You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Scalise M and Jaakola VP: Membrane proteins: New approaches to probes, technologies, and drug design. SLAS Discov. 24:865–866. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Curnow P: Designing minimalist membrane proteins. Biochem Soc Trans. 47:1233–1245. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Pandey A, Shin K, Patterson RE, Liu XQ and Rainey JK: Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol. 94:507–527. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Schmit K and Michiels C: TMEM proteins in cancer: A review. Front Pharmacol. 9:13452018. View Article : Google Scholar : PubMed/NCBI | |
|
Marx S, Dal Maso T, Chen JW, Bury M, Wouters J, Michiels C and Le Calvé B: Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Semin Cancer Biol. 60:96–106. 2020. View Article : Google Scholar | |
|
Akkafa F, Koyuncu İ, Temiz E, Dagli H, Dïlmec F and Akbas H: miRNA-mediated apoptosis activation through TMEM 48 inhibition in A549 cell line. Biochem Biophys Res Commun. 503:323–329. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Z, Zhao H, Yang S, Liu R, Yi L, Gao J, Liu S, Chen Y and Zhang Z: Edaravone Dexborneol protects against blood-brain barrier disruption following cerebral ischemia/reperfusion by upregulating pericyte coverage via vitronectin-integrin and PDGFB/PDGFR-β signaling. Free Radic Biol Med. 225:758–766. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Sabbah DA, Hajjo R and Sweidan K: Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem. 20:815–834. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Krook MA, Reeser JW, Ernst G, Barker H, Wilberding M, Li G, Chen HZ and Roychowdhury S: Fibroblast growth factor receptors in cancer: Genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br J Cancer. 124:880–892. 2021. View Article : Google Scholar : | |
|
Rodrigues Toledo C, Tantawy AA, Lima Fuscaldi L, Malavolta L and de Aguiar Ferreira C: EGFR- and integrin α(V)β(3)-targeting peptides as potential radiometal-labeled radiopharmaceuticals for cancer theranostics. Int J Mol Sci. 25:85532024. View Article : Google Scholar | |
|
Chiaranunt P, Ferrara JL and Byersdorfer CA: Rethinking the paradigm: How comparative studies on fatty acid oxidation inform our understanding of T cell metabolism. Mol Immunol. 68C:564–574. 2015. View Article : Google Scholar | |
|
Mohan CD, Rangappa KS and Sethi G: Transmembrane protein 25 abrogates monomeric EGFR-driven STAT3 activation in triple-negative breast cancer. MedComm (2020). 5:e4922024. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Yue M, Xu H, Zhang X, Mao T, Quan M, Ma J, Wang Y, Ge W, Wang Y, et al: Chemotherapeutic drugs-induced pyroptosis mediated by gasdermin E promotes the progression and chemoresistance of pancreatic cancer. Cancer Lett. 564:2162062023. View Article : Google Scholar : PubMed/NCBI | |
|
Lee W, Song G and Bae H: Review of synergistic anticancer effects of natural compounds combined with conventional therapeutics against chemoresistance and progression of pancreatic cancer. Mol Cell Toxicol. 21:455–471. 2025. View Article : Google Scholar | |
|
Sato A, Takagi K, Yoshida M, Yamaguchi-Tanaka M, Sagehashi M, Miki Y, Miyashita M and Suzuki T: Discoidin domain receptor 2 contributes to breast cancer progression and chemoresistance by interacting with collagen type I. Cancers. 16:42852024. View Article : Google Scholar : | |
|
Hegde RS and Keenan RJ: The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol. 23:107–124. 2022. View Article : Google Scholar | |
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC and Stroud RM: Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem. 296:1005572021. View Article : Google Scholar | |
|
Tao X, Zhao C and MacKinnon R: Membrane protein isolation and structure determination in cell-derived membrane vesicles. Proc Natl Acad Sci USA. 120:e23023251202023. View Article : Google Scholar : PubMed/NCBI | |
|
Vénien-Bryan C and Fernandes CAH: Overview of membrane protein sample preparation for single-particle cryo-electron microscopy analysis. Int J Mol Sci. 24:147852023. View Article : Google Scholar : PubMed/NCBI | |
|
Thonghin N, Kargas V, Clews J and Ford RC: Cryo-electron microscopy of membrane proteins. Methods. 147:176–186. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gong J, Chen Y, Pu F, Sun P, He F, Zhang L, Li Y, Ma Z and Wang H: Understanding membrane protein drug targets in computational perspective. Curr Drug Targets. 20:551–564. 2019. View Article : Google Scholar | |
|
Gulezian E, Crivello C, Bednenko J, Zafra C, Zhang Y, Colussi P and Hussain S: Membrane protein production and formulation for drug discovery. Trends Pharmacol Sci. 42:657–674. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dodd RB, Wilkinson T and Schofield DJ: Therapeutic monoclonal antibodies to complex membrane protein targets: Antigen generation and antibody discovery strategies. BioDrugs. 32:339–355. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gao S, Xu T, Wang W, Li J, Shan Y, Wang Y and Tan H: Polysaccharides from Anemarrhena asphodeloides Bge, the extraction, purification, structure characterization, biological activities and application of a traditional herbal medicine. Int J Biol Macromol. 311:1434972025. View Article : Google Scholar : PubMed/NCBI | |
|
Gao S, Wang W, Li J, Wang Y, Shan Y and Tan H: Unveiling polysaccharides of Houttuynia cordata thunb: Extraction, purification, structure, bioactivities, and structure-activity relationships. Phytomedicine. 138:1564362025. View Article : Google Scholar | |
|
Gao S, Li J, Wang W, Wang Y, Shan Y and Tan H: Rabdosia rubescens (Hemsl.) H. Hara: A potent anti-tumor herbal remedy - Botany, phytochemistry, and clinical applications and insights. J Ethnopharmacol. 340:1192002025. View Article : Google Scholar | |
|
Chu XP and Xiong ZG: Acid-sensing ion channels in pathological conditions. Adv Exp Med Biol. 961:419–431. 2013. View Article : Google Scholar : | |
|
Nandi PR: Pain in neurological conditions. Curr Opin Support Palliat Care. 6:194–200. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jones F, Gamper N and Gao H: Kv7 channels and excitability disorders. Handb Exp Pharmacol. 267:185–230. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Liu Y, Xue C, Hu Y, Zhao Y, Cai K, Li M and Luo Z: A protein-based cGAS-STING nanoagonist enhances T cell-mediated anti-tumor immune responses. Nat Commun. 13:56852022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang SP, Chen FY, Dong LX, Zhang YQ, Chen HY, Qiao K and Wang KJ: A novel innexin2 forming membrane hemichannel exhibits immune responses and cell apoptosis in Scylla paramamosain. Fish Shellfish Immunol. 47:485–499. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB and Gloriam DE: Trends in GPCR drug discovery: New agents, targets and indications. Nat Rev Drug Discov. 16:829–842. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Snijder HJ and Hakulinen J: Membrane protein production in E. coli for applications in drug discovery. Adv Exp Med Biol. 896:59–77. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kandasamy P, Gyimesi G, Kanai Y and Hediger MA: Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci. 43:752–789. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kampen KR: Membrane proteins: the key players of a cancer cell. J Membr Biol. 242:69–74. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Singh V, Kaur R, Kumari P, Pasricha C and Singh R: ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin Chim Acta. 548:1174872023. View Article : Google Scholar : PubMed/NCBI | |
