You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Luo J, Yang H and Song BL: Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 21:225–245. 2020. View Article : Google Scholar | |
|
Ouimet M, Barrett TJ and Fisher EA: HDL and reverse cholesterol transport. Circ Res. 124:1505–1518. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kuzu OF, Noory MA and Robertson GP: The role of cholesterol in cancer. Cancer Res. 76:2063–2070. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cao D and Liu H: Dysregulated cholesterol regulatory genes in hepatocellular carcinoma. Eur J Med Res. 28:5802023. View Article : Google Scholar : PubMed/NCBI | |
|
Geng F and Guo D: SREBF1/SREBP-1 concurrently regulates lipid synthesis and lipophagy to maintain lipid homeostasis and tumor growth. Autophagy. 20:1183–1185. 2024. View Article : Google Scholar : | |
|
Goossens P, Rodriguez-Vita J, Etzerodt A, Masse M, Rastoin O, Gouirand V, Ulas T, Papantonopoulou O, Van Eck M, Auphan-Anezin N, et al: Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab. 29:1376–1389.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Spann NJ and Glass CK: Sterols and oxysterols in immune cell function. Nat Immunol. 14:893–900. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Miller WL and Auchus RJ: The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 32:81–151. 2011. View Article : Google Scholar | |
|
Simons K and Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 1:31–39. 2000. View Article : Google Scholar | |
|
Riscal R, Skuli N and Simon MC: Even cancer cells watch their cholesterol! Mol Cell. 76:220–231. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q, Yang M, Qian J and Yi Q: CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 33:1001–1012.e5. 2021. View Article : Google Scholar | |
|
Gabitova-Cornell L, Surumbayeva A, Peri S, Franco-Barraza J, Restifo D, Weitz N, Ogier C, Goldman AR, Hartman TR, Francescone R, et al: Cholesterol pathway inhibition induces TGF-β signaling to promote basal differentiation in pancreatic cancer. Cancer Cell. 38:567–583.e11. 2020. View Article : Google Scholar | |
|
Liu W, Chakraborty B, Safi R, Kazmin D, Chang CY and McDonnell DP: Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun. 12:51032021. View Article : Google Scholar : PubMed/NCBI | |
|
Yan C, Zheng L, Jiang S, Yang H, Guo J, Jiang LY, Li T, Zhang H, Bai Y, Lou Y, et al: Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity. Cancer Cell. 41:1276–1293.e11. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Luo M, Bao L, Chen Y, Xue Y, Wang Y, Zhang B, Wang C, Corley CD, McDonald JG, Kumar A, et al: ZMYND8 is a master regulator of 27-hydroxycholesterol that promotes tumorigenicity of breast cancer stem cells. Sci Adv. 8:eabn52952022. View Article : Google Scholar : PubMed/NCBI | |
|
Hu C, Qiao W, Li X, Ning ZK, Liu J, Dalangood S, Li H, Yu X, Zong Z, Wen Z and Gui J: Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8+T cells. Cell Metab. 36:630–647.e8. 2024. View Article : Google Scholar | |
|
Yarmolinsky J, Bull CJ, Vincent EE, Robinson J, Walther A, Smith GD, Lewis SJ, Relton CL and Martin RM: Association between genetically proxied inhibition of HMG-CoA reductase and epithelial ovarian cancer. JAMA. 323:646–655. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kawamura S, Matsushita Y, Kurosaki S, Tange M, Fujiwara N, Hayata Y, Hayakawa Y, Suzuki N, Hata M, Tsuboi M, et al: Inhibiting SCAP/SREBP exacerbates liver injury and carcinogenesis in murine nonalcoholic steatohepatitis. J Clin Invest. 132:e1518952022. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Wang Y, Liu D, Wong CC, Coker OO, Zhang X, Liu C, Zhou Y, Liu Y, Kang W, et al: Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis. Gut. 71:2253–2265. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fan J, Lin R, Xia S, Chen D, Elf SE, Liu S, Pan Y, Xu H, Qian Z, Wang M, et al: Tetrameric Acetyl-CoA acetyltransferase 1 is important for tumor growth. Mol Cell. 64:859–874. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Viaud M, Abdel-Wahab O, Gall J, Ivanov S, Guinamard R, Sore S, Merlin J, Ayrault M, Guilbaud E, Jacquel A, et al: ABCA1 exerts tumor-suppressor function in myeloproliferative neoplasms. Cell Rep. 30:3397–3410.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Roundhill EA, Jabri S and Burchill SA: ABCG1 and Pgp identify drug resistant, self-renewing osteosarcoma cells. Cancer Lett. 453:142–157. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, et al: Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med. 10:1344–1351. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Ioannou GN, Morrow OB, Connole ML and Lee SP: Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the United States population. Hepatology. 50:175–184. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Xu R, Shen J, Song Y, Lu J, Liu Y, Cao Y, Wang Z and Zhang J: Exploration of the application potential of serum multi-biomarker model in colorectal cancer screening. Sci Rep. 14:101272024. View Article : Google Scholar : PubMed/NCBI | |
|
Jamnagerwalla J, Howard LE, Allott EH, Vidal AC, Moreira DM, Castro-Santamaria R, Andriole GL, Freeman MR and Freedland SJ: Serum cholesterol and risk of high-grade prostate cancer: Results from the REDUCE study. Prostate Cancer Prostatic Dis. 21:252–259. 2018. View Article : Google Scholar : | |
|
Zhao B, Gan L, Graubard BI, Männistö S, Albanes D and Huang J: Associations of dietary cholesterol, serum cholesterol, and egg consumption with overall and cause-specific mortality: Systematic review and updated meta-analysis. Circulation. 145:1506–1520. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Demierre MF, Higgins PD, Gruber SB, Hawk E and Lippman SM: Statins and cancer prevention. Nat Rev Cancer. 5:930–942. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Siemianowicz K, Gminski J, Stajszczyk M, Wojakowski W, Goss M, Machalski M, Telega A, Brulinski K and Magiera-Molendowska H: Serum total cholesterol and triglycerides levels in patients with lung cancer. Int J Mol Med. 5:201–205. 2000.PubMed/NCBI | |
|
Zhou P, Li B, Liu B, Chen T and Xiao J: Prognostic role of serum total cholesterol and high-density lipoprotein cholesterol in cancer survivors: A systematic review and meta-analysis. Clin Chim Acta. 477:94–104. 2018. View Article : Google Scholar | |
|
Oh MJ, Han K, Kim B, Lim JH, Kim B, Kim SG and Cho SJ: Risk of gastric cancer in relation with serum cholesterol profiles: A nationwide population-based cohort study. Medicine (Baltimore). 102:e362602023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, Wang YX, Chan AWH, Wei H, Yang X, Sung JJY and Yu J: Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut. 70:761–774. 2021. View Article : Google Scholar | |
|
Zhang X, Ding HM, Deng LF, Chen GC, Li J, He ZY, Fu L, Li JF, Jiang F, Zhang ZL and Li BY: Dietary fats and serum lipids in relation to the risk of ovarian cancer: A meta-analysis of observational studies. Front Nutr. 10:11539862023. View Article : Google Scholar : PubMed/NCBI | |
|
Ikonen E and Olkkonen VM: Intracellular cholesterol trafficking. Cold Spring Harb Perspect Biol. 15:a0414042023. View Article : Google Scholar : PubMed/NCBI | |
|
