Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2025 Volume 56 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 56 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Quinazolinone derivatives as potential anti‑tumor agents: Structural features and molecular mechanisms in inducing cell death (Review)

  • Authors:
    • Jianqin Li
    • Yan Yang
    • Lei Wang
    • Quanli Liu
    • Xiaohong Kang
    • Yun Yang
  • View Affiliations / Copyright

    Affiliations: Oncology Department, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China, Henan Province Engineering Research Center of Macromolecular Drug Technology Innovation, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 205
    |
    Published online on: September 25, 2025
       https://doi.org/10.3892/ijmm.2025.5646
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The quinazolinone scaffold is widely present in natural compounds and serves as a core structural unit in various alkaloids. Its structural flexibility is a major advantage in anti‑tumor drug development. Characterized by a fused bicyclic system, this scaffold enables precise pharmacological modulation through targeted chemical modifications, allowing the regulation of multiple cell death pathways, including apoptosis, autophagy, ferroptosis, senescence, pyroptosis and necrosis. This review systematically describes the molecular mechanisms by which quinazolinone derivatives induce tumor cell death and critically evaluates their clinical translation potential. In addition, quinazolinone‑based agents approved by the Food and Drug Administration and those in preclinical development as targeted anti‑tumor therapies are summarized, providing new perspectives and methodological frameworks for advancing oncology drug discovery.
View Figures

Figure 1

Chemical structures of quinazoline
and quinazolinone. Chemical structures of (A) quinazoline and (B)
quinazolinone. In both structures, nitrogen atoms are highlighted
in blue and the carbonyl oxygen atom is highlighted in red. The
numbering in panel B indicates the substitution sites of
quinazolinone.

Figure 2

Mechanism of quazolinone compounds
inducing cell death through apoptosis. i) In the extrinsic pathway,
the death ligand-receptor interaction triggers apoptotic signaling
and forms the DISC complex, activating the Caspase-8/-3 cascade,
leading to cell apoptosis (HMJ-38 induces apoptosis through the
Fas/Death receptor-Caspase-8 pathway and is regulated by p53/ATM
signaling). ii) In the intrinsic pathway, quinazolinones
downregulate Bcl-2/Bcl-xL and upregulate Bax/Bad, thereby promoting
cytochrome c release, Apaf-1 apoptosome formation and
Caspase-9/Caspase-3 cascade activation (QC suppresses Bcl-2,
promotes the translocation of Bax into the mitochondria, releases
Cyt C and activates Caspase-9. MITC-12 upregulates the Bax/Bcl-2
ratio and increases Caspase-3 expression. The analogs synthesized
by Madbouly et al (61)
induce apoptosis by promoting Caspase-3 and PARP-1 cleavage
(compound 5k increases Bad and Bax, reduces Bcl-2 and Bcl-xL and
enhances pro-apoptotic signals). iii) In the DNA damage pathway,
ATM/ATR/p53 signaling induces Puma expression to enhance
mitochondrial apoptosis (one of the mechanisms of HMJ-38 is to
induce the p53/ATM signaling pathway through DNA damage, thereby
activating the death receptor pathway Caspase-8). iv) ER stress
activates the IRE1-TRAF2-ASK1 signaling pathway, which in turn
activates the JNK and p38 MAPK pathways, induces CHOP expression,
promotes the upregulation of TRIB3 and DR5 and subsequently
activates Caspase-3, Caspase-8 and Caspase-12, thereby inducing
apoptosis (MJ-29 activates key markers of ER stress by increasing
the protein levels of calpain 1 and CHOP). ER, endoplasmic
reticulum; DISC, death-inducing signaling complex; DED, death
effector domain; BID, BH3 interacting domain death agonist; APAF1,
apoptotic peptidase activating factor 1; ING2, inhibitor of growth
family member 2; Puma, P53 upregulated modulator of apoptosis; Bim,
Bcl-2 interacting mediator of cell death; Bad, BCL2-associated
agonist of cell death; JNK, c-Jun N-terminal kinase; IRE1,
immunoglobulin-regulated enhancer 1; TRAF2, TNF receptor associated
factor 2; ASK1, apoptosis signal-regulating kinase 1; CHOP, C/EBP
homologous protein; TRIB3, Tribbles pseudokinase 3; DR5, death
receptor 5; ATM, Ataxia-telangiectasia mutated proteins; ATR,
Ataxia telangiectasia mutated and Rad3 related; caspase, cysteinyl
aspartate specific proteinase.

Figure 3

Mechanism of quazolinone compounds
inducing cell death through ferroptosis. i) System Xc−
is responsible for importing extracellular cysteine into cells for
GSH synthesis, maintaining GPX4 activity to clear lipid peroxides
PL-PUFA-OOH. When cysteine uptake is blocked or GSH is depleted,
GPX4 becomes inactive, leading to the accumulation of lipid
peroxides and triggering ferroptosis (Erastin inhibits SLC7A11,
prevents Cys entry, reduces GSH synthesis, weakens GPX4 activity
and enhances lipid peroxidation, thereby inducing ferroptosis;
BODIQPy-TPA directly acts on the GPX4/GSH axis, inhibits GPX4,
depletes GSH, blocks lipid peroxide clearance and promotes
ferroptosis). ii) After transferrin-bound Fe3+ enters
the cell, it is reduced to Fe2+, promoting ROS
generation and inducing lipid peroxidation. The Keap1-Nrf2
signaling axis regulates the downstream antioxidant gene NQO1,
which helps buffer ferroptosis stress to a certain extent (CQ-Mito
generates ROS under light, inhibits GPX4, reduces Keap1 and
activates the Nrf2 antioxidant pathway). iii) PUFA is acylated to
form PuFA-CoA, and under the influence of iron and ROS, lipid
peroxides PL-PUFA-OOH are generated, which are direct molecular
effectors of ferroptosis. ROS, reactive oxygen species; GSH,
glutathione; TF, transcription factors; GCL, glutamate cysteine
ligase; GGC, gamma-glutamylcysteine; GSS, glutathione synthetase;
SLC40A1, solute carrier family 40 member 1; system Xc−,
cystine/glutamate antiporter system; αKG, α-ketoglutaric acid;
TCA-cycle, tricarboxylic acid cycle; VDAC, voltage-dependent anion
channel; OXPHOS, oxidative phosphorylation; PuFA, polyunsaturated
fatty acid; CoA, coenzyme A; Cys, cysteine; Met, methionine;
PuFA-PL, polyunsaturated-fatty-acid-containing phospholipids; IPP,
Isopentenyl pyrophosphate; FPP, farnesyl pyrophosphate; HSP90, heat
shock protein 90; GPX4, glutathione peroxidase 4; DFO,
deferoxamine; Keap1, Kelch-like ECH-associated protein 1; Nrf2,
nuclear factor erythroid 2-related factor 2; NQO1, quinone
oxidoreductase.

Figure 4

Mechanism of action of Quinazolinone
compounds in pyroptosis, autophagy and cellular senescence
pathways. i) In the senescence pathway, telomere shortening and
limited telomerase function activate the p53/p21/p16 pathway,
causing G1 phase arrest and cellular senescence
3-(2-(hydroxymethyl) phenyl)-2-methylquinazolin-4(3H)-ones
upregulate the expression of TRF1, POT1 and p53/p21/p16, and
inhibit telomerase, inducing cells to enter a senescence
phenotype]. ii) In the pyroptosis pathway, NLRP3 assembles with ASC
and procaspase-1 to form the inflammasome, activating caspase-1,
which mediates the maturation of IL-1β and IL-18, and induces
pyroptosis through GSDMD, forming membrane pores. Quinazolinone
derivatives can inhibit this process by blocking NLRP3 inflammasome
activation and the release of inflammatory factors (Mdivi-1
inhibits NLRP3 inflammasome activation, reduces the activation of
NLRP3, ASC, Caspase-1 and the level of GSDMD-NT, and decreases the
release of IL-1β and IL-18). iii) In the autophagy pathway, ATG
family proteins mediate phagophore nucleation and extension. LC3 is
modified by ATG4 and ATG7, transforming into LC3-II, which promotes
autophagosome formation and fusion with lysosomes for substrate
degradation (DQQ and HF promote LC3-II generation, enhance
ATG5-ATG12 complex formation and promote autophagy. MJ-33 initiates
autophagy by activating ATG proteins during vesicle nucleation but
reduces the LC3/LC3-II ratio and increases p62 levels, inhibiting
autophagy). NLRP3, NOD-like receptor thermal protein domain
associated protein 3; ASC, apoptosis-associated speck-like protein
containing a CARD; GSDMD, gasdermin D; ATG, autophagy related gene;
LC3, microtubule-associated-proteinlight-chain-3; NIX, NIP3-like
protein X; TIN2, Terf1 interacting nuclear factor 2; RAP1,
Ras-proximate-1; TRF1, telomeric repeat binding factor 2; POT1,
protection of telomeres 1.

