You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Ohuma EO, Moller AB, Bradley E, Chakwera S, Hussain-Alkhateeb L, Lewin A, Okwaraji YB, Mahanani WR, Johansson EW, Lavin T, et al: National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet. 402:1261–1271. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Saigal S and Doyle LW: An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 371:261–269. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Goldenberg RL, Culhane JF, Iams JD and Romero R: Epidemiology and causes of preterm birth. Lancet. 371:75–84. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Romero R, Gomez-Lopez N, Winters AD, Jung E, Shaman M, Bieda J, Panaitescu B, Pacora P, Erez O, Greenberg JM, et al: Evidence that intra-amniotic infections are often the result of an ascending invasion-a molecular microbiological study. J Perinat Med. 47:915–931. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Witkin SS: The vaginal microbiome, vaginal anti-microbial defence mechanisms and the clinical challenge of reducing infection-related preterm birth. BJOG. 122:213–218. 2015. View Article : Google Scholar | |
|
Fox C and Eichelberger K: Maternal microbiome and pregnancy outcomes. Fertil Steril. 104:1358–1363. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tabatabaei N, Eren AM, Barreiro LB, Yotova V, Dumaine A, Allard C and Fraser WD: Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: A case-control study. BJOG. 126:349–358. 2019. View Article : Google Scholar | |
|
Liu L, Yin T, Zhang X, Sun L and Yin Y: Temporal and spatial variation of the human placental microbiota during pregnancy. Am J Reprod Immunol. 92:e700232024. View Article : Google Scholar : PubMed/NCBI | |
|
Conde-Agudelo A, Papageorghiou AT, Kennedy SH and Villar J: Novel biomarkers for the prediction of the spontaneous preterm birth phenotype: A systematic review and meta-analysis. BJOG. 118:1042–1054. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Meertens LJE, van Montfort P, Scheepers HCJ, van Kuijk SMJ, Aardenburg R, Langenveld J, van Dooren IMA, Zwaan IM, Spaanderman MEA and Smits LJM: Prediction models for the risk of spontaneous preterm birth based on maternal characteristics: A systematic review and independent external validation. Acta Obstet Gynecol Scand. 97:907–920. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hickey RJ, Zhou X, Pierson JD, Ravel J and Forney LJ: Understanding vaginal microbiome complexity from an ecological perspective. Transl Res. 160:267–282. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Happel AU, Kullin B, Gamieldien H, Wentzel N, Zauchenberger CZ, Jaspan HB, Dabee S, Barnabas SL, Jaumdally SZ, Dietrich J, et al: Exploring potential of vaginal Lactobacillus isolates from South African women for enhancing treatment for bacterial vaginosis. PLoS Pathog. 16:e10085592020. View Article : Google Scholar : PubMed/NCBI | |
|
Giannella L, Grelloni C, Quintili D, Fiorelli A, Montironi R, Alia S, Delli Carpini G, Di Giuseppe J, Vignini A and Ciavattini A: Microbiome changes in pregnancy disorders. Antioxidants (Basel). 12:4632023. View Article : Google Scholar : PubMed/NCBI | |
|
Bayar E, Bennett PR, Chan D, Sykes L and MacIntyre DA: The pregnancy microbiome and preterm birth. Semin Immunopathol. 42:487–499. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bachmann NL, Rockett RJ, Timms VJ and Sintchenko V: Advances in clinical sample preparation for identification and characterization of bacterial pathogens using metagenomics. Front Public Health. 6:3632018. View Article : Google Scholar | |
|
Sroka-Oleksiak A, Gosiewski T, Pabian W, Gurgul A, Kapusta P, Ludwig-Słomczyńska AH, Wołkow PP and Brzychczy-Włoch M: Next-generation sequencing as a tool to detect vaginal microbiota disturbances during pregnancy. Microorganisms. 8:18132020. View Article : Google Scholar : PubMed/NCBI | |
|
Linhares IM, Summers PR, Larsen B, Giraldo PC and Witkin SS: Contemporary perspectives on vaginal pH and lactobacilli. Am J Obstet Gynecol. 204:120.e1–e5. 2011. View Article : Google Scholar | |
|
Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, et al: Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 108(Suppl 1): S4680–S4687. 2011. View Article : Google Scholar | |
|
Blostein F, Gelaye B, Sanchez SE, Williams MA and Foxman B: Vaginal microbiome diversity and preterm birth: Results of a nested case-control study in Peru. Ann Epidemiol. 41:28–34. 2020. View Article : Google Scholar | |
|
Stennett CA, Dyer TV, He X, Robinson CK, Ravel J, Ghanem KG and Brotman RM: A cross-sectional pilot study of birth mode and vaginal microbiota in reproductive-age women. PLoS One. 15:e02285742020. View Article : Google Scholar : PubMed/NCBI | |
|
Chaban B, Links MG, Jayaprakash TP, Wagner EC, Bourque DK, Lohn Z, Albert AY, van Schalkwyk J, Reid G, Hemmingsen SM, et al: Characterization of the vaginal microbiota of healthy Canadian women through the menstrual cycle. Microbiome. 2:232014. View Article : Google Scholar : PubMed/NCBI | |
|
Roy EJ and Mackay R: The concentration of oestrogens in blood during pregnancy. J Obstet Gynaecol Br Emp. 69:13–17. 1962. View Article : Google Scholar : PubMed/NCBI | |
