You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Bedoui S, Herold MJ and Strasser A: Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 21:678–695. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Newton K, Strasser A, Kayagaki N and Dixit VM: Cell death. Cell. 187:235–256. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Malireddi RKS, Kesavardhana S and Kanneganti TD: ZBP1 and TAK1: Master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol. 9:4062019. View Article : Google Scholar : PubMed/NCBI | |
|
Pandian N and Kanneganti TD: PANoptosis: A unique innate immune inflammatory cell death modality. J Immunol. 209:1625–1633. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Pandian N, Han JH, Sundaram B, Lee S, Karki R, Guy CS and Kanneganti TD: Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method. Cell Mol Life Sci. 79:5312022. View Article : Google Scholar : PubMed/NCBI | |
|
Xie H, Liang B, Zhu Q, Wang L, Li H, Qin Z, Zhang J, Liu Z and Wu Y: The role of PANoptosis in renal vascular endothelial cells: Implications for trichloroethylene-induced kidney injury. Ecotoxicol Environ Saf. 278:1164332024. View Article : Google Scholar : PubMed/NCBI | |
|
Mall R and Kanneganti TD: Comparative analysis identifies genetic and molecular factors associated with prognostic clusters of PANoptosis in glioma, kidney and melanoma cancer. Sci Rep. 13:209622023. View Article : Google Scholar : PubMed/NCBI | |
|
Uysal E, Dokur M, Kucukdurmaz F, Altınay S, Polat S, Batcıoglu K, Sezgın E, Sapmaz Erçakallı T, Yaylalı A, Yılmaztekin Y, et al: Targeting the PANoptosome with 3,4-meth ylenedioxy-β-nitrostyrene, reduces PANoptosis and protects the kidney against renal ischemia-reperfusion injury. J Invest Surg. 35:1824–1835. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Z, Wang J, Dao C, Zhu M, Li Y, Liu F, Zhao Y, Li J, Yang Y and Pan Z: Utilizing a novel model of PANoptosis-related genes for enhanced prognosis and immune status prediction in kidney renal clear cell carcinoma. Apoptosis. 29:681–692. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yi BJ, Wang CC, Li XW, Xu YR, Ma XY, Jian PA, Talukder M, Li XN and Li JL: Lycopene protects against atrazine-induced kidney STING-dependent panoptosis through stabilizing mtDNA via interaction with Sam50/PHB1. J Agric Food Chem. 72:14956–14966. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li YP, Zhou ZY, Yan L, You YP, Ke HY, Yuan T, Yang HY, Xu R, Xu LH, Ouyang DY, et al: Inflammatory cell death PANoptosis is induced by the anti-cancer curaxin CBL0137 via eliciting the assembly of ZBP1-associated PANoptosome. Inflamm Res. 73:597–617. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Karki R, Sharma BR, Lee E, Banoth B, Malireddi RKS, Samir P, Tuladhar S, Mummareddy H, Burton AR, Vogel P and Kanneganti TD: Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight. 5:e1367202020. View Article : Google Scholar : PubMed/NCBI | |
|
Kerr JF, Wyllie AH and Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar : PubMed/NCBI | |
|
Kroemer G: The pharmacology of T cell apoptosis. Adv Immunol. 58:211–296. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Tsujimoto Y: Role of Bcl-2 family proteins in apoptosis: Apoptosomes or mitochondria? Genes Cells. 3:697–707. 1998. View Article : Google Scholar | |
|
Li PF, Dietz R and von Harsdorf R: p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 18:6027–6036. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Czabotar PE, Lessene G, Strasser A and Adams JM: Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 15:49–63. 2014. View Article : Google Scholar | |
|
Kalkavan H and Green DR: MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25:46–55. 2018. View Article : Google Scholar | |
|
Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP and Wang X: Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science. 275:1129–1132. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Green DR and Reed JC: Mitochondria and apoptosis. Science. 281:1309–1312. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Hengartner MO and Horvitz HR: The ins and outs of programmed cell death during C. elegans development. Philos Trans R Soc Lond B Biol Sci. 345:243–246. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Fox JL, Hughes MA, Meng X, Sarnowska NA, Powley IR, Jukes-Jones R, Dinsdale D, Ragan TJ, Fairall L, Schwabe JWR, et al: Cryo-EM structural analysis of FADD:Caspase-8 complexes defines the catalytic dimer architecture for co-ordinated control of cell fate. Nat Commun. 12:8192021. View Article : Google Scholar : PubMed/NCBI | |
|
Fu TM, Li Y, Lu A, Li Z, Vajjhala PR, Cruz AC, Srivastava DB, DiMaio F, Penczek PA, Siegel RM, et al: Cryo-EM structure of caspase-8 tandem DED filament reveals assembly and regulation mechanisms of the death-inducing signaling complex. Mol Cell. 64:236–250. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, Cain K, MacFarlane M, Häcker G and Leverkus M: cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell. 43:449–463. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Van Opdenbosch N and Lamkanfi M: Caspases in cell death, inflammation, and disease. Immunity. 50:1352–1364. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Seol DW, Li J, Seol MH, Park SY, Talanian RV and Billiar TR: Signaling events triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): Caspase-8 is required for TRAIL-induced apoptosis. Cancer Res. 61:1138–1143. 2001.PubMed/NCBI | |