von Eckardstein A, Nordestgaard BG, Remaley AT and Catapano AL: High-density lipoprotein revisited: Biological functions and clinical relevance. Eur Heart J. 44:1394–1407. 2023. View Article : Google Scholar : | |
|
Dang EV and Reboldi A: Cholesterol sensing and metabolic adaptation in tissue immunity. Trends Immunol. 45:861–870. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Griffiths WJ and Wang Y: Cholesterol metabolism: From lipidomics to immunology. J Lipid Res. 63:1001652022. View Article : Google Scholar : | |
|
Long T, Debler EW and Li X: Structural enzymology of cholesterol biosynthesis and storage. Curr Opin Struct Biol. 74:1023692022. View Article : Google Scholar : PubMed/NCBI | |
|
Schade DS, Shey L and Eaton RP: Cholesterol review: A metabolically important molecule. Endocr Pract. 26:1514–1523. 2020. View Article : Google Scholar | |
|
Halimi H and Farjadian S: Cholesterol: An important actor on the cancer immune scene. Front Immunol. 13:10575462022. View Article : Google Scholar : PubMed/NCBI | |
|
Goicoechea L, Conde de la Rosa L, Torres S, García-Ruiz C and Fernández-Checa JC: Mitochondrial cholesterol: Metabolism and impact on redox biology and disease. Redox Biol. 61:1026432023. View Article : Google Scholar : PubMed/NCBI | |
|
Meng Y, Heybrock S, Neculai D and Saftig P: Cholesterol handling in lysosomes and beyond. Trends Cell Biol. 30:452–466. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Feingold KR: Lipid and lipoprotein metabolism. Endocrinol Metab Clin North Am. 51:437–458. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chandel NS: Lipid metabolism. Cold Spring Harb Perspect Biol. 13:a0405762021. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao X, Kennelly JP, Ferrari A, Clifford BL, Whang E, Gao Y, Qian K, Sandhu J, Jarrett KE, Brearley-Sholto MC, et al: Hepatic nonvesicular cholesterol transport is critical for systemic lipid homeostasis. Nat Metab. 5:165–181. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kennelly JP and Tontonoz P: Cholesterol transport to the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 15:a0412632023. View Article : Google Scholar | |
|
Faulkner RA, Yang Y, Tsien J, Qin T and DeBose-Boyd RA: Direct binding to sterols accelerates endoplasmic reticulum-associated degradation of HMG CoA reductase. Proc Natl Acad Sci USA. 121:e23188221212024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Zhao ZW, Zeng PH, Zhou YJ and Yin WJ: Molecular mechanisms for ABCA1-mediated cholesterol efflux. Cell Cycle. 21:1121–1139. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hu X, Chen F, Jia L, Long A, Peng Y, Li X, Huang J, Wei X, Fang X, Gao Z, et al: A gut-derived hormone regulates cholesterol metabolism. Cell. 187:1685–1700.e18. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Saher G: Cholesterol metabolism in aging and age-related disorders. Annu Rev Neurosci. 46:59–78. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Zhou S, Tang Q, Xia H and Bi F: Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 1874:1883942020. View Article : Google Scholar : PubMed/NCBI | |
|
Mittal S, Nenwani M, Pulikkal Kadamberi I, Kumar S, Animasahun O, George J, Tsaih SW, Gupta P, Singh M, Geethadevi A, et al: eIF4E enriched extracellular vesicles induce immunosuppressive macrophages through HMGCR-mediated metabolic rewiring. Adv Sci (Weinh). e063072025.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Ashida S, Kawada C and Inoue K: Stromal regulation of prostate cancer cell growth by mevalonate pathway enzymes HMGCS1 and HMGCR. Oncol Lett. 14:6533–6542. 2017.PubMed/NCBI | |
|
Martin OP, Wallace MS, Oetheimer C, Patel HB, Butler MD, Wong LP, Huang P, Elbaz J, Costentin C, Salloum S, et al: Single-cell atlas of human liver and blood immune cells across fatty liver disease stages reveals distinct signatures linked to liver dysfunction and fibrogenesis. Nat Immunol. 26:1596–1611. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Saito Y, Yin D, Kubota N, Wang X, Filliol A, Remotti H, Nair A, Fazlollahi L, Hoshida Y, Tabas I, et al: A therapeutically targetable TAZ-TEAD2 pathway drives the growth of hepatocellular carcinoma via ANLN and KIF23. Gastroenterology. 164:1279–1292. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Liu C, Wang M, Wei R, Li R, Huang K, Liang H, Li G and Zhao L: Cholesterol confers resistance to Apatinib-mediated ferroptosis in gastric cancer. Cell Biosci. 15:952025. View Article : Google Scholar : PubMed/NCBI | |
|
Li MX, Hu S, Lei HH, Yuan M, Li X, Hou WK, Huang XJ, Xiao BW, Yu TX, Zhang XH, et al: Tumor-derived miR-9-5p-loaded EVs regulate cholesterol homeostasis to promote breast cancer liver metastasis in mice. Nat Commun. 15:105392024. View Article : Google Scholar : PubMed/NCBI | |
|
Xue X, He Z, Liu F, Wang Q, Chen Z, Lin L, Chen D, Yuan Y, Huang Z and Wang Y: Taurochenodeoxycholic acid suppresses the progression of glioblastoma via HMGCS1/HMGCR/GPX4 signaling pathway in vitro and in vivo. Cancer Cell Int. 25:1602025. View Article : Google Scholar : PubMed/NCBI | |
|
Nakagawa H: Lipogenesis and MASLD: Re-thinking the role of SREBPs. Arch Toxicol. 99:2299–2312. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Wu S, Zhao X, Hao S, Li F, Wang Y, Liu B, Zhang D, Wang Y and Zhou H: Key events in cancer: Dysregulation of SREBPs. Front Pharmacol. 14:11307472023. View Article : Google Scholar : PubMed/NCBI | |
|
Geng F, Zhong Y, Su H, Lefai E, Magaki S, Cloughesy TF, Yong WH, Chakravarti A and Guo D: SREBP-1 upregulates lipophagy to maintain cholesterol homeostasis in brain tumor cells. Cell Rep. 42:1127902023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Deng X, Li Y, Han Y, Peng Y, Wu W, Wang X, Ma J, Hu E, Zhou X, et al: Comprehensive molecular classification predicted microenvironment profiles and therapy response for HCC. Hepatology. 80:536–551. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Qu G, Zhang G, Wu Z, Liu J, Yang D, Li J, Chang M, Zeng H, Hu J, et al: Glycerol kinase 5 confers gefitinib resistance through SREBP1/SCD1 signaling pathway. J Exp Clin Cancer Res. 38:962019. View Article : Google Scholar : PubMed/NCBI | |
|
Su F and Koeberle A: Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev. 43:673–708. 2024. View Article : Google Scholar : | |
|
Chen F, Li H, Wang Y, Tang X, Lin K, Li Q, Meng C, Shi W, Leo J, Liang X, et al: CHD1 loss reprograms SREBP2-driven cholesterol synthesis to fuel androgen-responsive growth and castration resistance in SPOP-mutated prostate tumors. Nat Cancer. 6:854–873. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Gao W, Guo X, Sun L, Gai J, Cao Y and Zhang S: PKMYT1 knockdown inhibits cholesterol biosynthesis and promotes the drug sensitivity of triple-negative breast cancer cells to atorvastatin. PeerJ. 12:e177492024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu R, Li N, Huang W, Yang Y, Zang R, Song H, Shi J, Zhu S and Liu Q: Melittin suppresses ovarian cancer growth by regulating SREBP1-mediated lipid metabolism. Phytomedicine. 137:1563672025. View Article : Google Scholar : PubMed/NCBI | |
|