|
Ma B, Forney LJ and Ravel J: Vaginal microbiome: Rethinking health and disease. Annu Rev Microbiol. 66:371–389. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
van de Wijgert J and Verwijs MC: Lactobacilli-containing vaginal probiotics to cure or prevent bacterial or fungal vaginal dysbiosis: A systematic review and recommendations for future trial designs. BJOG. 127:287–299. 2020. View Article : Google Scholar | |
|
Bhandari P, Tingley JP, Palmer DRJ, Abbott DW and Hill JE: Characterization of an α-Glucosidase enzyme conserved in gardnerella spp. isolated from the human vaginal microbiome. J Bacteriol. 203:e00213212021. View Article : Google Scholar | |
|
Rosca AS, Castro J, Sousa LGV and Cerca N: Gardnerella and vaginal health: The truth is out there. FEMS Microbiol Rev. 44:73–105. 2020. View Article : Google Scholar | |
|
Tachedjian G, Aldunate M, Bradshaw CS and Cone RA: The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol. 168:782–792. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kaur H, Merchant M, Haque MM and Mande SS: Crosstalk between female gonadal hormones and vaginal microbiota across various phases of women's gynecological lifecycle. Front Microbiol. 11:5512020. View Article : Google Scholar : PubMed/NCBI | |
|
Anderson DJ, Marathe J and Pudney J: The structure of the human vaginal stratum corneum and its role in immune defense. Am J Reprod Immunol. 71:618–623. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shen J, Song N, Williams CJ, Brown CJ, Yan Z, Xu C and Forney LJ: Effects of low dose estrogen therapy on the vaginal microbiomes of women with atrophic vaginitis. Sci Rep. 6:243802016. View Article : Google Scholar : PubMed/NCBI | |
|
Cauci S, Driussi S, De Santo D, Penacchioni P, Iannicelli T, Lanzafame P, De Seta F, Quadrifoglio F, de Aloysio D and Guaschino S: Prevalence of bacterial vaginosis and vaginal flora changes in peri- and postmenopausal women. J Clin Microbiol. 40:2147–2152. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Brooks JP, Edwards DJ, Blithe DL, Fettweis JM, Serrano MG, Sheth NU, Strauss JF III, Buck GA and Jefferson KK: Effects of combined oral contraceptives, depot medroxyprogesterone acetate and the levonorgestrel-releasing intrauterine system on the vaginal microbiome. Contraception. 95:405–413. 2017. View Article : Google Scholar | |
|
Bradshaw CS, Vodstrcil LA, Hocking JS, Law M, Pirotta M, Garland SM, De Guingand D, Morton AN and Fairley CK: Recurrence of bacterial vaginosis is significantly associated with posttreatment sexual activities and hormonal contraceptive use. Clin Infect Dis. 56:777–786. 2013. View Article : Google Scholar | |
|
Garcia-Garcia RM, Arias-Álvarez M, Jordán-Rodríguez D, Rebollar PG, Lorenzo PL, Herranz C and Rodríguez JM: Female reproduction and the microbiota in mammals: Where are we? Theriogenology. 194:144–153. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fettweis JM, Serrano MG, Brooks JP, Edwards DJ, Girerd PH, Parikh HI, Huang B, Arodz TJ, Edupuganti L, Glascock AL, et al: The vaginal microbiome and preterm birth. Nat Med. 25:1012–1021. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Serrano MG, Parikh HI, Brooks JP, Edwards DJ, Arodz TJ, Edupuganti L, Huang B, Girerd PH, Bokhari YA, Bradley SP, et al: Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy. Nat Med. 25:1001–1011. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
MacIntyre DA, Chandiramani M, Lee YS, Kindinger L, Smith A, Angelopoulos N, Lehne B, Arulkumaran S, Brown R, Teoh TG, et al: The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 5:89882015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Zhai Q, Wang J, Ma X, Xing B, Fan H, Gao Z, Zhao F and Liu W: Variation of the vaginal microbiome during and after pregnancy in Chinese women. Genomics Proteomics Bioinformatics. 20:322–333. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shachar BZ, Mayo JA, Lyell DJ, Baer RJ, Jeliffe-Pawlowski LL, Stevenson DK and Shaw GM: Interpregnancy interval after live birth or pregnancy termination and estimated risk of preterm birth: A retrospective cohort study. BJOG. 123:2009–2017. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
McKinney D, House M, Chen A, Muglia L and DeFranco E: The influence of interpregnancy interval on infant mortality. Am J Obstet Gynecol. 216:316.e1–316.e9. 2017. View Article : Google Scholar | |
|
Kangatharan C, Labram S and Bhattacharya S: Interpregnancy interval following miscarriage and adverse pregnancy outcomes: Systematic review and meta-analysis. Hum Reprod Update. 23:221–231. 2017. | |
|
Bobitt JR and Ledger WJ: Unrecognized amnionitis and prematurity: A preliminary report. J Reprod Med. 19:8–12. 1977.PubMed/NCBI | |
|