|
Pliego-Arreaga R, Cervantes-Montelongo JA, Silva-Martínez GA, Tristán-Flores FE, Pantoja-Hernández MA and Maldonado-Coronado JR: Joint hypermobility syndrome and membrane proteins: A comprehensive review. Biomolecules. 14:4722024. View Article : Google Scholar : PubMed/NCBI | |
|
Guan Q, Bhowmick B, Upadhyay A and Han Q: Structure and functions of bacterial outer membrane protein A, a potential therapeutic target for bacterial infection. Curr Top Med Chem. 21:1129–1138. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kang H and Lee CJ: Transmembrane proteins with unknown function (TMEMs) as ion channels: Electrophysiological properties, structure, and pathophysiological roles. Exp Mol Med. 56:850–860. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li L and Li J: Dimerization of transmembrane proteins in cancer immunotherapy. Membranes. 13:3932023. View Article : Google Scholar : PubMed/NCBI | |
|
Wesoly J, Pstrąg N, Derylo K, Michalec-Wawiórka B, Derebecka N, Nowicka H, Kajdasz A, Kluzek K, Srebniak M, Tchórzewski M, et al: Structural, topological, and functional characterization of transmembrane proteins TMEM213, 207, 116, 72 and 30B provides a potential link to ccRCC etiology. Am J Cancer Res. 13:1863–1883. 2023.PubMed/NCBI | |
|
Nieto Gutierrez A and McDonald PH: GPCRs: Emerging anti-cancer drug targets. Cell Signal. 41:65–74. 2018. View Article : Google Scholar | |
|
Dorsam RT and Gutkind JS: G-protein-coupled receptors and cancer. Nat Rev Cancer. 7:79–94. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Lu X, Luo C, Wu J, Deng Y, Mu X, Zhang T, Yang X, Liu Q, Li Z, Tang S, et al: Ion channels and transporters regulate nutrient absorption in health and disease. J Cell Mol Med. 27:2631–2642. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Talukdar S, Emdad L, Das SK and Fisher PB: EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells. Adv Cancer Res. 147:161–188. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Huang J, Yan W, Liu Z, Liu S and Fang W: FGFR families: Biological functions and therapeutic interventions in tumors. MedComm (2020). 4:e3672023. View Article : Google Scholar : PubMed/NCBI | |
|
Riordan R, Saxton A, McMillan PJ, Kow RL, Liachko NF and Kraemer BC: TMEM106B C-terminal fragments aggregate and drive neurodegenerative proteinopathy. bioRxiv [Preprint]: 2024.06.11.598478. 2024. | |
|
Eber E, Trawinska-Bartnicka M, Sands D, Bellon G, Mellies U, Bolbás K, Quattrucci S, Mazurek H, Widmann R, Schoergenhofer C, et al: Aerosolized lancovutide in adolescents (≥12 years) and adults with cystic fibrosis-a randomized trial. J Cyst Fibros. 20:61–67. 2021. View Article : Google Scholar | |
|
Vovdenko S, Morozov A, Ali S, Kogan E and Bezrukov E: Role of monocarboxylate transporters and glucose transporters in prostate cancer. Urologia. 90:491–498. 2023. View Article : Google Scholar | |
|
Pérez-Herrero E and Fernández-Medarde A: Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 93:52–79. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Perneel J, Neumann M, Heeman B, Cheung S, Van den Broeck M, Wynants S, Baker M, Vicente CT, Faura J, Rademakers R and Mackenzie IRA: Accumulation of TMEM106B C-terminal fragments in neurodegenerative disease and aging. Acta Neuropathol. 145:285–302. 2023. View Article : Google Scholar | |
|
Granholm AE, Englund E, Gilmore A, Head E, Yong WH, Perez SE, Guzman SJ, Hamlett ED and Mufson EJ: Neuropathological findings in Down syndrome, Alzheimer's disease and control patients with and without SARS-COV-2: Preliminary findings. Acta Neuropathol. 147:922024. View Article : Google Scholar : PubMed/NCBI | |
|
Tran Q, Park J, Lee H, Hong Y, Hong S, Park S, Park J and Kim SH: TMEM39A and human diseases: A brief review. Toxicol Res. 33:205–209. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jankauskas SS, Varzideh F, Kansakar U, Al Tibi G, Densu Agyapong E, Gambardella J and Santulli G: Insights into molecular and cellular functions of the Golgi calcium/manganese-proton antiporter TMEM165. J Biol Chem. 300:1075672024. View Article : Google Scholar : PubMed/NCBI | |
|
Dutta D, Kanca O, Shridharan RV, Marcogliese PC, Steger B, Morimoto M, Frost FG, Macnamara E; Undiagnosed Diseases Network; Wangler MF, et al: Loss of the endoplasmic reticulum protein Tmem208 affects cell polarity, development, and viability. Proc Natl Acad Sci USA. 121:e23225821212024. View Article : Google Scholar : PubMed/NCBI | |
|
Hayez A, Roegiers E, Malaisse J, Balau B, Sterpin C, Achouri Y, De Rouvroit CL, Poumay Y, Michiels C and De Backer O: TMEM45A is dispensable for epidermal morphogenesis, keratinization and barrier formation. PLoS One. 11:e01470692016. View Article : Google Scholar : PubMed/NCBI | |
|
Gallos G, Remy KE, Danielsson J, Funayama H, Fu XW, Chang HY, Yim P, Xu D and Emala CW Sr: Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 305:L625–L634. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Dulary E, Potelle S, Legrand D and Foulquier F: TMEM165 deficiencies in congenital disorders of glycosylation type II (CDG-II): Clues and evidences for roles of the protein in Golgi functions and ion homeostasis. Tissue Cell. 49A:150–156. 2017. View Article : Google Scholar | |
|
Dodeller F, Gottar M, Huesken D, Iourgenko V and Cenni B: The lysosomal transmembrane protein 9B regulates the activity of inflammatory signaling pathways. J Biol Chem. 283:21487–21494. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Herrera-Quiterio GA and Encarnación-Guevara S: The transmembrane proteins (TMEM) and their role in cell proliferation, migration, invasion, and epithelial-mesenchymal transition in cancer. Front Oncol. 13:12447402023. View Article : Google Scholar : PubMed/NCBI | |
|
Jeon M, Yoo S, Park S, Choi Y, An J, Noh YR and Kim I: Over-expression of transmembrane protein 158 predicts aggressive tumor behavior and poor prognosis in lung cancer. Anticancer Res. 44:4885–4893. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Pedemonte N and Galietta LJ: Structure and function of TMEM16 proteins (anoctamins). Physiol Rev. 94:419–459. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shi L, Wang X, Guo S, Gou H, Shang H, Jiang X, Wei C, Wang J, Li C, Wang L, et al: TMEM65 promotes gastric tumorigenesis by targeting YWHAZ to activate PI3K-Akt-mTOR pathway and is a therapeutic target. Oncogene. 43:931–943. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Shepard HM, Phillips GL, D Thanos C and Feldmann M: Developments in therapy with monoclonal antibodies and related proteins. Clin Med. 17:220–232. 2017. View Article : Google Scholar | |
|