Wen J, Zhang X, Wong CC, Zhang Y, Pan Y, Zhou Y, Cheung AH, Liu Y, Ji F, Kang X, et al: Targeting squalene epoxidase restores anti-PD-1 efficacy in metabolic dysfunction-associated steatohepatitis-induced hepatocellular carcinoma. Gut. 73:2023–2036. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Yang T, Wang Q, Li Y, Wu H, Zhang M, Qi H, Zhang H and Li J: Upregulation of SQLE contributes to poor survival in head and neck squamous cell carcinoma. Int J Biol Sci. 18:3576–3591. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Zhang Y, Li H, Gao H, Zhou Y, Luo D, Shan Z, Yang Y, Weng J, Li Q, et al: Squalene epoxidase promotes the chemoresistance of colorectal cancer via (S)-2,3-epoxysqualene-activated NF-κB. Cell Commun Signal. 22:2782024. View Article : Google Scholar | |
|
Wu J, Hu W, Yang W, Long Y, Chen K, Li F, Ma X and Li X: Knockdown of SQLE promotes CD8+ T cell infiltration in the tumor microenvironment. Cell Signal. 114:1109832024. View Article : Google Scholar | |
|
Xu M, Pan G, Zhang Q, Huang J, Wu Y and Ashan Y: FOXM1 boosts glycolysis by upregulating SQLE to inhibit anoikis in breast cancer cells. J Cancer Res Clin Oncol. 151:1622025. View Article : Google Scholar : PubMed/NCBI | |
|
Shen T, Lu Y and Zhang Q: High squalene epoxidase in tumors predicts worse survival in patients with hepatocellular carcinoma: Integrated bioinformatic analysis on NAFLD and HCC. Cancer Control. 27:10732748209146632020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Wu W, Jiao H, Chen Y, Ji X, Cao J, Yin F and Yin W: Squalene epoxidase promotes hepatocellular carcinoma development by activating STRAP transcription and TGF-β/SMAD signalling. Br J Pharmacol. 180:1562–1581. 2023. View Article : Google Scholar | |
|
Kanmalar M, Abdul Sani SF, Kamri NINB, Said NABM, Jamil AHBA, Kuppusamy S, Mun KS and Bradley DA: Raman spectroscopy biochemical characterisation of bladder cancer cisplatin resistance regulated by FDFT1: A review. Cell Mol Biol Lett. 27:92022. View Article : Google Scholar : PubMed/NCBI | |
|
Cai D, Zhong GC, Dai X, Zhao Z, Chen M, Hu J, Wu Z, Cheng L, Li S and Gong J: Targeting FDFT1 reduces cholesterol and bile acid production and delays hepatocellular carcinoma progression through the HNF4A/ALDOB/AKT1 axis. Adv Sci (Weinh). 12:e24117192025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Z, Duan W, Xiong Y, Liu J, Wen X, Zhao F, Xiang D, Wang J, Kasim V and Wu S: NeuroD1 drives a KAT2A-FDFT1 signaling axis to promote cholesterol biosynthesis and hepatocellular carcinoma progression via histone H3K27 acetylation. Oncogene. Sep 1–2025.Epub ahead of print. | |
|
Yang C, Huang S, Cao F and Zheng Y: A lipid metabolism-related genes prognosis biomarker associated with the tumor immune microenvironment in colorectal carcinoma. BMC Cancer. 21:11822021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HL, Zhao R, Wang D, Mohd Sapudin SN, Yahaya BH, Harun MSR, Zhang ZW, Song ZJ, Liu YT, Doblin S and Lu P: Candida albicans and colorectal cancer: A paradoxical role revealed through metabolite profiling and prognostic modeling. World J Clin Oncol. 16:1041822025. View Article : Google Scholar : PubMed/NCBI | |
|
Weng ML, Chen WK, Chen XY, Lu H, Sun ZR, Yu Q, Sun PF, Xu YJ, Zhu MM, Jiang N, et al: Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat Commun. 11:18692020. View Article : Google Scholar | |
|
Goudarzi A: The recent insights into the function of ACAT1: A possible anti-cancer therapeutic target. Life Sci. 232:1165922019. View Article : Google Scholar : PubMed/NCBI | |
|
Gu L, Zhu Y, Lin X, Tan X, Lu B and Li Y: Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene. 39:2437–2449. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T, Wang G, Shan D, Fang Y, Zhou F, Yu M, Ju L, Li G, Xiang W, Qian K, et al: ACAT1 promotes proliferation and metastasis of bladder cancer via AKT/GSK3β/c-Myc signaling pathway. J Cancer. 15:3297–3312. 2024. View Article : Google Scholar : | |
|
Sun S, Qi G, Chen H, He D, Ma D, Bie Y, Xu L, Feng B, Pang Q, Guo H and Zhang R: Ferroptosis sensitization in glioma: Exploring the regulatory mechanism of SOAT1 and its therapeutic implications. Cell Death Dis. 14:7542023. View Article : Google Scholar : PubMed/NCBI | |
|
Wei C, Liao K, Chen HJ, Xiao ZX, Meng Q, Liu ZK, Lu YX, Sheng H, Mo HY, Wu QN, et al: Nuclear mitochondrial acetyl-CoA acetyltransferase 1 orchestrates natural killer cell-dependent antitumor immunity in colorectal cancer. Signal Transduct Target Ther. 10:1382025. View Article : Google Scholar : PubMed/NCBI | |
|
Kwon RJ, Park EJ, Lee SY, Lee Y, Hwang C, Kim C and Cho YH: Expression and prognostic significance of Niemann-Pick C1-Like 1 in colorectal cancer: A retrospective cohort study. Lipids Health Dis. 20:1042021. View Article : Google Scholar : PubMed/NCBI | |
|
Yin W, Ao Y, Jia Q, Zhang C, Yuan L, Liu S, Xiao W, Luo G, Shi X, Xin C, et al: Integrated singlecell and bulk RNA-seq analysis identifies a prognostic signature related to inflammation in colorectal cancer. Sci Rep. 15:8742025. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Y, Wu C, Zhou Y, Zhang M, Mai S, Chen M and Wang HY: Ezetimibe INDUCES PARAPTOSIS THROUGH NIEMANN-PICK C1-like 1 inhibition of mammalian-target-of-rapamycin signaling in hepatocellular carcinoma cells. Genes (Basel). 15:42023. View Article : Google Scholar | |
|
Liu X, Lv M, Zhang W and Zhan Q: Dysregulation of cholesterol metabolism in cancer progression. Oncogene. 42:3289–3302. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo XJ, Zhu BB, Li J, Guo P, Niu YB, Shi JL, Yokoyama W, Huang QS and Shao DY: Cholesterol metabolism in tumor immunity: Mechanisms and therapeutic opportunities for cancer. Biochem Pharmacol. 234:1168022025. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Z, Wang K, Wang X, Jia Z, Yang Y, Duan Y, Huang L, Wu ZX, Zhang JY and Ding X: Cholesterol promotes EGFR-TKIs resistance in NSCLC by inducing EGFR/Src/Erk/SP1 signaling-mediated ERRα re-expression. Mol Cancer. 21:772022. View Article : Google Scholar | |
|
Rademaker G, Hernandez GA, Seo Y, Dahal S, Miller-Phillips L, Li AL, Peng XL, Luan C, Qiu L, Liegeois MA, et al: PCSK9 drives sterol-dependent metastatic organ choice in pancreatic cancer. Nature. 643:1381–1390. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Fu R, Xue W, Liang J, Li X, Zheng J, Wang L, Zhang M and Meng J: SOAT1 regulates cholesterol metabolism to induce EMT in hepatocellular carcinoma. Cell Death Dis. 15:3252024. View Article : Google Scholar : PubMed/NCBI | |
|
Alvarado-Ortiz E, de la Cruz-López KG, Becerril-Rico J, Sarabia-Sánchez MA, Ortiz-Sánchez E and García-Carrancá A: Mutant p53 gain-of-function: Role in cancer development, progression, and therapeutic approaches. Front Cell Dev Biol. 8:6076702021. View Article : Google Scholar : PubMed/NCBI | |
|
Freed-Pastor WA, Mizuno H, Zhao X, Langerød A, Moon SH, Rodriguez-Barrueco R, Barsotti A, Chicas A, Li W, Polotskaia A, et al: Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell. 148:244–258. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Moon SH, Huang CH, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP IV, Tschaharganeh DF, Kastenhuber ER, Barsotti AM, Culp-Hill R, et al: p53 represses the mevalonate pathway to mediate tumor suppression. Cell. 176:564–580.e19. 2019. View Article : Google Scholar : | |
|