Andrews WW, Hauth JC, Goldenberg RL, Gomez R, Romero R and Cassell GH: Amniotic fluid interleukin-6: Correlation with upper genital tract microbial colonization and gestational age in women delivered after spontaneous labor versus indicated delivery. Am J Obstet Gynecol. 173:606–612. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Andrews WW, Goldenberg RL, Hauth JC, Cliver SP, Conner M and Goepfert AR: Endometrial microbial colonization and plasma cell endometritis after spontaneous or indicated preterm versus term delivery. Am J Obstet Gynecol. 193:739–745. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hillier SL, Krohn MA, Cassen E, Easterling TR, Rabe LK and Eschenbach DA: The role of bacterial vaginosis and vaginal bacteria in amniotic fluid infection in women in preterm labor with intact fetal membranes. Clin Infect Dis. 20(Suppl 2): S276–S278. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Leitich H and Kiss H: Asymptomatic bacterial vaginosis and intermediate flora as risk factors for adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol. 21:375–390. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hay PE, Lamont RF, Taylor-Robinson D, Morgan DJ, Ison C and Pearson J: Abnormal bacterial colonisation of the genital tract and subsequent preterm delivery and late miscarriage. BMJ. 308:295–298. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Leitich H, Bodner-Adler B, Brunbauer M, Kaider A, Egarter C and Husslein P: Bacterial vaginosis as a risk factor for preterm delivery: A meta-analysis. Am J Obstet Gynecol. 189:139–147. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Carey JC, Klebanoff MA, Hauth JC, Hillier SL, Thom EA, Ernest JM, Heine RP, Nugent RP, Fischer ML, Leveno KJ, et al: Metronidazole to prevent preterm delivery in pregnant women with asymptomatic bacterial vaginosis. National institute of child health and human development network of maternal-fetal medicine units. N Engl J Med. 342:534–540. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Klebanoff MA, Carey JC, Hauth JC, Hillier SL, Nugent RP, Thom EA, Ernest JM, Heine RP, Wapner RJ, Trout W, et al: Failure of metronidazole to prevent preterm delivery among pregnant women with asymptomatic Trichomonas vaginalis infection. N Engl J Med. 345:487–493. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Brocklehurst P, Hannah M and McDonald H: Interventions for treating bacterial vaginosis in pregnancy. Cochrane Database Syst Rev. Jan 20–2000.Epub ahead of print. PubMed/NCBI | |
|
Guise JM, Mahon SM, Aickin M, Helfand M, Peipert JF and Westhoff C: Screening for bacterial vaginosis in pregnancy. Am J Prev Med. 20(Suppl 3): S62–S72. 2001. View Article : Google Scholar | |
|
Koumans EH, Markowitz LE and Hogan V; CDC BV Working Group: Indications for therapy and treatment recommendations for bacterial vaginosis in nonpregnant and pregnant women: A synthesis of data. Clin Infect Dis. 35(Suppl 2): S152–S172. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Petrova MI, van den Broek M, Balzarini J, Vanderleyden J and Lebeer S: Vaginal microbiota and its role in HIV transmission and infection. FEMS Microbiol Rev. 37:762–792. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Peebles K, Velloza J, Balkus JE, McClelland RS and Barnabas RV: High global burden and costs of bacterial vaginosis: A systematic review and meta-analysis. Sex Transm Dis. 46:304–311. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Onderdonk AB, Delaney ML and Fichorova RN: The human microbiome during bacterial vaginosis. Clin Microbiol Rev. 29:223–238. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ling Z, Kong J, Liu F, Zhu H, Chen X, Wang Y, Li L, Nelson KE, Xia Y and Xiang C: Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics. 11:4882010. View Article : Google Scholar : PubMed/NCBI | |
|
Muzny CA and Schwebke JR: Gardnerella vaginalis: Still a prime suspect in the pathogenesis of bacterial vaginosis. Curr Infect Dis Rep. 15:130–135. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Garcia EM, Serrano MG, Edupuganti L, Edwards DJ, Buck GA and Jefferson KK: Sequence comparison of vaginolysin from different gardnerella species. Pathogens. 10:862021. View Article : Google Scholar : PubMed/NCBI | |
|
Vaneechoutte M, Guschin A, Van Simaey L, Gansemans Y, Van Nieuwerburgh F and Cools P: Emended description of Gardnerella vaginalis and description of Gardnerella leopoldii sp. nov., Gardnerella piotii sp. nov. and Gardnerella swidsinskii sp. nov., with delineation of 13 genomic species within the genus Gardnerella. Int J Syst Evol Microbiol. 69:679–687. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmed A, Earl J, Retchless A, Hillier SL, Rabe LK, Cherpes TL, Powell E, Janto B, Eutsey R, Hiller NL, et al: Comparative genomic analyses of 17 clinical isolates of Gardnerella vaginalis provide evidence of multiple genetically isolated clades consistent with subspeciation into genovars. J Bacteriol. 194:3922–3937. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Balashov SV, Mordechai E, Adelson ME and Gygax SE: Identification, quantification and subtyping of Gardnerella vaginalis in noncultured clinical vaginal samples by quantitative PCR. J Med Microbiol. 63:162–175. 2014. View Article : Google Scholar | |
|
Georgijević A, Cjukić-Ivancević S and Bujko M: Bacterial vaginosis. Epidemiology and risk factors. Srp Arh Celok Lek. 128:29–33. 2000.In Serbian. | |
|
van de Wijgert JH, Borgdorff H, Verhelst R, Crucitti T, Francis S, Verstraelen H and Jespers V: The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS One. 9:e1059982014. View Article : Google Scholar : PubMed/NCBI | |
