Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2025 Volume 56 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 56 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Wuweizisu B for cancer treatment from multitarget mechanisms to precision delivery strategies (Review)

  • Authors:
    • Linkun Zhong
    • Yutong Li
    • Chizhuai Liu
    • Zixin Chen
    • Jianhang Miao
    • Xingyu Song
    • Zhibin Huang
    • Yiqi Tang
  • View Affiliations / Copyright

    Affiliations: The Department of General Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong 528400, P.R. China
    Copyright: © Zhong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 220
    |
    Published online on: October 13, 2025
       https://doi.org/10.3892/ijmm.2025.5661
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Wuweizisu B (WSB), a bioactive lignan derived from Schisandra chinensis, has shown promise as a multi‑target anticancer agent with unique therapeutic advantages over conventional therapies. The present review systematically examined the molecular mechanisms underlying the anticancer effects of WSB, including induction of cell cycle arrest, promotion of apoptosis through mitochondrial and death receptor pathways, inhibition of epithelial‑mesenchymal transition and remodeling of the tumor immune microenvironment. WSB exhibits synergistic potential with chemotherapy and immunotherapy and can reverse multidrug resistance (MDR) by modulating key pathways such as STAT3, P‑glycoprotein (P‑gp), and survivin. To address pharmacokinetic limitations, particularly low oral bioavailability, the present review discussed innovative delivery strategies such as nanotechnology‑based formulations to enhance tumor targeting. Thus, with its pleiotropic mechanisms, low toxicity profile, and broad‑spectrum efficacy across multiple cancers, the WSB merits further investigation as a complementary oncology therapeutic. However, its clinical translation faces challenges, including potential hepatotoxicity and lack of clinical validation. The present review consolidated current knowledge of WSB's anticancer potential while providing a roadmap for clinical development, emphasizing the need for biomarker‑driven trials and precision delivery systems to fully realize its therapeutic value in personalized medicine. 
View Figures

Figure 1

Evolution of WSB research: From
anti-cancer targets to multi-disease modulator. WSB, Wuweizisu B;
EMT, epithelial-mesenchymal transition; TIME, tumor immune
microenvironment.

Figure 2

Multifaceted Roles of WSB in tumor
and non-tumor pathologies. WSB, Wuweizisu B; CRC, colorectal
cancer; TNBC, triple negative breast cancer; CCA,
cholangiocarcinoma; GBC, gallbladder cancer; PC, prostate cancer;
NPC, nasopharyngeal carcinoma.

Figure 3

WSB in non-oncological diseases:
Organ-protective mechanisms and signaling pathways. WSB, Wuweizisu
B; AR, androgen receptor; P-gp, P-glycoprotein; ROS, reactive
oxygen species; EMT, epithelial-mesenchymal transition; TAM,
tumor-associated macrophage; p-, phosphorylated; PI3K,
Phosphatidylinositide 3-kinases; AKT, Protein kinase B; IRS-1,
insulin receptor substrate 1; HOTAIR, HOX transcript antisense RNA;
mTOR, mammalian target of rapamycin; JAK, Janus kinase; JAK2, Janus
kinase 2; STAT, signal transducer and activator of transcription;
STAT3, signal transducer and activator of transcription 3; Bax,
BCL2 Associated X Protein; Bcl-2, B-cell lymphoma-2; CDK4, cyclin
dependent kinase 4; CDK6, cyclin dependent kinase 6; NF-κB, nuclear
factor kappa-B; Wnt, Wingless-Type MMTV Integration Site Family;
GEM, Gemcitabine; DOX, Doxorubicin; TGF-β, transforming growth
factor-β; 5-FU, 5-Fluorouracil; TMZ, Temozolomide; CHOP,
C/EBP-homologous protein; PARP, Poly ADP-ribose polymerase; MRP1,
Multidrug Resistance Protein 1; Caspase-3, Cysteine-dependent
aspartate-specific protease-3; Caspase-9, Cysteine-dependent
aspartate-specific protease-9; TWIST1, Twist Family BHLH
Transcription Factor 1; NOX4, NADPH oxidase 4; ZEB, Zinc finger
E-box binding homeobox; SIRT1, Silent information regulator 1; p53,
Tumor protein 53; p21, Tumor protein 21; E.coil, Escherichia coli;
LAB, Lactic acid bacteria; ZO-1, Zonula occludens-1; ATR, ATR
serine/threonine kinase; CHK1, Checkpoint kinase 1; M1, Macrophage
1; M2, Macrophage 2; CD86, Cluster of Differentiation 86; IL-12,
Interleukin-12; IL-17, Interleukin-17; Th17 cells, T helper 17
cells; Treg cells, Regulatory T cells; CAC, colitis-associated
cancer.

Figure 4

Bridging multidrug synergy and organ
protection via lipid-based nanocarriers of WSB. WSB,
Wuweizisu B; DOX, doxorubicin; HCC, hepatocellular carcinoma; PTX,
Paclitaxel; SOR, sorafenib; NPs, Nanoparticles; PSA, Palmitic
acid-modified serum albumin; TNF-α, Tumor necrosis factor-alpha;
IL-1β, Interleukin-1β2; IL-6, Interleukin-6; M1, Macrophage 1; PFV,
Penetratin-derived peptide, FV variant; EPI, Epirubicin; MMP-9,
Matrix metallopeptidase 9; VEGF, Vascular endothelial growth
factor; VIM, Vimentin; E-cad, E-cadherin; VM, Vasculogenic mimicry;
NSCLC, Non-small cell lung cancer; RPV, Cell-penetrating
peptide(Consists of arginine, proline and valine); Arg, Arginine;
R8, cell-penetrating peptide(consists of eight consecutive arginine
amino acids); NVB, VE-Cad, VE-cadherin; HIF-1α, hypoxia inducible
factor 1 subunit alpha; PI3K, Phosphatidylinositide 3-kinases;
MMP-2, Matrix metallopeptidase 2; FAK, Focal Adhesion Kinase;
Bcl-2, B-cell lymphoma-2; Caspase-3, Cysteine-dependent
aspartate-specific protease-3; EGFR, Epidermal growth factor
receptor; CRC, colorectal cancer.

Figure 5

Anti-tumor effects of WSB: From
apoptosis induction to immune modulation. WSB, Wuweizisu B; p-,
phosphorylated; AMPK, Adenosine 5'-monophosphate (AMP)-activated
protein kinase; mTOR, mammalian target of rapamycin; TLR4,
Toll-like receptor 4; LPS, Lipopolysaccharide; NF-κB, nuclear
factor kappa-B; PPARγ, peroxisome proliferators-activated receptor
Gamma; CB2, Cannabinoid Receptor 2; p38, Tumor protein 38; TNF-α,
Tumor necrosis factor-alpha; CD86, Cluster of Differentiation 86;
M1, Macrophage 1; M2, Macrophage 2; NRF2, Nuclear Factor erythroid
2-Related Factor 2; JAK, Janus kinase; JAK2, Janus kinase 2; STAT,
signal transducer and activator of transcription; STAT3, signal
transducer and activator of transcription 3; UC-MSCs, Umbilical
cord mesenchymal stem cells; HLCs, hepatocyte-like cells; HSC,
Hepatic Stellate Cells; TGF-β, transforming growth factor-β; NOX4,
NADPH oxidase 4; Bax, BCL2 Associated X Protein; Bcl-2, B-cell
lymphoma-2; Caspase-3, Cysteine-dependent aspartate-specific
protease-3; RhoA, Ras Homolog Family Member A; Rock, Rho-associated
coiled-coil kinase 1.

Figure 6

WSB as a pleiotropic chemo-adjuvant.
WSB, Wuweizisu B; P-gp, P-glycoprotein; p-, phosphorylated; MRP1,
Multidrug Resistance Protein 1; STAT3, signal transducer and
activator of transcription 3; TAM, Tamoxifen; 5-FU, 5-Fluorouracil;
GC, gastric cancer; ER, Estrogen receptor; BC, breast cancer; PZQ,
Praziquantel; Th1 cell, T helper 1 cell; Th2 cell, T helper 2 cell;
DOX, Doxorubicin; RAPA, Rapamycin; HOTAIR, HOX transcript antisense
RNA; mTOR, mammalian target of rapamycin; DDP, Cisplatin; RAGE,
Receptor for Advanced Glycation End Products; NF-κB, nuclear factor
kappa-B; MAPK, Mitogen-Activated Protein Kinase; ERK, Extracellular
regulated protein kinases; TGF-β, transforming growth factor-β;
NOX4, NADPH oxidase 4; CsA, Cyclosporin A; NRF2, Nuclear Factor
erythroid 2-Related Factor 2; ROS, reactive oxygen species; GSH,
Glutathione; p38, Tumor protein 38; p53, Tumor protein 53; ATM,
Ataxia-telangiectasia mutated proteins; THP, Pirarubicin; GPX4,
Glutathione Peroxidase 4; AKT, Protein kinase B; NF-κB, nuclear
factor kappa-B; DTX, Docetaxel.

Figure 7

WSB analogues in synergistic tumor
suppression (SA, Sch A, SC, and STA). WSB, Wuweizisu B; HCC,
hepatocellular carcinoma; SA, Schisandrol A; SC, Schisandrin C; Sch
A, Schisandrin A; STA, Schisantherin A; TAM, tumor-associated
macrophage; NSCLC, non-small cell lung cancer.

Figure 8

WSB analogues in synergistic tumor
suppression (SA, Sch A, SC, and STA). WSB, Wuweizisu B; HCC,
hepatocellular carcinoma; SA, Schisandrol A; SC, Schisandrin C; Sch
A, Schisandrin A; STA, Schisantherin A; TAM, tumor-associated
macrophage; NSCLC, non-small cell lung cancer; EGFR, Epidermal
growth factor receptor; IKKβ, inhibitor of kappa B kinase; NF-κB,
nuclear factor kappa-B; AMPK, Adenosine 5'-monophosphate
(AMP)-activated protein kinase; mTOR, mammalian target of
rapamycin; JNK, c-Jun N-terminal kinase; MAPK, Mitogen-Activated
Protein Kinase; HCC, hepatocellular carcinoma; ROS, reactive oxygen
species; ER, Estrogen receptor; CD20, Cluster of Differentiation
20; P-gp, P-glycoprotein; p53, Tumor protein 53; p21, Tumor protein
21; p65, Tumor protein 65; DOX, doxorubicin; STAT3, signal
transducer and activator of transcription 3; TNBC, Triple negative
breast cancer; CDK4, cyclin dependent kinase 4; CDK6, cyclin
dependent kinase 6; PI3K, Phosphatidylinositide 3-kinases; AKT,
Protein kinase B; MDR, multi-drug resistant; TLR4, Toll-like
receptor 4; RET, Rearranged during transfection proto-oncogene;
HIF-1, hypoxia inducible factor 1; Creb1, Cyclic AMP-responsive
element-binding protein 1; Trp53, Tumor protein 53; Casp3,
Cysteine-dependent aspartate-specific protease-3; Atk1, protein
kinase B; Cdkn1A, Cyclin-dependent kinase inhibitor 1A; ERK,
Extracellular regulated protein kinases; ERα, Estrogen Receptor
alpha; MRP1, Multidrug Resistance Protein 1; cGAS, Cyclic GMP-AMP
synthase; STING, Stimulator of interferon genes; EPHA2,
Erythropoietin-producing hepatocellular A2; NRF2, Nuclear Factor
erythroid 2-Related Factor 2.