Zhang Y, Mohibi S, Vasilatis DM, Chen M, Zhang J and Chen X: Ferredoxin reductase and p53 are necessary for lipid homeostasis and tumor suppression through the ABCA1-SREBP pathway. Oncogene. 41:1718–1726. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fan S, Guo J, Nie H, Xiong H and Xia Y: Aberrant energy metabolism in tumors and potential therapeutic targets. Genes Chromosomes Cancer. 63:e700082024. View Article : Google Scholar : PubMed/NCBI | |
|
Da Cruz Paula A, Zhu Y, Brown DN, Issa Bhaloo S, Pareja F, Hoang TJ, Green H, Basili T, Dopeso H, Selenica P, et al: Evolution and co-occurrence of PI3K pathway gene mutations in endometrial carcinoma molecular subtypes at the single-cell level. Clin Cancer Res. August 20–2025.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Kaysudu I, Gungul TB, Atici S, Yilmaz S, Bayram E, Guven G, Cizmecioglu NT, Sahin O, Yesiloz G, Haznedaroglu BZ and Cizmecioglu O: Cholesterol biogenesis is a PTEN-dependent actionable node for the treatment of endocrine therapy-refractory cancers. Cancer Sci. 114:4365–4375. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fitzgerald TL, Lertpiriyapong K, Cocco L, Martelli AM, Libra M, Candido S, Montalto G, Cervello M, Steelman L, Abrams SL and McCubrey JA: Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul. 59:65–81. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Aylon Y and Oren M: The Hippo pathway, p53 and cholesterol. Cell Cycle. 15:2248–2255. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Eid W, Dauner K, Courtney KC, Gagnon A, Parks RJ, Sorisky A and Zha X: mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proc Natl Acad Sci USA. 114:7999–8004. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Deng YZ, Cai Z, Shi S, Jiang H, Shang YR, Ma N, Wang JJ, Guan DX, Chen TW, Rong YF, et al: Cilia loss sensitizes cells to transformation by activating the mevalonate pathway. J Exp Med. 215:177–195. 2018. View Article : Google Scholar : | |
|
Das S, Parigi SM, Luo X, Fransson J, Kern BC, Okhovat A, Diaz OE, Sorini C, Czarnewski P, Webb AT, et al: Liver X receptor unlinks intestinal regeneration and tumorigenesis. Nature. 637:1198–1206. 2025. View Article : Google Scholar : | |
|
Bakiri L, Hamacher R, Graña O, Guío-Carrión A, Campos-Olivas R, Martinez L, Dienes HP, Thomsen MK, Hasenfuss SC and Wagner EF: Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation. J Exp Med. 214:1387–1409. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Deng CM, Zhang GG, Liu QW, Xu JJ, Liu ZC, Yang J, Xu TY, Li ZG, Zhang F and Li B: ANO1 reprograms cholesterol metabolism and the tumor microenvironment to promote cancer metastasis. Cancer Res. 83:1851–1865. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou YX, Wei J, Deng G, Hu A, Sun PY, Zhao X, Song BL and Luo J: Delivery of low-density lipoprotein from endocytic carriers to mitochondria supports steroidogenesis. Nat Cell Biol. 25:937–949. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
He W, Wang M, Zhang X, Wang Y, Zhao D, Li W, Lei F, Peng M, Zhang Z, Yuan Y and Huang Z: Estrogen induces LCAT to maintain cholesterol homeostasis and suppress hepatocellular carcinoma development. Cancer Res. 84:2417–2431. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Xian M, Wang Q, Xiao L, Zhong L, Xiong W, Ye L, Su P, Zhang C, Li Y, Orlowski RZ, et al: Leukocyte immunoglobulin-like receptor B1 (LILRB1) protects human multiple myeloma cells from ferroptosis by maintaining cholesterol homeostasis. Nat Commun. 15:57672024. View Article : Google Scholar : PubMed/NCBI | |
|
De Oliveira-Gomes D, Joshi PH, Peterson ED, Rohatgi A, Khera A and Navar AM: Apolipoprotein B: Bridging the gap between evidence and clinical practice. Circulation. 150:62–79. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gilliland T, Dron JS, Selvaraj MS, Trinder M, Paruchuri K, Urbut SM, Haidermota S, Bernardo R, Uddin MM, Honigberg MC, et al: Genetic architecture and clinical outcomes of combined lipid disturbances. Circ Res. 135:265–276. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lee G, Jeong YS, Kim DW, Kwak MJ, Koh J, Joo EW, Lee JS, Kah S, Sim YE and Yim SY: Clinical significance of APOB inactivation in hepatocellular carcinoma. Exp Mol Med. 50:1–12. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Yuan H, Wang Y, Li K, Suo C, Jin L, Ding C and Chen X: Proteogenomic analysis identifies a causal association between plasma apolipoprotein B levels and liver cancer risk. J Proteome Res. 23:4055–4066. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Borgquist S, Butt T, Almgren P, Shiffman D, Stocks T, Orho-Melander M, Manjer J and Melander O: Apolipoproteins, lipids and risk of cancer. Int J Cancer. 138:2648–2656. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Guan Y, Liu X, Yang Z, Zhu X, Liu M, Du M, Pan X and Wang Y: PCSK9 promotes LDLR degradation by preventing SNX17-mediated LDLR recycling. Circulation. 151:1512–1526. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan J, Cai T, Zheng X, Ren Y, Qi J, Lu X, Chen H, Lin H, Chen Z, Liu M, et al: Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein Cell. 12:240–260. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma L, Zhang L, Li L and Zhao L: The function of lncRNA EMX2OS/miR-653-5p and its regulatory mechanism in lung adenocarcinoma. Open Med (Wars). 18:202306862023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Chen L, Sun B, Liu D, He Y, Qi L, Li G, Han Z, Zhan L, Zhang S, et al: LDLR inhibition promotes hepatocellular carcinoma proliferation and metastasis by elevating intracellular cholesterol synthesis through the MEK/ERK signaling pathway. Mol Metab. 51:1012302021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu T, Tan JZA, Zhang L, Huang H, Das SS, Cheng F, Padmanabhan P, Jones MJK, Lee M, Lee A, et al: FTO suppresses DNA repair by inhibiting PARP1. Nat Commun. 16:29252025. View Article : Google Scholar : PubMed/NCBI | |
|
Alemasova EE and Lavrik OI: Poly(ADP-ribosyl)ation by PARP1: Reaction mechanism and regulatory proteins. Nucleic Acids Res. 47:3811–3827. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Gong S, Zhang X, Li J, Xue J, Zeng Q, Nie J, Zhang Z, Ding H, Pei H and Li B: Activated PARP1/FAK/COL5A1 signaling facilitates the tumorigenesis of cholesterol-resistant ovarian cancer cells through promoting EMT. Cell Signal. 124:1114192024. View Article : Google Scholar : PubMed/NCBI | |
|
Diestel A, Aktas O, Hackel D, Hake I, Meier S, Raine CS, Nitsch R, Zipp F and Ullrich O: Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: A link between demyelination and neuronal damage. J Exp Med. 198:1729–1740. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Farez MF, Quintana FJ, Gandhi R, Izquierdo G, Lucas M and Weiner HL: Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat Immunol. 10:958–964. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Lee DH, Nam YJ, Lee MS, Sohn DS and Lee CS: Rotundarpene attenuates cholesterol oxidation product-induced apoptosis by suppressing the mitochondrial pathway and the caspase-8- and bid-dependent pathways. Eur J Pharmacol. 749:39–48. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Batnasan E, Wang R, Wen J, Ke Y, Li X, Bohio AA, Zeng X, Huo H, Han L, Boldogh I and Ba X: 17-Beta estradiol inhibits oxidative stress-induced accumulation of AIF into nucleolus and PARP1-dependent cell death via estrogen receptor alpha. Toxicol Lett. 232:1–9. 2015. View Article : Google Scholar | |
|