|
France MT, Fu L, Rutt L, Yang H, Humphrys MS, Narina S, Gajer PM, Ma B, Forney LJ and Ravel J: Insight into the ecology of vaginal bacteria through integrative analyses of metagenomic and metatranscriptomic data. Genome Biol. 23:662022. View Article : Google Scholar : PubMed/NCBI | |
|
Garcia EM, Kraskauskiene V, Koblinski JE and Jefferson KK: Interaction of gardnerella vaginalis and vaginolysin with the apical versus basolateral face of a three-dimensional model of vaginal epithelium. Infect Immun. 87:e00646–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ragaliauskas T, Plečkaitytė M, Jankunec M, Labanauskas L, Baranauskiene L and Valincius G: Inerolysin and vaginolysin, the cytolysins implicated in vaginal dysbiosis, differently impair molecular integrity of phospholipid membranes. Sci Rep. 9:106062019. View Article : Google Scholar : PubMed/NCBI | |
|
Jung HS, Ehlers MM, Lombaard H, Redelinghuys MJ and Kock MM: Etiology of bacterial vaginosis and polymicrobial biofilm formation. Crit Rev Microbiol. 43:651–667. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Swidsinski A, Dörffel Y, Loening-Baucke V, Schilling J and Mendling W: Response of Gardnerella vaginalis biofilm to 5 days of moxifloxacin treatment. FEMS Immunol Med Microbiol. 61:41–46. 2011. View Article : Google Scholar | |
|
Castro J, Machado D and Cerca N: Unveiling the role of Gardnerella vaginalis in polymicrobial Bacterial Vaginosis biofilms: The impact of other vaginal pathogens living as neighbors. ISME J. 13:1306–1317. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jones HE, Harris KA, Azizia M, Bank L, Carpenter B, Hartley JC, Klein N and Peebles D: Differing prevalence and diversity of bacterial species in fetal membranes from very preterm and term labor. PLoS One. 4:e82052009. View Article : Google Scholar : PubMed/NCBI | |
|
Suff N, Karda R, Diaz JA, Ng J, Baruteau J, Perocheau D, Tangney M, Taylor PW, Peebles D, Buckley SMK and Waddington SN: Ascending vaginal infection using bioluminescent bacteria evokes intrauterine inflammation, preterm birth, and neonatal brain injury in pregnant mice. Am J Pathol. 188:2164–2176. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Randis TM, Gelber SE, Hooven TA, Abellar RG, Akabas LH, Lewis EL, Walker LB, Byland LM, Nizet V and Ratner AJ: Group B Streptococcus β-hemolysin/cytolysin breaches maternal-fetal barriers to cause preterm birth and intrauterine fetal demise in vivo. J Infect Dis. 210:265–273. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Bieda J, Chaemsaithong P, Miranda J, Chaiworapongsa T and Ravel J: The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome. 2:182014. View Article : Google Scholar : PubMed/NCBI | |
|
Nelson DB, Shin H, Wu J and Dominguez-Bello MG: The gestational vaginal microbiome and spontaneous preterm birth among Nulliparous African American Women. Am J Perinatol. 33:887–893. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Stout MJ, Zhou Y, Wylie KM, Tarr PI, Macones GA and Tuuli MG: Early pregnancy vaginal microbiome trends and preterm birth. Am J Obstet Gynecol. 217:356.e1–356.e18. 2017. View Article : Google Scholar | |
|
Kindinger LM, Bennett PR, Lee YS, Marchesi JR, Smith A, Cacciatore S, Holmes E, Nicholson JK, Teoh TG and MacIntyre DA: The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk. Microbiome. 5:62017. View Article : Google Scholar : PubMed/NCBI | |
|
Petrova MI, Reid G, Vaneechoutte M and Lebeer S: Lactobacillus iners: Friend or Foe? Trends Microbiol. 25:182–191. 2017. View Article : Google Scholar | |
|
Srinivasan S, Hoffman NG, Morgan MT, Matsen FA, Fiedler TL, Hall RW, Ross FJ, McCoy CO, Bumgarner R, Marrazzo JM and Fredricks DN: Bacterial communities in women with bacterial vaginosis: High resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One. 7:e378182012. View Article : Google Scholar : PubMed/NCBI | |
|
Santiago GL, Cools P, Verstraelen H, Trog M, Missine G, El Aila N, Verhelst R, Tency I, Claeys G, Temmerman M and Vaneechoutte M: Longitudinal study of the dynamics of vaginal microflora during two consecutive menstrual cycles. PLoS One. 6:e281802011. View Article : Google Scholar : PubMed/NCBI | |
|
Tamrakar R, Yamada T, Furuta I, Cho K, Morikawa M, Yamada H, Sakuragi N and Minakami H: Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women. BMC Infect Dis. 7:1282007. View Article : Google Scholar : PubMed/NCBI | |
|
Shipitsyna E, Roos A, Datcu R, Hallén A, Fredlund H, Jensen JS, Engstrand L and Unemo M: Composition of the vaginal microbiota in women of reproductive age-sensitive and specific molecular diagnosis of bacterial vaginosis is possible? PLoS One. 8:e606702013. View Article : Google Scholar | |
|
Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M and Vaneechoutte M: Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol. 9:1162009. View Article : Google Scholar : PubMed/NCBI | |
|
Santiago GL, Tency I, Verstraelen H, Verhelst R, Trog M, Temmerman M, Vancoillie L, Decat E, Cools P and Vaneechoutte M: Longitudinal qPCR study of the dynamics of L. crispatus, L. iners, A. vaginae, (sialidase positive) G. vaginalis, and P. bivia in the vagina. PLoS One. 7:e452812012. View Article : Google Scholar : PubMed/NCBI | |