Figure 9

Schematic diagram of WSB conversion.
WSB, Wuweizisu B; GMP, Good Manufacturing Practice.
View References

1 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI

2 

Liu Y, Fang C, Luo J, Gong C, Wang L and Zhu S: Traditional Chinese medicine for cancer treatment. Am J Chin Med. 52:583–604. 2024. View Article : Google Scholar : PubMed/NCBI

3 

Li Y, Miao J, Liu C, Tao J, Zhou S, Song X, Zou Y, Huang Y and Zhong L: Kushenol O Regulates GALNT7/NF-κB axis-Mediated Macrophage M2 Polarization and Efferocytosis in papillary thyroid carcinoma. Phytomedicine. 138:1563732025. View Article : Google Scholar

4 

Szopa A, Ekiert R and Ekiert H: Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem Rev. 16:195–218. 2017.

5 

Yang K, Qiu J, Huang Z, Yu Z, Wang W, Hu H and You Y: A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, and pharmacokinetics of Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils. J Ethnopharmacol. 284:1147592022. View Article : Google Scholar

6 

Olas B: Cardioprotective potential of berries of Schisandra chinensis Turcz. (Baill.), their components and food products. Nutrients. 15:5922023. View Article : Google Scholar : PubMed/NCBI

7 

Shan Y, Jiang B, Yu J, Wang J, Wang X, Li H, Wang C, Chen J and Sun J: Protective Effect of Schisandra chinensis polysaccharides against the immunological liver injury in mice based on Nrf2/ARE and TLR4/NF-κB signaling pathway. J Med Food. 22:885–895. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Yan T, Mao Q, Zhang X, Wu B, Bi K, He B and Jia Y: Schisandra chinensis protects against dopaminergic neuronal oxidative stress, neuroinflammation and apoptosis via the BDNF/Nrf2/NF-κB pathway in 6-OHDA-induced Parkinson's disease mice. Food Funct. 12:4079–4091. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Xu G, Lv X, Feng Y, Li H, Chen C, Lin H, Li H, Wang C, Chen J and Sun J: Study on the effect of active components of Schisandra chinensis on liver injury and its mechanisms in mice based on network pharmacology. Eur J Pharmacol. 910:1744422021. View Article : Google Scholar : PubMed/NCBI

10 

Yuan R, Tao X, Liang S, Pan Y, He L, Sun J, Wenbo J, Li X, Chen J and Wang C: Protective effect of acidic polysaccharide from Schisandra chinensis on acute ethanol-induced liver injury through reducing CYP2E1-dependent oxidative stress. Biomed Pharmacother. 99:537–542. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Zhang M, Xu L and Yang H: Schisandra chinensis Fructus and its active ingredients as promising resources for the treatment of neurological diseases. Int J Mol Sci. 19:19702018. View Article : Google Scholar : PubMed/NCBI

12 

Qiu Q, Zhang W, Liu K, Huang F, Su J, Deng L, He J, Lin Q and Luo L: Schisandrin A ameliorates airway inflammation in model of asthma by attenuating Th2 response. Eur J Pharmacol. 953:1758502023. View Article : Google Scholar : PubMed/NCBI

13 

Lee K, Ahn JH, Lee KT, Jang DS and Choi JH: Deoxyschizandrin, Isolated from Schisandra berries, induces cell cycle arrest in ovarian cancer cells and inhibits the protumoural activation of tumour-associated macrophages. Nutrients. 10:912018. View Article : Google Scholar : PubMed/NCBI

14 

Lee PK, Co VA, Yang Y, Wan MLY, El-Nezami H and Zhao D: Bioavailability and interactions of schisandrin B with 5-fluorouracil in a xenograft mouse model of colorectal cancer. Food Chem. 463:1413712025. View Article : Google Scholar

15 

Nasser MI, Han T, Adlat S, Tian Y and Jiang N: Inhibitory effects of Schisandrin B on human prostate cancer cells. Oncol Rep. 41:677–685. 2019.

16 

Sowndhararajan K, Deepa P, Kim M, Park SJ and Kim S: An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed Pharmacother. 97:958–968. 2018. View Article : Google Scholar

17 

Tan S, Zheng Z, Liu T, Yao X, Yu M and Ji Y: Schisandrin B induced ROS-mediated autophagy and Th1/Th2 imbalance via selenoproteins in Hepa1-6 cells. Front Immunol. 13:8570692022. View Article : Google Scholar : PubMed/NCBI

18 

Zhan SY, Shao Q, Fan XH, Li Z and Cheng YY: Tissue distribution and excretion of herbal components after intravenous administration of a Chinese medicine (Shengmai injection) in rat. Arch Pharm Res. Apr 19–2014.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

Guo J, Shen Y, Lin X, Chen H and Liu J: Schisandrin B promotes T(H)1 cell differentiation by targeting STAT1. Int Immunopharmacol. 101:1082132021. View Article : Google Scholar : PubMed/NCBI

19 

Nasser MI, Zhu S, Chen C, Zhao M, Huang H and Zhu P: A comprehensive review on Schisandrin B and its biological properties. Oxid Med Cell Longev. 2020:21727402020. View Article : Google Scholar : PubMed/NCBI

20 

Chen Z, Guo M, Song G, Gao J, Zhang Y, Jing Z, Liu T and Dong C: Schisandrin B inhibits Th1/Th17 differentiation and promotes regulatory T cell expansion in mouse lymphocytes. Int Immunopharmacol. 35:257–264. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Kortesoja M, Karhu E, Olafsdottir ES, Freysdottir J and Hanski L: Impact of dibenzocyclooctadiene lignans from Schisandra chinensis on the redox status and activation of human innate immune system cells. Free Radic Biol Med. 131:309–317. 2019. View Article : Google Scholar

22 

Chang CM, Liang TR and Lam HYP: The use of Schisandrin B to combat Triple-negative breast cancers by inhibiting NLRP3-Induced interleukin-1β production. Biomolecules. 14:742024. View Article : Google Scholar

23 

Song A, Ding T, Wei N, Yang J, Ma M, Zheng S and Jin H: Schisandrin B induces HepG2 cells pyroptosis by activating NK cells mediated anti-tumor immunity. Toxicol Appl Pharmacol. 472:1165742023. View Article : Google Scholar : PubMed/NCBI

24 

Xie Z, Yang T, Zhou C, Xue Z, Wang J and Lu F: Integrative bioinformatics analysis and experimental study of NLRP12 reveal its prognostic value and potential functions in ovarian cancer. Mol Carcinog. 64:383–398. 2025. View Article : Google Scholar

25 

Chen X, Liu C, Deng J, Xia T, Zhang X, Xue S, Song MK and Olatunji OJ: Schisandrin B ameliorates adjuvant-induced arthritis in rats via modulation of inflammatory mediators, oxidative stress, and HIF-1α/VEGF pathway. J Pharm Pharmacol. 76:681–690. 2024. View Article : Google Scholar : PubMed/NCBI

26 

Zhang L, Chen H, Tian J and Chen S: Antioxidant and anti-proliferative activities of five compounds from Schisandra chinensis fruit. Industrial Crops Products. 50:690–693. 2013. View Article : Google Scholar

27 

Chen T, Xiao Z, Liu X, Wang T, Wang Y, Ye F, Su J, Yao X, Xiong L and Yang DH: Natural products for combating multidrug resistance in cancer. Pharmacol Res. 202:1070992024. View Article : Google Scholar : PubMed/NCBI

28 

Krishnan SR and Bebawy M: Circulating biosignatures in multiple myeloma and their role in multidrug resistance. Mol Cancer. 22:792023. View Article : Google Scholar : PubMed/NCBI

29 

Li Z and Yin P: Tumor microenvironment diversity and plasticity in cancer multidrug resistance. Biochim Biophys Acta Rev Cancer. 1878:1889972023. View Article : Google Scholar : PubMed/NCBI

30 

Chen YC, Malfertheiner P, Yu HT, Kuo CL, Chang YY, Meng FT, Wu YX, Hsiao JL, Chen MJ, Lin KP, et al: Global prevalence of helicobacter pylori infection and incidence of gastric cancer between 1980 and 2022. Gastroenterology. 166:605–619. 2024. View Article : Google Scholar : PubMed/NCBI

31 

Yuan J, Khan SU, Yan J, Lu J, Yang C and Tong Q: Baicalin enhances the efficacy of 5-Fluorouracil in gastric cancer by promoting ROS-mediated ferroptosis. Biomed Pharmacother. 164:1149862023. View Article : Google Scholar : PubMed/NCBI

32 

He L, Chen H, Qi Q, Wu N, Wang Y, Chen M, Feng Q, Dong B, Jin R and Jiang L: Schisandrin B suppresses gastric cancer cell growth and enhances the efficacy of chemotherapy drug 5-FU in vitro and in vivo. Eur J Pharmacol. 920:1748232022. View Article : Google Scholar : PubMed/NCBI

33 

Zhang F, Wang Z, Yuan J, Wei X, Tian R and Niu R: RNAi-mediated silencing of Anxa2 inhibits breast cancer cell proliferation by downregulating cyclin D1 in STAT3-dependent pathway. Breast Cancer Res Treat. 153:263–275. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Liu XN, Zhang CY, Jin XD, Li YZ, Zheng XZ and Li L: Inhibitory effect of schisandrin B on gastric cancer cells in vitro. World J Gastroenterol. 13:6506–6511. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Li M, Tang Q, Li S, Yang X, Zhang Y, Tang X, Huang P and Yin D: Inhibition of autophagy enhances the anticancer effect of Schisandrin B on head and neck squamous cell carcinoma. J Biochem Mol Toxicol. 38:e235852024. View Article : Google Scholar

36 

Zhang F, Zhai J, Weng N, Gao J, Yin J and Chen W: A comprehensive review of the main lignan components of Schisandra chinensis (North Wu Wei Zi) and Schisandra sphenanthera (South Wu Wei Zi) and the Lignan-induced drug-drug interactions based on the inhibition of cytochrome P450 and P-glycoprotein activities. Front Pharmacol. 13:8160362022.

