiafi T, El-Ella DMA, Taib N, Hydrose S, Akbar S, et al: Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res. 41:992022. View Article : Google Scholar : PubMed/NCBI | |
|
Kabzinski J, Kucharska-Lusina A and Majsterek I: RNA-based liquid biopsy in head and neck cancer. Cells. 12:19162023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang N, Zhang H, Wu W, Zhou R, Li S, Wang Z, Dai Z, Zhang L, Liu F, Liu Z, et al: Machine learning-based identification of tumor-infiltrating immune cell-associated lncRNAs for improving outcomes and immunotherapy responses in patients with low-grade glioma. Theranostics. 12:5931–5948. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Q, Li J, Chen W, Wang Z, Wang D, Liu C, Sun Y, Jiang H, Zhang C, Chang Y, et al: NetLnc: A network-based computational framework to identify immune checkpoint-related lncRNAs for Immunotherapy response in melanoma. Int J Mol Sci. 26:45572025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Chen J, Yang D, Liu C, Tang C, Cai S and Huang Y: Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis. Sci Rep. 15:238632025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Zhu L, Wang X and Jin H: RNA-based therapeutics: An overview and prospectus. Cell Death Dis. 13:6442022. View Article : Google Scholar : PubMed/NCBI | |
|
Puri B, Majumder S and Gaikwad AB: LncRNA MALAT1 as a potential diagnostic and therapeutic target in kidney diseases. Pathol Res Pract. 266:1557832025. View Article : Google Scholar | |
|
Chen Y, Li Z, Chen X and Zhang S: Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin B. 11:340–354. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Botti G, Marra L, Malzone MG, Anniciello A, Botti C, Franco R and Cantile M: LncRNA HOTAIR as prognostic circulating Marker and potential therapeutic target in patients with tumor diseases. Curr Drug Targets. 18:27–34. 2017. View Article : Google Scholar | |
|
Prabhakaran R, Thamarai R, Sivasamy S, Dhandayuthapani S, Batra J, Kamaraj C, Karthik K, Shah MA and Mallik S: Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. Epigenetics Chromatin. 17:312024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Li Z, Huang X, Huang L, Fu Y, Zhao B, Zhang Y, Ma L, Jing S, Fu L, et al: VPS9D1-AS1 antisense therapy via lipid nanoparticles reprograms cold tumors and enhances immunotherapy in colorectal cancer. J Control Release. 384:1138652025. View Article : Google Scholar : PubMed/NCBI | |
|
He X, Lin F, Jia R, Xia Y, Liang Z, Xiao X, Hu Q, Deng X, Li Q and Sheng W: Coordinated modulation of long non-coding RNA ASBEL and curcumin co-delivery through multicomponent nanocomplexes for synchronous triple-negative breast cancer theranostics. J Nanobiotechnology. 21:3972023. View Article : Google Scholar : PubMed/NCBI | |
|
Jia F, Li Y, Deng X, Wang X, Cui X, Lu J, Pan Z and Wu Y: Self-assembled fluorescent hybrid nanoparticles-mediated collaborative lncRNA CCAT1 silencing and curcumin delivery for synchronous colorectal cancer theranostics. J Nanobiotechnology. 19:2382021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Liu F, Tan L, Li X, Dai Z, Cheng Q, Liu J, Wang Y, Huang L, Wang L and Wang Z: LncRNA-edited biomimetic nanovaccines combined with anti-TIM-3 for augmented immune checkpoint blockade immunotherapy. J Control Release. 361:671–680. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Herman AB, Tsitsipatis D and Gorospe M: Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 82:2252–2266. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yip CW, Sivaraman DM, Prabhu AV and Shin JW: Functional annotation of lncRNA in high-throughput screening. Essays Biochem. 65:761–773. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Street CA and Bryan BA: Rho kinase proteins-pleiotropic modulators of cell survival and apoptosis. Anticancer Res. 31:3645–3657. 2011.PubMed/NCBI | |
|
Street CA, Routhier AA, Spencer C, Perkins AL, Masterjohn K, Hackathorn A, Montalvo J, Dennstedt EA and Bryan BA: Pharmacological inhibition of Rho-kinase (ROCK) signaling enhances cisplatin resistance in neuroblastoma cells. Int J Oncol. 37:1297–1305. 2010.PubMed/NCBI |