|
Macklaim JM, Fernandes AD, Di Bella JM, Hammond JA, Reid G and Gloor GB: Comparative meta-RNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis. Microbiome. 1:122013. View Article : Google Scholar | |
|
Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UM, Zhong X, Koenig SS, Fu L, Ma ZS, Zhou X, et al: Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 4:132ra522012. View Article : Google Scholar : PubMed/NCBI | |
|
Petricevic L, Domig KJ, Nierscher FJ, Sandhofer MJ, Fidesser M, Krondorfer I, Husslein P, Kneifel W and Kiss H: Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Sci Rep. 4:51362014. View Article : Google Scholar : PubMed/NCBI | |
|
Baldwin EA, Walther-Antonio M, MacLean AM, Gohl DM, Beckman KB, Chen J, White B, Creedon DJ and Chia N: Persistent microbial dysbiosis in preterm premature rupture of membranes from onset until delivery. PeerJ. 3:e13982015. View Article : Google Scholar : PubMed/NCBI | |
|
Brown RG, Marchesi JR, Lee YS, Smith A, Lehne B, Kindinger LM, Terzidou V, Holmes E, Nicholson JK, Bennett PR and MacIntyre DA: Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC Med. 16:92018. View Article : Google Scholar : PubMed/NCBI | |
|
Brown RG, Al-Memar M, Marchesi JR, Lee YS, Smith A, Chan D, Lewis H, Kindinger L, Terzidou V, Bourne T, et al: Establishment of vaginal microbiota composition in early pregnancy and its association with subsequent preterm prelabor rupture of the fetal membranes. Transl Res. 207:30–43. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Robaczewska A, Sun CL, Goltsman DS, Wong RJ, Shaw G, et al: Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci USA. 112:11060–11065. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Callahan BJ, DiGiulio DB, Goltsman DSA, Sun CL, Costello EK, Jeganathan P, Biggio JR, Wong RJ, Druzin ML, Shaw GM, et al: Replication and refinement of a vaginal microbial signature of preterm birth in two racially distinct cohorts of US women. Proc Natl Acad Sci USA. 114:9966–9971. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hyman RW, Fukushima M, Jiang H, Fung E, Rand L, Johnson B, Vo KC, Caughey AB, Hilton JF, Davis RW and Giudice LC: Diversity of the vaginal microbiome correlates with preterm birth. Reprod Sci. 21:32–40. 2014. View Article : Google Scholar : | |
|
Elovitz MA, Gajer P, Riis V, Brown AG, Humphrys MS, Holm JB and Ravel J: Cervicovaginal microbiota and local immune response modulate the risk of spontaneous preterm delivery. Nat Commun. 10:13052019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun S, Serrano MG, Fettweis JM, Basta P, Rosen E, Ludwig K, Sorgen AA, Blakley IC, Wu MC, Dole N, et al: Race, the vaginal microbiome, and spontaneous preterm birth. mSystems. 7:e00017222022. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar M, Murugesan S, Singh P, Saadaoui M, Elhag DA, Terranegra A, Kabeer BSA, Marr AK, Kino T, Brummaier T, et al: Vaginal microbiota and cytokine levels predict preterm delivery in Asian women. Front Cell Infect Microbiol. 11:6396652021. View Article : Google Scholar : PubMed/NCBI | |
|
Kindinger LM, MacIntyre DA, Lee YS, Marchesi JR, Smith A, McDonald JA, Terzidou V, Cook JR, Lees C, Israfil-Bayli F, et al: Relationship between vaginal microbial dysbiosis, inflammation, and pregnancy outcomes in cervical cerclage. Sci Transl Med. 8:350ra1022016. View Article : Google Scholar : PubMed/NCBI | |
|
Green ES and Arck PC: Pathogenesis of preterm birth: Bidirectional inflammation in mother and fetus. Semin Immunopathol. 42:413–429. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wahid HH, Dorian CL, Chin PY, Hutchinson MR, Rice KC, Olson DM, Moldenhauer LM and Robertson SA: Toll-Like receptor 4 is an essential upstream regulator of on-time parturition and perinatal viability in mice. Endocrinology. 156:3828–3841. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chin PY, Dorian CL, Hutchinson MR, Olson DM, Rice KC, Moldenhauer LM and Robertson SA: Novel Toll-like receptor-4 antagonist (+)-naloxone protects mice from inflammation-induced preterm birth. Sci Rep. 6:361122016. View Article : Google Scholar : PubMed/NCBI | |
|
Deng W, Yuan J, Cha J, Sun X, Bartos A, Yagita H, Hirota Y and Dey SK: Endothelial cells in the decidual bed are potential therapeutic targets for preterm birth prevention. Cell Rep. 27:1755–1768.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liassides C, Papadopoulos A, Siristatidis C, Damoraki G, Liassidou A, Chrelias C, Kassanos D and Giamarellos-Bourboulis EJ: Single nucleotide polymorphisms of Toll-like receptor-4 and of autophagy-related gene 16 like-1 gene for predisposition of premature delivery: A prospective study. Medicine (Baltimore). 98:e173132019. View Article : Google Scholar : PubMed/NCBI | |
|
Filipovich Y, Lu SJ, Akira S and Hirsch E: The adaptor protein MyD88 is essential for E coli-induced preterm delivery in mice. Am J Obstet Gynecol. 200:93.e1–8. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Montalbano AP, Hawgood S and Mendelson CR: Mice deficient in surfactant protein A (SP-A) and SP-D or in TLR2 manifest delayed parturition and decreased expression of inflammatory and contractile genes. Endocrinology. 154:483–498. 2013. View Article : Google Scholar : | |