Posner J, Barrington P, Brier T and Datta-Mannan A: Monoclonal antibodies: Past, present and future. Handb Exp Pharmacol. 260:81–141. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shaikh MH, Barrett JW, Khan MI, Kim HAJ, Zeng PYF, Mymryk JS and Nichols AC: Chromosome 3p loss in the progression and prognosis of head and neck cancer. Oral Oncol. 109:1049442020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Popescu NC, Klein G and Imreh S: The interferon-alpha responsive gene TMEM7 suppresses cell proliferation and is downregulated in human hepatocellular carcinoma. Cancer Genet Cytogenet. 177:6–15. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kholodnyuk ID, Kozireva S, Kost-Alimova M, Kashuba V, Klein G and Imreh S: Down regulation of 3p genes, LTF, SLC38A3 and DRR1, upon growth of human chromosome 3-mouse fibrosarcoma hybrids in severe combined immunodeficiency mice. Int J Cancer. 119:99–107. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kiss H, Darai E, Kiss C, Kost-Alimova M, Klein G, Dumanski JP and Imreh S: Comparative human/murine sequence analysis of the common eliminated region 1 from human 3p21.3. Mamm Genome. 13:646–655. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Hrašovec S, Hauptman N, Glavač D, Jelenc F and Ravnik-Glavač M: TMEM25 is a candidate biomarker methylated and down-regulated in colorectal cancer. Dis Markers. 34:93–104. 2013. View Article : Google Scholar | |
|
Bi J, Wu Z, Zhang X, Zeng T, Dai W, Qiu N, Xu M, Qiao Y, Ke L, Zhao J, et al: TMEM25 inhibits monomeric EGFR-mediated STAT3 activation in basal state to suppress triple-negative breast cancer progression. Nat Commun. 14:23422023. View Article : Google Scholar : PubMed/NCBI | |
|
Doolan P, Clynes M, Kennedy S, Mehta JP, Germano S, Ehrhardt C, Crown J and O'Driscoll L: TMEM25, REPS2 and Meis 1: Favourable prognostic and predictive biomarkers for breast cancer. Tumour Biol. 30:200–209. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Xi P, Zhang Z, Liu Y, Nie Y, Gong B, Liu J, Huang H, Liu Z, Sun T and Xie W: Multidimensional comprehensive and integrated analysis of the potential function of TMEM25 in renal clear cell carcinoma with low expression status. Aging (Albany NY). 16:367–388. 2024.PubMed/NCBI | |
|
Cai M, Ni WJ, Wang YH, Wang JJ and Zhou H: Targeting TMEM88 as an attractive therapeutic strategy in malignant tumors. Front Oncol. 12:9063722022. View Article : Google Scholar : PubMed/NCBI | |
|
Ge YX, Wang CH, Hu FY, Pan LX, Min J, Niu KY, Zhang L, Li J and Xu T: New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway. J Cell Physiol. 233:79–87. 2018. View Article : Google Scholar | |
|
Li LY, Yang CC, Li SW, Liu YM, Li HD, Hu S, Zhou H, Wang JL, Shen H, Meng XM, et al: TMEM88 modulates the secretion of inflammatory factors by regulating YAP signaling pathway in alcoholic liver disease. Inflamm Res. 69:789–800. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Geng Q, Chen X and Chen N: Transmembrane protein 88 exerts a tumor-inhibitory role in thyroid cancer through restriction of Wnt/β-catenin signaling. Exp Cell Res. 395:1121932020. View Article : Google Scholar | |
|
Nusse R and Clevers H: Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Li G, Chong T, Xue L, Luo Q, Tang X, Zhai X, Chen J and Zhang X: TMEM88 exhibits an antiproliferative and anti-invasive effect in bladder cancer by downregulating Wnt/β-catenin signaling. J Biochem Mol Toxicol. 35:e228352021. View Article : Google Scholar | |
|
Zhang X, Yu X, Jiang G, Miao Y, Wang L, Zhang Y, Liu Y, Fan C, Lin X, Dong Q, et al: Cytosolic TMEM88 promotes invasion and metastasis in lung cancer cells by binding DVLS. Cancer Res. 75:4527–4537. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ma R, Feng N, Yu X, Lin H, Zhang X, Shi O, Zhang H, Zhang S, Li L, Zheng M, et al: Promoter methylation of Wnt/β-Catenin signal inhibitor TMEM88 is associated with unfavorable prognosis of non-small cell lung cancer. Cancer Biol Med. 14:377–386. 2017. View Article : Google Scholar | |
|
Yu X, Zhang X, Zhang Y, Jiang G, Mao X and Jin F: Cytosolic TMEM88 promotes triple-negative breast cancer by interacting with Dvl. Oncotarget. 6:25034–25045. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mao D, Yan F, Zhang X and Gao G: TMEM106A inhibits enveloped virus release from cell surface. iScience. 25:1038432022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu D, Qu L, Hu J, Li G, Lv P, Ma D, Guo M and Chen Y: Transmembrane protein 106A is silenced by promoter region hypermethylation and suppresses gastric cancer growth by inducing apoptosis. J Cell Mol Med. 18:1655–1666. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Choi B, Han TS, Min J, Hur K, Lee SM, Lee HJ, Kim YJ and Yang HK: MAL and TMEM220 are novel DNA methylation markers in human gastric cancer. Biomarkers. 22:35–44. 2017. View Article : Google Scholar | |
|
Wu C, Xu J, Wang H, Zhang J, Zhong J, Zou X, Chen Y, Yang G, Zhong Y, Lai D, et al: TMEM106a is a novel tumor suppressor in human renal cancer. Kidney Blood Press Res. 42:853–864. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shi S, Wang B, Wan J, Song L, Zhu G, Du J, Ye L, Zhao Q, Cai J, Chen Q, et al: TMEM106A transcriptionally regulated by promoter methylation is involved in invasion and metastasis of hepatocellular carcinoma. Acta Biochim Biophys Sin. 54:1008–1020. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J and Zhu H: TMEM106A inhibits cell proliferation, migration, and induces apoptosis of lung cancer cells. J Cell Biochem. 120:7825–7833. 2019. View Article : Google Scholar | |
|
Hou J, Niu Y, Yan J, Tian J, Yu W, Zhang G, Li T and Wang Z: Non-invasive diagnosis for urothelial carcinoma using a dual-target DNA methylation biomarker panel. Clin Chim Acta. 569:1201642025. View Article : Google Scholar : PubMed/NCBI | |
|
Guo X, Zeng S, Ji X, Meng X, Lei N, Yang H and Mu X: Type I Interferon-induced TMEM106A blocks attachment of EV-A71 virus by interacting with the membrane protein SCARB2. Front Immunol. 13:8178352022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Feng T, Zhou X, Sullivan PM, Hu F, Lou Y, Yu J, Feng J, Liu H and Chen Y: Inactivation of TMEM106A promotes lipopolysaccharide-induced inflammation via the MAPK and NF-κB signaling pathways in macrophages. Clin Exp Immunol. 203:125–136. 2021. View Article : Google Scholar | |
|
Sun Z and Hornung V: cGAS-STING signaling. Curr Biol. 32:R730–R734. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C and Xu P: Cellular functions of cGAS-STING signaling. Trends Cell Biol. 33:630–648. 2023. View Article : Google Scholar | |
|
Luo X, Li H, Ma L, Zhou J, Guo X, Woo SL, Pei Y, Knight LR, Deveau M, Chen Y, et al: Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice. Gastroenterology. 155:1971–1984.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Liu Y, An W, Song J, Zhang Y and Zhao X: STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J Clin Invest. 129:546–555. 2019. View Article : Google Scholar : | |
|