37 

Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, Laversanne M, Vignat J, Ferlay J, Murphy N and Bray F: Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut. 72:338–344. 2023. View Article : Google Scholar : PubMed/NCBI

38 

Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P and Vymetalkova V: 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther. 206:1074472020. View Article : Google Scholar

39 

Yoshino T, Cervantes A, Bando H, Martinelli E, Oki E, Xu RH, Mulansari NA, Govind Babu K, Lee MA and Tan CK: Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with metastatic colorectal cancer. ESMO Open. 8:1015582023. View Article : Google Scholar : PubMed/NCBI

40 

Co VA, El-Nezami H, Liu Y, Twum B, Dey P, Cox PA, Joseph S, Agbodjan-Dossou R, Sabzichi M, Draheim R and Wan MLY: Schisandrin B suppresses colon cancer growth by inducing cell cycle arrest and apoptosis: Molecular mechanism and therapeutic potential. ACS Pharmacol Transl Sci. 7:863–877. 2024. View Article : Google Scholar : PubMed/NCBI

41 

Pu Z, Zhang W, Wang M, Xu M, Xie H and Zhao J: Schisandrin B attenuates Colitis-associated colorectal cancer through SIRT1 linked SMURF2 signaling. Am J Chin Med. 49:1773–1789. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Cheifetz S, Hernandez H, Laiho M, ten Dijke P, Iwata KK and Massagué J: Distinct transforming growth factor-beta (TGF-beta) receptor subsets as determinants of cellular responsiveness to three TGF-beta isoforms. J Biol Chem. 265:20533–20538. 1990. View Article : Google Scholar : PubMed/NCBI

43 

Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC, Lu C, Engen JR and Springer TA: Force interacts with macromolecular structure in activation of TGF-β. Nature. 542:55–59. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of Epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL, et al: A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol. 11:943–950. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Xue G, Restuccia DF, Lan Q, Hynx D, Dirnhofer S, Hess D, Rüegg C and Hemmings BA: Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axes. Cancer Discov. 2:248–259. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Lin T, Zeng L, Liu Y, DeFea K, Schwartz MA, Chien S and Shyy JY: Rho-ROCK-LIMK-cofilin pathway regulates shear stress activation of sterol regulatory element binding proteins. Circ Res. 92:1296–1304. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, Segura MF, Zhang X and Hu G: MicroRNA-182 targets SMAD7 to potentiate TGFβ-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun. 7:138842016. View Article : Google Scholar

49 

Tian XJ, Zhang H and Xing J: Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition. Biophys J. 105:1079–1089. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Liu Z, Zhang B, Liu K, Ding Z and Hu X: Schisandrin B attenuates cancer invasion and metastasis via inhibiting epithelial-mesenchymal transition. PLoS One. 7:e404802012. View Article : Google Scholar : PubMed/NCBI

51 

Zhang B, Liu Z and Hu X: Inhibiting cancer metastasis via targeting NAPDH oxidase 4. Biochem Pharmacol. 86:253–266. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Li J, Lu Y, Wang D, Quan F, Chen X, Sun R, Zhao S, Yang Z, Tao W, Ding D, et al: Schisandrin B prevents ulcerative colitis and colitis-associated-cancer by activating focal adhesion kinase and influence on gut microbiota in an in vivo and in vitro model. Eur J Pharmacol. 854:9–21. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Sun R, Zhang Y, Zhao X, Tang T, Cao Y, Yang L, Tian Y, Zhang Z, Zhang P and Xu F: Temporal and spatial metabolic shifts revealing the transition from ulcerative colitis to colitis-associated colorectal cancer. Adv Sci (Weinh). 12:e24125512025. View Article : Google Scholar : PubMed/NCBI

54 

Zhang J, Mengli Y, Zhang T, Song X, Ying S, Shen Z and Yu C: Deficiency in epithelium RAD50 aggravates UC via IL-6-Mediated JAK1/2-STAT3 signaling and promotes development of Colitis-associated cancer in mice. J Crohns Colitis. 19:jjae1342025. View Article : Google Scholar

55 

Porter RJ, Kalla R and Ho GT: Ulcerative colitis: Recent advances in the understanding of disease pathogenesis. F1000Res. 9:F1000Faculty Rev-294. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Tatiya-Aphiradee N, Chatuphonprasert W and Jarukamjorn K: Immune response and inflammatory pathway of ulcerative colitis. J Basic Clin Physiol Pharmacol. 30:1–10. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Guo G, Tan Z, Liu Y, Shi F and She J: The therapeutic potential of stem Cell-derived exosomes in the ulcerative colitis and colorectal cancer. Stem Cell Res Ther. 13:1382022. View Article : Google Scholar : PubMed/NCBI

58 

Guo X, Yin X, Liu Z and Wang J: Non-alcoholic fatty liver disease (NAFLD) pathogenesis and natural products for prevention and treatment. Int J Mol Sci. 23:154892022. View Article : Google Scholar : PubMed/NCBI

59 

Asaoka Y, Terai S, Sakaida I and Nishina H: The expanding role of fish models in understanding non-alcoholic fatty liver disease. Dis Model Mech. 6:905–914. 2013.PubMed/NCBI

60 

Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA and Ikramuddin S: Nonalcoholic steatohepatitis: A review. JAMA. 323:1175–1183. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Leong PK and Ko KM: Schisandrin B: A Double-edged sword in nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2016:61716582016. View Article : Google Scholar : PubMed/NCBI

62 

Yan LS, Zhang SF, Luo G, Cheng BC, Zhang C, Wang YW, Qiu XY, Zhou XH, Wang QG, Song XL, et al: Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism. 131:1552002022. View Article : Google Scholar : PubMed/NCBI

63 

Ma R, Zhan Y, Zhang Y, Wu L, Wang X and Guo M: Schisandrin B ameliorates non-alcoholic liver disease through anti-inflammation activation in diabetic mice. Drug Dev Res. 83:735–744. 2022.

64 

Li Z, Zhao L, Xia Y, Chen J, Hua M and Sun Y: Schisandrin B attenuates hepatic stellate cell activation and promotes apoptosis to protect against liver fibrosis. Molecules. 26:68822021. View Article : Google Scholar : PubMed/NCBI

65 

Ma M, Wei N, Yang J, Ding T, Song A, Chen L, Zheng S and Jin H: Schisandrin B promotes senescence of activated hepatic stellate cell via NCOA4-mediated ferritinophagy. Pharm Biol. 61:621–629. 2023. View Article : Google Scholar : PubMed/NCBI

66 

Trojnar E, Erdelyi K, Matyas C, Zhao S, Paloczi J, Mukhopadhyay P, Varga ZV, Hasko G and Pacher P: Cannabinoid-2 receptor activation ameliorates hepatorenal syndrome. Free Radic Biol Med. 152:540–550. 2020. View Article : Google Scholar

67 

Wang HQ, Wan Z, Zhang Q, Su T, Yu D, Wang F, Zhang C, Li W, Xu D and Zhang H: Schisandrin B targets cannabinoid 2 receptor in Kupffer cell to ameliorate CCl4-induced liver fibrosis by suppressing NF-κB and p38 MAPK pathway. Phytomedicine. 98:1539602022. View Article : Google Scholar

68 

Yang YY, Hsieh SL, Lee PC, Yeh YC, Lee KC, Hsieh YC, Wang YW, Lee TY, Huang YH, Chan CC and Lin HC: Long-term cannabinoid type 2 receptor agonist therapy decreases bacterial translocation in rats with cirrhosis and ascites. J Hepatol. 61:1004–1013. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Lei Y, Wang QL, Shen L, Tao YY and Liu CH: MicroRNA-101 suppresses liver fibrosis by downregulating PI3K/Akt/mTOR signaling pathway. Clin Res Hepatol Gastroenterol. 43:575–584. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Cuiqiong W, Chao X, Xinling F and Yinyan J: Schisandrin B suppresses liver fibrosis in rats by targeting miR-101-5p through the TGF-β signaling pathway. Artif Cells Nanomed Biotechnol. 48:473–478. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Meroni M, Longo M, Erconi V, Valenti L, Gatti S, Fracanzani AL and Dongiovanni P: mir-101-3p downregulation promotes fibrogenesis by facilitating hepatic stellate cell transdifferentiation during insulin resistance. Nutrients. 11:25972019. View Article : Google Scholar : PubMed/NCBI

72 

Chen Q, Bao L, Lv L, Xie F, Zhou X, Zhang H and Zhang G: Schisandrin B regulates macrophage polarization and alleviates liver fibrosis via activation of PPARγ. Ann Transl Med. 9:15002021. View Article : Google Scholar

73 

Leong PK, Wong HS, Chen J, Chan WM, Leung HY and Ko KM: Differential Action between Schisandrin A and Schisandrin B in eliciting an Anti-inflammatory Action: The depletion of reduced glutathione and the induction of an antioxidant response. PLoS One. 11:e01558792016. View Article : Google Scholar : PubMed/NCBI

74 

Ma Z, Xu G, Shen Y, Hu S, Lin X, Zhou J, Zhao W, Liu J, Wang J and Guo J: Schisandrin B-mediated TH17 cell differentiation attenuates bowel inflammation. Pharmacol Res. 166:1054592021. View Article : Google Scholar : PubMed/NCBI

75 

Chen Q, Zhang H, Cao Y, Li Y, Sun S, Zhang J and Zhang G: Schisandrin B attenuates CCl4-induced liver fibrosis in rats by regulation of Nrf2-ARE and TGF-β/Smad signaling pathways. Drug Des Devel Ther. 11:2179–2191. 2017. View Article : Google Scholar :

76 

Jin M, Yi X, Zhu X, Hu W, Wang S, Chen Q, Yang W, Li Y, Li S, Peng Q, et al: Schisandrin B promotes hepatic differentiation from human umbilical cord mesenchymal stem cells. iScience. 27:1089122024. View Article : Google Scholar : PubMed/NCBI

77 

Anwanwan D, Singh SK, Singh S, Saikam V and Singh R: Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 1873:1883142020. View Article : Google Scholar :

78 

Yang H and Wu T: Schisandrin B inhibits tumor progression of hepatocellular carcinoma by targeting the RhoA/ROCK1 pathway. J Gastrointest Oncol. 14:533–543. 2023. View Article : Google Scholar : PubMed/NCBI

79 

Zhang JG, Zhou HM, Zhang X, Mu W, Hu JN, Liu GL and Li Q: Hypoxic induction of vasculogenic mimicry in hepatocellular carcinoma: Role of HIF-1 α, RhoA/ROCK and Rac1/PAK signaling. BMC Cancer. 20:322020. View Article : Google Scholar

80 

He JL, Zhou ZW, Yin JJ, He CQ, Zhou SF and Yu Y: Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway. Drug Des Devel Ther. 9:127–146. 2015.PubMed/NCBI

81 

Benson AB, D'Angelica MI, Abrams T, Abbott DE, Ahmed A, Anaya DA, Anders R, Are C, Bachini M, Binder D, et al: NCCN Guidelines® Insights: Biliary tract cancers, version 2.2023. J Natl Compr Canc Netw. 21:694–704. 2023. View Article : Google Scholar : PubMed/NCBI