|
Patni S, Wynen LP, Seager AL, Morgan G, White JO and Thornton CA: Expression and activity of Toll-like receptors 1-9 in the human term placenta and changes associated with labor at term. Biol Reprod. 80:243–248. 2009. View Article : Google Scholar | |
|
Krediet TG, Wiertsema SP, Vossers MJ, Hoeks SB, Fleer A, Ruven HJ and Rijkers GT: Toll-like receptor 2 polymorphism is associated with preterm birth. Pediatr Res. 62:474–476. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Lorenz E, Hallman M, Marttila R, Haataja R and Schwartz DA: Association between the Asp299Gly polymorphisms in the Toll-like receptor 4 and premature births in the Finnish population. Pediatr Res. 52:373–376. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Romero R, Xu Y, Plazyo O, Chaemsaithong P, Chaiworapongsa T, Unkel R, Than NG, Chiang PJ, Dong Z, Xu Z, et al: A role for the inflammasome in spontaneous labor at term. Am J Reprod Immunol. 79:e124402018. View Article : Google Scholar | |
|
Lindström TM and Bennett PR: The role of nuclear factor kappa B in human labour. Reproduction. 130:569–581. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
McCarthy R, Martin-Fairey C, Sojka DK, Herzog ED, Jungheim ES, Stout MJ, Fay JC, Mahendroo M, Reese J, Herington JL, et al: Mouse models of preterm birth: Suggested assessment and reporting guidelines. Biol Reprod. 99:922–937. 2018.PubMed/NCBI | |
|
Zhu B, Tao Z, Edupuganti L, Serrano MG and Buck GA: Roles of the microbiota of the female reproductive tract in gynecological and reproductive health. Microbiol Mol Biol Rev. 86:e00181212022. View Article : Google Scholar : PubMed/NCBI | |
|
Yudin MH, Landers DV, Meyn L and Hillier SL: Clinical and cervical cytokine response to treatment with oral or vaginal metronidazole for bacterial vaginosis during pregnancy: A randomized trial. Obstet Gynecol. 102:527–534. 2003.PubMed/NCBI | |
|
Soto E, Romero R, Richani K, Yoon BH, Chaiworapongsa T, Vaisbuch E, Mittal P, Erez O, Gotsch F, Mazor M and Kusanovic JP: Evidence for complement activation in the amniotic fluid of women with spontaneous preterm labor and intra-amniotic infection. J Matern Fetal Neonatal Med. 22:983–992. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Romero R and Tartakovsky B: The natural interleukin-1 receptor antagonist prevents interleukin-1-induced preterm delivery in mice. Am J Obstet Gynecol. 167:1041–1045. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Nadeau-Vallée M, Quiniou C, Palacios J, Hou X, Erfani A, Madaan A, Sanchez M, Leimert K, Boudreault A, Duhamel F, et al: Novel noncompetitive IL-1 receptor-biased ligand prevents infection- and inflammation-induced preterm birth. J Immunol. 195:3402–3415. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Robertson SA, Christiaens I, Dorian CL, Zaragoza DB, Care AS, Banks AM and Olson DM: Interleukin-6 is an essential determinant of on-time parturition in the mouse. Endocrinology. 151:3996–4006. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Di Simone N, Santamaria Ortiz A, Specchia M, Tersigni C, Villa P, Gasbarrini A, Scambia G and D'Ippolito S: Recent insights on the maternal microbiota: Impact on pregnancy outcomes. Front Immunol. 11:5282022020. View Article : Google Scholar : PubMed/NCBI | |
|
Chan D, Bennett PR, Lee YS, Kundu S, Teoh TG, Adan M, Ahmed S, Brown RG, David AL, Lewis HV, et al: Microbial-driven preterm labour involves crosstalk between the innate and adaptive immune response. Nat Commun. 13:9752022. View Article : Google Scholar : PubMed/NCBI | |
|
Gonzalez JM, Franzke CW, Yang F, Romero R and Girardi G: Complement activation triggers metalloproteinases release inducing cervical remodeling and preterm birth in mice. Am J Pathol. 179:838–849. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Robertson SA, Skinner RJ and Care AS: Essential role for IL-10 in resistance to lipopolysaccharide-induced preterm labor in mice. J Immunol. 177:4888–4896. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Osman I, Young A, Ledingham MA, Thomson AJ, Jordan F, Greer IA and Norman JE: Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 9:41–45. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Rinaldi SF, Catalano RD, Wade J, Rossi AG and Norman JE: Decidual neutrophil infiltration is not required for preterm birth in a mouse model of infection-induced preterm labor. J Immunol. 192:2315–2325. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Mohd Zaki A, Hadingham A, Flaviani F, Haque Y, Mi JD, Finucane D, Dalla Valle G, Mason AJ, Saqi M, Gibbons DL and Tribe RM: Neutrophils dominate the cervical immune cell population in pregnancy and their transcriptome correlates with the microbial vaginal environment. Front Microbiol. 13:9044512022. View Article : Google Scholar : PubMed/NCBI | |
|
Cezar-de-Mello PFT, Ryan S and Fichorova RN: The microRNA cargo of human vaginal extracellular vesicles differentiates parasitic and pathobiont infections from colonization by homeostatic bacteria. Microorganisms. 11:5512023. View Article : Google Scholar : PubMed/NCBI | |