Figure 5

Structures of substituents in common
quinazolinone derivatives.
View References

1 

Tiwary BK, Pradhan K, Nanda AK and Chakraborty R: Implication of quinazoline-4(3H)-ones in medicinal chemistry: A brief review. J Chem Biol Ther. 1:1042016.

2 

Rakesh KP, Manukumar HM and Gowda DC: Schiff's bases of quinazolinone derivatives: Synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants. Bioorg Med Chem Lett. 25:1072–1077. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Sulthana MT, Chitra K, Alagarsamy V, Saravanan G and Solomon VR: Anti-HIV and antibacterial activities of novel 2-(3-Substituted-4-oxo-3, 4-dihydroquinazolin-2-yl)-2, 3-dihydrophthalazine-1,4-diones. Russ J Bioorg Chem. 47:112–121. 2021. View Article : Google Scholar

4 

Salfi R, Hakim F, Bhikshapathi D and Khan A: Anticancer evaluation of novel quinazolinone acetamides: Synthesis and characterization. Anticancer Agents Med Chem. 22:926–932. 2022. View Article : Google Scholar

5 

Gatadi S, Lakshmi TV and Nanduri S: 4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads. Eur J Med Chem. 170:157–172. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Zayed MF: Medicinal Chemistry of quinazolines as analgesic and anti-inflammatory agents. ChemEngineering. 6:942022. View Article : Google Scholar

7 

Mhetre UV, Haval NB, Bondle GM, Rathod SS, Choudhari PB, Kumari J, Sriram D and Haval KP: Design, synthesis and molecular docking study of novel triazole-quinazolinone hybrids as antimalarial and antitubercular agents. Bioorg Med Chem Lett. 108:1298002024. View Article : Google Scholar : PubMed/NCBI

8 

Yaduwanshi PS, Singh S, Sahapuriya P, Dubey P, Thakur J and Yadav S: Synthesis of some noval qunazolinone derivatives for their anticonvulsant activity. Orient J Chem. 40:369–373. 2024. View Article : Google Scholar

9 

Khalifa MM, Sakr HM, Ibrahim A, Mansour AM and Ayyad RR: Design and synthesis of new benzylidene-quinazolinone hybrids as potential anti-diabetic agents: In vitro α-glucosidase inhibition, and docking studies. J Mol Struct. 1250:1317682022. View Article : Google Scholar

10 

Soliman AM, Karam HM, Mekkawy MH and Ghorab MM: Antioxidant activity of novel quinazolinones bearing sulfonamide: Potential radiomodulatory effects on liver tissues via NF-κB/PON1 pathway. Eur J Med Chem. 197:1123332020. View Article : Google Scholar

11 

Osman EO, Emam SH, Sonousi A, Kandil MM, Abdou AM and Hassan RA: Design, synthesis, anticancer, and antibacterial evaluation of some quinazolinone-based derivatives as DHFR inhibitors. Drug Dev Res. 84:888–906. 2023. View Article : Google Scholar : PubMed/NCBI

12 

El-Karim SS, Syam YM, El Kerdawy AM and Abdel-Mohsen HT: Rational design and synthesis of novel quinazolinone N-acetohydrazides as type II multi-kinase inhibitors and potential anticancer agents. Bioorg Chem. 142:1069202024. View Article : Google Scholar

13 

Kabir E and Uzzaman M: A review on biological and medicinal impact of heterocyclic compounds. Results Chem. 4:1006062022. View Article : Google Scholar

14 

Almulla AF: A review: Biological importance of heterocyclic compounds. Der Pharma Chemica. 9:141–147. 2017.

15 

Arora P, Arora V, Lamba HS and Wadhwa D: Importance of heterocyclic chemistry:A review. Int J Pharm Sci Res. 3:2947–2954. 2012.

16 

Kumar B, Babu NJ and Chowhan RL: Sustainable synthesis of highly diastereoselective & fluorescent active spirooxindoles catalyzed by copper oxide nanoparticle immobilized on microcrystalline cellulose. Appl Organomet Chem. 36: View Article : Google Scholar : 2022. View Article : Google Scholar

17 

Khan I, Ibrar A, Abbas N and Saeed A: Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur J Med Chem. 76:193–244. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Borah B, Swain S, Patat M and Chowhan LR: Recent advances and prospects in the organocatalytic synthesis of quinazolinones. Front Chem. 10:9910262022. View Article : Google Scholar : PubMed/NCBI

19 

Faisal M and Saeed A: Chemical insights into the synthetic chemistry of quinazolines: Recent advances. Front Chem. 8:5947172021. View Article : Google Scholar : PubMed/NCBI

20 

Alsibaee AM, Al-Yousef HM and Al-Salem HS: Quinazolinones, the winning horse in drug discovery. Molecules. 28:9782023. View Article : Google Scholar : PubMed/NCBI

21 

Sharma PC, Kaur G, Pahwa R, Sharma A and Rajak H: Quinazolinone analogs as potential therapeutic agents. Curr Med Chem. 18:4786–4812. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Khandelwal P, Wadhwani BD, Rao RS, Mali D, Vyas P, Kumar T and Nair R: Exploring the pharmacological and chemical aspects of pyrrolo-quinazoline derivatives in Adhatoda vasica. Heliyon. 10:e257272024. View Article : Google Scholar : PubMed/NCBI

23 

Padmanabhan D, Manimekalai R, Senthil-Nathan S, Suganthi M and Palanisamy S: Biosynthesis, therapeutic characteristics, origin and strategies to improve the yield of vasicine in plants. Vegetos. 186:2025.

24 

Zhang Y, Du W, Zhu D, Li M, Qu L, Rao G, Lin Y, Tong X, Sun Y and Huang F: Vasicine alleviates 2,4-dinitrochlorobenzene-induced atopic dermatitis and passive cutaneous anaphylaxis in BALB/c mice. Clin Immunol. 244:1091022022. View Article : Google Scholar : PubMed/NCBI

25 

Ali SK, Hamed AR, Soltan MM, El-Halawany AM, Hegazy UM and Hussein AA: Kinetics and molecular docking of vasicine from Adhatoda vasica: An acetylcholinesterase inhibitor for Alzheimer's disease. S Afr J Bot. 104:118–124. 2016. View Article : Google Scholar

26 

Srinivasarao D, Jayarraj IA, Jayraaj R and Prabha ML: A study on antioxidant and anti-inflammatory activity of vasicine against lung damage in rats. Indian J Allergy Asthma Immunol. 20:1–7. 2006.

27 

Eguchi S: Quinazoline alkaloids and related chemistry. Bioactive Heterocycles I. 6:113–156. 2006. View Article : Google Scholar

28 

Ghosh P, Ganguly B and Das S: C-H functionalization of quinazolinones by transition metal catalysis. Org Biomol Chem. 18:4497–4518. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Rakesh KP, Darshini N, Shubhavathi T and Mallesha N: Biological applications of quinazolinone analogues: A review. Org Med Chem Int J. 2:41–45. 2017.

