|
1
|
Wang W, Zhou Y, Li W, Quan C and Li Y:
Claudins and hepatocellular carcinoma. Biomed Pharmacother.
171:1161092024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mo Y, Zou Z and Chen E: Targeting
ferroptosis in hepatocellular carcinoma. Hepatol Int. 18:32–49.
2024. View Article : Google Scholar
|
|
3
|
Sankar K, Gong J, Osipov A, Miles SA,
Kosari K, Nissen NN, Hendifar AE, Koltsova EK and Yang JD: Recent
advances in the management of hepatocellular carcinoma. Clin Mol
Hepatol. 30:1–15. 2024. View Article : Google Scholar :
|
|
4
|
Butaye E, Somers N, Grossar L, Pauwels N,
Lefere S, Devisscher L, Raevens S, Geerts A, Meuris L, Callewaert
N, et al: Systematic review: Glycomics as diagnostic markers for
hepatocellular carcinoma. Aliment Pharmacol Ther. 59:23–38. 2024.
View Article : Google Scholar
|
|
5
|
Llovet JM, Pinyol R, Yarchoan M, Singal
AG, Marron TU, Schwartz M, Pikarsky E, Kudo M and Finn RS: Adjuvant
and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat
Rev Clin Oncol. 21:294–311. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen X, Kou L, Xie X, Su S, Li J and Li Y:
Prognostic biomarkers associated with immune checkpoint inhibitors
in hepatocellular carcinoma. Immunology. 172:21–45. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhang N, Kaur R, Akhter S and Legerski RJ:
Cdc5L interacts with ATR and is required for the S-phase cell-cycle
checkpoint. EMBO Rep. 10:1029–1035. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang Z, Mao W, Wang L, Liu M, Zhang W, Wu
Y, Zhang J, Mao S, Geng J and Yao X: Depletion of CDC5L inhibits
bladder cancer tumorigenesis. J Cancer. 11:353–363. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Huang R, Xue R, Qu D, Yin J and Shen XZ:
Prp19 arrests cell cycle via Cdc5L in hepatocellular carcinoma
cells. Int J Mol Sci. 18:7782017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Qiu H, Zhang X, Ni W, Shi W, Fan H, Xu J,
Chen Y, Ni R and Tao T: Expression and clinical role of Cdc5L as a
novel cell cycle protein in hepatocellular carcinoma. Dig Dis Sci.
61:795–805. 2016. View Article : Google Scholar
|
|
11
|
Tian M, Cheng H, Wang Z, Su N, Liu Z, Sun
C, Zhen B, Hong X, Xue Y and Xu P: Phosphoproteomic analysis of the
highly-metastatic hepatocellular carcinoma cell line, MHCC97-H. Int
J Mol Sci. 16:4209–4225. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ma Q, Lu Q, Lei X, Zhao J, Sun W, Huang D,
Zhu Q and Xu Q: Relationship between HuR and tumor drug resistance.
Clin Transl Oncol. 25:1999–2014. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Liu R, Wu K, Li Y, Sun R and Li X: Human
antigen R: A potential therapeutic target for liver diseases.
Pharmacol Res. 155:1046842020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Papatheofani V, Levidou G, Sarantis P,
Koustas E, Karamouzis MV, Pergaris A, Kouraklis G and Theocharis S:
HuR protein in hepatocellular carcinoma: Implications in
development, prognosis and treatment. Biomedicines. 9:1192021.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Imre G: Pyroptosis in health and disease.
Am J Physiol Cell Physiol. 326:C784–C794. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chao L, Zhang W, Feng Y, Gao P and Ma J:
Pyroptosis: A new insight into intestinal inflammation and cancer.
Front Immunol. 15:13649112024. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wen J, Xuan B, Liu Y, Wang L, He L, Meng
X, Zhou T and Wang Y: NLRP3 inflammasome-induced pyroptosis in
digestive system tumors. Front Immunol. 14:10746062023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wallace HL and Russell RS: Inflammatory
consequences: Hepatitis C virus-induced inflammasome activation and
pyroptosis. Viral Immunol. 37:126–138. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zou Z, Zhao M, Yang Y, Xie Y, Li Z, Zhou
L, Shang R and Zhou P: The role of pyroptosis in hepatocellular
carcinoma. Cell Oncol (Dordr). 46:811–823. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhao H, Liu H, Yang Y and Wang H: The role
of autophagy and pyroptosis in liver disorders. Int J Mol Sci.