Chin KH, Tu ZL, Su YC, Yu YJ, Chen HC, Lo YC, Chen CP, Barber GN, Chuah ML, Liang ZX and Chou SH: Novel c-di-GMP recognition modes of the mouse innate immune adaptor protein STING. Acta Crystallogr D Biol Crystallogr. 69:352–366. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu D, Liang S, Ma K, Meng QF, Li X, Wei J, Zhou M, Yun K, Pan Y, Rao L, et al: Tumor microenvironment-responsive nanoparticles amplifying STING signaling pathway for cancer immunotherapy. Adv Mater. 36:e23048452024. View Article : Google Scholar | |
|
Garland KM, Sheehy TL and Wilson JT: Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem Rev. 122:5977–6039. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liang S, Ma H, Liu Y, Hai L, Tian Y, Sun Y and Wang Z: Nano-immunomodulator amplifies STING activation in tumor-associated macrophages for cancer immunotherapy. J Control Release. 383:1138462025. View Article : Google Scholar : PubMed/NCBI | |
|
Deng A, Fan R, Hai Y, Zhuang J, Zhang B, Lu X, Wang W, Luo L, Bai G, Liang L, et al: A STING agonist prodrug reprograms tumor-associated macrophage to boost colorectal cancer immunotherapy. Theranostics. 15:277–299. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Ishikawa T, Tamura E, Kasahara M, Uchida H, Higuchi M, Kobayashi H, Shimizu H, Ogawa E, Yotani N, Irie R, et al: Severe liver disorder following liver transplantation in STING-Associated vasculopathy with onset in infancy. J Clin Immunol. 41:967–974. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Song H, Chen L, Pan X, Shen Y, Ye M, Wang G, Cui C, Zhou Q, Tseng Y, Gong Z, et al: Targeting tumor monocyte-intrinsic PD-L1 by rewiring STING signaling and enhancing STING agonist therapy. Cancer Cell. 43:503–518.e0. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Mirlekar B, Johnson BM, Brickey WJ, Wrobel JA, Yang N, Song D, Entwistle S, Tan X, Deng M, et al: STING-induced regulatory B cells compromise NK function in cancer immunity. Nature. 610:373–380. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Larabi A, Barnich N and Nguyen HTT: New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 16:38–51. 2020. View Article : Google Scholar : | |
|
Bu Y, Liu F, Jia QA and Yu SN: Decreased expression of TMEM173 predicts poor prognosis in patients with hepatocellular carcinoma. PLoS One. 11:e01656812016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Li S, Wang M, Wang X, Chen S, Sun Z, Ren X, Huang G, Sumer BD, Yan N, et al: STING licensing of type I dendritic cells potentiates antitumor immunity. Sci Immunol. 9:eadj39452024. View Article : Google Scholar : PubMed/NCBI | |
|
Lai P, Liu L, Bancaro N, Troiani M, Calì B, Li Y, Chen J, Singh PK, Arzola RA, Attanasio G, et al: Mitochondrial DNA released by senescent tumor cells enhances PMN-MDSC-driven immunosuppression through the cGAS-STING pathway. Immunity. 58:811–825.e7. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Q, Liu M, Wang Z, Zhou R and Ai K: Enhancing radiotherapy-induced anti-tumor immunity via nanoparticle-mediated STING agonist synergy. Mol Cancer. 24:1762025. View Article : Google Scholar : PubMed/NCBI | |
|
Riegman PH, Burgart LJ, Wang KK, Wink-Godschalk JC, Dinjens WN, Siersema PD, Tilanus HW and van Dekken H: Allelic imbalance of 7q32.3-q36.1 during tumorigenesis in Barrett's esophagus. Cancer Res. 62:1531–1533. 2002.PubMed/NCBI | |
|
Hill M, Russo S, Olivera D, Malcuori M, Galliussi G and Segovia M: The intracellular cation channel TMEM176B as a dual immunoregulator. Front Cell Dev Biol. 10:10384292022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang Y, Herman JG, Linghu E and Guo M: Epigenetic silencing of TMEM176A promotes esophageal squamous cell cancer development. Oncotarget. 8:70035–70048. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gao D, Han Y, Yang Y, Herman JG, Linghu E, Zhan Q, Fuks F, Lu ZJ and Guo M: Methylation of TMEM176A is an independent prognostic marker and is involved in human colorectal cancer development. Epigenetics. 12:575–583. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, An H, Song P, Wang D, Li S, Chen K and Pang Q: Potential targets of TMEM176A in the growth of glioblastoma cells. Onco Targets Ther. 11:7763–7775. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Qian W, Xu CY, Hong W, Li ZM and Xu DG: Transmembrane protein 176B promotes epithelial-mesenchymal transition in colorectal cancer through inflammasome inhibition. World J Gastrointest Oncol. 17:976732025. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Fang Z, Dal E, Zhang H, Yu K, Ma M, Wang M, Sun R, Lu M, Wang H and Li Y: Transmembrane protein 176B regulates amino acid metabolism through the PI3K-Akt-mTOR signaling pathway and promotes gastric cancer progression. Cancer Cell Int. 24:952024. View Article : Google Scholar : PubMed/NCBI | |
|
Yan L, Song Z, Yi L, Tian C, Zhang R, Qin X, Wang X, Ren S, Ma X, Wang X, et al: TMEM176B inhibits ovarian cancer progression by regulating EMT via the Wnt/β-catenin signaling pathway. J Transl Med. 23:3502025. View Article : Google Scholar | |
|
Condamine T, Le Texier L, Howie D, Lavault A, Hill M, Halary F, Cobbold S, Waldmann H, Cuturi MC and Chiffoleau E: Tmem176B and Tmem176A are associated with the immature state of dendritic cells. J Leukoc Biol. 88:507–515. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Segovia M, Louvet C, Charnet P, Savina A, Tilly G, Gautreau L, Carretero-Iglesia L, Beriou G, Cebrian I, Cens T, et al: Autologous dendritic cells prolong allograft survival through Tmem176b-dependent antigen cross-presentation. Am J Transplant. 14:1021–1031. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Segovia M, Russo S, Jeldres M, Mahmoud YD, Perez V, Duhalde M, Charnet P, Rousset M, Victoria S, Veigas F, et al: Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing inflammasome activation. Cancer Cell. 35:767–781.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Victoria S, Castro A, Pittini A, Olivera D, Russo S, Cebrian I, Mombru AW, Osinaga E, Pardo H, Segovia M and Hill M: Formulating a TMEM176B blocker in chitosan nanoparticles uncouples its paradoxical roles in innate and adaptive antitumoral immunity. Int J Biol Macromol. 279:1353272024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang L, Yang Y, Liu F, Ma M, Gao J, Sun L, Chen Y, Shen Z and Wu D: A potential diagnostic and prognostic biomarker TMEM176B and its relationship with immune infiltration in skin cutaneous melanoma. Front Cell Dev Biol. 10:8599582022. View Article : Google Scholar : PubMed/NCBI | |
|
Jing L, An Y, Cai T, Xiang J, Li B, Guo J, Ma X, Wei L, Tian Y, Cheng X, et al: A subpopulation of CD146(+) macrophages enhances antitumor immunity by activating the NLRP3 inflammasome. Cell Mol Immunol. 20:908–923. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Picotto G, Morse LR, Nguyen N, Saltzman J and Battaglino R: TMEM176A and TMEM176B are candidate regulators of inhibition of dendritic cell maturation and function after chronic spinal cord injury. J Neurotrauma. 37:528–533. 2020. View Article : Google Scholar : | |
|