|
Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA and Yuan J: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 1:112–119. 2005. View Article : Google Scholar | |
|
Khoury MK, Gupta K, Franco SR and Liu B: Necroptosis in the pathophysiology of disease. Am J Pathol. 190:272–285. 2020. View Article : Google Scholar : | |
|
Weinlich R, Oberst A, Beere HM and Green DR: Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 18:127–136. 2017. View Article : Google Scholar | |
|
Murphy JM: The killer pseudokinase mixed lineage kinase domain-like protein (MLKL). Cold Spring Harb Perspect Biol. 12:a0363762020. View Article : Google Scholar | |
|
Petrie EJ, Sandow JJ, Lehmann WIL, Liang LY, Coursier D, Young SN, Kersten WJA, Fitzgibbon C, Samson AL, Jacobsen AV, et al: Viral MLKL homologs subvert necroptotic cell death by sequestering cellular RIPK3. Cell Rep. 28:3309–3319.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B and Tschopp J: Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 1:489–495. 2000. View Article : Google Scholar | |
|
He S, Liang Y, Shao F and Wang X: Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci USA. 108:20054–20059. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J and Mocarski ES: Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 288:31268–31279. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Wang Y, Inuzuka H and Wei W: Necroptosis pathways in tumorigenesis. Semin Cancer Biol. 86:32–40. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M and Chan FK: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 137:1112–1123. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Vanden Berghe T, Kaiser WJ, Bertrand MJ and Vandenabeele P: Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol. 2:e9750932015. View Article : Google Scholar | |
|
Wong WW, Gentle IE, Nachbur U, Anderton H, Vaux DL and Silke J: RIPK1 is not essential for TNFR1-induced activation of NF-kappaB. Cell Death Differ. 17:482–487. 2010. View Article : Google Scholar | |
|
Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS and Wang X: Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 54:133–146. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG and Liu ZG: Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol. 16:55–65. 2014. View Article : Google Scholar | |
|
Robinson N, McComb S, Mulligan R, Dudani R, Krishnan L and Sad S: Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol. 13:954–962. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
McComb S, Cessford E, Alturki NA, Joseph J, Shutinoski B, Startek JB, Gamero AM, Mossman KL and Sad S: Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc Natl Acad Sci USA. 111:E3206–E3213. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Xia B, Fang S, Chen X, Hu H, Chen P, Wang H and Gao Z: MLKL forms cation channels. Cell Res. 26:517–528. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Negroni A, Colantoni E, Cucchiara S and Stronati L: Necroptosis in intestinal inflammation and cancer: New concepts and therapeutic perspectives. Biomolecules. 10:14312020. View Article : Google Scholar : PubMed/NCBI | |
|
Woo Y, Lee HJ, Jung YM and Jung YJ: Regulated necrotic cell death in alternative tumor therapeutic strategies. Cells. 9:27092020. View Article : Google Scholar : PubMed/NCBI | |
|
Zychlinsky A, Prevost MC and Sansonetti PJ: Shigella flexneri induces apoptosis in infected macrophages. Nature. 358:167–169. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Hilbi H, Moss JE, Hersh D, Chen Y, Arondel J, Banerjee S, Flavell RA, Yuan J, Sansonetti PJ and Zychlinsky A: Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem. 273:32895–32900. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Cookson BT and Brennan MA: Pro-inflammatory programmed cell death. Trends Microbiol. 9:113–114. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Wallach D, Kang TB, Dillon CP and Green DR: Programmed necrosis in inflammation: Toward identification of the effector molecules. Science. 352:aaf21542016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535:153–158. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Atabaki R, Khaleghzadeh-Ahangar H, Esmaeili N and Mohseni-Moghaddam P: Role of pyroptosis, a pro-inflammatory programmed cell death, in epilepsy. Cell Mol Neurobiol. 43:1049–1059. 2023. View Article : Google Scholar | |
|