30 

Kalogirou AS, Kourtellaris A and Koutentis PA: Synthesis of 2-Cyanoquinazolin-4-ones from 3',5'-Dichloro-1H-spiro (quinazoline-2,4'-[1,2,6]thiadiazin)-4(3H)-ones. ChemistrySelect. 5:1884–1889. 2020. View Article : Google Scholar

31 

Zeng R, Huang C, Wang J, Zhong Y, Fang Q, Xiao S, Nie X, Chen S and Peng D: Synthesis, crystal structure, and antifungal activity of quinazolinone derivatives. Crystals. 13:12542023. View Article : Google Scholar

32 

Ghoneim MM, Abdelgawad MA, Elkanzi NAA, Parambi DGT, Alsalahat I, Farouk A and Bakr RB: A literature review on pharmacological aspects, docking studies, and synthetic approaches of quinazoline and quinazolinone derivatives. Arch Pharm (Weinheim). 357:e24000572024. View Article : Google Scholar : PubMed/NCBI

33 

Haneen DSA, Abdalha AA, Alkhatib MM, Kamal M, Youssef ASA, Abou-Elmagd WSI and Samir SS: Synthesis, comprehensive in silico studies, and cytotoxicity evaluation of novel quinazolinone derivatives as potential anticancer agents. Sci Rep. 15:236972025. View Article : Google Scholar : PubMed/NCBI

34 

Borik RM and Hussein MA: A novel quinazoline-4-one derivatives as a promising cytokine inhibitors: Synthesis, molecular docking, and structure-activity relationship. Curr Pharm Biotechnol. 23:1179–1203. 2022. View Article : Google Scholar

35 

Samotrueva MA, Starikova AA, Bashkina OA, Tsibizova AA, Borisov AV, Merezhkina DV, Tyurenkov IN and Ozerov AA: Biochemical basis of the antimicrobial activity of quinazolinone derivatives in the light of insights into the features of the chemical structure and ways of binding to target molecules. A review. Dokl Chem. 510:107–129. 2023. View Article : Google Scholar

36 

Mhaske SB and Argade NP: The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron. 62:9787–9826. 2006. View Article : Google Scholar

37 

Mahato AK, Srivastava B and Shanthi CN: Chemistry structure activity relationship and biological activity of quinazoline-4(3H)-one derivatives. Inventi Rapid: MedChem. 1:0976–7541. 2011.

38 

Asif M: Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int J Med Chem. 2014:1–27. 2014.

39 

Garofalo A, Goossens L, Baldeyrou B, Lemoine A, Ravez S, Six P, David-Cordonnier MH, Bonte JP, Depreux P, Lansiaux A and Goossens JF: Design, synthesis, and DNA-binding of N-Alkyl(anilino)quinazoline derivatives. J Med Chem. 53:8089–8103. 2010. View Article : Google Scholar : PubMed/NCBI

40 

El-Malah A, Malebari AM, Khayyat AN, Mohammad KA, Gineinah MM and Mahmoud Z: Design, synthesis, and antiproliferative activities of novel substitutedhydrazone/triazolo-linked quinazoline derivatives. J Mol Struct. 1306:1378222024. View Article : Google Scholar

41 

Haghighijoo Z, Firuzi O, Hemmateenejad B, Emami S, Edraki N and Miri R: Synthesis and biological evaluation of quinazolinone-based hydrazones with potential use in Alzheimer's disease. Bioorg Chem. 74:126–133. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Khan I, Ibrar A, Ahmed W and Saeed A: Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur J Med Chem. 90:124–169. 2015. View Article : Google Scholar

43 

Kaur J, Kaur S, Muskan, Kaur N, Kumar V and Anand A: Unveiling the therapeutic potential of quinazolinone derivatives in cancer treatment: A comprehensive exploration. ChemistrySelect. 9:e2024013662024. View Article : Google Scholar

44 

Haider K, Das S, Joseph A and Yar MS: An appraisal of anticancer activity with structure-activity relationship of quinazoline and quinazolinone analogues through EGFR and VEGFR inhibition: A review. Drug Dev Res. 83:859–890. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Reddy MM and Sivaramakrishna A: Remarkably flexible quinazolinones-synthesis and biological applications. J Heterocycl Chem. 57:942–954. 2019. View Article : Google Scholar

46 

He D, Wang M, Zhao S, Shu Y, Zeng H, Xiao C, Lu C and Liu Y: Pharmaceutical prospects of naturally occurring quinazolinone and its derivatives. Fitoterapia. 119:136–149. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Shankar GM, Alex VV, Nisthul AA, Bava SV, Sundaram S, Retnakumari AP, Chittalakkottu S and Anto RJ: Pre-clinical evidences for the efficacy of tryptanthrin as a potent suppressor of skin cancer. Cell Prolif. 53:e127102020. View Article : Google Scholar

48 

Li H, Fu G and Zhong W: Natural quinazolinones: From a treasure house to promising anticancer leads. Eur J Med Chem. 245:1149152023. View Article : Google Scholar

49 

Kushwaha N, Sahu A, Mishra J, Soni A and Dorwal D: An insight on the prospect of quinazoline and quinazolinone derivatives as anti-tubercular agents. Curr Org Synth. 20:838–869. 2023. View Article : Google Scholar : PubMed/NCBI

50 

Jaiswal S, Verma K, Srivastva A, Arya N, Dwivedi J and Sharma S: Green synthetic and pharmacological developments in the hybrid quinazolinone moiety: An updated review. Curr Top Med Chem. 25:493–532. 2025. View Article : Google Scholar

51 

Wu C, Wang Y, Yang F, Shi W, Wang Z, He L, He Y and Shen J: Synthesis and biological evaluation of five-atom-linker-based arylpiperazine derivatives with an atypical antipsychotic profile. ChemMedChem. 14:2042–2051. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Wei M, Chai WM, Wang R, Yang Q, Deng Z and Peng Y: Quinazolinone derivatives: Synthesis and comparison of inhibitory mechanisms on alpha-glucosidase. Bioorg Med Chem. 25:1303–1308. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Obeng E: Apoptosis (programmed cell death) and its signals-A review. Braz J Biol. 81:1133–1143. 2021. View Article : Google Scholar

54 

Nair P, Lu M, Petersen S and Ashkenazi A: Apoptosis initiation through the cell-extrinsic pathway. Methods Enzymol. 544:99–128. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Lossi L: The concept of intrinsic versus extrinsic apoptosis. Biochem J. 479:357–384. 2022. View Article : Google Scholar : PubMed/NCBI

56 

Hongmei Z: Extrinsic and intrinsic apoptosis signal pathway review. Apoptosis and Medicine. 2012. View Article : Google Scholar

57 

Ashkenazi A: Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 19:325–331. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Liang Y, Zheng Y, Yang J, Ke J and Cheng K: Design, synthesis and bioactivity evaluation of a series of quinazolinone derivatives as potent PI3Kγ antagonist. Bioorg Med Chem. 84:1172612023. View Article : Google Scholar

59 

Kim YS, Cheon MG, Boggu PR, Koh SY, Park GM, Kim G, Park SH, Park SL, Lee CW, Kim JW and Jung YH: Synthesis and biological evaluation of novel purinyl quinazolinone derivatives as PI3Kδ-specific inhibitors for the treatment of hematologic malignancies. Bioorg Med Chem. 45:1163122021. View Article : Google Scholar

60 

Wani ZA, Guru SK, Rao AVS, Sharma S, Mahajan G, Behl A, Kumar A, Sharma PR, Kamal A, Bhushan S and Mondhe DM: A novel quinazolinone chalcone derivative induces mitochondrial dependent apoptosis and inhibits PI3K/Akt/mTOR signaling pathway in human colon cancer HCT-116 cells. Food Chem Toxicol. 87:1–11. 2016. View Article : Google Scholar