Cuajungco MP, Podevin W, Valluri VK, Bui Q, Nguyen VH and Taylor K: Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancer pathology. Acta Histochem. 114:705–712. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Zhang M, Linghu E, Zhou F, Herman JG, Hu L and Guo M: Epigenetic silencing of TMEM176A activates ERK signaling in human hepatocellular carcinoma. Clin Epigenetics. 10:1372018. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Hosni R, Ilkan Z, Agostinelli E and Tammaro P: The pharmacology of the TMEM16A channel: therapeutic opportunities. Trends Pharmacol Sci. 43:712–725. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Okuyama K and Yanamoto S: TMEM16A as a potential treatment target for head and neck cancer. J Exp Clin Cancer Res. 41:1962022. View Article : Google Scholar : PubMed/NCBI | |
|
Bill A, Gutierrez A, Kulkarni S, Kemp C, Bonenfant D, Voshol H, Duvvuri U and Gaither LA: ANO1/TMEM16A interacts with EGFR and correlates with sensitivity to EGFR-targeting therapy in head and neck cancer. Oncotarget. 6:9173–9188. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F, Zhang Y, Gao M and Zeng X: TMEM16A inhibits renal tubulointerstitial fibrosis via Wnt/β-catenin signaling during hypertension nephropathy. Cell Signal. 117:1110882024. View Article : Google Scholar | |
|
Yan Y, Ding X, Han C, Gao J, Liu Z, Liu Y and Wang K: Involvement of TMEM16A/ANO1 upregulation in the oncogenesis of colorectal cancer. Biochim Biophys Acta Mol Basis Dis. 1868:1663702022. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, Hua X and Liu Z: Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol. 148:2045–2068. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Filippou A, Pehkonen H, Karhemo PR, Väänänen J, Nieminen AI, Klefström J, Grénman R, Mäkitie AA, Joensuu H and Monni O: ANO1 expression orchestrates p27Kip1/MCL1-mediated signaling in head and neck squamous cell carcinoma. Cancers. 13:11702021. View Article : Google Scholar : PubMed/NCBI | |
|
Shiwarski DJ, Shao C, Bill A, Kim J, Xiao D, Bertrand CA, Seethala RS, Sano D, Myers JN, Ha P, et al: To 'grow' or 'go': TMEM16A expression as a switch between tumor growth and metastasis in SCCHN. Clin Cancer Res. 20:4673–4688. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Godse NR, Khan N, Yochum ZA, Gomez-Casal R, Kemp C, Shiwarski DJ, Seethala RS, Kulich S, Seshadri M, Burns TF and Duvvuri U: TMEM16A/ANO1 inhibits apoptosis via downregulation of bim expression. Clin Cancer Res. 23:7324–7332. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ayoub C, Wasylyk C, Li Y, Thomas E, Marisa L, Robé A, Roux M, Abecassis J, de Reyniès A and Wasylyk B: ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. Br J Cancer. 103:715–726. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Dixit R, Kemp C, Kulich S, Seethala R, Chiosea S, Ling S, Ha PK and Duvvuri U: TMEM16A/ANO1 is differentially expressed in HPV-negative versus HPV-positive head and neck squamous cell carcinoma through promoter methylation. Sci Rep. 5:166572015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Cao QH, Lu DJ, Luo B, Lu XF, Luo RC and Wang XG: TMEM16A overexpression contributes to tumor invasion and poor prognosis of human gastric cancer through TGF-β signaling. Oncotarget. 6:11585–11599. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Britschgi A, Bill A, Brinkhaus H, Rothwell C, Clay I, Duss S, Rebhan M, Raman P, Guy CT, Wetzel K, et al: Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci USA. 110:E1026–E1034. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bae JS, Park JY, Park SH, Ha SH, An AR, Noh SJ, Kwon KS, Jung SH, Park HS, Kang MJ and Jang KY: Expression of ANO1/DOG1 is associated with shorter survival and progression of breast carcinomas. Oncotarget. 9:607–621. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rhodes A, Jasani B, Balaton AJ, Barnes DM and Miller KD: Frequency of oestrogen and progesterone receptor positivity by immunohistochemical analysis in 7016 breast carcinomas: correlation with patient age, assay sensitivity, threshold value, and mammographic screening. J Clin Pathol. 53:688–696. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Meng Y, Liu Z, Zhai C, Di T, Zhang L, Zhang L, Xie X, Lin Y, Wang N, Zhao J, et al: Paeonol inhibits the development of 1-chloro-2,4-dinitrobenzene-induced atopic dermatitis via mast and T cells in BALB/c mice. Mol Med Rep. 19:3217–3229. 2019.PubMed/NCBI | |
|
Sui Y, Sun M, Wu F, Yang L, Di W, Zhang G, Zhong L, Ma Z, Zheng J, Fang X and Ma T: Inhibition of TMEM16A expression suppresses growth and invasion in human colorectal cancer cells. PLoS One. 9:e1154432014. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Yang Q, Huo S, Du Z, Wu F, Zhao H, Chen S, Yang L, Ma Z and Sui Y: Expression of TMEM16A in colorectal cancer and its correlation with clinical and pathological parameters. Front Oncol. 11:6522622021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Lu M, Liu B, Huang Y and Wang K: Inhibition of Ca(2+)-activated Cl(-) channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. Cancer Lett. 326:41–51. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Gao J, Guan L, Chen X, Gao J and Wang K: Inhibition of ANO1/TMEM16A induces apoptosis in human prostate carcinoma cells by activating TNF-α signaling. Cell Death Dis. 9:7032018. View Article : Google Scholar | |
|
Jeon D, Jo M, Lee Y, Park SH, Phan HTL, Nam JH and Namkung W: Inhibition of ANO1 by cis- and trans-resveratrol and their anticancer activity in human prostate cancer PC-3 cells. Int J Mol Sci. 24:11862023. View Article : Google Scholar : PubMed/NCBI | |
|
Seo Y, Ryu K, Park J, Jeon DK, Jo S, Lee HK and Namkung W: Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells. PLoS One. 12:e01749352017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Zhang S, Hou F, Zhang C, Gao J and Wang K: Inhibition of Ca(2+) -activated chloride channel ANO1 suppresses ovarian cancer through inactivating PI3K/Akt signaling. Int J Cancer. 144:2215–2226. 2019. View Article : Google Scholar | |
|
Bai X, Cheng Y, Wan H, Li S, Kang X and Guo S: Natural compound allicin containing thiosulfinate moieties as transmembrane protein 16A (TMEM16A) Ion channel inhibitor for food adjuvant therapy of lung cancer. J Agric Food Chem. 71:535–545. 2023. View Article : Google Scholar | |
|
Seo Y, Park J, Kim M, Lee HK, Kim JH, Jeong JH and Namkung W: Inhibition of ANO1/TMEM16A chloride channel by idebenone and its cytotoxicity to cancer cell lines. PLoS One. 10:e01336562015. View Article : Google Scholar : PubMed/NCBI | |
|
Yin L, Menon R, Gupta R, Vaught L, Okunieff P and Vidyasagar S: Glucose enhances rotavirus enterotoxin-induced intestinal chloride secretion. Pflugers Arch. 469:1093–1105. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hayez A, Malaisse J, Roegiers E, Reynier M, Renard C, Haftek M, Geenen V, Serre G, Simon M, de Rouvroit CL, et al: High TMEM45A expression is correlated to epidermal keratinization. Exp Dermatol. 23:339–344. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sun W, Qiu G, Zou Y, Cai Z, Wang P, Lin X, Huang J, Jiang L, Ding X and Hu G: Knockdown of TMEM45A inhibits the proliferation, migration and invasion of glioma cells. Int J Clin Exp Pathol. 8:12657–12667. 2015. | |
|