Bergsbaken T, Fink SL and Cookson BT: Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol. 7:99–109. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Rathinam VAK, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM and Fitzgerald KA: TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell. 150:606–619. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fritsch M, Günther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, Schiffmann LM, Stair N, Stocks H, Seeger JM, et al: Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 575:683–687. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gurung P, Anand PK, Malireddi RK, Vande Walle L, Van Opdenbosch N, Dillon CP, Weinlich R, Green DR, Lamkanfi M and Kanneganti TD: FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 192:1835–1846. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Man SM, Tourlomousis P, Hopkins L, Monie TP, Fitzgerald KA and Bryant CE: Salmonella infection induces recruitment of caspase-8 to the inflammasome to modulate IL-1β production. J Immunol. 191:5239–5246. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Van Opdenbosch N, Van Gorp H, Verdonckt M, Saavedra PHV, de Vasconcelos NM, Gonçalves A, Vande Walle L, Demon D, Matusiak M, Van Hauwermeiren F, et al: Caspase-1 engagement and TLR-induced c-FLIP expression suppress ASC/caspase-8-dependent apoptosis by inflammasome sensors NLRP1b and NLRC4. Cell Rep. 21:3427–3444. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Park MY, Ha SE, Vetrivel P, Kim HH, Bhosale PB, Abusaliya A and Kim GS: Differences of key proteins between apoptosis and necroptosis. Biomed Res Int. 2021:34201682021. View Article : Google Scholar : PubMed/NCBI | |
|
Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M, Kőműves L, Webster JD and Dixit VM: Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature. 574:428–431. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Vandenabeele P, Galluzzi L, Vanden Berghe T and Kroemer G: Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat Rev Mol Cell Biol. 11:700–714. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Schwarzer R, Laurien L and Pasparakis M: New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8. Curr Opin Cell Biol. 63:186–193. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu H, Shu HB, Pan MG and Goeddel DV: TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell. 84:299–308. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, et al: RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell. 157:1189–1202. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, et al: Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 362:1064–1069. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC, Shao F, Green DR and Poltorak A: Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci USA. 115:E10888–E10897. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hou J, Zhao R, Xia W, Chang CW, You Y, Hsu JM, Nie L, Chen Y, Wang YC, Liu C, et al: PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 22:1264–1275. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Karki R, Zheng M, Kancharana B, Lee S, Kesavardhana S, Hansen BS, Pruett-Miller SM and Kanneganti TD: Cutting edge: Caspase-8 is a linchpin in caspase-3 and gasdermin D activation to control cell death, cytokine release, and host defense during influenza A virus infection. J Immunol. 207:2411–2416. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G and Alnemri ES: Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 8:141282017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K and Shao F: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tsuchiya K, Nakajima S, Hosojima S, Thi Nguyen D, Hattori T, Manh Le T, Hori O, Mahib MR, Yamaguchi Y, Miura M, et al: Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat Commun. 10:20912019. View Article : Google Scholar : PubMed/NCBI | |
|
Lamkanfi M, Kanneganti TD, Van Damme P, Vanden Berghe T, Vanoverberghe I, Vandekerckhove J, Vandenabeele P, Gevaert K and Núñez G: Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics. 7:2350–2363. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Núñez G, Masters SL, Murphy JM, Schroder K, Vaux DL, et al: Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci USA. 114:E961–E969. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gutierrez KD, Davis MA, Daniels BP, Olsen TM, Ralli-Jain P, Tait SW, Gale M Jr and Oberst A: MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J Immunol. 198:2156–2164. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM and Núñez G: K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 38:1142–1153. 2013. View Article : Google Scholar | |
|
Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D'Cruz AA, Hall C, Kaur Spall S, Anderton H, Masters SL, et al: RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun. 6:62822015. View Article : Google Scholar : PubMed/NCBI | |
|
Malireddi RKS, Gurung P, Mavuluri J, Dasari TK, Klco JM, Chi H and Kanneganti TD: TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation. J Exp Med. 215:1023–1034. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng M, Karki R, Vogel P and Kanneganti TD: Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell. 181:674–687.e13. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Malireddi RKS, Gurung P, Kesavardhana S, Samir P, Burton A, Mummareddy H, Vogel P, Pelletier S, Burgula S and Kanneganti TD: Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J Exp Med. 217:jem.201916442020. View Article : Google Scholar | |