82 

Sarcognato S, Sacchi D, Fassan M, Fabris L, Cadamuro M, Zanus G, Cataldo I, Capelli P, Baciorri F, Cacciatore M and Guido M: Cholangiocarcinoma. Pathologica. 113:158–169. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Yang X, Wang S, Mu Y and Zheng Y: Schisandrin B inhibits cell proliferation and induces apoptosis in human cholangiocarcinoma cells. Oncol Rep. 36:1799–1806. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Pehlivanoglu B, Akkas G, Memis B, Basturk O, Reid MD, Saka B, Dursun N, Bagci P, Balci S, Sarmiento J, et al: Reappraisal of T1b gallbladder cancer (GBC): Clinicopathologic analysis of 473 in situ and invasive GBCs and critical review of the literature highlights its rarity, and that it has a very good prognosis. Virchows Arch. 482:311–323. 2023. View Article : Google Scholar

85 

Brindley PJ, Bachini M, Ilyas SI, Khan SA, Loukas A, Sirica AE, The BT, Wongkham S and Gores GJ: Cholangiocarcinoma. Nat Rev Dis Primers. 7:652021. View Article : Google Scholar : PubMed/NCBI

86 

Hui AM, Li X, Shi YZ, Takayama T, Torzilli G and Makuuchi M: Cyclin D1 overexpression is a critical event in gallbladder carcinogenesis and independently predicts decreased survival for patients with gallbladder carcinoma. Clin Cancer Res. 6:4272–4277. 2000.PubMed/NCBI

87 

Cai Z, Wang J, Li Y, Shi Q, Jin L, Li S, Zhu M, Wang Q, Wong LL, Yang W, et al: Overexpressed Cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors. Sci China Life Sci. 66:94–109. 2023. View Article : Google Scholar

88 

Vogel A, Segatto O, Stenzinger A and Saborowski A: FGFR2 Inhibition in Cholangiocarcinoma. Annu Rev Med. 74:293–306. 2023. View Article : Google Scholar

89 

Banik K, Khatoon E, Harsha C, Rana V, Parama D, Thakur KK, Bishayee A and Kunnumakkara AB: Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother Res. 36:1854–1883. 2022. View Article : Google Scholar : PubMed/NCBI

90 

Zhao C, Zhang J, Yang ZY, Shi LQ, Liu SL, Pan LJ, Dong P, Zhang Y, Xiang SS, Shu YJ and Mei JW: Ponicidin inhibited gallbladder cancer proliferation and metastasis by decreasing MAGEB2 expression through FOXO4. Phytomedicine. 114:1547852023. View Article : Google Scholar : PubMed/NCBI

91 

Tsang CM, Lui VWY, Bruce JP, Pugh TJ and Lo KW: Translational genomics of nasopharyngeal cancer. Semin Cancer Biol. 61:84–100. 2020. View Article : Google Scholar

92 

Pan JJ, Ng WT, Zong JF, Chan LL, O'Sullivan B, Lin SJ, Sze HC, Chen YB, Choi HC, Guo QJ, et al: Proposal for the 8th edition of the AJCC/UICC staging system for nasopharyngeal cancer in the era of intensity-modulated radiotherapy. Cancer. 122:546–558. 2016. View Article : Google Scholar

93 

Hong S, Zhang Y, Yu G, Peng P, Peng J, Jia J, Wu X, Huang Y, Yang Y, Lin Q, et al: Gemcitabine plus cisplatin versus fluorouracil plus cisplatin as First-Line therapy for recurrent or metastatic nasopharyngeal carcinoma: Final overall survival analysis of GEM20110714 Phase III study. J Clin Oncol. 39:3273–3282. 2021. View Article : Google Scholar : PubMed/NCBI

94 

Fang Y, Lv X, Li G, Wang P, Zhang L, Wang R, Jia L and Liang S: Schisandrin B targets CDK4/6 to suppress proliferation and enhance radiosensitivity in nasopharyngeal carcinoma by inducing cell cycle arrest. Sci Rep. 15:84522025. View Article : Google Scholar : PubMed/NCBI

95 

Lv XJ, Zhao LJ, Hao YQ, Su ZZ, Li JY, Du YW and Zhang J: Schisandrin B inhibits the proliferation of human lung adenocarcinoma A549 cells by inducing cycle arrest and apoptosis. Int J Clin Exp Med. 8:6926–6936. 2015.PubMed/NCBI

96 

Xiang SS, Wang XA, Li HF, Shu YJ, Bao RF, Zhang F, Cao Y, Ye YY, Weng H, Wu WG, et al: Schisandrin B induces apoptosis and cell cycle arrest of gallbladder cancer cells. Molecules. 19:13235–13250. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Xie X, Zheng W, Chen T, Lin W, Liao Z, Liu J and Ding Y: CDK4/6 inhibitor palbociclib amplifies the radiosensitivity to nasopharyngeal carcinoma cells via mediating apoptosis and suppressing DNA damage repair. Onco Targets Ther. 12:11107–11117. 2019. View Article : Google Scholar

98 

Luo W, Lin K, Hua J, Han J, Zhang Q, Chen L, Khan ZA, Wu G, Wang Y and Liang G: Schisandrin B attenuates diabetic cardiomyopathy by targeting MyD88 and inhibiting MyD88-Dependent inflammation. Adv Sci (Weinh). 9:e22025902022. View Article : Google Scholar : PubMed/NCBI

99 

Xu C, Deng Y, Man J, Wang H, Che T, Ding L and Yang L: Unveiling the renoprotective mechanisms of Schisandrin B in ischemia-reperfusion injury through transcriptomic and pharmacological analysis. Drug Des Devel Ther. 18:4241–4256. 2024. View Article : Google Scholar : PubMed/NCBI

100 

Huang W, Zhang L, Yang M, Wu X, Wang X, Huang W, Yuan L, Pan H, Wang Y and Wang Z: Cancer-associated fibroblasts promote the survival of irradiated nasopharyngeal carcinoma cells via the NF-κB pathway. J Exp Clin Cancer Res. 40:872021. View Article : Google Scholar

101 

Nishida H, Tatewaki N, Nakajima Y, Magara T, Ko KM, Hamamori Y and Konishi T: Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. Nucleic Acids Res. 37:5678–5689. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Meyer ML, Fitzgerald BG, Paz-Ares L, Cappuzzo F, Jänne PA, Peters S and Hirsch FR: New promises and challenges in the treatment of advanced non-small-cell lung cancer. Lancet. 404:803–822. 2024. View Article : Google Scholar : PubMed/NCBI

103 

Zhuang W, Li Z, Dong X, Zhao N, Liu Y, Wang C and Chen J: Schisandrin B inhibits TGF-β1-induced epithelial-mesenchymal transition in human A549 cells through epigenetic silencing of ZEB1. Exp Lung Res. 45:157–166. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Desai K, McManus JM and Sharifi N: Hormonal therapy for prostate cancer. Endocr Rev. 42:354–373. 2021. View Article : Google Scholar : PubMed/NCBI

105 

Ho Y and Dehm SM: Androgen receptor rearrangement and splicing variants in resistance to endocrine therapies in prostate cancer. Endocrinology. 158:1533–1542. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Dai C, Heemers H and Sharifi N: Androgen signaling in prostate cancer. Cold Spring Harb Perspect Med. 7:a0304522017. View Article : Google Scholar : PubMed/NCBI

107 

Zhang BY, Yang R, Zhu WQ, Zhu CL, Chen LX, Zhao YS, Zhang Y, Wang YQ, Jiang DZ and Tang B: Schisandrin B alleviates testicular inflammation and Sertoli cell apoptosis via AR-JNK pathway. Sci Rep. 14:184182024. View Article : Google Scholar : PubMed/NCBI

108 

Zhang Q, Liu J, Duan H, Li R, Peng W and Wu C: Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res. 34:43–63. 2021. View Article : Google Scholar

109 

Zafar MK and Eoff RL: Translesion DNA synthesis in cancer: Molecular mechanisms and therapeutic opportunities. Chem Res Toxicol. 30:1942–1955. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Wu Y, Li ZC, Yao LQ, Li M and Tang M: Schisandrin B alleviates acute oxidative stress via modulation of the Nrf2/Keap1-mediated antioxidant pathway. Appl Physiol Nutr Metab. 44:1–6. 2019. View Article : Google Scholar

111 

Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2015-2019. Neuro Oncol. 24:v1–v95. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Qi L, Yu HQ, Li YQ, Jin H, Zhao DH and Xu Y: Schidandrin B kills tumor cells by initiating apoptosis in glioma SHG-44 cells. Chin J Integr Med. Aug 2–2016.Epub ahead of print. View Article : Google Scholar

113 

Li Q, Lu XH, Wang CD, Cai L, Lu JL, Wu JS, Zhuge QC, Zheng WM and Su ZP: Antiproliferative and apoptosis-inducing activity of schisandrin B against human glioma cells. Cancer Cell Int. 15:122015. View Article : Google Scholar : PubMed/NCBI

114 

Jiang Y, Zhang Q, Bao J, Du C, Wang J, Tong Q and Liu C: Schisandrin B suppresses glioma cell metastasis mediated by inhibition of mTOR/MMP-9 signal pathway. Biomed Pharmacother. 74:77–82. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Zhang Z, Wang Y, Chen J, Tan Q, Xie C, Li C, Zhan W and Wang M: Silencing of histone deacetylase 2 suppresses malignancy for proliferation, migration, and invasion of glioblastoma cells and enhances temozolomide sensitivity. Cancer Chemother Pharmacol. 78:1289–1296. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Tomar MS, Kumar A, Srivastava C and Shrivastava A: Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer. 1876:1886162021. View Article : Google Scholar : PubMed/NCBI

117 

Jiang Y, Zhang Q, Bao J, Du C, Wang J, Tong Q and Liu C: Schisandrin B inhibits the proliferation and invasion of glioma cells by regulating the HOTAIR-micoRNA-125a-mTOR pathway. Neuroreport. 28:93–100. 2017. View Article : Google Scholar

118 

Kostka L, Sivák L, Šubr V, Kovářová J, Šírová M, Říhová B, Sedlacek R, Etrych T and Kovář M: Simultaneous delivery of doxorubicin and protease inhibitor derivative to solid tumors via Star-shaped polymer nanomedicines overcomes P-gp- and STat3-mediated chemoresistance. Biomacromolecules. 23:2522–2535. 2022. View Article : Google Scholar : PubMed/NCBI

119 

Chen XY, Wu ZX, Wang JQ, Teng QX, Tang H, Liu Q, Chen ZS and Chen W: Multidrug resistance transporters P-gp and BCRP limit the efficacy of ATR inhibitor ceralasertib in cancer cells. Front Pharmacol. 15:14006992024. View Article : Google Scholar : PubMed/NCBI

