|
1
|
Zou W: Immunosuppressive networks in the
tumour environment and their therapeutic relevance. Nat Rev Cancer.
5:263–274. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Han Y, Liu D and Li L: PD-1/PD-L1 pathway:
Current researches in cancer. Am J Cancer Res. 10:727–742.
2020.PubMed/NCBI
|
|
3
|
Sun C, Mezzadra R and Schumacher TN:
Regulation and function of the PD-L1 checkpoint. Immunity.
48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Iwai Y, Hamanishi J, Chamoto K and Honjo
T: Cancer immunotherapies targeting the PD-1 signaling pathway. J
Biomed Sci. 24:262017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ,
Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al:
Safety and activity of anti-PD-L1 antibody in patients with
advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sharma P and Allison JP: Immune checkpoint
targeting in cancer therapy: Toward combination strategies with
curative potential. Cell. 161:205–214. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Naidoo J, Page DB, Li BT, Connell LC,
Schindler K, Lacouture ME, Postow MA and Wolchok JD: Toxicities of
the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann
Oncol. 26:2375–2391. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang N, Dou Y, Liu L, Zhang X, Liu X,
Zeng Q, Liu Y, Yin M, Liu X, Deng H and Song D: SA-49, a novel
aloperine derivative, induces MITF-dependent lysosomal degradation
of PD-L1. EBioMedicine. 40:151–162. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang T, Cai S, Cheng Y, Zhang W, Wang M,
Sun H, Guo B, Li Z, Xiao Y and Jiang S: Discovery of small-molecule
inhibitors of the PD-1/PD-L1 axis that promote PD-L1
internalization and degradation. J Med Chem. 65:3879–3893. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Cha JH, Chan LC, Li CW, Hsu JL and Hung
MC: Mechanisms controlling PD-L1 expression in cancer. Mol Cell.
76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hsu JM, Xia W, Hsu YH, Chan LC, Yu WH, Cha
JH, Chen CT, Liao HW, Kuo CW, Khoo KH, et al: STT3-dependent PD-L1
accumulation on cancer stem cells promotes immune evasion. Nat
Commun. 9:19082018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo
CW, Khoo KH, Chang SS, Cha JH, Kim T, et al: Glycosylation and
stabilization of programmed death ligand-1 suppresses T-cell
activity. Nat Commun. 7:126322016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang J, Bu X, Wang H, Zhu Y, Geng Y,
Nihira NT, Tan Y, Ci Y, Wu F, Dai X, et al: Cyclin D-CDK4 kinase
destabilizes PD-L1 via cullin 3-SPOP to control cancer immune
surveillance. Nature. 553:91–95. 2018. View Article : Google Scholar
|
|
14
|
Qian G, Guo J, Vallega KA, Hu C, Chen Z,
Deng Y, Wang Q, Fan S, Ramalingam SS, Owonikoko TK, et al:
Membrane-associated RING-CH 8 functions as a novel PD-L1 E3 ligase
to mediate PD-L1 degradation induced by EGFR inhibitors. Mol Cancer
Res. 19:1622–1634. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Su YW, Huang WY, Lin SH and Yang PS:
Effects of reishimmune-S, a fungal immunomodulatory peptide
supplement, on the quality of life and circulating natural killer
cell profiles of patients with early breast cancer receiving
adjuvant endocrine therapy. Integr Cancer Ther.
23:153473542412421202024. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lin TY, Hua WJ, Yeh H and Tseng AJ:
Functional proteomic analysis reveals that fungal immunomodulatory
protein reduced expressions of heat shock proteins correlates to
apoptosis in lung cancer cells. Phytomedicine. 80:1533842021.
View Article : Google Scholar
|
|
17
|
Hua WJ, Hwang WL, Yeh H, Lin ZH, Hsu WH
and Lin TY: Ganoderma microsporum immunomodulatory protein combined
with KRAS(G12C) inhibitor impedes intracellular AKT/ERK network to
suppress lung cancer cells with KRAS mutation. Int J Biol Macromol.