23:62082022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cheng C, Hsu SK, Chen YC, Liu W, Shu ED,
Chien CM, Chiu CC and Chang WT: Burning down the house: Pyroptosis
in the tumor microenvironment of hepatocellular carcinoma. Life
Sci. 347:1226272024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jiang M, Qi L, Li L and Li Y: The
caspase-3/GSDME signal pathway as a switch between apoptosis and
pyroptosis in cancer. Cell Death Discov. 6:1122020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lorente L, Rodriguez ST, Sanz P,
González-Rivero AF, Pérez-Cejas A, Padilla J, Díaz D, González A,
Martín MM, Jiménez A, et al: High serum caspase-3 levels in
hepatocellular carcinoma prior to liver transplantation and high
mortality risk during the first year after liver transplantation.
Expert Rev Mol Diagn. 19:635–640. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Shang N, Bank T, Ding X, Breslin P, Li J,
Shi B and Qiu W: Caspase-3 suppresses diethylnitrosamine-induced
hepatocyte death, compensatory proliferation and
hepatocarcinogenesis through inhibiting p38 activation. Cell Death
Dis. 9:5582018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Song A, Ding T, Wei N, Yang J, Ma M, Zheng
S and Jin H: Schisandrin B induces HepG2 cells pyroptosis by
activating NK cells mediated anti-tumor immunity. Toxicol Appl
Pharmacol. 472:1165742023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang X, Zhang P, An L, Sun N, Peng L,
Tang W, Ma D and Chen J: Miltirone induces cell death in
hepatocellular carcinoma cell through GSDME-dependent pyroptosis.
Acta Pharm Sin B. 10:1397–1413. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gräub R, Lancero H, Pedersen A, Chu M,
Padmanabhan K, Xu XQ, Spitz P, Chalkley R, Burlingame AL, Stokoe D
and Bernstein HS: Cell cycle-dependent phosphorylation of human
CDC5 regulates RNA processing. Cell Cycle. 7:1795–1803. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Du F, Zhao X and Fan D: Tumorigenicity
assay in nude mice. Bio Protoc. 7:e23642017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Somarelli JA, Roghani RS, Moghaddam AS,
Thomas BC, Rupprecht G, Ware KE, Altunel E, Mantyh JB, Kim SY,
McCall SJ, et al: A precision medicine drug discovery pipeline
identifies combined CDK2 and 9 inhibition as a novel therapeutic
strategy in colorectal cancer. Mol Cancer Ther. 19:2516–2527. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ashall VD, Morton D and Clutton E: A
declaration of helsinki for animals. Vet Anaesth Analg. 50:309–314.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
He GN, Bao NR, Wang S, Xi M, Zhang TH and
Chen FS: Ketamine induces ferroptosis of liver cancer cells by
targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther.
15:3965–3978. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shang A, Gu C, Wang W, Wang X, Sun J, Zeng
B, Chen C, Chang W, Ping Y, Ji P, et al: Exosomal circPACRGL
promotes progression of colorectal cancer via the
miR-142-3p/miR-506-3p-TGF-β1 axis. Mol Cancer. 19:1172020.
View Article : Google Scholar
|
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
|
34
|
Bhat AA, Thapa R, Afzal O, Agrawal N,
Almalki WH, Kazmi I, Alzarea SI, Altamimi ASA, Prasher P, Singh SK,
et al: The pyroptotic role of Caspase-3/GSDME signalling pathway
among various cancer: A review. Int J Biol Macromol.
242:1248322023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lehrich BM and Delgado ER: Lipid
nanovesicle platforms for hepatocellular carcinoma precision
medicine therapeutics: Progress and perspectives. Organogenesis.