120 

Rebbaa A, Chou PM and Mirkin BL: Factors secreted by human neuroblastoma mediated doxorubicin resistance by activating STAT3 and inhibiting apoptosis. Mol Med. 7:393–400. 2001. View Article : Google Scholar : PubMed/NCBI

121 

Wang S, Wang A, Shao M, Lin L, Li P and Wang Y: Schisandrin B reverses doxorubicin resistance through inhibiting P-glycoprotein and promoting proteasome-mediated degradation of survivin. Sci Rep. 7:84192017. View Article : Google Scholar : PubMed/NCBI

122 

Boudreau HE, Casterline BW, Rada B, Korzeniowska A and Leto TL: Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic Biol Med. 53:1489–1499. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Dai X, Yin C, Guo G, Zhang Y, Zhao C, Qian J, Wang O, Zhang X and Liang G: Schisandrin B exhibits potent anticancer activity in triple negative breast cancer by inhibiting STAT3. Toxicol Appl Pharmacol. 358:110–119. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Beird HC, Bielack SS, Flanagan AM, Gill J, Heymann D, Janeway KA, Livingston JA, Roberts RD, Strauss SJ and Gorlick R: Osteosarcoma. Nat Rev Dis Primers. 8:772022. View Article : Google Scholar : PubMed/NCBI

125 

Sayles LC, Breese MR, Koehne AL, Leung SG, Lee AG, Liu HY, Spillinger A, Shah AT, Tanasa B, Straessler K, et al: Genome-informed targeted therapy for osteosarcoma. Cancer Discov. 9:46–63. 2019. View Article : Google Scholar

126 

Bacci G, Rocca M, Salone M, Balladelli A, Ferrari S, Palmerini E, Forni C and Briccoli A: High grade osteosarcoma of the extremities with lung metastases at presentation: Treatment with neoadjuvant chemotherapy and simultaneous resection of primary and metastatic lesions. J Surg Oncol. 98:415–420. 2008. View Article : Google Scholar : PubMed/NCBI

127 

Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T and Zhang L: Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma Chemo-resistance. Mol Ther. 27:518–530. 2019. View Article : Google Scholar : PubMed/NCBI

128 

Wang B, Wang X, Tong X and Zhang Y: Schisandrin B inhibits cell viability and migration, and induces cell apoptosis by circ_0009112/miR-708-5p axis through PI3K/AKT pathway in osteosarcoma. Front Genet. 11:5886702020. View Article : Google Scholar

129 

Thandavarayan RA, Giridharan VV, Arumugam S, Suzuki K, Ko KM, Krishnamurthy P, Watanabe K and Konishi T: Schisandrin B prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through inhibition of MAPK/p53 signaling. PLoS One. 10:e01192142015. View Article : Google Scholar : PubMed/NCBI

130 

Li L, Pan Q, Han W, Liu Z, Li L and Hu X: Schisandrin B prevents doxorubicin-induced cardiotoxicity via enhancing glutathione redox cycling. Clin Cancer Res. 13:6753–6760. 2007. View Article : Google Scholar : PubMed/NCBI

131 

Early Breast Cancer Trialists' Collaborative Group (EBCTCG); Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, McGale P, Pan HC, Taylor C, et al: Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet. 378:771–784. 2011. View Article : Google Scholar : PubMed/NCBI

132 

Li Y, Liu Z, Chen J, Wang R, An X, Tian C, Yang H and Zha D: Schisandrin B protect inner hair cells from cisplatin by inhibiting celluar oxidative stress and apoptosis. Toxicol In Vitro. 99:1058522024. View Article : Google Scholar : PubMed/NCBI

133 

Mei H, Zhao L, Li W, Zheng Z, Tang D, Lu X and He Y: Inhibition of ferroptosis protects House Ear Institute-Organ of Corti 1 cells and cochlear hair cells from cisplatin-induced ototoxicity. J Cell Mol Med. 24:12065–12081. 2020. View Article : Google Scholar : PubMed/NCBI

134 

Santos N, Ferreira RS and Santos ACD: Overview of Cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol. 136:1110792020. View Article : Google Scholar : PubMed/NCBI

135 

Shi H, Yan Y, Yang H, Pu P and Tang H: Schisandrin B diet inhibits oxidative stress to reduce ferroptosis and lipid peroxidation to prevent Pirarubicin-induced hepatotoxicity. Biomed Res Int. 2022:56235552022. View Article : Google Scholar : PubMed/NCBI

136 

Shi H, Tang H, Ai W, Zeng Q, Yang H, Zhu F, Wei Y, Feng R, Wen L, Pu P and He Q: Schisandrin B antagonizes cardiotoxicity induced by pirarubicin by inhibiting mitochondrial permeability transition pore (mPTP) opening and decreasing cardiomyocyte apoptosis. Front Pharmacol. 12:7338052021. View Article : Google Scholar : PubMed/NCBI

137 

Tang H, Zhao J, Feng R, Pu P and Wen L: Reducing oxidative stress may be important for treating pirarubicin-induced cardiotoxicity with schisandrin B. Exp Ther Med. 23:682022. View Article : Google Scholar

138 

Zhang D, Liu B, Cao B, Wei F, Yu X, Li GF, Chen H, Wei LQ and Wang PL: Synergistic protection of Schizandrin B and Glycyrrhizic acid against bleomycin-induced pulmonary fibrosis by inhibiting TGF-β1/Smad2 pathways and overexpression of NOX4. Int Immunopharmacol. 48:67–75. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Lai Q, Luo Z, Wu C, Lai S, Wei H, Li T, Wang Q and Yu Y: Attenuation of cyclosporine A induced nephrotoxicity by schisandrin B through suppression of oxidative stress, apoptosis and autophagy. Int Immunopharmacol. 52:15–23. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Lam HYP, Cheng PC and Peng SY: Resolution of systemic complications in Schistosoma mansoni-infected mice by concomitant treatment with praziquantel and Schisandrin B. Int J Parasitol. 52:275–284. 2022. View Article : Google Scholar

141 

Lam HYP, Liang TR and Peng SY: Ameliorative effects of Schisandrin B on Schistosoma Mansoni-induced hepatic fibrosis in vivo. PLoS Negl Trop Dis. 15:e00095542021. View Article : Google Scholar : PubMed/NCBI

142 

Yan C, Gao L, Qiu X and Deng C: Schisandrin B synergizes docetaxel-induced restriction of growth and invasion of cervical cancer cells in vitro and in vivo. Ann Transl Med. 8:11572020. View Article : Google Scholar : PubMed/NCBI

143 

Huang H: Matrix Metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors (Basel). 18:32492018. View Article : Google Scholar : PubMed/NCBI

144 

Li YJ, Liu HT, Xue CJ, Xing XQ, Dong ST, Wang LS, Ding CY, Meng L and Dong ZJ: The synergistic anti-tumor effect of schisandrin B and apatinib. J Asian Nat Prod Res. 22:839–849. 2020. View Article : Google Scholar

145 

Chiu PY, Chen N, Leong PK, Leung HY and Ko KM: Schisandrin B elicits a glutathione antioxidant response and protects against apoptosis via the redox-sensitive ERK/Nrf2 pathway in H9c2 cells. Mol Cell Biochem. 350:237–250. 2011. View Article : Google Scholar : PubMed/NCBI

146 

Xu Y, Liu Z, Sun J, Pan Q, Sun F, Yan Z and Hu X: Schisandrin B prevents doxorubicin-induced chronic cardiotoxicity and enhances its anticancer activity in vivo. PLoS One. 6:e283352011. View Article : Google Scholar : PubMed/NCBI

147 

Nooreen Z, Gupta VK, Singh K, Wal A, Rai AK and Tandon S: An updated insight on Phyto-therapeutics and their novel approaches in the management of brain cancer. Curr Top Med Chem. Jul 7–2025.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

148 

Qin XL, Chen X, Zhong GP, Fan XM, Wang Y, Xue XP, Wang Y, Huang M and Bi HC: Effect of Tacrolimus on the pharmacokinetics of bioactive lignans of Wuzhi tablet (Schisandra sphenanthera extract) and the potential roles of CYP3A and P-gp. Phytomedicine. 21:766–772. 2014. View Article : Google Scholar : PubMed/NCBI

149 

Zhan T, Yao N, Wu L, Lu Y, Liu M, Liu F, Xiong Y and Xia C: The major effective components in Shengmai Formula interact with sodium taurocholate co-transporting polypeptide. Phytomedicine. 59:1529162019. View Article : Google Scholar : PubMed/NCBI

150 

Wei JR, Lu MY, Wei TH, Fleishman JS, Yu H, Chen XL, Kong XT, Sun SL, Li NG, Yang Y and Ni HW: Overcoming cancer therapy resistance: From drug innovation to therapeutics. Drug Resist Updat. 81:1012292025. View Article : Google Scholar : PubMed/NCBI

151 

Sana-Eldine AO, Abdelgawad HM, Kotb NS and Shehata NI: The potential effect of Schisandrin-B combination with panitumumab in wild-type and mutant colorectal cancer cell lines: Role of apoptosis and autophagy. J Biochem Mol Toxicol. 37:e233242023. View Article : Google Scholar

152 

Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, et al: K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 359:1757–1765. 2008. View Article : Google Scholar : PubMed/NCBI

153 

De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P, et al: Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol. 11:753–762. 2010. View Article : Google Scholar : PubMed/NCBI

154 

Van Cutsem E, Köhne CH, Láng I, Folprecht G, Nowacki MP, Cascinu S, Shchepotin I, Maurel J, Cunningham D, Tejpar S, et al: Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: Updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 29:2011–2019. 2011. View Article : Google Scholar : PubMed/NCBI

155 

Loupakis F, Pollina L, Stasi I, Ruzzo A, Scartozzi M, Santini D, Masi G, Graziano F, Cremolini C, Rulli E, et al: PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol. 27:2622–2629. 2009. View Article : Google Scholar : PubMed/NCBI

156 

Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G, Sartore-Bianchi A, Scala E, Cassingena A, Zecchin D, et al: Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 3:658–673. 2013. View Article : Google Scholar : PubMed/NCBI

157 

Kavuri SM, Jain N, Galimi F, Cottino F, Leto SM, Migliardi G, Searleman AC, Shen W, Monsey J, Trusolino L, et al: HER2 activating mutations are targets for colorectal cancer treatment. Cancer Discov. 5:832–841. 2015. View Article : Google Scholar : PubMed/NCBI

158 

Maddalena F, Condelli V, Matassa DS, Pacelli C, Scrima R, Lettini G, Li Bergolis V, Pietrafesa M, Crispo F, Piscazzi A, et al: TRAP1 enhances Warburg metabolism through modulation of PFK1 expression/activity and favors resistance to EGFR inhibitors in human colorectal carcinomas. Mol Oncol. 14:3030–3047. 2020. View Article : Google Scholar : PubMed/NCBI