Wang D, Li Y, Wang N, Luo G, Wang J, Luo C, Yu W and Hao L: 1α,25-Dihydroxyvitamin D3 prevents renal oxidative damage via the PARP1/SIRT1/NOX4 pathway in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab. 318:E343–E356. 2020. View Article : Google Scholar | |
|
Allott EH, Howard LE, Cooperberg MR, Kane CJ, Aronson WJ, Terris MK, Amling CL and Freedland SJ: Serum lipid profile and risk of prostate cancer recurrence: Results from the SEARCH database. Cancer Epidemiol Biomarkers Prev. 23:2349–2356. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Xu R, Song J, Ruze R, Chen Y, Yin X, Wang C and Zhao Y: SQLE promotes pancreatic cancer growth by attenuating ER stress and activating lipid rafts-regulated Src/PI3K/Akt signaling pathway. Cell Death Dis. 14:4972023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Huang H, Chen Z, Yan M, Lu C, Xu Z and Li Z: Helicobacter pylori promotes gastric cancer through CagA-mediated mitochondrial cholesterol accumulation by targeting CYP11A1 redistribution. Int J Biol Sci. 20:4007–4028. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM and Felsher DW: The MYC oncogene-the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 19:23–36. 2022. View Article : Google Scholar | |
|
Yang F, Kou J, Liu Z, Li W and Du W: MYC enhances cholesterol biosynthesis and supports cell proliferation through SQLE. Front Cell Dev Biol. 9:6558892021. View Article : Google Scholar : PubMed/NCBI | |
|
Tan SH, Tan TK, Yokomori R, Liao M, Huang XZ, Yeoh AEJ and Sanda T: TAL1 hijacks MYCN enhancer that induces MYCN expression and dependence on mevalonate pathway in T-cell acute lymphoblastic leukemia. Leukemia. 37:1969–1981. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Chen K and Liu X, Huang L, Zhao D, Li L, Gao M, Pei D, Wang C and Liu X: Srebp-1 interacts with c-Myc to enhance somatic cell reprogramming. Stem Cells. 34:83–92. 2016. View Article : Google Scholar | |
|
Zhou X, Wang G, Tian C, Du L, Prochownik EV and Li Y: Inhibition of DUSP18 impairs cholesterol biosynthesis and promotes anti-tumor immunity in colorectal cancer. Nat Commun. 15:58512024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Chen W, Zhang Z, Zeng W, Hu H, Ning S, Liao Z, Liu Y, Zhang H, Fu Q, et al: Targeting Aurora kinase B regulates cholesterol metabolism and enhances chemoimmunotherapy in cholangiocarcinoma. Gut. July 31–2025.Epub ahead of print. View Article : Google Scholar | |
|
Gui L, Chen K, Yan J, Chen P, Gao WQ and Ma B: Targeting the mevalonate pathway potentiates NUAK1 inhibition-induced immunogenic cell death and antitumor immunity. Cell Rep Med. 6:1019132025. View Article : Google Scholar : PubMed/NCBI | |
|
Singh PK and Mehla K: LXR signaling-mediated cholesterol metabolism reprogramming regulates cancer cell metastasis. Cancer Res. 83:1759–1761. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mullen PJ, Yu R, Longo J, Archer MC and Penn LZ: The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer. 16:718–731. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Seidah NG and Prat A: The multifaceted biology of PCSK9. Endocr Rev. 43:558–582. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, Blumenthal R, Danesh J, Smith GD, DeMets D, et al: Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 388:2532–2561. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xie W, Peng M, Liu Y, Zhang B, Yi L and Long Y: Simvastatin induces pyroptosis via ROS/caspase-1/GSDMD pathway in colon cancer. Cell Commun Signal. 21:3292023. View Article : Google Scholar : PubMed/NCBI | |
|
Choi J, Nguyen VH, Przybyszewski E, Song J, Carroll A, Michta M, Almazan E, Simon TG and Chung RT: Statin use and risk of hepatocellular carcinoma and liver fibrosis in chronic liver disease. JAMA Intern Med. 185:522–530. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Nowakowska MK, Lei X, Thompson MT, Shaitelman SF, Wehner MR, Woodward WA, Giordano SH and Nead KT: Association of statin use with clinical outcomes in patients with triple-negative breast cancer. Cancer. 127:4142–4150. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hemmati S, Saeidikia Z, Seradj H and Mohagheghzadeh A: Immunomodulatory peptides as vaccine adjuvants and antimicrobial agents. Pharmaceuticals (Basel). 17:2012024. View Article : Google Scholar : PubMed/NCBI | |
|
Pospiech M, Owens SE, Miller DJ, Austin-Muttitt K, Mullins JGL, Cronin JG, Allemann RK and Sheldon IM: Bisphosphonate inhibitors of squalene synthase protect cells against cholesterol-dependent cytolysins. FASEB J. 35:e216402021. View Article : Google Scholar : PubMed/NCBI | |
|
Toyota Y, Yoshioka H, Sagimori I, Hashimoto Y and Ohgane K: Bisphosphonate esters interact with HMG-CoA reductase membrane domain to induce its degradation. Bioorg Med Chem. 28:1155762020. View Article : Google Scholar : PubMed/NCBI | |
|
Van Acker HH, Anguille S, Willemen Y, Smits EL and Van Tendeloo VF: Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials. Pharmacol Ther. 158:24–40. 2016. View Article : Google Scholar | |
|
Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M and Hiraga T: Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer. 88:2979–2988. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
D'Oronzo S, Gregory W, Nicholson S, Chong YK, Brown J and Coleman R: Natural history of stage II/III breast cancer, bone metastasis and the impact of adjuvant zoledronate on distribution of recurrences. J Bone Oncol. 28:1003672021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu D, Wong CC, Fu L, Chen H, Zhao L, Li C, Zhou Y, Zhang Y, Xu W, Yang Y, et al: Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target. Sci Transl Med. 10:eaap98402018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Ma X, Xu E, Huang Z, Yang C, Zhu K, Dong Y and Zhang C: Identifying squalene epoxidase as a metabolic vulnerability in high-risk osteosarcoma using an artificial intelligence-derived prognostic index. Clin Transl Med. 14:e15862024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma L, Huang W, Liang X, Bai G, Wang X, Jiang H, Xin Y, Hu L, Chen X and Liu C: Inhibition of squalene epoxidase linking with PI3K/AKT signaling pathway suppresses endometrial cancer. Cancer Sci. 114:3595–3607. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kalogirou C, Linxweiler J, Schmucker P, Snaebjornsson MT, Schmitz W, Wach S, Krebs M, Hartmann E, Puhr M, Müller A, et al: MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer. Nat Commun. 12:50662021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu LP, Huang W, Wang X, Xu C, Qin WT, Li D, Tian G, Li Q, Zhou Y, Chen S, et al: Terbinafine prevents colorectal cancer growth by inducing dNTP starvation and reducing immune suppression. Mol Ther. 30:3284–3299. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang EB, Zhang X, Wang K, Zhang F, Chen TW, Ma N, Ni QZ, Wang YK, Zheng QW, Cao HJ, et al: Antifungal agent terbinafine restrains tumor growth in preclinical models of hepatocellular carcinoma via AMPK-mTOR axis. Oncogene. 40:5302–5313. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Loibl S, Poortmans P, Morrow M, Denkert C and Curigliano G: Breast cancer. Lancet. 397:1750–1769. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