61 

Madbouly EA, Lashine ESM, Al-Karmalawy AA, Sebaiy MM, Pratsinis H, Kletsas D and Metwally K: Design and synthesis of novel quinazolinone-chalcone hybrids as potential apoptotic candidates targeting caspase-3 and PARP-1:In vitro, molecular docking, and SAR studies. New J Chem. 46:22013–22029. 2022. View Article : Google Scholar

62 

Xie J, Yang MR, Hu X, Hong ZS, Bai YY, Sheng J, Tian Y and Shi CY: Moringa oleifera Lam. Isothiocyanate quinazolinone derivatives inhibit U251 glioma cell proliferation through cell cycle regulation and apoptosis induction. Int J Mol Sci. 24:113762023. View Article : Google Scholar : PubMed/NCBI

63 

Qiu J, Zhou Q, Zhang Y, Guan M, Li X, Zou Y, Huang X, Zhao Y, Chen W and Gu X: Discovery of novel quinazolinone derivatives as potential anti-HBV and anti-HCC agents. Eur J Med Chem. 205:1125812020. View Article : Google Scholar : PubMed/NCBI

64 

El-Shafey HW, Gomaa RM, El-Messery SM and Goda FE: Synthetic approaches, anticancer potential, HSP90 inhibition, multitarget evaluation, molecular modeling and apoptosis mechanistic study of thioquinazolinone skeleton: Promising antibreast cancer agent. Bioorg Chem. 101:1039872020. View Article : Google Scholar : PubMed/NCBI

65 

Hour MJ, Tsai FJ, Lai IL, Tsao JW, Chiang JH, Chiu YJ, Lu HF, Juan YN, Yang JS and Tsai SC: Efficacy of HMJ-38, a new quinazolinone analogue, against the gemcitabine-resistant MIA-PaCa-2 pancreatic cancer cells. Biomedicine (Taipei). 13:20–31. 2023. View Article : Google Scholar

66 

Chiang JH, Yang JS, Lu CC, Hour MJ, Chang SJ, Lee TH and Chung JG: Newly synthesized quinazolinone HMJ-38 suppresses angiogenetic responses and triggers human umbilical vein endothelial cell apoptosis through p53-modulated Fas/death receptor signaling. Toxicol Appl Pharmacol. 269:150–162. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Lu CC, Yang JS, Chiang JH, Hour MJ, Lin KL, Lin JJ, Huang WW, Tsuzuki M, Lee TH and Chung JG: Novel quinazolinone MJ-29 triggers endoplasmic reticulum stress and intrinsic apoptosis in murine leukemia WEHI-3 cells and inhibits leukemic mice. PLoS One. 7:e368312012. View Article : Google Scholar : PubMed/NCBI

68 

Pope LE and Dixon SJ: Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI

69 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Dixon SJ and Olzmann JA: The cell biology of ferroptosis. Nat Rev Mol Cell Biol. 25:424–442. 2024. View Article : Google Scholar : PubMed/NCBI

71 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Zhang M, Guo M, Gao Y, Wu C, Pan X and Huang Z: Mechanisms and therapeutic targets of ferroptosis: Implications for nanomedicine design. J Pharm Anal. 14:1009602024. View Article : Google Scholar : PubMed/NCBI

73 

Tang D and Kroemer G: Ferroptosis. Curr Biol. 30:R1292–R1297. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Yuan H, Li X, Zhang X, Kang R and Tang D: Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 478:1338–1343. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Liang X, Long L, Guan F, Xu Z and Huang H: Research status and potential applications of circRNAs affecting colorectal cancer by regulating ferroptosis. Life Sci. 352:1228702024. View Article : Google Scholar : PubMed/NCBI

76 

Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, Yao F, Mu C, Cai B, Shang Y and Chen W: Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 11:4332020. View Article : Google Scholar : PubMed/NCBI

77 

Sun Y, Deng R and Zhang C: Erastin induces apoptotic and ferroptotic cell death by inducing ROS accumulation by causing mitochondrial dysfunction in gastric cancer cell HGC-27. Mol Med Rep. 22:2826–2832. 2020.PubMed/NCBI

78 

Li Y, Zeng X, Lu D, Yin M, Shan M and Gao Y: Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Hum Reprod. 36:951–964. 2021. View Article : Google Scholar

79 

Huang C, Yang M, Deng J, Li P, Su W and Jiang R: Upregulation and activation of p53 by erastin-induced reactive oxygen species contribute to cytotoxic and cytostatic effects in A549 lung cancer cells. Oncol Rep. 40:2363–2370. 2018.PubMed/NCBI

80 

Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A, Kapilian J, Firl CEM, et al: Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 368:85–89. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Jiang Y and Sun M: SLC7A11: The Achilles heel of tumor? Front Immunol. 15:14388072024. View Article : Google Scholar : PubMed/NCBI

82 

Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar

83 

Zhao X, Wang T, Shang F, Yan J, Jiang M, Zou X, Li G, Song Z and Huang J: Coumarin-Quinazolinone based photosensitizers: Mitochondria and endoplasmic reticulum targeting for enhanced phototherapy via different cell death pathways. Eur J Med Chem. 280:1169902024. View Article : Google Scholar : PubMed/NCBI

84 

Xing Z, Yan J, Miao Y, Ruan Y, Yao H, Zhou Y, Tang Y, Li G, Song Z, Peng Y and Huang J: Endoplasmic reticulum-targeting quinazolinone-based lipophilic probe for specific photoinduced ferroptosis and its induced lipid dynamic regulation. J Med Chem. 67:1900–1913. 2024. View Article : Google Scholar : PubMed/NCBI

85 

Huang Y, Xiong K, Wang A, Wang Z, Cui Q, Xie H, Yang T, Fan X, Jiang W, Tan X and Huang Q: Cold stress causes liver damage by inducing ferroptosis through the p38 MAPK/Drp1 pathway. Cryobiology. 113:1045632023. View Article : Google Scholar : PubMed/NCBI

86 

Li X, Ran Q, He X, Peng D, Xiong A, Jiang M, Zhang L, Wang J, Bai L, Liu S, et al: HO-1 upregulation promotes mitophagy-dependent ferroptosis in PM2.5-exposed hippocampal neurons. Ecotoxicol Environ Saf. 277:1163142024. View Article : Google Scholar : PubMed/NCBI

87 

Nakamura T, Hipp C, Dias Mourão A, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, et al: Phase separation of FSP1 promotes ferroptosis. Nature. 619:371–377. 2023. View Article : Google Scholar : PubMed/NCBI

88 

Wu Z, Zhu Y, Liu W, Balasubramanian B, Xu X, Yao J and Lei X: Ferroptosis in liver disease: Natural active compounds and therapeutic implications. Antioxidants (Basel). 13:3522024. View Article : Google Scholar : PubMed/NCBI

89 

Balushi KA, Hadhrami AA, Balushi HA, Lawati AA and Das S: Tebentafusp as a promising drug for the treatment of uveal melanoma. Curr Drug Targets. 25:149–157. 2024. View Article : Google Scholar

90 

Hu S, Sechi M, Singh PK, Dai L, McCann S, Sun D, Ljungman M and Neamati N: A novel redox modulator induces a GPX4-mediated cell death that is dependent on iron and reactive oxygen species. Eur J Med Chem. 63:9838–9855. 2020. View Article : Google Scholar

91 

Cheng Z: The FoxO-autophagy axis in health and disease. Trends Endocrinol Metab. 30:658–671. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Buzun K, Gornowicz A, Lesyk R, Bielawski K and Bielawska A: Autophagy modulators in cancer therapy. Int J Mol Sci. 22:58042021. View Article : Google Scholar : PubMed/NCBI

94 

Zhang B and Liu L: Autophagy is a double-edged sword in the therapy of colorectal cancer. Oncol Lett. 21:3782021. View Article : Google Scholar : PubMed/NCBI