259:1292912024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tseng AJ, Tu TH, Hua WJ, Yeh H, Chen CJ,
Lin ZH, Hsu WH, Chen YL, Hsu CC and Lin TY: GMI, Ganoderma
microsporum protein, suppresses cell mobility and increases
temozolomide sensitivity through induction of Slug degradation in
glioblastoma multiforme cells. Int J Biol Macromol. 219:940–948.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hua WJ, Yeh H, Lin ZH, Tseng AJ, Huang LC,
Qiu WL, Tu TH, Wang DH, Hsu WH, Hwang WL and Lin TY: Ganoderma
microsporum immunomodulatory protein as an extracellular epidermal
growth factor receptor (EGFR) degrader for suppressing
EGFR-positive lung cancer cells. Cancer Lett. 578:2164582023.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yeh H, Vo DNK, Lin ZH, Ho HPT, Hua WJ, Qiu
WL, Tsai MH and Lin TY: GMI, a protein from Ganoderma microsporum,
induces ACE2 degradation to alleviate infection of SARS-CoV-2
Spike-pseudotyped virus. Phytomedicine. 103:1542152022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Allen M, Bjerke M, Edlund H, Nelander S
and Westermark B: Origin of the U87MG glioma cell line: Good news
and bad news. Sci Transl Med. 8:354re3532016. View Article : Google Scholar
|
|
22
|
Lo HC, Hua WJ, Yeh H, Lin ZH, Huang LC,
Ciou YR, Ruan R, Lin KF, Tseng AJ, Wu ATH, et al: GMI, a Ganoderma
microsporum protein, abolishes focal adhesion network to reduce
cell migration and metastasis of lung cancer. Life Sci.
335:1222552023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ge SX, Jung D and Yao R: ShinyGO: A
graphical gene-set enrichment tool for animals and plants.
Bioinformatics. 36:2628–2629. 2020. View Article : Google Scholar :
|
|
24
|
Luo W and Brouwer C: Pathview: An
R/Bioconductor package for pathway-based data integration and
visualization. Bioinformatics. 29:1830–1831. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kanehisa M, Furumichi M, Sato Y,
Ishiguro-Watanabe M and Tanabe M: KEGG: Integrating viruses and
cellular organisms. Nucleic Acids Res. 49:D545–D551. 2021.
View Article : Google Scholar :
|
|
26
|
Hsu WH, Hua WJ, Qiu WL, Tseng AJ, Cheng HC
and Lin TY: WSG, a glucose-enriched polysaccharide from Ganoderma
lucidum, suppresses tongue cancer cells via inhibition of
EGFR-mediated signaling and potentiates cisplatin-induced
apoptosis. Int J Biol Macromol. 193:1201–1208. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
|
28
|
Zhang Y, Huang Y, Yu D, Xu M, Hu H, Zhang
Q, Cai M, Geng X, Zhang H, Xia J, et al: Demethylzeylasteral
induces PD-L1 ubiquitin-proteasome degradation and promotes
antitumor immunity via targeting USP22. Acta Pharm Sin B.
14:4312–4328. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lu CS, Lin CW, Chang YH, Chen HY, Chung
WC, Lai WY, Ho CC, Wang TH, Chen CY, Yeh CL, et al: Antimetabolite
pemetrexed primes a favorable tumor microenvironment for immune
checkpoint blockade therapy. J Immunother Cancer. 8:e0013922020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
He K, Barsoumian HB, Puebla-Osorio N, Hu
Y, Sezen D, Wasley MD, Bertolet G, Zhang J, Leuschner C, Yang L, et
al: Inhibition of STAT6 with antisense oligonucleotides enhances
the systemic antitumor effects of radiotherapy and Anti-PD-1 in
metastatic non-small cell lung cancer. Cancer Immunol Res.
11:486–500. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang TY, Yu CC, Hsieh PL, Liao YW, Yu CH
and Chou MY: GMI ablates cancer stemness and cisplatin resistance
in oral carcinomas stem cells through IL-6/Stat3 signaling
inhibition. Oncotarget. 8:70422–70430. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lin TY, Hsu HY, Sun WH, Wu TH and Tsao SM:
Induction of Cbl-dependent epidermal growth factor receptor
degradation in Ling Zhi-8 suppressed lung cancer. Int J Cancer.
140:2596–2607. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hsin IL, Chiu LY, Ou CC, Wu WJ, Sheu GT
and Ko JL: CD133 inhibition via autophagic degradation in
pemetrexed-resistant lung cancer cells by GMI, a fungal
immunomodulatory protein from Ganoderma microsporum. Br J Cancer.
123:449–458. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lin PL, Wu TC, Wu DW, Wang L, Chen CY and
Lee H: An increase in BAG-1 by PD-L1 confers resistance to tyrosine
kinase inhibitor in non-small cell lung cancer via persistent
activation of ERK signalling. Eur J Cancer. 85:95–105. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu M, Wang X, Li W, Yu X,
Flores-Villanueva P, Xu-Monette ZY, Li L, Zhang M, Young KH, Ma X
and Li Y: Targeting PD-L1 in non-small cell lung cancer using CAR T
cells. Oncogenesis. 9:722020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lemma EY, Letian A, Altorki NK and McGraw
TE: Regulation of PD-L1 trafficking from synthesis to degradation.