20:23136962024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Akbulut Z, Aru B, Aydın F and Demirel GY:
Immune checkpoint inhibitors in the treatment of hepatocellular
carcinoma. Front Immunol. 15:13796222024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hu Y, Chen D, Hong M, Liu J, Li Y, Hao J,
Lu L, Yin Z and Wu Y: Apoptosis, pyroptosis, and ferroptosis
conspiringly induce immunosuppressive hepatocellular carcinoma
microenvironment and γδ T-Cell imbalance. Front Immunol.
13:8459742022. View Article : Google Scholar
|
|
38
|
Xin X, Cheng X, Zeng F, Xu Q and Hou L:
The role of TGF-β/SMAD signaling in hepatocellular carcinoma: From
mechanism to therapy and prognosis. Int J Biol Sci. 20:1436–1451.
2024. View Article : Google Scholar :
|
|
39
|
Li J, Zhang N, Zhang R, Sun L, Yu W, Guo
W, Gao Y, Li M, Liu W, Liang P, et al: CDC5L promotes hTERT
expression and colorectal tumor growth. Cell Physiol Biochem.
41:2475–2488. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhen L, Ning G, Wu L, Zheng Y, Yang F,
Chen T, Xu W, Liu Y, Xie C and Peng L: Prognostic value of
aberrantly expressed methylation genes in human hepatocellular
carcinoma. Biosci Rep. 40:BSR201925932020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tong X, Tang R, Xiao M, Xu J, Wang W,
Zhang B, Liu J, Yu X and Shi S: Targeting cell death pathways for
cancer therapy: Recent developments in necroptosis, pyroptosis,
ferroptosis, and cuproptosis research. J Hematol Oncol. 15:1742022.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Khan M, Ai M, Du K, Song J, Wang B, Lin J,
Ren A, Chen C, Huang Z, Qiu W, et al: Pyroptosis relates to tumor
microenvironment remodeling and prognosis: A pan-cancer
perspective. Front Immunol. 13:10622252022. View Article : Google Scholar
|
|
43
|
Yang F, Bettadapura SN, Smeltzer MS, Zhu H
and Wang S: Pyroptosis and pyroptosis-inducing cancer drugs. Acta
Pharmacol Sin. 43:2462–2473. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zheng Y, Yang S, Dai W, Wang J, Bi S,
Zhang X, Zheng Z, Sun Y, Wu S and Kong J: CHMP3 promotes the
progression of hepatocellular carcinoma by inhibiting
caspase-1-dependent pyroptosis. Int J Oncol. 64:82024. View Article : Google Scholar
|
|
45
|
Xiao C, Gong J, Jie Y, Liang W, Tai Y, Qin
W, Lu T, Chong Y, Hei Z, Hu B and Zhang Q: E2F1-mediated
up-regulation of NCAPG promotes hepatocellular carcinoma
development by inhibiting pyroptosis. J Clin Transl Hepatol.
12:25–35. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wu PP, Shen XJ and Zheng SS: Cisplatin
induces acute liver injury by triggering caspase-3/GSDME-mediated
cell pyroptosis. Hepatobiliary Pancreatic Dis Int. 24:177–187.
2024. View Article : Google Scholar
|
|
47
|
Sun X, Zhong X, Ma W, Feng W, Huang Q, Ma
M, Lv M, Hu R, Han Z, Li J and Zhou X: Germacrone induces
caspase-3/GSDME activation and enhances ROS production, causing
HepG2 pyroptosis. Exp Ther Med. 24:4562022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Rothamel K, Arcos S, Kim B, Reasoner C,
Lisy S, Mukherjee N and Ascano M: ELAVL1 primarily couples mRNA
stability with the 3' UTRs of interferon-stimulated genes. Cell
Rep. 35:1091782021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lachiondo-Ortega S, Delgado TC,
Baños-Jaime B, Velázquez-Cruz A, Díaz-Moreno I and Martínez-Chantar
ML: Hu Antigen R (HuR) protein structure, function and regulation
in hepatobiliary tumors. Cancers (Basel). 14:26662022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Fernández-Ramos D and Martínez-Chantar ML:
NEDDylation in liver cancer: The regulation of the RNA binding
protein Hu antigen R. Pancreatology. 15(4 Suppl): S49–S54. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Subramanian P, Gargani S, Palladini A,
Chatzimike M, Grzybek M, Peitzsch M, Papanastasiou AD, Pyrina I,
Ntafis V, Gercken B, et al: The RNA binding protein human antigen R
is a gatekeeper of liver homeostasis. Hepatology. 75:881–897. 2022.