Guo J, Chen L, Luo N, Yang W, Qu X and Cheng Z: Inhibition of TMEM45A suppresses proliferation, induces cell cycle arrest and reduces cell invasion in human ovarian cancer cells. Oncol Rep. 33:3124–3130. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Manawapat-Klopfer A, Thomsen LT, Martus P, Munk C, Russ R, Gmuender H, Frederiksen K, Haedicke-Jarboui J, Stubenrauch F, Kjaer SK and Iftner T: TMEM45A, SERPINB5 and p16INK4A transcript levels are predictive for development of high-grade cervical lesions. Am J Cancer Res. 6:1524–1536. 2016.PubMed/NCBI | |
|
Liu Y, Liu L and Mou ZX: TMEM45A affects proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion and cisplatin resistance of HPV-Positive cervical cancer cell lines. Biochem Genet. 60:173–190. 2022. View Article : Google Scholar | |
|
Neuperger P, Balog J, Tiszlavicz L, Furák J, Gémes N, Kotogány E, Szalontai K, Puskás LG and Szebeni GJ: Analysis of the single-cell heterogeneity of adenocarcinoma cell lines and the investigation of intratumor heterogeneity reveals the expression of transmembrane protein 45A (TMEM45A) in lung adenocarcinoma cancer patients. Cancers. 14:1442021. View Article : Google Scholar | |
|
Jiang H, Chen H, Wan P, Liang M and Chen N: Upregulation of TMEM45A promoted the progression of clear cell renal cell carcinoma in vitro. J Inflamm Res. 14:6421–6430. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Q, Guo T, Deng H, Yu C and Fang C: Pan-cancer analysis of TMEM45A and exploration of its prognostic value and mechanism in gastric cancer. Cell Mol Biol. 70:218–229. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Chen Z, Zhao J, Wen X, Yao H, Weng Z, Xiong H, Zheng Z and Wu J: TMEM45A enhances palbociclib resistance and cellular glycolysis by activating AKT/mTOR signaling pathway in HR+ breast cancer. Cell Death Discov. 11:472025. View Article : Google Scholar | |
|
Flamant L, Roegiers E, Pierre M, Hayez A, Sterpin C, De Backer O, Arnould T, Poumay Y and Michiels C: TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer. 12:3912012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu M, Jiang B, Yan D, Wang X, Ge H and Sun Y: Knockdown of TMEM45A overcomes multidrug resistance and epithelial-mesenchymal transition in human colorectal cancer cells through inhibition of TGF-β signalling pathway. Clin Exp Pharmacol Physiol. 47:503–516. 2020. View Article : Google Scholar | |
|
Okada N, Yamamoto T, Watanabe M, Yoshimura Y, Obana E, Yamazaki N, Kawazoe K, Shinohara Y and Minakuchi K: Identification of TMEM45B as a protein clearly showing thermal aggregation in SDS-PAGE gels and dissection of its amino acid sequence responsible for this aggregation. Protein Expr Purif. 77:118–123. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hu R, Hu F, Xie X, Wang L, Li G, Qiao T, Wang M and Xiao H: TMEM45B, up-regulated in human lung cancer, enhances tumorigenicity of lung cancer cells. Tumour Biol. 37:12181–12191. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao LC, Shen BY, Deng XX, Chen H, Zhu ZG and Peng CH: TMEM45B promotes proliferation, invasion and migration and inhibits apoptosis in pancreatic cancer cells. Mol Biosyst. 12:1860–1870. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shen K, Yu W, Yu Y, Liu X and Cui X: Knockdown of TMEM45B inhibits cell proliferation and invasion in gastric cancer. Biomed Pharmacother. 104:576–581. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Guo W, Liu S, Zhang B, Yu BB, Yang B, Kan SL and Feng SQ: Silencing transmembrane protein 45B (TNEM45B) inhibits proliferation, invasion, and tumorigenesis in osteosarcoma cells. Oncol Res. 25:1021–1026. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tanioku T, Nishibata M, Tokinaga Y, Konno K, Watanabe M, Hemmi H, Fukuda-Ohta Y, Kaisho T, Furue H and Kawamata T: Tmem45b is essential for inflammation- and tissue injury-induced mechanical pain hypersensitivity. Proc Natl Acad Sci USA. 119:e21219891192022. View Article : Google Scholar : PubMed/NCBI | |
|
Luo F, Yang K, Wang YZ and Lin D: TMEM45B is a novel predictive biomarker for prostate cancer progression and metastasis. Neoplasma. 65:815–821. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Stavru F, Hülsmann BB, Spang A, Hartmann E, Cordes VC and Görlich D: NDC1: A crucial membrane-integral nucleoporin of metazoan nuclear pore complexes. J Cell Biol. 173:509–519. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
D'Angelo MA and Hetzer MW: Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol. 18:456–466. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Mahipal A and Malafa M: Importins and exportins as therapeutic targets in cancer. Pharmacol Ther. 164:135–143. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Qiao W, Han Y, Jin W, Tian M, Chen P, Min J, Hu H, Xu B, Zhu W, Xiong L and Lin Q: Overexpression and biological function of TMEM48 in non-small cell lung carcinoma. Tumour Biol. 37:2575–2586. 2016. View Article : Google Scholar | |
|
Jiang XY, Wang L, Liu ZY, Song WX, Zhou M and Xi L: TMEM48 promotes cell proliferation and invasion in cervical cancer via activation of the Wnt/β-catenin pathway. J Recept Signal Transduct Res. 41:371–377. 2021. View Article : Google Scholar | |
|
Nazli A, Safdar A, Saleem A, Akhtar M, Brady LI, Schwartzentruber J and Tarnopolsky MA: A mutation in the TMEM65 gene results in mitochondrial myopathy with severe neurological manifestations. Eur J Hum Genet. 25:744–751. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Liu Q, Wen W, Gao H, Wei W, Tang A, Qin B, Lyu H, Meng X, Li K, et al: The chromatin remodeler CHD6 promotes colorectal cancer development by regulating TMEM65-mediated mitochondrial dynamics via EGF and Wnt signaling. Cell Discov. 8:1302022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang YL, Huang MY, Yang SY, Cai JY, Zhao Q, Zhang FL, Hu X, Shao ZM, Liao L, Cao AY and Li DQ: MYC/TET3-regulated TMEM65 activates OXPHOS-SERPINB3 pathway to promote progression and cisplatin resistance in triple-negative breast cancer. Adv Sci. 12:e004212025. View Article : Google Scholar | |
|
Qian Z, Liang J, Huang R, Song W, Ying J, Bi X, Zhao J, Shi Z, Liu W, Liu J, et al: HBV integrations reshaping genomic structures promote hepatocellular carcinoma. Gut. 73:1169–1182. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Song X, Wang P, Feng R, Chetry M, Li E, Wu X, Liu Z, Liao S and Lin J: Pan-cancer analysis of prognostic and immune infiltrates for the TMEM65, especially for the breast cancer. Evid Based Complement Alternat Med. 2023:93494942023. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Zhou J, Zhang W, You W, Wang J, Zhou L, Liu L, Chen WW and Li H: Pan-cancer analysis identifies tumor cell surface targets for CAR-T cell therapies and antibody drug conjugates. Cancers. 14:56742022. View Article : Google Scholar : PubMed/NCBI | |
|
Li B, Huang MZ, Wang XQ, Tao BB, Zhong J, Wang XH, Zhang WC and Li ST: TMEM140 is associated with the prognosis of glioma by promoting cell viability and invasion. J Hematol Oncol. 8:892015. View Article : Google Scholar : PubMed/NCBI | |
|