Cancer Immunol Res. 11:866–874. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Feng C, Zhang L, Chang X, Qin D and Zhang
T: Regulation of post-translational modification of PD-L1 and
advances in tumor immunotherapy. Front Immunol. 14:12301352023.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zuazo M, Gato-Cañas M, Llorente N,
Ibañez-Vea M, Arasanz H, Kochan G and Escors D: Molecular
mechanisms of programmed cell death-1 dependent T cell suppression:
Relevance for immunotherapy. Ann Transl Med. 5:3852017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ghosh C, Luong G and Sun Y: A snapshot of
the PD-1/PD-L1 pathway. J Cancer. 12:2735–2746. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gou Q, Dong C, Xu H, Khan B, Jin J, Liu Q,
Shi J and Hou Y: PD-L1 degradation pathway and immunotherapy for
cancer. Cell Death Dis. 11:9552020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Venturella G, Ferraro V, Cirlincione F and
Gargano ML: Medicinal Mushrooms: Bioactive Compounds, Use, and
Clinical Trials. Int J Mol Sci. 22:2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Casey SC, Tong L, Li Y, Do R, Walz S,
Fitzgerald KN, Gouw AM, Baylot V, Gütgemann I, Eilers M and Felsher
DW: MYC regulates the antitumor immune response through CD47 and
PD-L1. Science. 352:227–231. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Miao J, Hsu PC, Yang YL, Xu Z, Dai Y, Wang
Y, Chan G, Huang Z, Hu B, Li H, et al: YAP regulates PD-L1
expression in human NSCLC cells. Oncotarget. 8:114576–114587. 2017.
View Article : Google Scholar
|
|
44
|
Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu
Z and Huang JA: The EGFR pathway is involved in the regulation of
PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in
EGFR-mutated non-small cell lung cancer. Int J Oncol. 49:1360–1368.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jiang XM, Xu YL, Huang MY, Zhang LL, Su
MX, Chen X and Lu JJ: Osimertinib (AZD9291) decreases programmed
death ligand-1 in EGFR-mutated non-small cell lung cancer cells.
Acta Pharmacol Sin. 38:1512–1520. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ota K, Azuma K, Kawahara A, Hattori S,
Iwama E, Tanizaki J, Harada T, Matsumoto K, Takayama K, Takamori S,
et al: Induction of PD-L1 expression by the EML4-ALK oncoprotein
and downstream signaling pathways in non-small cell lung cancer.
Clin Cancer Res. 21:4014–4021. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Konen JM, Rodriguez BL, Fradette JJ,
Gibson L, Davis D, Minelli R, Peoples MD, Kovacs J, Carugo A,
Bristow C, et al: Ntrk1 promotes resistance to PD-1 checkpoint
blockade in mesenchymal Kras/p53 mutant lung cancer. Cancers
(Basel). 11:4622019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lastwika KJ, Wilson W III, Li QK, Norris
J, Xu H, Ghazarian SR, Kitagawa H, Kawabata S, Taube JM, Yao S, et
al: Control of PD-L1 expression by oncogenic activation of the
AKT-mTOR pathway in non-small cell lung cancer. Cancer Res.
76:227–238. 2016. View Article : Google Scholar
|
|
49
|
Wu Y, Zhang C, Liu X, He Z, Shan B, Zeng
Q, Zhao Q, Zhu H, Liao H, Cen X, et al: ARIH1 signaling promotes
antitumor immunity by targeting PD-L1 for proteasomal degradation.
Nat Commun. 12:23462021. View Article : Google Scholar
|
|
50
|
Ren X, Wang L, Liu L and Liu J: PTMs of
PD-1/PD-L1 and PROTACs application for improving cancer
immunotherapy. Front Immunol. 15:13925462024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang F, Jiang R, Sun S, Wu C, Yu Q,
Awadasseid A, Wang J and Zhang W: Recent advances and mechanisms of
action of PD-L1 degraders as potential therapeutic agents. Eur J
Med Chem. 268:1162672024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Gao H, Sun X and Rao Y: PROTAC technology:
Opportunities and challenges. ACS Med Chem Lett. 11:237–240. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Fu HY and Hseu RS: Safety assessment of
the fungal immunomodulatory protein from Ganoderma microsporum
(GMI) derived from engineered Pichia pastoris: Genetic toxicology,
a 13-week oral gavage toxicity study, and an embryo-fetal
developmental toxicity study in Sprague-Dawley rats. Toxicol Rep.