View Article : Google Scholar
|
|
52
|
Kanzaki H, Chiba T, Kaneko T, Ao J, Kan M,
Muroyama R, Nakamoto S, Kanda T, Maruyama H, Kato J, et al: The
RNA-Binding protein ELAVL1 regulates hepatitis B Virus replication
and growth of hepatocellular carcinoma cells. Int J Mol Sci.
23:78782022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shi J, Guo C and Ma J: CCAT2 enhances
autophagy-related invasion and metastasis via regulating miR-4496
and ELAVL1 in hepatocellular carcinoma. J Cell Mol Med.
25:8985–8996. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhu B, He J, Ye X, Pei X, Bai Y, Gao F,
Guo L, Yong H and Zhao W: Role of cisplatin in inducing acute
kidney injury and pyroptosis in mice via the exosome miR-122/ELAVL1
regulatory axis. Physiol Res. 72:753–765. 2023. View Article : Google Scholar
|
|
55
|
Janakiraman H, House RP, Talwar S,
Courtney SM, Hazard ES, Hardiman G, Mehrotra S, Howe PH, Gangaraju
V and Palanisamy V: Repression of caspase-3 and RNA-binding protein
HuR cleavage by cyclooxygenase-2 promotes drug resistance in oral
squamous cell carcinoma. Oncogene. 36:3137–3148. 2017. View Article : Google Scholar :
|
|
56
|
Qiu S, Wang F, Gao X, Guan W, Dai T, Yin
L, Wang F, Sun J, Guo P, Wu H, et al: Prp19/CDC5L promotes gastric
cancer via activation of the MAPK pathway-mediated homologous
recombination. Int J Biol Sci. 21:1603–1618. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xu J, Wang Y, Ren L, Li P and Liu P:
IGF2BP1 promotes multiple myeloma with chromosome 1q gain via
increasing CDC5L expression in an m6A-dependent manner.
Genes Dis. 12:1012142025. View Article : Google Scholar
|
|
58
|
Jokoji G, Maeda S, Oishi K, Ijuin T,
Nakajima M, Tawaratsumida H, Kawamura I, Tominaga H, Taketomi E,
Ikegawa S and Taniguchi N: CDC5L promotes early chondrocyte
differentiation and proliferation by modulating pre-mRNA splicing
of SOX9, COL2A1, and WEE1. J Biol Chem. 297:1009942021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Xu JF, Wang YP, Zhang SJ, Chen Y, Gu HF,
Dou XF, Xia B, Bi Q and Fan SW: Exosomes containing differential
expression of microRNA and mRNA in osteosarcoma that can predict
response to chemotherapy. Oncotarget. 8:75968–75978. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lan J, Huang J, Tao X, Gao Y, Zhang L,
Huang W, Luo J, Liu C, Deng Y, Liu L and Liu X: Evaluation of the
TRIP13 level in breast cancer and insights into potential molecular
pathways. J Cell Mol Med. 26:2673–2685. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yu N, Wu Y, Wei Q, Li X, Li M and Wu W:
m6A modification of CDC5L promotes lung adenocarcinoma
progression through transcriptionally regulating WNT7B expression.
Am J Cancer Res. 14:3565–3583. 2024. View Article : Google Scholar :
|
|
62
|
Li C, Liu X, Huang Z, Zhai Y, Li H and Wu
J: Lactoferrin alleviates lipopolysaccharide-induced infantile
intestinal immune barrier damage by regulating an ELAVL1-related
signaling pathway. Int J Mol Sci. 23:137192022. View Article : Google Scholar : PubMed/NCBI
|