|
Christgen S, Tweedell RE and Kanneganti TD: Programming inflammatory cell death for therapy. Pharmacol Ther. 232:1080102022. View Article : Google Scholar : | |
|
Tweedell RE and Kanneganti TD: Advances in inflammasome research: Recent breakthroughs and future hurdles. Trends Mol Med. 26:969–971. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC and Kanneganti TD: AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 597:415–419. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi C, Cao P, Wang Y, Zhang Q, Zhang D, Wang Y, Wang L and Gong Z: PANoptosis: A cell death characterized by pyroptosis, apoptosis, and necroptosis. J Inflamm Res. 16:1523–1532. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Banoth B, Tuladhar S, Karki R, Sharma BR, Briard B, Kesavardhana S, Burton A and Kanneganti TD: ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J Biol Chem. 295:18276–18283. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kesavardhana S, Malireddi RKS, Burton AR, Porter SN, Vogel P, Pruett-Miller SM and Kanneganti TD: The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. J Biol Chem. 295:8325–8330. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Karki R, Lee S, Mall R, Pandian N, Wang Y, Sharma BR, Malireddi RS, Yang D, Trifkovic S, Steele JA, et al: ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci Immunol. 7:eabo62942022. View Article : Google Scholar : PubMed/NCBI | |
|
Malireddi RKS, Kesavardhana S, Karki R, Kancharana B, Burton AR and Kanneganti TD: RIPK1 distinctly regulates Yersinia-induced inflammatory cell death, PANoptosis. Immunohorizons. 4:789–796. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sundaram B, Pandian N, Mall R, Wang Y, Sarkar R, Kim HJ, Malireddi RKS, Karki R, Janke LJ, Vogel P and Kanneganti TD: NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. Cell. 186:2783–2801.e20. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kuriakose T, Man SM, Malireddi RK, Karki R, Kesavardhana S, Place DE, Neale G, Vogel P and Kanneganti TD: ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol. 1:aag20452016. View Article : Google Scholar : PubMed/NCBI | |
|
Rebsamen M, Heinz LX, Meylan E, Michallet MC, Schroder K, Hofmann K, Vazquez J, Benedict CA and Tschopp J: DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep. 10:916–922. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Upton JW, Kaiser WJ and Mocarski ES: DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 11:290–297. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kuriakose T and Kanneganti TD: ZBP1: Innate sensor regulating cell death and inflammation. Trends Immunol. 39:123–134. 2018. View Article : Google Scholar : | |
|
Thapa RJ, Ingram JP, Ragan KB, Nogusa S, Boyd DF, Benitez AA, Sridharan H, Kosoff R, Shubina M, Landsteiner VJ, et al: DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death. Cell Host Microbe. 20:674–681. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng M and Kanneganti TD: Newly identified function of caspase-6 in ZBP1-mediated innate immune responses, NLRP3 inflammasome activation, PANoptosis, and host defense. J Cell Immunol. 2:341–347. 2020. | |
|
Momota M, Lelliott P, Kubo A, Kusakabe T, Kobiyama K, Kuroda E, Imai Y, Akira S, Coban C and Ishii KJ: ZBP1 governs the inflammasome-independent IL-1α and neutrophil inflammation that play a dual role in anti-influenza virus immunity. Int Immunol. 32:203–212. 2020. View Article : Google Scholar | |
|
Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E and Fitzgerald KA: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 458:514–518. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL and Superti-Furga G: An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol. 10:266–272. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fernandes-Alnemri T, Yu JW, Datta P, Wu J and Alnemri ES: AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 458:509–513. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick M, Huang L, McDermott E, et al: The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol. 11:385–393. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, et al: The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol. 11:395–402. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H and Vandenabeele P: Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 15:135–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kist M, Kőműves LG, Goncharov T, Dugger DL, Yu C, Roose-Girma M, Newton K, Webster JD and Vucic D: Impaired RIPK1 ubiquitination sensitizes mice to TNF toxicity and inflammatory cell death. Cell Death Differ. 28:985–1000. 2021. View Article : Google Scholar : | |
|