Shimizu N, Noda S, Katayama K, Ichikawa H, Kodama H and Miyoshi H: Identification of genes potentially involved in supporting hematopoietic stem cell activity of stromal cell line MC3T3-G2/PA6. Int J Hematol. 87:239–245. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Guan Y, Guo L, Yang E, Liao Y, Liu L, Che Y, Zhang Y, Wang L, Wang J and Li Q: HSV-1 nucleocapsid egress mediated by UL31 in association with UL34 is impeded by cellular transmembrane protein 140. Virology. 464-465:1–10. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chen WC, Wang CY, Hung YH, Weng TY, Yen MC and Lai MD: Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme a synthetase family in cancer. PLoS One. 11:e01556602016. View Article : Google Scholar : PubMed/NCBI | |
|
Refaat A, Owis M, Abdelhamed S, Saiki I and Sakurai H: Retrospective screening of microarray data to identify candidate IFN-inducible genes in a HTLV-1 transformed model. Oncol Lett. 15:4753–4758. 2018.PubMed/NCBI | |
|
Baker Frost D, da Silveira W, Hazard ES, Atanelishvili I, Wilson RC, Flume J, Day KL, Oates JC, Bogatkevich GS, Feghali-Bostwick C, et al: Differential DNA methylation landscape in skin fibroblasts from African Americans with systemic sclerosis. Genes. 12:1292021. View Article : Google Scholar : PubMed/NCBI | |
|
Barradas M, Gonos ES, Zebedee Z, Kolettas E, Petropoulou C, Delgado MD, León J, Hara E and Serrano M: Identification of a candidate tumor-suppressor gene specifically activated during Ras-induced senescence. Exp Cell Res. 273:127–137. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Wang X, Chen L, Zhang J, Zhang Y, Ren X, Sun J, Fan X, Fan J, Li T, et al: TMEM158 promotes the proliferation and migration of glioma cells via STAT3 signaling in glioblastomas. Cancer Gene Ther. 29:1117–1129. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zirn B, Samans B, Wittmann S, Pietsch T, Leuschner I, Graf N and Gessler M: Target genes of the WNT/beta-catenin pathway in Wilms tumors. Genes Chromosomes Cancer. 45:565–574. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammed Ael S, Eguchi H, Wada S, Koyama N, Shimizu M, Otani K, Ohtaki M, Tanimoto K, Hiyama K, Gaber MS and Nishiyama M: TMEM158 and FBLP1 as novel marker genes of cisplatin sensitivity in non-small cell lung cancer cells. Exp Lung Res. 38:463–474. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Y, Yao N, Ding D, Zhang X, Liu H, Ma L, Shi W, Zhu C and Tang L: TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFβ1 and PI3K/AKT signaling pathway. J Cell Physiol. 235:2761–2775. 2020. View Article : Google Scholar | |
|
Cui X, Lu J, Zhao C and Duan Y: Oncogenic transmembrane protein 158 drives the PI3K/Akt signaling pathway to accelerate gastric cancer cell growth. Braz J Med Biol Res. 56:e129432023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Zhang J, Li S, Yin L and Tai J: Silencing of TMEM158 inhibits tumorigenesis and multidrug resistance in colorectal cancer. Nutr Cancer. 72:662–671. 2020. View Article : Google Scholar | |
|
Cheng Z, Guo J, Chen L, Luo N, Yang W and Qu X: Overexpression of TMEM158 contributes to ovarian carcinogenesis. J Exp Clin Cancer Res. 34:752015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Liu T and Yin X: TMEM158, as plasma cfRNA marker, promotes proliferation and doxorubicin resistance in ovarian cancer. Pharmacogenomics J. 24:342024. View Article : Google Scholar : PubMed/NCBI | |
|
Tong J, Li H, Hu Y, Zhao Z and Li M: TMEM158 regulates the canonical and non-canonical pathways of TGF-β to mediate EMT in triple-negative breast cancer. J Cancer. 13:2694–2704. 2022. View Article : Google Scholar : | |
|
Li J, Hou H, Sun J, Ding Z, Xu Y and Li G: Systematic pan-cancer analysis identifies transmembrane protein 158 as a potential therapeutic, prognostic and immunological biomarker. Funct Integr Genomics. 23:1052023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang J, Liu W, Zhang D, Lin B and Li B: TMEM158 expression is negatively regulated by AR signaling and associated with favorite survival outcomes in prostate cancers. Front Oncol. 12:10234552022. View Article : Google Scholar : PubMed/NCBI | |
|
Jawinski P, Kirsten H, Sander C, Spada J, Ulke C, Huang J, Burkhardt R, Scholz M, Hensch T and Hegerl U: Human brain arousal in the resting state: A genome-wide association study. Mol Psychiatry. 24:1599–1609. 2019. View Article : Google Scholar | |
|
Goodman JM: LDAF1 holds the key to seipin function. Dev Cell. 51:544–545. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Zhang Y, Chen Y, Guo T and Piao H: Identification of TMEM159 as a biomarker of glioblastoma progression based on immune characteristics. Biocell. 48:1241–1263. 2024. View Article : Google Scholar | |
|
Geng F, Cheng X, Wu X, Yoo JY, Cheng C, Guo JY, Mo X, Ru P, Hurwitz B, Kim SH, et al: Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis. Clin Cancer Res. 22:5337–5348. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Castro IG, Eisenberg-Bord M, Persiani E, Rochford JJ, Schuldiner M and Bohnert M: Promethin is a conserved seipin partner protein. Cells. 8:2682019. View Article : Google Scholar : PubMed/NCBI | |
|
Bohnert M: New friends for seipin - Implications of seipin partner proteins in the life cycle of lipid droplets. Semin Cell Dev Biol. 108:24–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chartschenko E, Hugenroth M, Akhtar I, Droste A, Kolkhof P, Bohnert M and Beller M: CG32803 is the fly homolog of LDAF1 and influences lipid storage in vivo. Insect Biochem Mol Biol. 133:1035122021. View Article : Google Scholar | |
|
Wagner V, Morton M, Dorayappan KDP, Gonzalez A, Yu L, Sakaue T, Conrads T, Maxwell GL, Cosgrove C, Backes F, et al: Circulating extracellular vesicles protein expression for early prediction of platinum-resistance in high-grade serous ovarian cancer. Oncogene. 44:1197–1203. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Rao J, Wu X, Zhou X, Deng R and Ma Y: TMEM205 is an independent prognostic factor and is associated with immune cell infiltrates in hepatocellular carcinoma. Front Genet. 11:5757762020. View Article : Google Scholar : PubMed/NCBI | |
|
Saini U, Smith BQ, Dorayappan KDP, Yoo JY, Maxwell GL, Kaur B, Konishi I, O'Malley D, Cohn DE and Selvendiran K: Targeting TMEM205 mediated drug resistance in ovarian clear cell carcinoma using oncolytic virus. J Ovarian Res. 15:1302022. View Article : Google Scholar : PubMed/NCBI | |
|
Calo CA, Smith BQ, Dorayappan KDP, Saini U, Lightfoot M, Wagner V, Kalaiyarasan D, Cosgrove C, Wang QE, Maxwell GL, et al: Aberrant expression of TMEM205 signaling promotes platinum resistance in ovarian cancer: An implication for the antitumor potential of DAP compound. Gynecol Oncol. 164:136–145. 2022. View Article : Google Scholar | |
|
Sen T, Rodriguez BL, Chen L, Corte CMD, Morikawa N, Fujimoto J, Cristea S, Nguyen T, Diao L, Li L, et al: Targeting DNA damage response promotes antitumor immunity through STING-Mediated T-cell activation in small cell lung cancer. Cancer Discov. 9:646–661. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang M, Chen P, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, Ye L, He Y and Zhou C: cGAS-STING, an important pathway in cancer immunotherapy. J Hematol Oncol. 13:812020. View Article : Google Scholar : PubMed/NCBI | |
|