9:1240–1254. 2022. View Article : Google Scholar :
|
|
54
|
Spitzer MH, Carmi Y, Reticker-Flynn NE,
Kwek SS, Madhireddy D, Martins MM, Gherardini PF, Prestwood TR,
Chabon J, Bendall SC, et al: systemic immunity is required for
effective cancer immunotherapy. Cell. 168:487–502. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yi M, Niu M, Xu L, Luo S and Wu K:
Regulation of PD-L1 expression in the tumor microenvironment. J
Hematol Oncol. 14:102021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang M, Guo H, Sun BB, Jie XL, Shi XY, Liu
YQ, Shi XL, Ding LQ, Xue PH, Qiu F, et al: Centipeda minima and
6-O-angeloylplenolin enhance the efficacy of immune checkpoint
inhibitors in non-small cell lung cancer. Phytomedicine.
132:1558252024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang Q, Wang J, Yu D, Zhang Q, Hu H, Xu M,
Zhang H, Tian S, Zheng G, Lu D, et al: Benzosceptrin C induces
lysosomal degradation of PD-L1 and promotes antitumor immunity by
targeting DHHC3. Cell Rep Med. 5:1013572024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li JP, Lee YP, Ma JC, Liu BR, Hsieh NT,
Chen DC, Chu CL and You RI: The enhancing effect of fungal
immunomodulatory protein-volvariella volvacea (FIP-vvo) on
maturation and function of mouse dendritic cells. Life (Basel).
11:4712021.PubMed/NCBI
|
|
59
|
Sharma P, Goswami S, Raychaudhuri D,
Siddiqui BA, Singh P, Nagarajan A, Liu J, Subudhi SK, Poon C, Gant
KL, et al: Immune checkpoint therapy-current perspectives and
future directions. Cell. 186:1652–1669. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Freed-Pastor WA, Lambert LJ, Ely ZA,
Pattada NB, Bhutkar A, Eng G, Mercer KL, Garcia AP, Lin L, Rideout
WM III, et al: The CD155/TIGIT axis promotes and maintains immune
evasion in neoantigen-expressing pancreatic cancer. Cancer Cell.
39:1342–1360. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lin ZH, Yeh H, Lo HC, Hua WJ, Ni MY, Wang
LK, Chang TT, Yang MH and Lin TY: GMI, a fungal immunomodulatory
protein, ameliorates SARS-CoV-2 envelope protein-induced
inflammation in macrophages via inhibition of MAPK pathway. Int J
Biol Macromol. 241:1246482023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Almozyan S, Colak D, Mansour F, Alaiya A,
Al-Harazi O, Qattan A, Al-Mohanna F, Al-Alwan M and Ghebeh H: PD-L1
promotes OCT4 and Nanog expression in breast cancer stem cells by
sustaining PI3K/AKT pathway activation. Int J Cancer.
141:1402–1412. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Gao L, Guo Q, Li X, Yang X, Ni H, Wang T,
Zhao Q, Liu H, Xing Y, Xi T and Zheng L: MiR-873/PD-L1 axis
regulates the stemness of breast cancer cells. EBioMedicine.
41:395–407. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jeong H, Koh J, Kim S, Song SG, Lee SH,
Jeon Y, Lee CH, Keam B, Lee SH, Chung DH and Jeon YK:
Epithelial-mesenchymal transition induced by tumor cell-intrinsic
PD-L1 signaling predicts a poor response to immune checkpoint
inhibitors in PD-L1-high lung cancer. Br J Cancer. 131:23–36. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chang CH, Qiu J, O'Sullivan D, Buck MD,
Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ,
et al: Metabolic competition in the tumor microenvironment is a
driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ghebeh H, Lehe C, Barhoush E, Al-Romaih K,
Tulbah A, Al-Alwan M, Hendrayani SF, Manogaran P, Alaiya A,
Al-Tweigeri T, et al: Doxorubicin downregulates cell surface B7-H1
expression and upregulates its nuclear expression in breast cancer
cells: Role of B7-H1 as an anti-apoptotic molecule. Breast Cancer
Res. 12:R482010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu S, Chen S, Yuan W, Wang H, Chen K and
Li D and Li D: PD-1/PD-L1 interaction up-regulates MDR1/P-gp
expression in breast cancer cells via PI3K/AKT and MAPK/ERK
pathways. Oncotarget. 8:99901–99912. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zheng Y, Fang YC and Li J: PD-L1
expression levels on tumor cells affect their immunosuppressive
activity. Oncol Lett. 18:5399–5407. 2019.PubMed/NCBI
|