Mihaly SR, Ninomiya-Tsuji J and Morioka S: TAK1 control of cell death. Cell Death Differ. 21:1667–1676. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sanjo H, Nakayama J, Yoshizawa T, Fehling HJ, Akira S and Taki S: Cutting edge: TAK1 safeguards macrophages against proinflammatory cell death. J Immunol. 203:783–788. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Malireddi RKS, Tweedell RE and Kanneganti TD: PANoptosis components, regulation, and implications. Aging (Albany NY). 12:11163–11164. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kanneganti TD: Intracellular innate immune receptors: Life inside the cell. Immunol Rev. 297:5–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ostermann M, Basu RK and Mehta RL: Acute kidney injury. Intensive Care Med. 49:219–222. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ostermann M, Lumlertgul N, Jeong R, See E, Joannidis M and James M: Acute kidney injury. Lancet. 405:241–256. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu C, Zhang Y, Nie S, Hong D, Zhu J, Chen Z, Liu B, Liu H, Yang Q, Li H, et al: Predicting in-hospital outcomes of patients with acute kidney injury. Nat Commun. 14:37392023. View Article : Google Scholar : PubMed/NCBI | |
|
Wei S, Wu L, Xiang Z, Yang X, Pei D, Jiang L and Du Z: EIF2AK2 protein targeted activation of AIM2-mediated PANoptosis promotes sepsis-induced acute kidney injury. Ren Fail. 46:24036492024. View Article : Google Scholar : PubMed/NCBI | |
|
Lin SY, Chang CL, Liou KT, Kao YK, Wang YH, Chang CC, Kuo TBJ, Huang HT, Yang CCH, Liaw CC and Shen YC: The protective role of Achyranthes aspera extract against cisplatininduced nephrotoxicity by alleviating oxidative stress, inflammation, and PANoptosis. J Ethnopharmacol. 319:1170972024. View Article : Google Scholar | |
|
You R: Mining biomarkers of acute kidney injury in sepsis and preliminary exploration of the PANoptosis-related mechanism. PhD dissertation. Peking Union Medical College; 2023 | |
|
Yan WT, Zhao WJ, Hu XM, Ban XX, Ning WY, Wan H, Zhang Q and Xiong K: PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons. Neural Regen Res. 18:357–363. 2023. | |
|
Wan H, Ban X, He Y, Yang Y, Hu X, Shang L, Wan X, Zhang Q and Xiong K: Voltage-dependent anion channel 1 oligomerization regulates PANoptosis in retinal ischemia-reperfusion injury. Neural Regen Res. 21:1652–1664. 2026. View Article : Google Scholar | |
|
Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, Zhao WJ, Zhang Q and Xiong K: Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res. 17:1761–1768. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hamar P, Song E, Kökény G, Chen A, Ouyang N and Lieberman J: Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad Sci USA. 101:14883–14888. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Zang G, Jiang J, He W, Johnston NJ, Ling H, Chen R, Zhang X, Liu Y, Haig A, et al: Attenuating ischemia-reperfusion injury in kidney transplantation by perfusing donor organs with siRNA cocktail solution. Transplantation. 100:743–752. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Basile DP, Liapis H and Hammerman MR: Expression of bcl-2 and bax in regenerating rat renal tubules following ischemic injury. Am J Physiol. 272:F640–F647. 1997.PubMed/NCBI | |
|
Thomas K, Zondler L, Ludwig N, Kardell M, Lüneburg C, Henke K, Mersmann S, Margraf A, Spieker T, Tekath T, et al: Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells. JCI Insight. 7:e1631612022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang B, Wang J, Qiao J, Zhang Q, Liu Q, Tan Y, Wang Q, Sun W, Feng W, Li Z, et al: Circ DENND4C inhibits pyroptosis and alleviates ischemia-reperfusion acute kidney injury by exosomes secreted from human urine-derived stem cells. Chem Biol Interact. 391:1109222024. View Article : Google Scholar : PubMed/NCBI | |
|
Tonnus W, Maremonti F, Belavgeni A, Latk M, Kusunoki Y, Brucker A, von Mässenhausen A, Meyer C, Locke S, Gembardt F, et al: Gasdermin D-deficient mice are hypersensitive to acute kidney injury. Cell Death Dis. 13:7922022. View Article : Google Scholar : PubMed/NCBI | |
|
Miao N, Yin F, Xie H, Wang Y, Xu Y, Shen Y, Xu D, Yin J, Wang B, Zhou Z, et al: The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney Int. 96:1105–1120. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li T, Sun H, Li Y, Su L, Jiang J, Liu Y, Jiang N, Huang R, Zhang J and Peng Z: Downregulation of macrophage migration inhibitory factor attenuates NLRP3 inflammasome mediated pyroptosis in sepsis-induced AKI. Cell Death Discov. 8:612022. View Article : Google Scholar : PubMed/NCBI | |
|
Linkermann A and Green DR: Necroptosis. N Engl J Med. 370:455–465. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Linkermann A, Bräsen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U and Krautwald S: Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 81:751–761. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JN, Liu MM, Wang F, Wei B, Yang Q, Cai YT, Chen X, Liu XQ, Jiang L, Li C, et al: RIPK1 inhibitor Cpd-71 attenuates renal dysfunction in cisplatin-treated mice via attenuating necroptosis, inflammation and oxidative stress. Clin Sci (Lond). 133:1609–1627. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Xie J, Chen Z, Ye K, Wu C, Dai X, Yuan Y, Lin Y, Wang Y, Chen H, et al: Role of Z-DNA binding protein 1 sensing mitochondrial Z-DNA and triggering necroptosis in oxalate-induced acute kidney injury. J Am Soc Nephrol. 36:361–377. 2025. View Article : Google Scholar | |