He Q, Kong L, Shi W, Ma D, Liu K, Yang S, Xin Q, Jiang C and Wu J: Ezetimibe inhibits triple-negative breast cancer proliferation and promotes cell cycle arrest by targeting the PDGFR/AKT pathway. Heliyon. 9:e213432023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, You S, Su S, Yeon A, Lo EM, Kim S, Mohler JL, Freeman MR and Kim HL: Cholesterol-lowering intervention decreases mTOR complex 2 signaling and enhances antitumor immunity. Clin Cancer Res. 28:414–424. 2022. View Article : Google Scholar : | |
|
Bovenga F, Sabbà C and Moschetta A: Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer. Cell Metab. 21:517–526. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liang H and Shen X: LXR activation radiosensitizes non-small cell lung cancer by restricting myeloid-derived suppressor cells. Biochem Biophys Res Commun. 528:330–335. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wan W, Hou Y, Wang K, Cheng Y, Pu X and Ye X: The LXR-623-induced long non-coding RNA LINC01125 suppresses the proliferation of breast cancer cells via PTEN/AKT/p53 signaling pathway. Cell Death Dis. 10:2482019. View Article : Google Scholar : PubMed/NCBI | |
|
Munir MT, Ponce C, Santos JM, Sufian HB, Al-Harrasi A, Gollahon LS, Hussain F and Rahman SM: VD3 and LXR agonist (T0901317) combination demonstrated greater potency in inhibiting cholesterol accumulation and inducing apoptosis via ABCA1-CHOP-BCL-2 cascade in MCF-7 breast cancer cells. Mol Biol Rep. 47:7771–7782. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tavazoie MF, Pollack I, Tanqueco R, Ostendorf BN, Reis BS, Gonsalves FC, Kurth I, Andreu-Agullo C, Derbyshire ML, Posada J, et al: LXR/ApoE activation restricts innate immune suppression in cancer. Cell. 172:825–840.e18. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gronich N and Rennert G: Beyond aspirin-cancer prevention with statins, metformin and bisphosphonates. Nat Rev Clin Oncol. 10:625–642. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kamal A, Boerner J, Assad H, Chen W and Simon MS: The effect of statins on markers of breast cancer proliferation and apoptosis in women with in situ or early-stage invasive breast cancer. Int J Mol Sci. 25:95872024. View Article : Google Scholar : PubMed/NCBI | |
|
Graf H, Jüngst C, Straub G, Dogan S, Hoffmann RT, Jakobs T, Reiser M, Waggershauser T, Helmberger T, Walter A, et al: Chemoembolization combined with pravastatin improves survival in patients with hepatocellular carcinoma. Digestion. 78:34–38. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kim Y, Kim TW, Han SW, Ahn JB, Kim ST, Lee J, Park JO, Park YS, Lim HY and Kang WK: A single arm, phase II study of simvastatin plus XELOX and bevacizumab as first-line chemotherapy in metastatic colorectal cancer patients. Cancer Res Treat. 51:1128–1134. 2019. View Article : Google Scholar : | |
|
Jian-Yu E, Graber JM, Lu SE, Lin Y, Lu-Yao G and Tan XL: Effect of metformin and statin use on survival in pancreatic cancer patients: A systematic literature review and meta-analysis. Curr Med Chem. 25:2595–2607. 2018. View Article : Google Scholar | |
|
Nguyen MKL, Jose J, Wahba M, Bernaus-Esqué M, Hoy AJ, Enrich C, Rentero C and Grewal T: Linking late endosomal cholesterol with cancer progression and anticancer drug resistance. Int J Mol Sci. 23:72062022. View Article : Google Scholar : PubMed/NCBI | |
|
Du X, Zhang Y, Jo SR, Liu X, Qi Y, Osborne B, Byrne FL, Smith GC, Turner N, Hoehn KL, et al: Akt activation increases cellular cholesterol by promoting the proteasomal degradation of Niemann-Pick C1. Biochem J. 471:243–253. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen K, Zhang X, Sun G, Fang Z, Liao L, Zhong Y, Huang F, Dong M and Luo S: Focusing on the abnormal events of NPC1, NPC2, and NPC1L1 in pan-cancer and further constructing LUAD and KICH prediction models. J Proteome Res. 23:449–464. 2024. View Article : Google Scholar | |
|
Liang B, Wu Q, Wang Y, Shi Y, Sun F, Huang Q, Li G, Liu Y, Zhang S, Xu X, et al: Cdc42-driven endosomal cholesterol transport promotes collateral resistance in HER2-positive gastric cancer. Cancer Lett. 587:2167022024. View Article : Google Scholar : PubMed/NCBI | |
|
Lin MH, Chao TC, Lee CC, Tung CJ, Yeh CY and Hong JH: Measurement-based Monte Carlo dose calculation system for IMRT pretreatment and on-line transit dose verifications. Med Phys. 36:1167–1175. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Liang D, Minikes AM and Jiang X: Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Ran Q, Duan Q, Jin J, Wang Y, Yu L, Wang C, Zhu Z, Chen X, Weng L, et al: 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature. 626:411–418. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Song YH, Lei HX, Yu D, Zhu H, Hao MZ, Cui RH, Meng XS, Sheng XH and Zhang L: Endogenous chemicals guard health through inhibiting ferroptotic cell death. Biofactors. 50:266–293. 2024. View Article : Google Scholar | |
|
Lee J and Roh JL: Cholesterol-ferroptosis nexus: Unveiling novel cancer therapeutic avenues. Cancer Lett. 597:2170462024. View Article : Google Scholar : PubMed/NCBI | |
|
Mao X, Xiong J, Cai M, Wang C, He Q, Wang B, Chen J, Xiao Z, Wang B, Han S and Zhang Y: SCARB1 links cholesterol metabolism-mediated ferroptosis inhibition to radioresistance in tumor cells. J Adv Res. January 18–2025.Epub ahead of print. View Article : Google Scholar | |
|
Garcia-Bermudez J, Baudrier L, Bayraktar EC, Shen Y, La K, Guarecuco R, Yucel B, Fiore D, Tavora B, Freinkman E, et al: Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature. 567:118–122. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Calvert AE, Cardenas H, Rink JS, Nahotko D, Qiang W, Ndukwe CE, Chen F, Keathley R, Zhang Y, et al: Nanoparticle targeting in chemo-resistant ovarian cancer reveals dual axis of therapeutic vulnerability involving cholesterol uptake and cell redox balance. Adv Sci (Weinh). 11:e23052122024. View Article : Google Scholar : PubMed/NCBI | |
|
Riscal R, Bull CJ, Mesaros C, Finan JM, Carens M, Ho ES, Xu JP, Godfrey J, Brennan P, Johansson M, et al: Cholesterol auxotrophy as a targetable vulnerability in clear cell renal cell carcinoma. Cancer Discovery. 11:3106–3125. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang B, Song BL and Xu C: Cholesterol metabolism in cancer: Mechanisms and therapeutic opportunities. Nat Metab. 2:132–141. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan J, Lv T, Yang J, Wu Z, Yan L, Yang J and Shi Y: HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma. Redox Biol. 58:1025462022. View Article : Google Scholar : PubMed/NCBI | |
|
Jin H, Zhu M, Zhang D, Liu X, Guo Y, Xia L, Chen Y, Chen Y, Xu R, Liu C, et al: B7H3 increases ferroptosis resistance by inhibiting cholesterol metabolism in colorectal cancer. Cancer Sci. 114:4225–4236. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Noguchi N, Saito Y and Niki E: Lipid peroxidation, ferroptosis, and antioxidants. Free Radic Biol Med. 237:228–238. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Lian X, Xie J and Liu G: Accumulated cholesterol protects tumours from elevated lipid peroxidation in the microenvironment. Redox Biol. 62:1026782023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Li Z, Ran Q and Wang P: Sterols in ferroptosis: From molecular mechanisms to therapeutic strategies. Trends Mol Med. 31:36–49. 2025. View Article : Google Scholar | |