95 

Gump JM and Thorburn A: Autophagy and apoptosis: What is the connection? Trends Cell Biol. 21:387–392. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Kumar S, Guru SK, Pathania AS, Mupparapu N, Kumar A, Malik F, Bharate SB, Ahmed QN, Vishwakarma RA and Bhushan S: A novel quinazolinone derivative induces cytochrome c interdependent apoptosis and autophagy in human leukemia MOLT-4 cells. Toxicol Rep. 1:1013–1025. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Sharma R, Chatterjee E, Mathew J, Sharma S, Rao NV, Pan CH, Lee SB, Dhingra A, Grewal AS, Liou JP, et al: Accommodation of ring C expanded deoxyvasicinone in the HDAC inhibitory pharmacophore culminates into a tractable anti-lung cancer agent and pH-responsive nanocarrier. Eur J Med Chem. 240:1146022022. View Article : Google Scholar : PubMed/NCBI

98 

Xia X, Wang L, Zhang X, Wang S, Lei L, Cheng L, Xu Y, Sun Y, Hang B, Zhang G, et al: Halofuginone-induced autophagy suppresses the migration and invasion of MCF-7 cells via regulation of STMN1 and p53. J Cell Biochem. 119:4009–4020. 2018. View Article : Google Scholar

99 

Ha HA, Chiang JH, Tsai FJ, Bau DT, Juan YN, Lo YH, Hour MJ and Yang JS: Novel quinazolinone MJ-33 induces AKT/mTOR-mediated autophagy-associated apoptosis in 5FU-resistant colorectal cancer cells. Oncol Rep. 45:680–692. 2020. View Article : Google Scholar

100 

ElZahabi HSA, Nafie MS, Osman D, Elghazawy NH, Soliman DH, El-Helby AAH and Arafa RK: Design, synthesis and evaluation of new quinazolin-4-one derivatives as apoptotic enhancers and autophagy inhibitors with potent antitumor activity. Eur J Med Chem. 222:1136092021. View Article : Google Scholar : PubMed/NCBI

101 

Roger L, Tomas F and Gire V: Mechanisms and regulation of cellular senescence. Int J Mol Sci. 22:131732021. View Article : Google Scholar : PubMed/NCBI

102 

Huang W, Hickson LJ, Eirin A, Kirkland JL and Lerman LO: Cellular senescence: The good, the bad and the unknown. Nat Rev Nephrol. 18:611–627. 2022. View Article : Google Scholar : PubMed/NCBI

103 

de Magalhães JP: Cellular senescence in normal physiology. Science. 384:1300–1301. 2024. View Article : Google Scholar : PubMed/NCBI

104 

Schmitt CA, Wang B and Demaria M: Senescence and cancer-role and therapeutic opportunities. Nat Rev Clin Oncol. 19:619–636. 2022. View Article : Google Scholar : PubMed/NCBI

105 

Wang L, Lankhorst L and Bernards R: Exploiting senescence for the treatment of cancer. Nat Rev Cancer. 22:340–355. 2022. View Article : Google Scholar : PubMed/NCBI

106 

Kamal A, Sultana F, Ramaiah MJ, Srikanth YVV, Viswanath A, Bharathi EV, Nayak R, Pushpavalli SNCVL, Srinivas C and Pal-Bhadra M: 3-Diarylethyne quinazolinones: A new class of senescence inducers. Med Chem Comm. 4:575–581. 2013. View Article : Google Scholar

107 

Venkatesh R, Ramaiah MJ, Gaikwad HK, Janardhan S, Bantu R, Nagarapu L, Sastry GN, Ganesh AR and Bhadra M: Luotonin-A based quinazolinones cause apoptosis and senescence via HDAC inhibition and activation of tumor suppressor proteins in HeLa cells. Eur J Med Chem. 94:87–101. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Proskuryakov SY and Gabai VL: Mechanisms of tumor cell necrosis. Curr Pharm Des. 16:56–58. 2010. View Article : Google Scholar : PubMed/NCBI

109 

Szabó C: Mechanisms of cell necrosis. Crit Care Med. 33:530–534. 2005. View Article : Google Scholar

110 

Loveless R, Bloomquist R and Teng Y: Pyroptosis at the forefront of anticancer immunity. J Exp Clin Cancer Res. 40:2642021. View Article : Google Scholar : PubMed/NCBI

111 

Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F and Zhang L: Role of pyroptosis in inflammation and cancer. Cell Mol Immunol. 19:971–992. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Shams LM, Minaei-Tehrani D, Gholipour H and Nohehkhan M: Effects of quinazolinones on Balb/C mice embryonic livers. Indian J Exp Biol. 49:183–190. 2011.PubMed/NCBI

113 

Piamsiri C, Maneechote C, Jinawong K, Arunsak B, Chunchai T, Nawara W, Kerdphoo S, Chattipakorn SC and Chattipakorn N: Chronic mitochondrial dynamic-targeted therapy alleviates left ventricular dysfunction by reducing multiple programmed cell death in post-myocardial infarction rats. Eur J Pharmacol. 977:1767362024. View Article : Google Scholar : PubMed/NCBI

114 

Li L, Mu Z, Liu P, Wang Y, Yang F and Han X: Mdivi-1 alleviates atopic dermatitis through the inhibition of NLRP3 inflammasome. Exp Dermatol. 30:1734–1744. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Tanriover C, Copur S, Ucku D, Cakir AB, Hasbal NB, Soler MJ and Kanbay M: The mitochondrion: A promising target for kidney disease. Pharmaceutics. 15:5702023. View Article : Google Scholar : PubMed/NCBI

116 

Liu R, Wang SC, Li M, Ma XH, Jia XN, Bu Y, Sun L and Yu KJ: An inhibitor of DRP1 (Mdivi-1) alleviates LPS-induced septic AKI by inhibiting NLRP3 inflammasome activation. Biomed Res Int. 2020:1–11. 2020.

117 

Qian W, Wang J, Roginskaya V, McDermott LA, Edwards RP, Stolz DB, Llambi F, Green DR and Van Houten B: Novel combination of mitochondrial division inhibitor 1 (mdivi-1) and platinum agents produces synergistic pro-apoptotic effect in drug resistant tumor cells. Oncotarget. 5:4180–4194. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Tusskorn O, Khunluck T, Prawan A, Senggunprai L and Kukongviriyapan V: Mitochondrial division inhibitor-1 potentiates cisplatin-induced apoptosis via the mitochondrial death pathway in cholangiocarcinoma cells. Biomed Pharmacother. 111:109–118. 2019. View Article : Google Scholar

119 

Vargo JW, Walker SN, Gopal SR, Deshmukh AR, McDermott BM Jr, Alagramam KN and Stepanyan R: Inhibition of mitochondrial division attenuates cisplatin-induced toxicity in the neuromast hair cells. Front Cell Neurosci. 11:3932017. View Article : Google Scholar

120 

Lai KC, Chia YT, Yih LH, Lu YL, Chang ST, Hong ZX, Chen TL and Hour MJ: Antitumor effects of the novel quinazolinone Holu-12: Induction of mitotic arrest and apoptosis in human oral squamous cell carcinoma CAL27 cells. Anticancer Res. 41:259–268. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Pathania D, Kuang Y, Sechi M and Neamati N: Mechanisms underlying the cytotoxicity of a novel quinazolinedione-based redox modulator, QD232, in pancreatic cancer cells. Br J Pharmacol. 172:50–63. 2014. View Article : Google Scholar : PubMed/NCBI