|
He P, Ma Y, Wu Y, Zhou Q and Du H: Exploring PANoptosis in breast cancer based on scRNA-seq and bulk-seq. Front Endocrinol (Lausanne). 14:11649302023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G, He Z, Jiang W, Li L, Luo B, Wang X and Zheng X: Construction of a machine learning-based artificial neural network for discriminating PANoptosis related subgroups to predict prognosis in low-grade gliomas. Sci Rep. 12:221192022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Liu Y, Chen S, Hui J and He S: AURKB promotes immunogenicity and immune infiltration in clear cell renal cell carcinoma. Discov Oncol. 15:2862024. View Article : Google Scholar : PubMed/NCBI | |
|
Choueiri TK and Motzer RJ: Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med. 376:354–366. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mall R, Bynigeri RR, Karki R, Malireddi RKS, Sharma BR and Kanneganti TD: Pancancer transcriptomic profiling identifies key PANoptosis markers as therapeutic targets for oncology. NAR Cancer. 4:zcac0332022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhou J, Zhang N, Zhu Y, Zhong Y, Wang Z, Jin H and Wang X: A novel defined PANoptosis-related miRNA signature for predicting the prognosis and immune characteristics in clear cell renal cell carcinoma: A miRNA signature for the prognosis of ccRCC. Int J Mol Sci. 24:93922023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Qu C and Wang X: Comprehensive analysis of the role of immune-related PANoptosis lncRNA model in renal clear cell carcinoma based on RNA transcriptome and single-cell sequencing. Oncol Res. 31:543–567. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Hua J, Que H, Zeng T, Li Q, Deng J and Xie J: Identification of PANoptosis-related signature reveals immune infiltration characteristics and immunotherapy responses for renal cell carcinoma. BMC Cancer. 24:2922024. View Article : Google Scholar : PubMed/NCBI | |
|
GBD Chronic Kidney Disease Collaboration: Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet. 395:709–733. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, Pletcher MA, Smith AE, Tang K, Yuan CW, et al: Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 392:2052–2090. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Z, Chen A, Cui H, Shang R, Su T, Li X, Wang K, Yang J, Gao K, Lv J, et al: Renal tubular epithelial cell necroptosis promotes tubulointerstitial fibrosis in patients with chronic kidney disease. FASEB J. 36:e226252022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Cui H, Xia Y and Gan H: RIPK3-mediated necroptosis and apoptosis contributes to renal tubular cell progressive loss and chronic kidney disease progression in rats. PLoS One. 11:e01567292016. View Article : Google Scholar : PubMed/NCBI | |
|
Pang Q, Wang P, Pan Y, Dong X, Zhou T, Song X and Zhang A: Irisin protects against vascular calcification by activating autophagy and inhibiting NLRP3-mediated vascular smooth muscle cell pyroptosis in chronic kidney disease. Cell Death Dis. 13:2832022. View Article : Google Scholar : PubMed/NCBI | |
|
Xia Z, Wei Z, Li X, Liu Y, Gu X, Huang S, Zhang X and Wang W: C/EBPα aggravates renal fibrosis in CKD through the NOX4-ROS-apoptosis pathway in tubular epithelial cells. Biochim Biophys Acta Mol Basis Dis. 1870:1670392024. View Article : Google Scholar | |
|
Liu X, Liu Z, Wang C, Miao J, Zhou S, Ren Q, Jia N, Zhou L and Liu Y: Kidney tubular epithelial cells control interstitial fibroblast fate by releasing TNFAIP8-encapsulated exosomes. Cell Death Dis. 14:6722023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang F, Wang Q, Guo F, Zhao Y, Ji L, An T, Song Y, Liu Y, He Y and Qin G: FoxO1-mediated inhibition of STAT1 alleviates tubulointerstitial fibrosis and tubule apoptosis in diabetic kidney disease. EBioMedicine. 48:491–504. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Chen Z, Hu J, Feng J, Zhu Z, Fan Y, Lin Q and Ding G: Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway. Front Cell Dev Biol. 9:7692132021. View Article : Google Scholar | |
|
Wang Y, Yu L, Li Y, Cha S, Shi L, Wang J, Ge F, Huang C, Huang H, Tu Y, et al: Supplemented gegen qinlian decoction formula attenuates podocyte mitochondrial fission and renal fibrosis in diabetic kidney disease by inhibiting TNF-α-mediated necroptosis, compared with empagliflozin. J Ethnopharmacol. 334:1185722024. View Article : Google Scholar | |
|
Yu Q, Chen Y, Zhao Y, Huang S, Xin X, Jiang L, Wang H, Wu W, Qu L, Xiang C, et al: Nephropathy is aggravated by fatty acids in diabetic kidney disease through tubular epithelial cell necroptosis and is alleviated by an RIPK-1 inhibitor. Kidney Dis (Basel). 9:408–423. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Chen X, Huang C and Pollock C: RIPK3: A new player in renal fibrosis. Front Cell Dev Biol. 8:5022020. View Article : Google Scholar : PubMed/NCBI | |
|