|
Zen M, Canova M, Campana C, Bettio S, Nalotto L, Rampudda M, Ramonda R, Iaccarino L and Doria A: The kaleidoscope of glucorticoid effects on immune system. Autoimmun Rev. 10:305–310. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Busillo JM, Azzam KM and Cidlowski JA: Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J Biol Chem. 286:38703–38713. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hermoso MA, Matsuguchi T, Smoak K and Cidlowski JA: Glucocorticoids and tumor necrosis factor alpha cooperatively regulate toll-like receptor 2 gene expression. Mol Cell Biol. 24:4743–4756. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Baschant U and Tuckermann J: The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol. 120:69–75. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Franchimont D: Overview of the actions of glucocorticoids on the immune response: A good model to characterize new pathways of immunosuppression for new treatment strategies. Ann NY Acad Sci. 1024:124–137. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Hearps AC, Tyssen D, Srbinovski D, Bayigga L, Diaz DJD, Aldunate M, Cone RA, Gugasyan R, Anderson DJ and Tachedjian G: Vaginal lactic acid elicits an anti-inflammatory response from human cervicovaginal epithelial cells and inhibits production of pro-inflammatory mediators associated with HIV acquisition. Mucosal Immunol. 10:1480–1490. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Delgado-Diaz DJ, Tyssen D, Hayward JA, Gugasyan R, Hearps AC and Tachedjian G: Distinct immune responses elicited from cervicovaginal epithelial cells by lactic acid and short chain fatty acids associated with optimal and non-optimal vaginal microbiota. Front Cell Infect Microbiol. 9:4462020. View Article : Google Scholar : PubMed/NCBI | |
|
Galdeano CM and Perdigón G: The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol. 13:219–226. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Rocha-Ramírez LM, Pérez-Solano RA, Castañón-Alonso SL, Moreno Guerrero SS, Ramírez Pacheco A, García Garibay M and Eslava C: Probiotic lactobacillus strains stimulate the inflammatory response and activate human macrophages. J Immunol Res. 2017:46074912017. View Article : Google Scholar : PubMed/NCBI | |
|
Anton L, Sierra LJ, DeVine A, Barila G, Heiser L, Brown AG and Elovitz MA: Common cervicovaginal microbial supernatants alter cervical epithelial function: Mechanisms by which lactobacillus crispatus contributes to cervical health. Front Microbiol. 9:21812018. View Article : Google Scholar : PubMed/NCBI | |
|
Dizzell S, Nazli A, Reid G and Kaushic C: Protective effect of probiotic bacteria and estrogen in preventing HIV-1-mediated impairment of epithelial barrier integrity in female genital tract. Cells. 8:11202019. View Article : Google Scholar : PubMed/NCBI | |
|
Qi W, Li H, Wang C, Li H, Zhang B, Dong M, Fan A, Han C and Xue F: Recent advances in presentation, diagnosis and treatment for mixed vaginitis. Front Cell Infect Microbiol. 11:7597952021. View Article : Google Scholar : PubMed/NCBI | |
|
Dong M, Dong Y, Bai J, Li H, Ma X, Li B, Wang C, Li H, Qi W, Wang Y, et al: Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front Cell Infect Microbiol. 13:11245912023. View Article : Google Scholar : PubMed/NCBI | |
|
Schönfeld P and Wojtczak L: Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J Lipid Res. 57:943–954. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Aldunate M, Srbinovski D, Hearps AC, Latham CF, Ramsland PA, Gugasyan R, Cone RA and Tachedjian G: Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front Physiol. 6:1642015. View Article : Google Scholar : PubMed/NCBI | |
|
Amabebe E and Anumba DOC: The vaginal microenvironment: The physiologic role of lactobacilli. Front Med (Lausanne). 5:1812018. View Article : Google Scholar : PubMed/NCBI | |
|
Beghini J, Giraldo PC, Linhares IM, Ledger WJ and Witkin SS: Neutrophil gelatinase-associated lipocalin concentration in vaginal fluid: relation to bacterial vaginosis and vulvovaginal candidiasis. Reprod Sci. 22:964–968. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Stafford GP, Parker JL, Amabebe E, Kistler J, Reynolds S, Stern V, Paley M and Anumba DOC: spontaneous preterm birth is associated with differential expression of vaginal metabolites by lactobacilli-dominated microflora. Front Physiol. 8:6152017. View Article : Google Scholar : PubMed/NCBI | |
|
Amabebe E and Anumba DOC: A combination of cervicovaginal fluid glutamate, acetate and D-Lactate identified asymptomatic low-risk women destined to deliver preterm: A prospective cohort study. Reprod Sci. 29:915–922. 2022. View Article : Google Scholar | |
|
Ghartey J, Bastek JA, Brown AG, Anglim L and Elovitz MA: Women with preterm birth have a distinct cervicovaginal metabolome. Am J Obstet Gynecol. 212:776.e1–776.e12. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Srinivasan S, Morgan MT, Fiedler TL, Djukovic D, Hoffman NG, Raftery D, Marrazzo JM and Fredricks DN: Metabolic signatures of bacterial vaginosis. mBio. 6:e002042015. View Article : Google Scholar : PubMed/NCBI | |