122 

Zhou J, Ji M, Yao H, Cao R, Zhao H, Wang X, Chen X and Xu B: Discovery of quinazoline-2,4(1H,3H)-dione derivatives as novel PARP-1/2 inhibitors: Design, synthesis and their antitumor activity. Org Biomol Chem. 16:3189–3202. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Zhou Q, Ji M, Zhou J, Jin J, Xue N, Chen J, Xu B and Chen X: Poly (ADP-ribose) polymerases inhibitor, Zj6413, as a potential therapeutic agent against breast cancer. Biochem Pharmacol. 107:29–40. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Giannini G, Battistuzzi G, Vesci L, Milazzo FM, De Paolis F, Barbarino M, Guglielmi MB, Carollo V, Gallo G, Artali R and Dallavalle S: Novel PARP-1 inhibitors based on a 2-propanoyl-3H-quinazolin-4-one scaffold. Bioorg Med Chem Lett. 24:462–466. 2014. View Article : Google Scholar : PubMed/NCBI

125 

Ma Y, Yang J, Wei X, Pei Y, Ye J, Li X, Si G, Tian J, Dong Y and Liu G: Nonpeptidic quinazolinone derivatives as dual nucleotide-binding oligomerization domain-like receptor 1/2 antagonists for adjuvant cancer chemotherapy. Eur J Med Chem. 207:1127232020. View Article : Google Scholar : PubMed/NCBI

126 

Smolewski P and Rydygier D: Efficacy and safety of idelalisib for the treatment of indolent B-cell malignancies. Expert Opin Pharmacother. 21:1915–1926. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Miller BW, Przepiorka D, de Claro RA, Lee K, Nie L, Simpson N, Gudi R, Saber H, Shord S, Bullock J, et al: FDA approval: Idelalisib monotherapy for the treatment of patients with follicular lymphoma and small lymphocytic Lymphoma. Clin Cancer Res. 21:1525–1529. 2015. View Article : Google Scholar : PubMed/NCBI

128 

Merli M, Passamonti F and Arcaini L: The double significance of idelalisib immune-related toxicity. Leuk Lymphoma. 62:2815–2817. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Liu K, Li D, Zheng W, Shi M, Chen Y, Tang M, Yang T, Zhao M, Deng D, Zhang C, et al: Discovery, optimization, and evaluation of quinazolinone derivatives with novel linkers as orally efficacious phosphoinositide-3-kinase delta inhibitors for treatment of inflammatory diseases. J Med Chem. 64:8951–8970. 2021. View Article : Google Scholar : PubMed/NCBI

130 

Yu M, Chen J, Xu Z, Yang B, He Q, Luo P, Yan H and Yang X: Development and safety of PI3K inhibitors in cancer. Arch Toxicol. 97:635–650. 2023. View Article : Google Scholar : PubMed/NCBI

131 

Ramanathan S, Jin F, Sharma S and Kearney BP: Clinical pharmacokinetic and pharmacodynamic profile of idelalisib. Clin Pharmacokinet. 55:33–45. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Wiese W, Barczuk J, Racinska O, Siwecka N, Rozpedek-Kaminska W, Slupianek A, Sierpinski R and Majsterek I: PI3K/Akt/mTOR signaling pathway in blood malignancies-new therapeutic possibilities. Cancers (Basel). 15:52972023. View Article : Google Scholar : PubMed/NCBI

133 

Zhu J, Wang P, Shehu AI, Lu J, Bi H and Ma X: Identification of novel pathways in idelalisib metabolism and bioactivation. Chem Res Toxicol. 31:548–555. 2018. View Article : Google Scholar : PubMed/NCBI

134 

Graf SA and Gopal AK: Idelalisib for the treatment of non-Hodgkin lymphoma. Expert Opin Pharmacother. 17:265–274. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Lin X, Zhang Y, Huang H, Zhuang W and Wu L: Post-marketing safety concern of PI3K inhibitors in the cancer therapies: An 8-year disproportionality analysis from the FDA adverse event reporting system. Expert Opin Drug Saf. 24:1–12. 2024.

136 

Hus I, Puła B and Robak T: PI3K inhibitors for the treatment of chronic lymphocytic leukemia: Current status and future perspectives. Cancers (Basel). 14:15712022. View Article : Google Scholar : PubMed/NCBI

137 

Zirlik K and Veelken H: Idelalisib. Recent Results Cancer Res. 212:243–264. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Scheffold A, Jebaraj BMC, Tausch E, Bloehdorn J, Ghia P, Yahiaoui A, Dolnik A, Blätte TJ, Bullinger L, Dheenadayalan RP, et al: IGF1R as druggable target mediating PI3K-δ inhibitor resistance in a murine model of chronic lymphocytic leukemia. Blood. 134:534–547. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Park GB, Chung YH, Jeong JY and Kim D: A p110δ-specific inhibitor combined with bortezomib blocks drug resistance properties of EBV-related B cell origin cancer cells via regulation of NF-κB. Int J Oncol. 50:1711–1720. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Alossaimi MA, Riadi Y, Alnuwaybit GN, Md S, Alkreathy HM, Elekhnawy E, Geesi MH, Alqahtani SM and Afzal O: Design, synthesis, molecular docking, and in vitro studies of 2-mercaptoquinazolin-4(3H)-ones as potential anti-breast cancer agents. Saudi Pharm J. 32:1019712024. View Article : Google Scholar : PubMed/NCBI

141 

Škubník J, Jurášek M, Ruml T and Rimpelová S: Mitotic poisons in research and medicine. Molecules. 25:46322020. View Article : Google Scholar : PubMed/NCBI

142 

Shahin R and Aljamal S: Kinesin spindle protein inhibitors in cancer: From high throughput screening to novel therapeutic strategies. Future Sci OA. 8:FSO7782022. View Article : Google Scholar : PubMed/NCBI

143 

Lee CW, Bélanger K, Rao SC, Petrella TM, Tozer RG, Wood L, Savage KJ, Eisenhauer EA, Synold TW, Wainman N and Seymour L: A phase II study of ispinesib (SB-715992) in patients with metastatic or recurrent malignant melanoma: A national cancer institute of Canada clinical trials group trial. Invest New Drugs. 26:249–255. 2008. View Article : Google Scholar

144 

Purcell JW, Davis J, Reddy M, Martin S, Samayoa K, Vo H, Thomsen K, Bean P, Kuo WL, Ziyad S, et al: Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer. Clin Cancer Res. 16:566–576. 2010. View Article : Google Scholar : PubMed/NCBI

145 

Lee RT, Beekman KE, Hussain M, Davis NB, Clark JI, Thomas SP, Nichols KF and Stadler WM: A University of Chicago consortium phase II trial of SB-715992 in advanced renal cell cancer. Clin Genitourin Cancer. 6:21–24. 2008. View Article : Google Scholar : PubMed/NCBI

146 

Murase Y, Ono H, Ogawa K, Yoshioka R, Ishikawa Y, Ueda H, Akahoshi K, Ban D, Kudo A, Tanaka S and Tanabe M: Inhibitor library screening identifies ispinesib as a new potential chemotherapeutic agent for pancreatic cancers. Cancer Sci. 112:4641–4654. 2021. View Article : Google Scholar : PubMed/NCBI

147 

Gomez HL, Philco M, Pimentel P, Kiyan M, Monsalvo ML, Conlan MG, Saikali KG, Chen MM, Seroogy JJ, Wolff AA and Escandon RD: Phase I dose-escalation and pharmacokinetic study of ispinesib, a kinesin spindle protein inhibitor, administered on days 1 and 15 of a 28-day schedule in patients with no prior treatment for advanced breast cancer. Anticancer Drugs. 23:335–341. 2012. View Article : Google Scholar

148 

Kenchappa RS, Dovas A, Argenziano MG, Meyer CT, Stopfer LE, Banu MA, Pereira B, Griffith J, Mohammad A, Talele S, et al: Activation of STAT3 through combined SRC and EGFR signaling drives resistance to a mitotic kinesin inhibitor in glioblastoma. Cell Rep. 39:1109912022. View Article : Google Scholar : PubMed/NCBI

149 

Ansbro MR, Shukla S, Ambudkar SV, Yuspa SH and Li L: Screening compounds with a novel high-throughput ABCB1-mediated efflux assay identifies drugs with known therapeutic targets at risk for multidrug resistance interference. PLoS One. 8:e603342013. View Article : Google Scholar : PubMed/NCBI