159 

Yue Y, Zhang Q, Wang X and Sun Z: STAT3 regulates 5-Fu resistance in human colorectal cancer cells by promoting Mcl-1-dependent cytoprotective autophagy. Cancer Sci. 114:2293–2305. PubMed/NCBI

160 

Wang Y, Wang Y, Qin Z, Cai S, Yu L, Hu H and Zeng S: The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin Drug Metab Toxicol. 17:291–306. 2021. View Article : Google Scholar : PubMed/NCBI

161 

Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, Tu CC, Vijaya Padma V, Kuo WW and Huang CY: Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 233:5458–5467. 2018. View Article : Google Scholar

162 

Theile D and Wizgall P: Acquired ABC-transporter overexpression in cancer cells: Transcriptional induction or Darwinian selection? Naunyn Schmiedebergs Arch Pharmacol. 394:1621–1632. 2021. View Article : Google Scholar : PubMed/NCBI

163 

Zhu Y, Huang S, Chen S, Chen J, Wang Z, Wang Y and Zheng H: SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial-mesenchymal transition by β-catenin and Beclin1/autophagy signaling in colorectal cancer. Cell Death Dis. 12:4492021. View Article : Google Scholar

164 

Kadioglu O, Law BYK, Mok SWF, Xu SW, Efferth T and Wong VKW: Mode of action analyses of neferine, a bisbenzylisoquinoline alkaloid of lotus (Nelumbo nucifera) against Multidrug-resistant tumor cells. Front Pharmacol. 8:2382017. View Article : Google Scholar : PubMed/NCBI

165 

Sui H, Zhou LH, Zhang YL, Huang JP, Liu X, Ji Q, Fu XL, Wen HT, Chen ZS, Deng WL, et al: Evodiamine suppresses ABCG2 mediated drug resistance by inhibiting p50/p65 NF-κB pathway in colorectal cancer. J Cell Biochem. 117:1471–1481. 2016. View Article : Google Scholar

166 

Song B, Shuang L, Zhang S, Tong C, Chen Q, Li Y, Hao M, Niu W and Jin CH: Research progress of nano drug delivery systems in the anti-tumor treatment of traditional Chinese medicine monomers. PeerJ. 13:e193322025. View Article : Google Scholar : PubMed/NCBI

167 

Wu J: The enhanced permeability and retention (EPR) Effect: The significance of the concept and methods to enhance its application. J Pers Med. 11:7712021. View Article : Google Scholar : PubMed/NCBI

168 

Hristova-Panusheva K, Xenodochidis C, Georgieva M and Krasteva N: Nanoparticle-mediated drug delivery systems for precision targeting in oncology. Pharmaceuticals (Basel). 17:6772024. View Article : Google Scholar : PubMed/NCBI

169 

Sun T and Jiang C: Stimuli-responsive drug delivery systems triggered by intracellular or subcellular microenvironments. Adv Drug Deliv Rev. 196:1147732023. View Article : Google Scholar : PubMed/NCBI

170 

Gupta A, Costa AP, Xu X and Burgess DJ: Continuous processing of paclitaxel polymeric micelles. Int J Pharm. 607:1209462021. View Article : Google Scholar : PubMed/NCBI

171 

Kara G, Calin GA and Ozpolat B: RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev. 182:1141132022. View Article : Google Scholar : PubMed/NCBI

172 

Yan YH, Kong L, Lu YB, Li SY, Yan AW, Song YW, Huang ZH and Zhu HN: Inhibition of hepatocellular carcinoma progression by methotrexate-modified pH-sensitive sorafenib and schisandrin B micelles. Biomed Mater. Dec 13–2024.Epud ahead of print. PubMed/NCBI

173 

Zhang R, Luo S, Zhao T, Wu M, Huang L, Zhang L, Huang Y, Gao H, Sun X, Gong T and Zhang Z: Scavenger receptor A-mediated nanoparticles target M1 macrophages for acute liver injury. Asian J Pharm Sci. 18:1008132023.PubMed/NCBI

174 

Di Stefano M, Galati S, Piazza L, Granchi C, Mancini S, Fratini F, Macchia M, Poli G and Tuccinardi T: VenomPred 2.0: A novel in silico platform for an extended and human interpretable toxicological profiling of small molecules. J Chem Inf Model. 64:2275–2289. 2024. View Article : Google Scholar :

175 

Cai FY, Yao XM, Jing M, Kong L, Liu JJ, Fu M, Liu XZ, Zhang L, He SY, Li XT and Ju RJ: Enhanced antitumour efficacy of functionalized doxorubicin plus schisandrin B co-delivery liposomes via inhibiting epithelial-mesenchymal transition. J Liposome Res. 31:113–129. 2021. View Article : Google Scholar

176 

Jing M, Bi XJ, Yao XM, Cai F, Liu JJ, Fu M, Kong L, Liu XZ, Zhang L and He SY: Enhanced antitumor efficacy using epirubicin and schisandrin B co-delivery liposomes modified with PFV via inhibiting tumor metastasis. Drug Dev Ind Pharm. 46:621–634. 2020. View Article : Google Scholar : PubMed/NCBI

177 

Zhang L, Kong L, He SY, Liu XZ, Liu Y, Zang J, Ju RJ and Li XT: The anti-ovarian cancer effect of RPV modified paclitaxel plus schisandra B liposomes in SK-OV-3 cells and tumor-bearing mice. Life Sci. 285:1200132021. View Article : Google Scholar : PubMed/NCBI

178 

Kong L, Cai FY, Yao XM, Jing M, Fu M, Liu JJ, He SY, Zhang L, Liu XZ, Ju RJ and Li XT: RPV-modified epirubicin and dioscin co-delivery liposomes suppress non-small cell lung cancer growth by limiting nutrition supply. Cancer Sci. 111:621–636. 2020. View Article : Google Scholar :

179 

Chen RJ and Menezes RG: Vinca Alkaloid Toxicity. StatPearls. Disclosure: Ritesh Menezes Declares no Relevant Financial Relationships with Ineligible Companies. StatPearls Publishing LLC; Treasure Island, FL: 2025

180 

Li XY, Shi LX, Yao XM, Jing M, Li QQ, Wang YL and Li QS: Functional vinorelbine plus schisandrin B liposomes destroying tumor metastasis in treatment of gastric cancer. Drug Dev Ind Pharm. 47:100–112. 2021. View Article : Google Scholar

181 

Gong T, Tan T, Zhang P, Li H, Deng C, Huang Y, Gong T and Zhang Z: Palmitic acid-modified bovine serum albumin nanoparticles target scavenger receptor-A on activated macrophages to treat rheumatoid arthritis. Biomaterials. 258:1202962020. View Article : Google Scholar : PubMed/NCBI

182 

Feng J, Xiang L, Fang C, Tan Y, Li Y, Gong T, Wu Q, Gong T and Zhang Z: Dual-targeting of tumor cells and Tumor-associated macrophages by palmitic acid modified albumin nanoparticles for antitumor and antimetastasis therapy. ACS Appl Mater Interfaces. 14:14887–14902. 2022. View Article : Google Scholar : PubMed/NCBI

183 

Castro R, Aisenbrey E and Hui L: The role of formulation approaches in presenting targeting ligands on lipid nanoparticles. Nanomedicine (Lond). 18:589–597. 2023. View Article : Google Scholar : PubMed/NCBI

184 

Piunti C and Cimetta E: Microfluidic approaches for producing Lipid-based nanoparticles for drug delivery applications. Biophys Rev (Melville). 4:0313042023. View Article : Google Scholar

185 

Sheth P, Sandhu H, Singhal D, Malick W, Shah N and Kislalioglu MS: Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production. Curr Drug Deliv. 9:269–284. 2012. View Article : Google Scholar : PubMed/NCBI

186 

Sun Z, Liu Z, Han B, Miao S, Miao Z and An G: Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution. J Colloid Interface Sci. 304:323–328. 2006. View Article : Google Scholar : PubMed/NCBI

187 

Birla D, Khandale N, Bashir B, ShahbazAlam M, Vishwas S, Gupta G, Dureja H, Kumbhar PS, Disouza J, Patravale V, et al: Application of quality by design in optimization of nanoformulations: Principle, perspectives and practices. Drug Deliv Transl Res. 15:798–830. 2025. View Article : Google Scholar

188 

Rybnikář M, Malaník M, Šmejkal K, Švajdlenka E, Shpet P, Babica P, Dall'Acqua S, Smištík O, Jurček O and Treml J: Dibenzocyclooctadiene Lignans from Schisandra chinensis with Anti-Inflammatory effects. Int J Mol Sci. 25:34652024. View Article : Google Scholar

189 

Song L, Yao L, Zhang L, Piao Z and Lu Y: Schizandrol A protects against Aβ1-42-induced autophagy via activation of PI3K/AKT/mTOR pathway in SH-SY5Y cells and primary hippocampal neurons. Naunyn Schmiedebergs Arch Pharmacol. 393:1739–1752. 2020. View Article : Google Scholar : PubMed/NCBI

190 

Arken N: Schizandrol A reverses multidrug resistance in resistant chronic myeloid leukemia cells K562/A02. Cell Mol Biol (Noisy-le-Grand). 65:78–83. 2019. View Article : Google Scholar : PubMed/NCBI

191 

Han SJ, Jun J, Eyun SI, Lee CG, Jeon J and Pan CH: Schisandrol A suppresses catabolic factor expression by blocking NF-κB signaling in osteoarthritis. Pharmaceuticals (Basel). 14:412021.