Hu B, Ma K, Wang W, Han Z, Chi M, Nasser MI and Liu C: Research progress of pyroptosis in renal diseases. Curr Med Chem. 31:6656–6671. 2024. View Article : Google Scholar | |
|
Liu P, Zhang Z and Li Y: Relevance of the pyroptosis-related inflammasome pathway in the pathogenesis of diabetic kidney disease. Front Immunol. 12:6034162021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang WT, Ge HW, Wei Y, Gao JL, Tian F and Zhou EC: Molecular characterization of PANoptosis-related genes in chronic kidney disease. PLoS One. 19:e03126962024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang SC, Zhang L, Sung YS, Chen CL, Krausz T, Dickson BC, Kao YC, Agaram NP, Fletcher CD and Antonescu CR: Frequent FOS gene rearrangements in epithelioid hemangioma: A molecular study of 58 cases with morphologic reappraisal. Am J Surg Pathol. 39:1313–1321. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Durchdewald M, Angel P and Hess J: The transcription factor Fos: A Janus-type regulator in health and disease. Histol Histopathol. 24:1451–1461. 2009.PubMed/NCBI | |
|
Huang YS, Lo CH, Tsai PH, Hou YC, Chang YT, Guo CY, Hsieh HY, Lu KC, Shih HM and Wu CC: Downregulation of AANAT by c-Fos in tubular epithelial cells with membranous nephropathy. Biochem Biophys Res Commun. 584:32–38. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F, Wang S, Wang J, Huang K, Chen G, Peng Y, Liu C and Tao Y: Pharmacological mechanisms of Fuzheng Huayu formula for Aristolochic acid I-induced kidney fibrosis through network pharmacology. Front Pharmacol. 13:10568652022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang G, Wang M, Qahar M, He J, Lai Z, Li S, He D, Yan X, Xiong Z, Xiong Z and Le TH: Post-burns persistent inflammation leads to kidney PANoptosis with caspases pathway activation. Heliyon. 11:e414852024. View Article : Google Scholar | |
|
Lv Z, Hu J, Su H, Yu Q, Lang Y, Yang M, Fan X, Liu Y, Liu B, Zhao Y, et al: TRAIL induces podocyte PANoptosis via death receptor 5 in diabetic kidney disease. Kidney Int. 107:317–331. 2025. View Article : Google Scholar | |
|
Zhang HR, Li YP, Shi ZJ, Liang QQ, Chen SY, You YP, Yuan T, Xu R, Xu LH, Ouyang DY, et al: Triptolide induces PANoptosis in macrophages and causes organ injury in mice. Apoptosis. 28:1646–1665. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu C, Wang Q, Du C, Chen L, Zhou Z, Zhang Z, Cai N, Li J, Huang C and Ma T: Histone deacetylase-mediated silencing of PSTPIP2 expression contributes to aristolochic acid nephropathy-induced PANoptosis. Br J Pharmacol. 181:1452–1473. 2024. View Article : Google Scholar | |
|
Yuan F, Cai J, Wu J, Tang Y, Zhao K, Liang F, Li F, Yang X, He Z, Billiar TR, et al: Z-DNA binding protein 1 promotes heatstroke-induced cell death. Science. 376:609–615. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sanz AB, Sanchez-Niño MD, Ramos AM and Ortiz A: Regulated cell death pathways in kidney disease. Nat Rev Nephrol. 19:281–299. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A and Rodrigues-Diez RR: Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 16:269–288. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Weisel K, Berger S, Thorn K, Taylor PC, Peterfy C, Siddall H, Tompson D, Wang S, Quattrocchi E, Burriss SW, et al: A randomized, placebo-controlled experimental medicine study of RIPK1 inhibitor GSK2982772 in patients with moderate to severe rheumatoid arthritis. Arthritis Res Ther. 23:852021. View Article : Google Scholar : PubMed/NCBI | |
|
Weisel K, Scott N, Berger S, Wang S, Brown K, Powell M, Broer M, Watts C, Tompson DJ, Burriss SW, et al: A randomised, placebo-controlled study of RIPK1 inhibitor GSK2982772 in patients with active ulcerative colitis. BMJ Open Gastroenterol. 8:e0006802021. View Article : Google Scholar : PubMed/NCBI | |
|
Shiffman M, Freilich B, Vuppalanchi R, Watt K, Chan JL, Spada A, Hagerty DT and Schiff E: Randomised clinical trial: emricasan versus placebo significantly decreases ALT and caspase 3/7 activation in subjects with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 49:64–73. 2019. View Article : Google Scholar | |
|
Ludbrook VJ, Budd DC, Thorn K, Tompson D, Votta BJ, Walker L, Lee A, Chen X, Peppercorn A and Loo WJ: Inhibition of receptor-interacting protein kinase 1 in chronic plaque psoriasis: A multicenter, randomized, double-blind, placebo-controlled study. Dermatol Ther (Heidelb). 14:489–504. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Weisel K, Berger S, Papp K, Maari C, Krueger JG, Scott N, Tompson D, Wang S, Simeoni M, Bertin J and Peter Tak P: Response to inhibition of receptor-interacting protein kinase 1 (RIPK1) in active plaque psoriasis: A randomized placebo-controlled study. Clin Pharmacol Ther. 108:808–816. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, Christgen S, Zheng M, Wang Y, Samir P, et al: ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 37:1098582021. View Article : Google Scholar : PubMed/NCBI | |
|