150 

Purcell JW, Davis J, Reddy M, Martin S, Samayoa K, Vo H, Thomsen K, Bean P, Kuo WL, Ziyad S, et al: Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer. Clin Cancer Res. 16:566–576. 2010. View Article : Google Scholar : PubMed/NCBI

151 

Gish RG, Porta C, Lazar L, Ruff P, Feld R, Croitoru A, Feun L, Jeziorski K, Leighton J, Gallo J and Kennealey GT: Phase III randomized controlled trial comparing the survival of patients with unresectable hepatocellular carcinoma treated with nolatrexed or doxorubicin. J Clin Oncol. 25:3069–3075. 2007. View Article : Google Scholar : PubMed/NCBI

152 

Lord R, Suddle A and Ross PJ: Emerging strategies in the treatment of advanced hepatocellular carcinoma: The role of targeted therapies. Int J Clin Pract. 65:182–188. 2011. View Article : Google Scholar : PubMed/NCBI

153 

Gish RG, Porta C, Lazar L, Ruff P, Feld R, Croitoru A, Feun L, Jeziorski K, Leighton J, Knox J and Kennealey GT: Phase III randomized controlled trial comparing the survival of patients with unresectable hepatocellular carcinoma treated with nolatrexed or doxorubicin. J Clin Oncol. 25:3069–3075. 2007. View Article : Google Scholar : PubMed/NCBI

154 

Giovannetti E, Backus HH, Wouters D, Ferreira CG, van Houten VM, Brakenhoff RH, Poupon MF, Azzarello A, Pinedo HM and Peters GJ: Changes in the status of p53 affect drug sensitivity to thymidylate synthase (TS) inhibitors by altering TS levels. Br J Cancer. 96:769–775. 2007. View Article : Google Scholar : PubMed/NCBI

155 

Van Triest B, Pinedo HM, Giaccone G and Peters GJ: Downstream molecular determinants of response to 5-fluorouracil and antifolate thymidylate synthase inhibitors. Ann Oncol. 11:385–391. 2000. View Article : Google Scholar : PubMed/NCBI

156 

Hasan RU, Mian SS, Arfi S, Begum B, Verma S, Ahmad R, Hussain I and Asif M: Study of pharmacologically active drugs containing quinazoline pharmacophore: A brief overview. J Adv Zool. 45:1166–1184. 2024.

157 

Han Y, Liu S, Zhu J, Liu P, Meng Z, Li Y, Li S, Fan F, Zhang M and Liu H: Experimental study on the inhibitory effect of Halofuginone on NSCLC. European Journal of Pharmacology. 2024.

158 

Chen Y, Liu W and Wang P, Hou H, Liu N, Gong L, Wang Y, Ji K, Zhao L and Wang P: Halofuginone inhibits radiotherapy-induced epithelial mesenchymal transition in lung cancer. Oncotarget. 7:71341–71352. 2016. View Article : Google Scholar : PubMed/NCBI

159 

Zuo R, Guo X, Song X, Gao X, Zhang J, Jiang S, Adam V, Kuca K, Wu W and Guo D: New uses of halofuginone to treat cancer. J Pharm Anal. 15:1010802024. View Article : Google Scholar

160 

Mi L, Liu J, Zhang Y, Su A, Tang M, Xing Z, He T, Wei T, Li Z and Wu W: The EPRS-ATF4-COLI pathway axis is a potential target for anaplastic thyroid carcinoma therapy. Phytomedicine. 129:1556702024. View Article : Google Scholar : PubMed/NCBI

161 

Zhao H, Li R, Chen Y, Yang X and Shang Z: Stromal nicotinamide N-methyltransferase orchestrates the crosstalk between fibroblasts and tumour cells in oral squamous cell carcinoma: Evidence from patient-derived assembled organoids. Oncogene. 42:1166–1180. 2023. View Article : Google Scholar : PubMed/NCBI

162 

Panda H, Suzuki M, Naito M, Saito R, Wen H, Baird L, Uruno A, Miyata K and Yamamoto M: Halofuginone micelle nanoparticles eradicate Nrf2-activated lung adenocarcinoma without systemic toxicity. Free Radic Biol Med. 187:92–104. 2022. View Article : Google Scholar : PubMed/NCBI

163 

Li Y, Liu P, Liu S, Zhu J, Han Y, Jiang Z, Tang D, Meng Z, Li S, Zhang M, et al: Halofuginone targets Serine/Glycine synthesis to reverse epidermal growth factor receptor tyrosine Kinase inhibitor resistance in lung adenocarcinoma. Phytomedicine. 143:1567882025. View Article : Google Scholar : PubMed/NCBI

164 

Zhang L, Yue G, Lu Y and Tang J: BRCA1 as a target for attenuating paclitaxel resistance by Halofuginone treatment in basal-like breast cancer. J Funct Foods. 118:1062452024. View Article : Google Scholar

165 

Wang C, Zhu JB, Yan YY, Zhang W, Gong XJ, Wang X and Wang XL: Halofuginone inhibits tumorigenic progression of 5-FU-resistant human colorectal cancer HCT-15/FU cells by targeting miR-132-3p in vitro. Oncol Lett. 20:3852020. View Article : Google Scholar : PubMed/NCBI

166 

Zhu S, Wang J, Chandrashekar G, Smith E, Liu X and Zhang Y: Synthesis and evaluation of 4-quinazolinone compounds as potential antimalarial agents. Eur J Med Chem. 45:3864–3869. 2010. View Article : Google Scholar : PubMed/NCBI

167 

Zuo R, Zhang J, Song X, Hu S, Gao X, Wang J, Ji H, Ji C, Peng L, Si H, et al: Encapsulating halofuginone hydrobromide in TPGS polymeric micelles enhances efficacy against triple-negative breast cancer cells. Int J Nanomedicine. 16:1587–1600. 2021. View Article : Google Scholar : PubMed/NCBI

168 

Chen J, Fan S, Guo J, Yang J, Pan L and Xia Y: Discovery of anticancer function of Febrifugine: Inhibition of cell proliferation, induction of apoptosis and suppression steroid synthesis in bladder cancer cells. Toxicol Appl Pharmacol. 484:1168782024. View Article : Google Scholar : PubMed/NCBI

169 

Lin F, Wang R, Du J, Wen C, Wang X, Jin Y and Shao L: Pharmacokinetics and bioavailability of febrifugine in rat plasma determined by UPLC-MS/MS. Acta Chromatogr. 37: View Article : Google Scholar : 2024.

170 

Chen J, Fan S, Guo J, Yang J, Pan L and Xia Y: Discovery of anticancer function of Febrifugine: Inhibition of cell proliferation, induction of apoptosis and suppression steroid synthesis in bladder cancer cells. Toxicol Appl Pharmacol. 484:1168782024. View Article : Google Scholar : PubMed/NCBI

171 

Zhang J, Xu HX, Zhu JQ, Dou YX, Xian YF and Lin ZX: Natural Nrf2 inhibitors: A review of their potential for cancer treatment. Int J Biol Sci. 19:3029–3041. 2023. View Article : Google Scholar : PubMed/NCBI

172 

Zhu J, Liu S, Liu P, Zhai K and Liu H: Traditional medicine meets modern science: Halofuginone's role in combating autoimmune diseases. J Nat Med. 79:1017–1029. 2025. View Article : Google Scholar : PubMed/NCBI

173 

Hasan RU, Mian SS, Arfi S, Begum B, Verma S, Ahmad R, Hussain I and Asif M: Study of pharmacologically active drugs containing quinazoline pharmacophore: A brief overview. J Adv Zool. 45:1166–1184. 2024.