192 

Zhou X, Zhao S, Liu T, Yao L, Zhao M, Ye X, Zhang X, Guo Q, Tu P and Zeng K: Schisandrol A protects AGEs-induced neuronal cells death by allosterically targeting ATP6V0d1 subunit of V-ATPase. Acta Pharm Sin B. 12:3843–3860. 2022. View Article : Google Scholar : PubMed/NCBI

193 

Fong WF, Wan CK, Zhu GY, Chattopadhyay A, Dey S, Zhao Z and Shen XL: Schisandrol A from Schisandra chinensis reverses P-glycoprotein-mediated multidrug resistance by affecting Pgp-substrate complexes. Planta Med. 73:212–220. 2007. View Article : Google Scholar : PubMed/NCBI

194 

Li L, Pan Q, Sun M, Lu Q and Hu X: Dibenzocyclooctadiene lignans: A class of novel inhibitors of multidrug resistance-associated protein 1. Life Sci. 80:741–748. 2007. View Article : Google Scholar

195 

Xu G, Feng Y, Li H, Chen C, Li H, Wang C, Chen J and Sun J: Molecular mechanism of the regulatory effect of schisandrol a on the immune function of mice based on a transcription factor regulatory network. Front Pharmacol. 12:7853532021. View Article : Google Scholar

196 

Lee D, Kim YM, Chin YW and Kang KS: Schisandrol A exhibits estrogenic activity via estrogen receptor α-Dependent signaling pathway in estrogen Receptor-positive breast cancer Cells. Pharmaceutics. 13:10822021. View Article : Google Scholar

197 

Guo X, Lei M, Ma G, Ouyang C, Yang X, Liu C, Chen Q and Liu X: Schisandrin A alleviates spatial learning and memory impairment in diabetic rats by inhibiting inflammatory response and through modulation of the PI3K/AKT pathway. Mol Neurobiol. 61:2514–2529. 2024. View Article : Google Scholar

198 

Hassanein EHM, Althagafy HS, Baraka MA, Abd-Alhameed EK, Ibrahim IM, Abd El-Maksoud MS, Mohamed NM and Ross SA: The promising antioxidant effects of lignans: Nrf2 activation comes into view. Naunyn Schmiedebergs Arch Pharmacol. 397:6439–6458. 2024. View Article : Google Scholar : PubMed/NCBI

199 

He D, Pei X, Liu B, Li J, Dong J, Efferth T and Ma P: Lignan contents of Schisandra chinensis (Turcz.) Baill. from different origins-A new model for evaluating the content of prominent components of Chinese herbs. Phytomedicine. 128:1553612024. View Article : Google Scholar : PubMed/NCBI

200 

Li B, Zhou W, Zhang J, Wang N, Yang X and Ge X: Schisandrin a ameliorates cardiac injury and dysfunction induced by hemorrhagic shock via activating the Nrf2 signaling pathway. Am J Chin Med. 52:2453–2468. 2024. View Article : Google Scholar : PubMed/NCBI

201 

Wang P, Lan Q, Huang Q, Zhang R, Zhang S, Yang L, Song Y, Wang T, Ma G, Liu X, et al: Schisandrin A attenuates diabetic nephropathy via EGFR/AKT/GSK3β signaling pathway based on network pharmacology and experimental validation. Biology (Basel). 13:5972024.

202 

Xiao Y, Zhou H, Cui Y, Zhu X, Li S, Yu C, Jiang N, Liu L and Liu F: Schisandrin A enhances pathogens resistance by targeting a conserved p38 MAPK pathway. Int Immunopharmacol. 128:1114722024. View Article : Google Scholar : PubMed/NCBI

203 

Xu X, Rajamanicham V, Xu S, Liu Z, Yan T, Liang G, Guo G, Zhou H and Wang Y: Schisandrin A inhibits triple negative breast cancer cells by regulating Wnt/ER stress signaling pathway. Biomed Pharmacother. 115:1089222019. View Article : Google Scholar : PubMed/NCBI

204 

Zhu L, Wang Y, Lv W, Wu X, Sheng H, He C and Hu J: Schizandrin A can inhibit non-small cell lung cancer cell proliferation by inducing cell cycle arrest, apoptosis and autophagy. Int J Mol Med. 48:2142021. View Article : Google Scholar :

205 

Chi B, Sun Y, Zhao J and Guo Y: Deoxyschizandrin inhibits the proliferation, migration, and invasion of bladder cancer cells through ALOX5 regulating PI3K-AKT signaling pathway. J Immunol Res. 2022:30798232022. View Article : Google Scholar : PubMed/NCBI

206 

He LW, Lin CJ, Zhuang LJ, Sun YH, Li YC and Ye ZY: Targeting hepatocellular carcinoma: Schisandrin A triggers mitochondrial disruption and ferroptosis. Chem Biol Drug Des. 104:e700102024. View Article : Google Scholar : PubMed/NCBI

207 

Peng CW, Ma PL and Dai HT: Schizandrin A promotes apoptosis in prostate cancer by inducing ROS-mediated endoplasmic reticulum stress and JNK MAPK signaling activation. Pathol Res Pract. 269:1558892025. View Article : Google Scholar : PubMed/NCBI

208 

Ding Y, Guo N, Jiang Y, Liu S, Zhou T, Bai H, Lv Y, Han S and He L: Establishment of cluster of differentiation 20 immobilized cell membrane chromatography for the screening of active antitumor components in traditional Chinese medicine. J Chromatogr A. 1721:4648452024. View Article : Google Scholar : PubMed/NCBI

209 

Zhang ZL, Jiang QC and Wang SR: Schisandrin A reverses doxorubicin-resistant human breast cancer cell line by the inhibition of P65 and Stat3 phosphorylation. Breast Cancer. 25:233–242. 2018. View Article : Google Scholar

210 

Xian H, Feng W and Zhang J: Schizandrin A enhances the efficacy of gefitinib by suppressing IKKβ/NF-κB signaling in non-small cell lung cancer. Eur J Pharmacol. 855:10–19. 2019. View Article : Google Scholar : PubMed/NCBI

211 

Zheng A, Yang D, Pan C, He Q, Zhu X, Xiang X and Ji P: Modeling the complexity of drug-drug interactions: A physiologically-based pharmacokinetic study of Lenvatinib with Schisantherin A/Schisandrin A. Eur J Pharm Sci. 196:1067572024. View Article : Google Scholar : PubMed/NCBI

212 

Wang X, Wang F, Dong P and Zhou L: The therapeutic effect of ultrasound targeted destruction of schisandrin A contrast microbubbles on liver cancer and its mechanism. Radiol Oncol. 58:221–233. 2024. View Article : Google Scholar : PubMed/NCBI

213 

Xu SY, Wang WW, Qu ZH, Zhang XK, Chen M, Zhang XY, Xing NN, Su H, Wang XY, Cui MY, et al: Long-circulating doxorubicin and Schizandrin A liposome with Drug-resistant liver cancer activity: In vitro and in vivo evaluation. J Liposome Res. 33:338–352. 2023. View Article : Google Scholar : PubMed/NCBI

214 

Kim JS and Yi HK: Schisandrin C enhances mitochondrial biogenesis and autophagy in C2C12 skeletal muscle cells: Potential involvement of anti-oxidative mechanisms. Naunyn Schmiedebergs Arch Pharmacol. 391:197–206. 2018. View Article : Google Scholar

215 

Takanche JS, Lee YH, Kim JS, Kim JE, Han SH, Lee SW and Yi HK: Anti-inflammatory and antioxidant properties of Schisandrin C promote mitochondrial biogenesis in human dental pulp cells. Int Endod J. 51:438–447. 2018. View Article : Google Scholar

216 

Yan H, Wu W, Hu Y, Li J, Xu J, Chen X, Xu Z, Yang X, Yang B, He Q and Luo P: Regorafenib inhibits EphA2 phosphorylation and leads to liver damage via the ERK/MDM2/p53 axis. Nat Commun. 14:27562023. View Article : Google Scholar : PubMed/NCBI

217 

Xu B, Liu N, Zhou T, Chen J, Jiang L, Wu W, Fu H, Chen X, Yan H, Yang X, et al: Schisandrin C prevents regorafenib-induced cardiotoxicity by recovering EPHA2 expression in cardiomyocytes. Toxicol Sci. 202:220–235. 2024. View Article : Google Scholar : PubMed/NCBI

218 

Park C, Choi YW, Hyun SK, Kwon HJ, Hwang HJ, Kim GY, Choi BT, Kim BW, Choi IW, Moon SK, et al: Induction of G1 arrest and apoptosis by schisandrin C isolated from Schizandra chinensis Baill in human leukemia U937 cells. Int J Mol Med. 24:495–502. 2009.PubMed/NCBI

219 

Wang Z, Xie S, Li L, Liu Z and Zhou W: Schisandrin C inhibits AKT1-regulated cell proliferation in A549 cells. Int Immunopharmacol. 142:1131102024. View Article : Google Scholar : PubMed/NCBI

220 

Samson N and Ablasser A: The cGAS-STING pathway and cancer. Nat Cancer. 3:1452–1463. 2022. View Article : Google Scholar : PubMed/NCBI

221 

Yang H, Zhan X, Zhao J, Shi W, Liu T, Wei Z, Li H, Hou X, Mu W, Chen Y, et al: Schisandrin C enhances type I IFN response activation to reduce tumor growth and sensitize chemotherapy through antitumor immunity. Front Pharmacol. 15:13695632024. View Article : Google Scholar : PubMed/NCBI

222 

Wu Z, Zhao X, Li R, Wen X, Xiu Y, Long M, Li J, Huang X, Wen J, Dong X, et al: The combination of Schisandrin C and Luteolin synergistically attenuates hepatitis B virus infection via repressing HBV replication and promoting cGAS-STING pathway activation in macrophages. Chin Med. 19:482024. View Article : Google Scholar : PubMed/NCBI

223 

Liu HW, Yu XZ, Padula D, Pescitelli G, Lin ZW, Wang F, Ding K, Lei M and Gao JM: Lignans from Schisandra sphenathera Rehd. et Wils. and semisynthetic schisantherin A analogues: Absolute configuration, and their estrogenic and Anti-proliferative activity. Eur J Med Chem. 59:265–273. 2013. View Article : Google Scholar

224 

Wang Z, Yu K, Hu Y, Su F, Gao Z, Hu T, Yang Y, Cao X and Qian F: Schisantherin A induces cell apoptosis through ROS/JNK signaling pathway in human gastric cancer cells. Biochem Pharmacol. 173:1136732020. View Article : Google Scholar

225 

Feng F, Pan L, Wu J, Liu M, He L, Yang L and Zhou W: Schisantherin A inhibits cell proliferation by regulating glucose metabolism pathway in hepatocellular carcinoma. Front Pharmacol. 13:10194862022. View Article : Google Scholar : PubMed/NCBI

226 

Chen L, Ji N, Zhang M and Chen W: The influence of wuzhi capsule on the pharmacokinetics of cyclophosphamide. Recent Pat Anticancer Drug Discov. 17:195–203. 2022. View Article : Google Scholar

227 

Adiwidjaja J, Boddy AV and McLachlan AJ: Potential for pharmacokinetic interactions between Schisandra sphenanthera and bosutinib, but not imatinib: In vitro metabolism study combined with a physiologically-based pharmacokinetic modelling approach. Br J Clin Pharmacol. 86:2080–2094. 2020. View Article : Google Scholar : PubMed/NCBI

228 

Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, Baron A, Park JW, Han G and Jassem J: Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet. 391:1163–1173. 2018. View Article : Google Scholar : PubMed/NCBI

229 

Cui Y, Ma Y, Li Y, Song H and Dong Z: Influence of schisantherin A on the pharmacokinetics of lenvatinib in rats and its potential mechanism. J Gastrointest Oncol. 13:802–811. 2022. View Article : Google Scholar : PubMed/NCBI

230 

Sobstyl E, Szopa A, Dziurka M, Ekiert H, Nikolaichuk H and Choma IM: Schisandra rubriflora fruit and leaves as promising new materials of high biological potential: Lignan profiling and Effect-directed analysis. Molecules. 27:21162022. View Article : Google Scholar : PubMed/NCBI