|
Bai T, Xue P, Shao S, Yan S and Zeng X: Cholesterol depletion-enhanced ferroptosis and immunotherapy via engineered nanozyme. Adv Sci (Weinh). 11:e24058262024. View Article : Google Scholar : PubMed/NCBI | |
|
Vitalakumar D, Sharma A and Flora SJS: Ferroptosis: A potential therapeutic target for neurodegenerative diseases. J Biochem Mol Toxicol. 35:e228302021. View Article : Google Scholar : PubMed/NCBI | |
|
Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ and Stockwell BR: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 12:497–503. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yao X, Xie R, Cao Y, Tang J, Men Y, Peng H and Yang W: Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnology. 19:3112021. View Article : Google Scholar : PubMed/NCBI | |
|
Tang WJ, Xu D, Liang MX, Wo GQ, Chen WQ, Tang JH and Zhang W: Pitavastatin induces autophagy-dependent ferroptosis in MDA-MB-231 cells via the mevalonate pathway. Heliyon. 10:e270842024. View Article : Google Scholar | |
|
Zhang R, Zhang L, Fan S and Wang L, Wang B and Wang L: Squalene monooxygenase (SQLE) protects ovarian cancer cells from ferroptosis. Sci Rep. 14:226462024. View Article : Google Scholar : PubMed/NCBI | |
|
Mao X, Wang L, Chen Z, Huang H, Chen J, Su J, Li Z, Shen G, Ren Y, Li Z, et al: SCD1 promotes the stemness of gastric cancer stem cells by inhibiting ferroptosis through the SQLE/cholesterol/mTOR signalling pathway. Int J Biol Macromol. 275:1336982024. View Article : Google Scholar : PubMed/NCBI | |
|
Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Vargas JNS, Hamasaki M, Kawabata T, Youle RJ and Yoshimori T: The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. 24:167–185. 2023. View Article : Google Scholar | |
|
Yamamoto H, Zhang S and Mizushima N: Autophagy genes in biology and disease. Nat Rev Genet. 24:382–400. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Rybstein MD, Bravo-San Pedro JM, Kroemer G and Galluzzi L: The autophagic network and cancer. Nat Cell Biol. 20:243–251. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Castellano BM, Thelen AM, Moldavski O, Feltes M, van der Welle RE, Mydock-McGrane L, Jiang X, van Eijkeren RJ, Davis OB, Louie SM, et al: Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science. 355:1306–1311. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Tian T, Zhang Z, Xie S, Yang J, Zhu L, Wang W, Shi C, Sang L, Guo K, et al: Long non-coding RNA SNHG6 couples cholesterol sensing with mTORC1 activation in hepatocellular carcinoma. Nat Metab. 4:1022–1040. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Podar K, Tai YT, Cole CE, Hideshima T, Sattler M, Hamblin A, Mitsiades N, Schlossman RL, Davies FE, Morgan GJ, et al: Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem. 278:5794–5801. 2003. View Article : Google Scholar | |
|
Vilimanovich U, Bosnjak M, Bogdanovic A, Markovic I, Isakovic A, Kravic-Stevovic T, Mircic A, Trajkovic V and Bumbasirevic V: Statin-mediated inhibition of cholesterol synthesis induces cytoprotective autophagy in human leukemic cells. Eur J Pharmacol. 765:415–428. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yi J, Zhu J, Wu J, Thompson CB and Jiang X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 117:31189–31197. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Zhao M, Bo T, Ma S, Yuan Z, Chen W, He Z, Hou X, Liu J, Zhang Z, et al: Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol. Cell Res. 29:151–166. 2019. View Article : Google Scholar : | |
|
Jun I, Choi YJ, Kim BR, Lee HK, Seo KY and Kim TI: Activation of the mTOR pathway enhances PPARγ/SREBP-mediated lipid synthesis in human meibomian gland epithelial cells. Sci Rep. 14:281182024. View Article : Google Scholar | |
|
Hsu JL, Leu WJ, Zhong NS and Guh JH: Autophagic activation and decrease of plasma membrane cholesterol contribute to anticancer activities in non-small cell lung cancer. Molecules. 26:59672021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong Y, Geng F, Mazik L, Yin X, Becker AP, Mohammed S, Su H, Xing E, Kou Y, Chiang CY, et al: Combinatorial targeting of glutamine metabolism and lysosomal-based lipid metabolism effectively suppresses glioblastoma. Cell Rep Med. 5:1017062024. View Article : Google Scholar : PubMed/NCBI | |
|
Ng MYW, Charsou C, Lapao A, Singh S, Trachsel-Moncho L, Schultz SW, Nakken S, Munson MJ and Simonsen A: The cholesterol transport protein GRAMD1C regulates autophagy initiation and mitochondrial bioenergetics. Nat Commun. 13:62832022. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Ye Z, Lu G, Yang N, Zhang J, Wang L, Cui J, Del Pozo MA, Wu Y, Xia D and Shen HM: Cholesterol-enriched membrane micro-domaindeficiency induces doxorubicin resistancevia promoting autophagy in breast cancer. Mol Ther Oncolytics. 23:311–329. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shao WQ, Zhu WW, Luo MJ, Fan MH, Li Q, Wang SH, Lin ZF, Zhao J, Zheng Y, Dong QZ, et al: Cholesterol suppresses GOLM1-dependent selective autophagy of RTKs in hepatocellular carcinoma. Cell Rep. 39:1107122022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Peng S and Zhang K: ARL4C depletion suppresses the resistance of ovarian cancer to carboplatin by disrupting cholesterol transport and autophagy via notch-RBP-Jκ-H3K4Me3-OSBPL5. Hum Exp Toxicol. 41:96032712211350642022. View Article : Google Scholar | |
|
McBrearty N, Cho C, Chen J, Zahedi F, Peck AR, Radaelli E, Assenmacher CA, Pavlak C, Devine A, Yu P, et al: Tumor-suppressive and immune-stimulating roles of cholesterol 25-hydroxylase in pancreatic cancer cells. Mol Cancer Res. 21:228–239. 2023. View Article : Google Scholar : | |
|
Liu C, Sun L, Niu N, Hou P, Chen G, Wang H, Zhang Z, Jiang X, Xu Q, Zhao Y, et al: Molecular classification of hormone receptor-positive/HER2-positive breast cancer reveals potential neoadjuvant therapeutic strategies. Signal Transduct Target Ther. 10:972025. View Article : Google Scholar | |
|
Leignadier J, Dalenc F, Poirot M and Silvente-Poirot S: Improving the efficacy of hormone therapy in breast cancer: The role of cholesterol metabolism in SERM-mediated autophagy, cell differentiation and death. Biochem Pharmacol. 144:18–28. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
de Medina P, Paillasse MR, Ségala G, Khallouki F, Brillouet S, Dalenc F, Courbon F, Record M, Poirot M and Silvente-Poirot S: Importance of cholesterol and oxysterols metabolism in the pharmacology of tamoxifen and other AEBS ligands. Chem Phys Lipids. 164:432–437. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mittal V: Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 13:395–412. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Hong W and Wei X: The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 15:1292022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang S, Wang X, Song D, Liu X, Gu Y, Xu Z, Wang X, Zhang X, Ye Q, Tong Z, et al: Cholesterol induces epithelial-to-mesenchymal transition of prostate cancer cells by suppressing degradation of EGFR through APMAP. Cancer Res. 79:3063–3075. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shapira KE, Ehrlich M and Henis YI: Cholesterol depletion enhances TGF-β Smad signaling by increasing c-Jun expression through a PKR-dependent mechanism. Mol Biol Cell. 29:2494–2507. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng S, Lin J, Pang Z, Zhang H, Wang Y, Ma L, Zhang H, Zhang X, Chen M, Zhang X, et al: Aberrant cholesterol metabolism and Wnt/β-catenin signaling coalesce via Frizzled5 in supporting cancer growth. Adv Sci (Weinh). 9:e22007502022. View Article : Google Scholar | |