Pantelidou C, Sonzogni O, De Oliveria Taveira M, Mehta AK, Kothari A, Wang D, Visal T, Li MK, Pinto J, Castrillon JA, et al: PARP inhibitor efficacy depends on CD8(+) T-cell recruitment via intratumoral STING pathway activation in BRCA-Deficient models of triple-negative breast cancer. Cancer Discov. 9:722–737. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, Li C, Xu JX, Nie CP, Li K, et al: T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 10:e0051512022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang P, Rashidi A, Zhao J, Silvers C, Wang H, Castro B, Ellingwood A, Han Y, Lopez-Rosas A, Zannikou M, et al: STING agonist-loaded, CD47/PD-L1-targeting nanoparticles potentiate antitumor immunity and radiotherapy for glioblastoma. Nat Commun. 14:16102023. View Article : Google Scholar : PubMed/NCBI | |
|
Lam KC, Araya RE, Huang A, Chen Q, Di Modica M, Rodrigues RR, Lopès A, Johnson SB, Schwarz B, Bohrnsen E, et al: Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell. 184:5338–5356.e21. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Chen YJ, Dobbs N, Sakai T, Liou J, Miner JJ and Yan N: STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death. J Exp Med. 216:867–883. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang G, Shu Z, Yu J, Li J, Yi P, Wu B, Deng D, Yan S, Li Y, Ren D, et al: High ANO1 expression is a prognostic factor and correlated with an immunosuppressive tumor microenvironment in pancreatic cancer. Front Immunol. 15:13412092024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang F, Jia K, Chen Y, Ji C, Chong X, Li Z, Zhao F, Bai Y, Ge S, Gao J, et al: ANO1-mediated inhibition of cancer ferroptosis confers immunotherapeutic resistance through recruiting cancer-associated fibroblasts. Adv Sci. 10:e23008812023. View Article : Google Scholar | |
|
Kuang L, Pang Y and Fang Q: TMEM101 expression and its impact on immune cell infiltration and prognosis in hepatocellular carcinoma. Sci Rep. 14:318472024. View Article : Google Scholar | |
|
Lee Y, Ko D, Yoon J and Kim S: TMEM52B-derived peptides inhibit generation of soluble E-cadherin and EGFR activity to suppress colon cancer growth and early metastasis. J Transl Med. 23:1462025. View Article : Google Scholar : PubMed/NCBI | |
|
Sermeus A, Cosse JP, Crespin M, Mainfroid V, de Longueville F, Ninane N, Raes M, Remacle J and Michiels C: Hypoxia induces protection against etoposide-induced apoptosis: Molecular profiling of changes in gene expression and transcription factor activity. Mol Cancer. 7:272008. View Article : Google Scholar : PubMed/NCBI | |
|
Berezin IV, Kershengol'ts BM and Ugarova NN: Microenvironment of enzymes as 1 of the factors determining enzyme stability. Stabilization of soluble and immobilized horseradish peroxidase. Dokl Akad Nauk SSSR. 223:1256–1259. 1975.In Russian. PubMed/NCBI | |
|
Lee PS, Teaberry VS, Bland AE, Huang Z, Whitaker RS, Baba T, Fujii S, Secord AA, Berchuck A and Murphy SK: Elevated MAL expression is accompanied by promoter hypomethylation and platinum resistance in epithelial ovarian cancer. Int J Cancer. 126:1378–1389. 2010. View Article : Google Scholar | |
|
Lee H and Evans T: TMEM88 Inhibits Wnt signaling by promoting Wnt signalosome localization to multivesicular bodies. iScience. 19:267–280. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shen DW and Gottesman MM: RAB8 enhances TMEM205-mediated cisplatin resistance. Pharm Res. 29:643–650. 2012. View Article : Google Scholar : | |
|
Shen DW, Ma J, Okabe M, Zhang G, Xia D and Gottesman MM: Elevated expression of TMEM205, a hypothetical membrane protein, is associated with cisplatin resistance. J Cell Physiol. 225:822–828. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Q, Wu X, Lu Z, Chang Y, Jin Q, Jin T and Zhang M: TMEM205 induces TAM/M2 polarization to promote cisplatin resistance in gastric cancer. Gastric Cancer. 27:998–1015. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Y, Zhang Y, He J, Rao H, Zhang D, Shen Z and Zhou C: ANO1: central role and clinical significance in non-neoplastic and neoplastic diseases. Front Immunol. 16:15703332025. View Article : Google Scholar : PubMed/NCBI | |
|
Vyas A, Duvvuri U and Kiselyov K: Copper-dependent ATP7B up-regulation drives the resistance of TMEM16A-overexpressing head-and-neck cancer models to platinum toxicity. Biochem J. 476:3705–3719. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Carvalho V, Pronk JW and Engel AH: Characterization of membrane proteins using cryo-electron microscopy. Curr Protoc Protein Sci. 94:e722018. View Article : Google Scholar : PubMed/NCBI | |
|
Duan J, He XH, Li SJ and Xu HE: Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism. Nat Rev Endocrinol. 20:349–365. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Robertson MJ, Meyerowitz JG and Skiniotis G: Drug discovery in the era of cryo-electron microscopy. Trends Biochem Sci. 47:124–135. 2022. View Article : Google Scholar | |
|
Chang A, Xiang X, Wang J, Lee C, Arakhamia T, Simjanoska M, Wang C, Carlomagno Y, Zhang G, Dhingra S, et al: Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell. 185:1346–1355.e15. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Y, Kong F, Xu H, Zhu A, Yan N and Yan C: Cryo-EM structure of human glucose transporter GLUT4. Nat Commun. 13:26712022. View Article : Google Scholar : PubMed/NCBI | |
|
Shang G, Zhang C, Chen ZJ, Bai XC and Zhang X: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature. 567:389–393. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Wu C, Wei T, Lu Y, Liu C and Zhang J: Cryo-EM studies of the apo states of human IGF1R. Biochem Biophys Res Commun. 618:148–152. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
García-Nafría J and Tate CG: Cryo-electron microscopy: Moving beyond X-ray crystal structures for drug receptors and drug development. Annu Rev Pharmacol Toxicol. 60:51–71. 2020. View Article : Google Scholar | |
|
Khorn PA, Luginina AP, Pospelov VA, Dashevsky DE, Khnykin AN, Moiseeva OV, Safronova NA, Belousov AS, Mishin AV and Borshchevsky VI: Rational design of drugs targeting G-Protein-coupled receptors: A structural biology perspective. Biochemistry. 89:747–764. 2024.PubMed/NCBI | |
|
Madej MG and Ziegler CM: Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflugers Arch. 470:213–225. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sung MW, Hu K, Hurlimann LM, Lees JA, Fennell KF, West MA, Costales C, Rodrigues AD, Zimmermann I, Dawson RJP, et al: Cyclosporine A sterically inhibits statin transport by solute carrier OATP1B1. J Biol Chem. 301:1084842025. View Article : Google Scholar : PubMed/NCBI | |
|
Ansell TB, Song W, Coupland CE, Carrique L, Corey RA, Duncan AL, Cassidy CK, Geurts MMG, Rasmussen T, Ward AB, et al: LipIDens: Simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins. Nat Commun. 14:77742023. View Article : Google Scholar : PubMed/NCBI | |
|
Ackle F, Thavarasah S, Earp JC and Seeger MA: Rigid enlargement of sybodies with antibody fragments for cryo-EM analyses of small membrane proteins. Sci Rep. 15:94602025. View Article : Google Scholar : PubMed/NCBI | |
|
Sun C and Gennis RB: Single-particle cryo-EM studies of transmembrane proteins in SMA copolymer nanodiscs. Chem Phys Lipids. 221:114–119. 2019. View Article : Google Scholar : PubMed/NCBI |