|
Menon R, Jones J, Gunst PR, Kacerovsky M, Fortunato SJ, Saade GR and Basraon S: Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reprod Sci. 21:791–803. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lizewska B, Teul J, Kuc P, Lemancewicz A, Charkiewicz K, Goscik J, Kacerovsky M, Menon R, Miltyk W and Laudanski P: Maternal plasma metabolomic profiles in spontaneous preterm birth: Preliminary results. Mediators Inflamm. 2018:93628202018. View Article : Google Scholar : PubMed/NCBI | |
|
Smith DD and Rood KM: Intrahepatic cholestasis of pregnancy. Clin Obstet Gynecol. 63:134–151. 2020. View Article : Google Scholar | |
|
Tuckey RC: Progesterone synthesis by the human placenta. Placenta. 26:273–281. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wilks M, Wiggins R, Whiley A, Hennessy E, Warwick S, Porter H, Corfield A and Millar M: Identification and H(2) O(2) production of vaginal lactobacilli from pregnant women at high risk of preterm birth and relation with outcome. J Clin Microbiol. 42:713–717. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
O'Hanlon DE, Moench TR and Cone RA: In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide. BMC Infect Dis. 11:2002011. View Article : Google Scholar : PubMed/NCBI | |
|
Mitchell C, Fredricks D, Agnew K and Hitti J: Hydrogen peroxide-producing lactobacilli are associated with lower levels of vaginal interleukin-1β, independent of bacterial vaginosis. Sex Transm Dis. 42:358–363. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hemmerling A, Harrison W, Schroeder A, Park J, Korn A, Shiboski S, Foster-Rosales A and Cohen CR: Phase 2a study assessing colonization efficiency, safety, and acceptability of Lactobacillus crispatus CTV-05 in women with bacterial vaginosis. Sex Transm Dis. 37:745–750. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Mayer BT, Srinivasan S, Fiedler TL, Marrazzo JM, Fredricks DN and Schiffer JT: Rapid and profound shifts in the vaginal microbiota following antibiotic treatment for bacterial vaginosis. J Infect Dis. 212:793–802. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bayar E, MacIntyre DA, Sykes L, Mountain K, Parks TP, Lee PP and Bennett PR: Safety, tolerability, and acceptability of Lactobacillus crispatus CTV-05 (LACTIN-V) in pregnant women at high-risk of preterm birth. Benef Microbes. 14:45–56. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tomusiak A, Strus M, Heczko PB, Adamski P, Stefański G, Mikołajczyk-Cichońska A and Suda-Szczurek M: Efficacy and safety of a vaginal medicinal product containing three strains of probiotic bacteria: A multicenter, randomized, double-blind, and placebo-controlled trial. Drug Des Devel Ther. 9:5345–5354. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Vasundhara D, Raju VN, Hemalatha R, Nagpal R and Kumar M: Vaginal & gut microbiota diversity in pregnant women with bacterial vaginosis & effect of oral probiotics: An exploratory study. Indian J Med Res. 153:492–502. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Reid G, Charbonneau D, Erb J, Kochanowski B, Beuerman D, Poehner R and Bruce AW: Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: Randomized, placebo-controlled trial in 64 healthy women. FEMS Immunol Med Microbiol. 35:131–134. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Ho M, Chang YY, Chang WC, Lin HC, Wang MH, Lin WC and Chiu TH: Oral Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 to reduce Group B Streptococcus colonization in pregnant women: A randomized controlled trial. Taiwan J Obstet Gynecol. 55:515–518. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Anukam KC, Osazuwa E, Osemene GI, Ehigiagbe F, Bruce AW and Reid G: Clinical study comparing probiotic Lactobacillus GR-1 and RC-14 with metronidazole vaginal gel to treat symptomatic bacterial vaginosis. Microbes Infect. 8:2772–2776. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Hemalatha R, Mastromarino P, Ramalaxmi BA, Balakrishna NV and Sesikeran B: Effectiveness of vaginal tablets containing lactobacilli versus pH tablets on vaginal health and inflammatory cytokines: A randomized, double-blind study. Eur J Clin Microbiol Infect Dis. 31:3097–3105. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Husain S, Allotey J, Drymoussi Z, Wilks M, Fernandez-Felix BM, Whiley A, Dodds J, Thangaratinam S, McCourt C, Prosdocimi EM, et al: Effects of oral probiotic supplements on vaginal microbiota during pregnancy: A randomised, double-blind, placebo-controlled trial with microbiome analysis. BJOG. 127:275–284. 2020. View Article : Google Scholar | |
|
Gille C, Böer B, Marschal M, Urschitz MS, Heinecke V, Hund V, Speidel S, Tarnow I, Mylonas I, Franz A, et al: Effect of probiotics on vaginal health in pregnancy. EFFPRO, a randomized controlled trial. Am J Obstet Gynecol. 215:608.e1–608.e7. 2016. View Article : Google Scholar | |
|
Govinden G, Parker JL, Naylor KL, Frey AM, Anumba DOC and Stafford GP: Inhibition of sialidase activity and cellular invasion by the bacterial vaginosis pathogen Gardnerella vaginalis. Arch Microbiol. 200:1129–1133. 2018. View Article : Google Scholar : PubMed/NCBI |