174 

Haider K, Das S, Joseph A and Yar MS: An appraisal of anticancer activity with structure-activity relationship of quinazoline and quinazolinone analogues through EGFR and VEGFR inhibition: A review. Drug Dev Res. 83:859–890. 2022. View Article : Google Scholar : PubMed/NCBI

175 

Jiang X, Yu J, Zhou Z, Kongsted J, Song Y, Pannecouque C, De Clercq E, Kang D, Poongavanam V, Liu X and Zhan P: Molecular design opportunities presented by solvent-exposed regions of target proteins. Med Res Rev. 39:2194–2238. 2019. View Article : Google Scholar : PubMed/NCBI

176 

El-Sayed NNE, Al-Otaibi TM, Barakat A, Almarhoon ZM, Hassan MZ, Al-Zaben MI, Krayem N, Masand VH and Bacha AB: Synthesis and biological evaluation of some New 3-Aryl-2-thioxo-2,3-dihydroquinazolin-4(1H)-ones and 3-Aryl-2-(benzylthio)quinazolin-4(3H)-ones as antioxidants; COX-2, LDHA, α-Glucosidase and α-amylase inhibitors; and anti-colon carcinoma and apoptosis-inducing agents. Pharmaceuticals (Basel). 16:13922023. View Article : Google Scholar

177 

Kurogi Y, Inoue Y, Tsutsumi K, Nakamura S, Nagao K, Yoshitsugu H and Tsuda Y: Synthesis and hypolipidemic activities of novel 2-[4-[diethoxyphosphoryl)methyl]phenyl] quinazolines and 4(3H)-quinazolinones. J Med Chem. 39:1433–1437. 1996. View Article : Google Scholar : PubMed/NCBI

178 

Huestis MP, Dela Cruz D, DiPasquale AG, Durk MR, Eigenbrot C, Gibbons P, Gobbi A, Hunsaker TL, La H, Leung DH, et al: Targeting KRAS mutant cancers via combination treatment: Discovery of a 5-Fluoro-4-(3H)-quinazolinone Aryl urea pan-RAF kinase inhibitor. J Med Chem. 64:3940–3955. 2021. View Article : Google Scholar : PubMed/NCBI

179 

Rezaeinasab R, Jafari E and Khodarahmi G: Quinazolinone-based hybrids with diverse biological activities: A mini-review. J Res Med Sci. 27:682022. View Article : Google Scholar : PubMed/NCBI

180 

Lv L, Maimaitiming M, Xia S, Yang J, Zhang T, Wang Y, Li X, Pinchuk I, Wang P, Wang CY and Liu Z: MR2938 relieves DSS-induced colitis in mice through inhibiting NF-κB signaling and improving epithelial barrier. Mar Life Sci Technol. 18: View Article : Google Scholar : 2025.

181 

Upadhyay R, Tandel P and Patel AB: Halogen-based quinazolin-4(3H)-one derivatives as MCF-7 breast cancer inhibitors: Current developments and structure-activity relationship. Arch Pharm (Weinheim). 358:e24007402024. View Article : Google Scholar : PubMed/NCBI

182 

Wahan SK, Sharma B and Chawla PA: Medicinal perspective of quinazolinone derivatives: Recent developments and structure-activity relationship studies. Curr Top Med Chem. 59:239–257. 2021.

183 

Kumar P, Tomar V, Joshi RK and Nemiwal M: Nanocatalyzed synthetic approach for quinazoline and quinazolinone derivatives: A review (2015-present). Synth Commun. 52:795–826. 2022. View Article : Google Scholar

184 

Chen Y, Sun SN, Chen XH, Chen ML, Lin JM, Niu Q, Li SL, Liu J and Lan YQ: Predesign of covalent-organic frameworks for efficient photocatalytic dehydrogenative cross-coupling reaction. Adv Mater. 37:e24136382025. View Article : Google Scholar

185 

Huang FP, Qin WJ, Pan XY, Yang K, Wang K and Teng QH: Visible-Light-Induced chemodivergent synthesis of tetracyclic quinazolinones and 3-iminoisoindoliones via the substrate control strategy. J Org Chem. 89:4395–4405. 2024. View Article : Google Scholar : PubMed/NCBI

186 

Kavitha K, Srinivasan N and Harbabu Y: Review of quinazolinone scaffold as anticancer agents. World J Pharm Res. 7:434–454. 2018.

187 

Wang Q, Pan Y, Luo H, Zhang Y, Gao F, Wang J and Zheng J: Novel approaches for the solid-phase synthesis of dihydroquinazoline-2(1H)-one derivatives and biological evaluation as potential anticancer agents. Molecules. 27:85772022. View Article : Google Scholar : PubMed/NCBI

188 

Aljohani AKB, Almadani SA, Alsulaimany M, Aljuhani N, Samman WA, Al-Shareef AH, Alghamdi R, Tayeb SM, Alharbi HY, Aljohani MS, et al: Nano-carrier, design, synthesis, in silico ADMET, anti-proliferative assessments and docking of [1,2,4]triazolo[4,3-a]quinoxalines as Topo-II inhibitors and DNA intercalators. Naunyn Schmiedebergs Arch Pharmacol. 11: View Article : Google Scholar : 2025.

189 

Udayasree N, Haridasyam RB, Palabindela R, Krishna TM and Narsimha S: One-pot synthesis, anticancer, EGFR and caspases assays of novel fused [1,2,3]triazolo-pyrrolo[2,1-b]quinazolinones. J Mol Struct. 1320:1395702025. View Article : Google Scholar

190 

Zhu MS, Zhang G, Xu YJ, Sun R and Ge JF: Conjugated structures based on quinazolinones and their application in fluorescent labeling. Org Biomol Chem. 21:1992–2000. 2023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li J, Yang Y, Wang L, Liu Q, Kang X and Yang Y: Quinazolinone derivatives as potential anti‑tumor agents: Structural features and molecular mechanisms in inducing cell death (Review). Int J Mol Med 56: 205, 2025.
APA
Li, J., Yang, Y., Wang, L., Liu, Q., Kang, X., & Yang, Y. (2025). Quinazolinone derivatives as potential anti‑tumor agents: Structural features and molecular mechanisms in inducing cell death (Review). International Journal of Molecular Medicine, 56, 205. https://doi.org/10.3892/ijmm.2025.5646
MLA
Li, J., Yang, Y., Wang, L., Liu, Q., Kang, X., Yang, Y."Quinazolinone derivatives as potential anti‑tumor agents: Structural features and molecular mechanisms in inducing cell death (Review)". International Journal of Molecular Medicine 56.6 (2025): 205.
Chicago
Li, J., Yang, Y., Wang, L., Liu, Q., Kang, X., Yang, Y."Quinazolinone derivatives as potential anti‑tumor agents: Structural features and molecular mechanisms in inducing cell death (Review)". International Journal of Molecular Medicine 56, no. 6 (2025): 205. https://doi.org/10.3892/ijmm.2025.5646
Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Yang Y, Wang L, Liu Q, Kang X and Yang Y: Quinazolinone derivatives as potential anti‑tumor agents: Structural features and molecular mechanisms in inducing cell death (Review). Int J Mol Med 56: 205, 2025.
APA
Li, J., Yang, Y., Wang, L., Liu, Q., Kang, X., & Yang, Y. (2025). Quinazolinone derivatives as potential anti‑tumor agents: Structural features and molecular mechanisms in inducing cell death (Review). International Journal of Molecular Medicine, 56, 205. https://doi.org/10.3892/ijmm.2025.5646
MLA
Li, J., Yang, Y., Wang, L., Liu, Q., Kang, X., Yang, Y."Quinazolinone derivatives as potential anti‑tumor agents: Structural features and molecular mechanisms in inducing cell death (Review)". International Journal of Molecular Medicine 56.6 (2025): 205.
Chicago
Li, J., Yang, Y., Wang, L., Liu, Q., Kang, X., Yang, Y."Quinazolinone derivatives as potential anti‑tumor agents: Structural features and molecular mechanisms in inducing cell death (Review)". International Journal of Molecular Medicine 56, no. 6 (2025): 205. https://doi.org/10.3892/ijmm.2025.5646
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team