Oh S, Lee J, Oh J, Yu G, Ryu H, Kim D and Lee S: Integrated NLRP3, AIM2, NLRC4, Pyrin inflammasome activation and assembly drive PANoptosis. Cell Mol Immunol. 20:1513–1526. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang R, Hu Y, Wang YF, Zhang S, Wang ZG, Pang DW and Liu SL: Targeted degradation of ZBP1 with covalent PROTACs for anti-inflammatory treatment of infections. Angew Chem Int Ed Engl. 64:e2024235242025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Yin C, Fedorov A, Qiao L, Bao H, Beknazarov N, Wang S, Gautam A, Williams RM, Crawford JC, et al: ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature. 606:594–602. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Tao K, Wang Y, Huang Y, Duan C, Wang T, Li C, Zhang P, Yin Y, Gao J and Li R: Necrosulfonamide ameliorates intestinal inflammation via inhibiting GSDMD-medicated pyroptosis and MLKL-mediated necroptosis. Biochem Pharmacol. 206:1153382022. View Article : Google Scholar : PubMed/NCBI | |
|
Green JP, El-Sharkawy LY, Roth S, Zhu J, Cao J, Leach AG, Liesz A, Freeman S and Brough D: Discovery of an inhibitor of DNA-driven inflammation that preferentially targets the AIM2 inflammasome. iScience. 26:1067582023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Q, Li S, Jiang N, Jin H, Shao X, Zhu X, Wu J, Zhang M, Zhang Z, Shen J, et al: Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy. Autophagy. 17:2975–2990. 2021. View Article : Google Scholar : | |
|
Li C, Yang H, Wu Y, Zhou M, Luo H, Yuan P and Shen F: Carnosol alleviates cisplatin-induced acute kidney injury by regulating apoptosis and pyroptosis. Cell Biol Int. 49:101–117. 2025. View Article : Google Scholar | |
|
Chen L, Fang H, Li X, Yu P, Guan Y, Xiao C, Deng Z, Hei Z, Chen C and Luo C: Connexin32 gap junction channels deliver miR155-3p to mediate pyroptosis in renal ischemia-reperfusion injury. Cell Commun Signal. 22:1212024. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Lin Q, Shao X, Li S, Zhu X, Wu J, Mou S, Gu L, Wang Q, Zhang M, et al: HIF1α-BNIP3-mediated mitophagy protects against renal fibrosis by decreasing ROS and inhibiting activation of the NLRP3 inflammasome. Cell Death Dis. 14:2002023. View Article : Google Scholar | |
|
Ji Y, Hua H, Jia Z, Zhang A and Ding G: Therapy targeted to the NLRP3 inflammasome in chronic kidney disease. Kidney Dis (Basel). 10:369–383. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Østergaard JA, Jha JC, Sharma A, Dai A, Choi JSY, de Haan JB, Cooper ME and Jandeleit-Dahm K: Adverse renal effects of NLRP3 inflammasome inhibition by MCC950 in an interventional model of diabetic kidney disease. Clin Sci (Lond). 136:167–180. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu M, Yang Z, Zhang C and Shi Y, Han W, Song S, Mu L, Du C and Shi Y: Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism. 118:1547482021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YM, Tang BX, Chen WY and Zhao MS: Ursolic acid inhibits the invasiveness of A498 cells via NLRP3 inflammasome activation. Oncol Lett. 20:1702020. View Article : Google Scholar : PubMed/NCBI | |
|
Klück V, Jansen TLTA, Janssen M, Comarniceanu A, Efdé M, Tengesdal IW, Schraa K, Cleophas MCP, Scribner CL, Skouras DB, et al: Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: An open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2:e270–e280. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yin P, Jia J, Li J, Song Y, Zhang Y and Chen F: ABT-737, a Bcl-2 selective inhibitor, and chloroquine synergistically kill renal cancer cells. Oncol Res. 24:65–72. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sun H, Wang W, Che Y and Jiang X: Fungal secondary metabolites rasfonin induces autophagy, apoptosis and necroptosis in renal cancer cell line. Mycology. 7:81–87. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ding Z, Zhao J, Wang X, Li W, Chen C, Yong C, Zhu Y, Tian F, Liu L, Yu M, et al: Total extract of Abelmoschus manihot L. alleviates uric acid-induced renal tubular epithelial injury via inhibition of caspase-8/caspase-3/NLRP3/GSDME signaling. Front Pharmacol. 13:9079802022. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Hu D, Li Y, Luo Y, Liang B, Yu K, Xiong W and Zuo D: Overexpression of TP53INP2 promotes apoptosis in clear cell renal cell cancer via caspase-8/TRAF6 signaling pathway. J Immunol Res. 2022:12604232022.PubMed/NCBI | |
|
Gautam A, Boyd DF, Nikhar S, Zhang T, Siokas I, Van de Velde LA, Gaevert J, Meliopoulos V, Thapa B, Rodriguez DA, et al: Necroptosis blockade prevents lung injury in severe influenza. Nature. 628:835–843. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Abou Taha MA, Ali FEM, Saleh IG and Akool ES: Sorafenib and edaravone protect against renal fibrosis induced by unilateral ureteral obstruction via inhibition of oxidative stress, inflammation, and RIPK-3/MLKL pathway. Naunyn Schmiedebergs Arch Pharmacol. 397:8961–8977. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hou Y, Feng Q, Wei C, Cao F, Liu D, Pan S, Shi Y, Liu Z and Liu F: Emerging role of PANoptosis in kidney diseases: Molecular mechanisms and therapeutic opportunities. Apoptosis. 30:579–596. 2025. View Article : Google Scholar : PubMed/NCBI |