231 

Deng L, Cheng S, Li J, Xu X, Hao X, Fan Y and Mu S: Synthesis and biological evaluation of novel schisanhenol derivatives as potential hepatoprotective agents. Eur J Med Chem. 227:1139192022. View Article : Google Scholar

232 

Li B, Xiao Q, Zhao H, Zhang J, Yang C, Zou Y, Zhang B, Liu J, Sun H and Liu H: Schisanhenol ameliorates Non-alcoholic fatty liver disease via inhibiting miR-802 activation of AMPK-mediated modulation of hepatic lipid metabolism. Acta Pharm Sin B. 14:3949–3963. 2024. View Article : Google Scholar : PubMed/NCBI

233 

He X, Chen J, Mu Y, Zhang H, Chen G, Liu P and Liu W: The effects of inhibiting the activation of hepatic stellate cells by lignan components from the fruits of Schisandra chinensis and the mechanism of schisanhenol. J Nat Med. 74:513–524. 2020. View Article : Google Scholar : PubMed/NCBI

234 

Zhang Z, Zhong Y, Han X, Hu X, Wang Y, Huang L, Li S, Li Z, Wang C, Li H, et al: Schisanhenol inhibits the proliferation of hepatocellular carcinoma cells by targeting programmed cell Death-ligand 1 via the STAT3 pathways. Anticancer Agents Med Chem. 25:697–710. 2025. View Article : Google Scholar : PubMed/NCBI

235 

Jeong M, Kim HM, Kim HJ, Choi JH and Jang DS: Kudsuphilactone B, a nortriterpenoid isolated from Schisandra chinensis fruit, induces caspase-dependent apoptosis in human ovarian cancer A2780 cells. Arch Pharm Res. 40:500–508. 2017. View Article : Google Scholar : PubMed/NCBI

236 

Liu M, Yang K and Qiu H: Exploring the effect of gomisin A on non-small cell lung cancer with network pharmacology, molecular docking, in vitro and in vivo assays. Chem Biol Drug Des. 104:e700142024. View Article : Google Scholar

237 

Wang T, Liu J, Huang X, Zhang C, Shangguan M, Chen J, Wu S, Chen M, Yang Z and Zhao S: Gomisin A enhances the antitumor effect of paclitaxel by suppressing oxidative stress in ovarian cancer. Oncol Rep. 48:2022022. View Article : Google Scholar : PubMed/NCBI

238 

Kee JY, Han YH, Mun JG, Park SH, Jeon HD and Hong SH: Gomisin A suppresses colorectal lung metastasis by inducing AMPK/p38-mediated apoptosis and decreasing metastatic abilities of colorectal cancer cells. Front Pharmacol. 9:9862018. View Article : Google Scholar : PubMed/NCBI

239 

Han YH, Mun JG, Jeon HD, Park J, Kee JY and Hong SH: Gomisin A ameliorates metastatic melanoma by inhibiting AMPK and ERK/JNK-mediated cell survival and metastatic phenotypes. Phytomedicine. 68:1531472020. View Article : Google Scholar : PubMed/NCBI

240 

Wang R, Liu F, Chen P, Li S, Gu Y, Wang L, Chen C and Yuan Y: Gomisin D alleviates liver fibrosis through targeting PDGFRβ in hepatic stellate cells. Int J Biol Macromol. 235:1236392023. View Article : Google Scholar

241 

Jeon JS, Kang HM, Park SY and Choi YW: Comparative study of the photo-protective and anti-melanogenic properties of gomisin D, J and O. Mol Med Rep. 25:82022. View Article : Google Scholar

242 

Maharjan S, Park BK, Lee SI, Lim Y, Lee K, Lee Y and Kwon HJ: Gomisin G Suppresses the Growth of colon cancer cells by attenuation of AKT phosphorylation and arrest of cell cycle progression. Biomol Ther (Seoul). 27:210–215. 2019. View Article : Google Scholar

243 

Maharjan S, Park BK, Lee SI, Lim Y, Lee K and Kwon HJ: Gomisin G inhibits the growth of triple-Negative breast cancer cells by suppressing AKT phosphorylation and decreasing cyclin D1. Biomol Ther (Seoul). 26:322–327. 2018. View Article : Google Scholar : PubMed/NCBI

244 

Yeon M, Choi H, Chun KH, Lee JH and Jun HS: Gomisin G improves muscle strength by enhancing mitochondrial biogenesis and function in disuse muscle atrophic mice. Biomed Pharmacother. 153:1134062022. View Article : Google Scholar : PubMed/NCBI

245 

Mokhtari T and El-Meghawry El-Kenawy A: Molecular mechanisms of Schisandra chinensis in treating depression-neuropathic pain comorbidity by network pharmacology and molecular docking analysis. Neuroscience. 555:92–105. 2024. View Article : Google Scholar : PubMed/NCBI

246 

Jung S, Moon HI, Kim S, Quynh NTN, Yu J, Sandag Z, Le DT, Lee H, Lee H and Lee MS: Anticancer activity of gomisin J from Schisandra chinensis fruit. Oncol Rep. 41:711–717. 2019.

247 

Kang K, Lee KM, Yoo JH, Lee HJ, Kim CY and Nho CW: Dibenzocyclooctadiene lignans, gomisins J and N inhibit the Wnt/β-catenin signaling pathway in HCT116 cells. Biochem Biophys Res Commun. 428:285–291. 2012. View Article : Google Scholar : PubMed/NCBI

248 

Li R and Yang W: Gomisin J inhibits the glioma progression by inducing apoptosis and reducing HKII-regulated glycolysis. Biochem Biophys Res Commun. 529:15–22. 2020. View Article : Google Scholar : PubMed/NCBI

249 

He XR, Han SY, Li XH, Zheng WX, Pang LN, Jiang ST and Li PP: Chinese medicine Bu-Fei decoction attenuates epithelial-mesenchymal transition of Non-small cell lung cancer via inhibition of transforming growth factor β1 signaling pathway in vitro and in vivo. J Ethnopharmacol. 204:45–57. 2017. View Article : Google Scholar : PubMed/NCBI

250 

Garcia-Aguilar J, Patil S, Gollub MJ, Kim JK, Yuval JB, Thompson HM, Verheij FS, Omer DM, Lee M, Dunne RF, et al: Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy. J Clin Oncol. 40:2546–2556. 2022. View Article : Google Scholar : PubMed/NCBI

251 

Schaff LR and Mellinghoff IK: Glioblastoma and other primary brain malignancies in adults: A review. JAMA. 329:574–587. 2023. View Article : Google Scholar : PubMed/NCBI

252 

Moris D, Palta M, Kim C, Allen PJ, Morse MA and Lidsky ME: Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of the current and future therapeutic landscape for clinicians. CA Cancer J Clin. 73:198–222. 2023.

253 

Kim SM, Vetrivel P, Ha SE, Kim HH, Kim JA and Kim GS: Apigetrin induces extrinsic apoptosis, autophagy and G2/M phase cell cycle arrest through PI3K/AKT/mTOR pathway in AGS human gastric cancer cell. J Nutr Biochem. 83:1084272020. View Article : Google Scholar : PubMed/NCBI

254 

Wu YF, Cao MF, Gao YP, Chen F, Wang T, Zumbika EP and Qian KX: Down-modulation of heat shock protein 70 and up-modulation of Caspase-3 during schisandrin B-induced apoptosis in human hepatoma SMMC-7721 cells. World J Gastroenterol. 10:2944–2948. 2004. View Article : Google Scholar : PubMed/NCBI

255 

Raychaudhuri R, Lin DW and Montgomery RB: Prostate cancer: A review. JAMA. 333:1433–1446. 2025. View Article : Google Scholar : PubMed/NCBI

256 

Wang Y, Chen J, Huang Y, Yang S, Tan T, Wang N, Zhang J, Ye C, Wei M, Luo J and Luo X: Schisandrin B suppresses osteosarcoma lung metastasis in vivo by inhibiting the activation of the Wnt/β-catenin and PI3K/Akt signaling pathways. Oncol Rep. 47:502022. View Article : Google Scholar

257 

Maharjan S, Park BK, Lee SI, Lim Y, Lee K and Kwon HJ: Erratum to 'Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1' [Biomol.Ther. 26 (2018) 322-327]. Biomol Ther (Seoul). 26:5202018. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhong L, Li Y, Liu C, Chen Z, Miao J, Song X, Huang Z and Tang Y: Wuweizisu B for cancer treatment from multitarget mechanisms to precision delivery strategies (Review). Int J Mol Med 56: 220, 2025.
APA
Zhong, L., Li, Y., Liu, C., Chen, Z., Miao, J., Song, X. ... Tang, Y. (2025). Wuweizisu B for cancer treatment from multitarget mechanisms to precision delivery strategies (Review). International Journal of Molecular Medicine, 56, 220. https://doi.org/10.3892/ijmm.2025.5661
MLA
Zhong, L., Li, Y., Liu, C., Chen, Z., Miao, J., Song, X., Huang, Z., Tang, Y."Wuweizisu B for cancer treatment from multitarget mechanisms to precision delivery strategies (Review)". International Journal of Molecular Medicine 56.6 (2025): 220.
Chicago
Zhong, L., Li, Y., Liu, C., Chen, Z., Miao, J., Song, X., Huang, Z., Tang, Y."Wuweizisu B for cancer treatment from multitarget mechanisms to precision delivery strategies (Review)". International Journal of Molecular Medicine 56, no. 6 (2025): 220. https://doi.org/10.3892/ijmm.2025.5661
Copy and paste a formatted citation
x
Spandidos Publications style
Zhong L, Li Y, Liu C, Chen Z, Miao J, Song X, Huang Z and Tang Y: Wuweizisu B for cancer treatment from multitarget mechanisms to precision delivery strategies (Review). Int J Mol Med 56: 220, 2025.
APA
Zhong, L., Li, Y., Liu, C., Chen, Z., Miao, J., Song, X. ... Tang, Y. (2025). Wuweizisu B for cancer treatment from multitarget mechanisms to precision delivery strategies (Review). International Journal of Molecular Medicine, 56, 220. https://doi.org/10.3892/ijmm.2025.5661
MLA
Zhong, L., Li, Y., Liu, C., Chen, Z., Miao, J., Song, X., Huang, Z., Tang, Y."Wuweizisu B for cancer treatment from multitarget mechanisms to precision delivery strategies (Review)". International Journal of Molecular Medicine 56.6 (2025): 220.
Chicago
Zhong, L., Li, Y., Liu, C., Chen, Z., Miao, J., Song, X., Huang, Z., Tang, Y."Wuweizisu B for cancer treatment from multitarget mechanisms to precision delivery strategies (Review)". International Journal of Molecular Medicine 56, no. 6 (2025): 220. https://doi.org/10.3892/ijmm.2025.5661
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team