|
Ehmsen S and Ditzel HJ: Signaling pathways essential for triple-negative breast cancer stem-like cells. Stem Cells. 39:133–143. 2021. View Article : Google Scholar | |
|
Wang XD, Kim C, Zhang Y, Rindhe S, Cobb MH and Yu Y: Cholesterol regulates the tumor adaptive resistance to MAPK pathway inhibition. J Proteome Res. 20:5379–5391. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Aguirre-Portolés C, Feliu J, Reglero G and Ramírez de Molina A: ABCA1 overexpression worsens colorectal cancer prognosis by facilitating tumour growth and caveolin-1-dependent invasiveness, and these effects can be ameliorated using the BET inhibitor apabetalone. Mol Oncol. 12:1735–1752. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhan J, Wang P, Li S, Song J, He H, Wang Y, Liu Z, Wang F, Bai H, Fang W, et al: HOXB13 networking with ABCG1/EZH2/Slug mediates metastasis and confers resistance to cisplatin in lung adenocarcinoma patients. Theranostics. 9:2084–2099. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bu L, Zhang Z, Chen J, Fan Y, Guo J, Su Y, Wang H, Zhang X, Wu X, Jiang Q, et al: High-fat diet promotes liver tumorigenesis via palmitoylation and activation of AKT. Gut. 73:1156–1168. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Dong J, Kong L, Wang S, Xia M, Zhang Y, Wu J, Yang F, Zuo S and Wei J: Oncolytic adenovirus encoding apolipoprotein A1 suppresses metastasis of triple-negative breast cancer in mice. J Exp Clin Cancer Res. 43:1022024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zhou Y, Huang M, Wang Z, Liu D, Liu J, Fu X, Yang S, Shan S, Yang L, et al: DHCR7 promotes tumorigenesis via activating PI3K/AKT/mTOR signalling pathway in bladder cancer. Cell Signal. 102:1105532023. View Article : Google Scholar | |
|
Wan S, He QY, Yang Y, Liu F, Zhang X, Guo X, Niu H, Wang Y, Liu YX, Ye WL, et al: SPARC stabilizes ApoE to induce cholesterol-dependent invasion and sorafenib resistance in hepatocellular carcinoma. Cancer Res. 84:1872–1888. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Tashiro J, Sugiura A, Warita T, Irie N, Dwi Cahyadi D, Ishikawa T and Warita K: CYP11A1 silencing suppresses HMGCR expression via cholesterol accumulation and sensitizes CRPC cell line DU-145 to atorvastatin. J Pharmacol Sci. 153:104–112. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gómez-López S, Alhendi ASN, Przybilla MJ, Bordeu I, Whiteman ZE, Butler T, Rouhani MJ, Kalinke L, Uddin I, Otter KEJ, et al: Aberrant basal cell clonal dynamics shape early lung carcinogenesis. Science. 388:eads91452025. View Article : Google Scholar : PubMed/NCBI | |
|
Lampropoulou DI, Papadimitriou M, Papadimitriou C, Filippou D, Kourlaba G, Aravantinos G and Gazouli M: The role of EMT-related lncRNAs in ovarian cancer. Int J Mol Sci. 24:100792023. View Article : Google Scholar : PubMed/NCBI | |
|
Warita K, Ishikawa T, Sugiura A, Tashiro J, Shimakura H, Hosaka YZ, Ohta KI, Warita T and Oltvai ZN: Concomitant attenuation of HMGCR expression and activity enhances the growth inhibitory effect of atorvastatin on TGF-β-treated epithelial cancer cells. Sci Rep. 11:127632021. View Article : Google Scholar | |
|
Xiao J, Wang S, Chen L, Ding X, Dang Y, Han M, Zheng Y, Shen H, Wu S, Wang M, et al: 25-Hydroxycholesterol regulates lysosome AMP kinase activation and metabolic reprogramming to educate immunosuppressive macrophages. Immunity. 57:1087–1104.e7. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Z, Xu Y, Shao B, Dang P, Hu S, Sun H, Chen C, Wang C, Liu J, Liu Y and Hu J: Exosomal circPOLQ promotes macrophage M2 polarization via activating IL-10/STAT3 axis in a colorectal cancer model. J Immunother Cancer. 12:e0084912024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Z, Guo L, Pan M, Jiang C, Liu D, Gao Y, Bai J, Jiang P and Liu X: Inhibition of pseudorabies virus replication via upregulated interferon response by targeting 7-dehydrocholesterol reductase. Vet Microbiol. 290:1100002024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, Wang Q, Yang M, Kalady MF, Qian J, et al: Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab. 30:143–156.e5. 2019. View Article : Google Scholar | |
|
Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, Meng X, Li L, Wang J, Xu C, et al: Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature. 531:651–655. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sugi T, Katoh Y, Ikeda T, Seta D, Iwata T, Nishio H, Sugawara M, Kato D, Katoh K, Kawana K, et al: SCD1 inhibition enhances the effector functions of CD8+ T cells via ACAT1-dependent reduction of esterified cholesterol. Cancer Sci. 115:48–58. 2024. View Article : Google Scholar | |
|
Xu H, Exner BG, Cramer DE, Tanner MK, Mueller YM and Ildstad ST: CD8(+), alphabeta-TCR(+), and gammadelta-TCR(+) cells in the recipient hematopoietic environment mediate resistance to engraftment of allogeneic donor bone marrow. J Immunol. 168:1636–1643. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Lü HZ, Zhu AY, Chen Y, Tang J and Li BQ: Formation and aggregation of lipid rafts in γδ T cells following stimulation with Mycobacterium tuberculosis antigens. Tohoku J Exp Med. 223:193–198. 2011. View Article : Google Scholar | |
|
Júnior RFA, Lira GA, Schomann T, Cavalcante RS, Vilar NF, de Paula RCM, Gomes RF, Chung CK, Jorquera-Cordero C, Vepris O, et al: Retinoic acid-loaded PLGA nanocarriers targeting cell cholesterol potentialize the antitumour effect of PD-L1 antibody by preventing epithelial-mesenchymal transition mediated by M2-TAM in colorectal cancer. Transl Oncol. 31:1016472023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Cao Y, Shen L, Xiao T, Cao R, Wei S, Tang M, Du L, Wu H, Wu B, et al: Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. Sci Adv. 8:eabq47222022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun S, Ma J, Zuo T, Shi J, Sun L, Meng C, Shu W, Yang Z, Yao H and Zhang Z: Inhibition of PCSK9: A promising enhancer for Anti-PD-1/PD-L1 immunotherapy. Research (Wash D C). 7:04882024.PubMed/NCBI | |
|
Ma X, Bi E, Huang C, Lu Y, Xue G, Guo X, Wang A, Yang M, Qian J, Dong C and Yi Q: Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity. J Exp Med. 215:1555–1569. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bai Y, Li T, Wang Q, You W, Yang H, Xu X, Li Z, Zhang Y, Yan C, Yang L, et al: Shaping immune landscape of colorectal cancer by cholesterol metabolites. EMBO Mol Med. 16:334–360. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Baek AE, Yu YA, He S, Wardell SE, Chang CY, Kwon S, Pillai RV, McDowell HB, Thompson JW, Dubois LG, et al: The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun. 8:8642017. View Article : Google Scholar : PubMed/NCBI | |
|
Bruckner M, Dickel D, Singer E and Legler DF: Converse regulation of CCR7-driven human dendritic cell migration by prostaglandin E2 and liver X receptor activation. Eur J Immunol. 42:2949–2958. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kitahara CM, Berrington de González A, Freedman ND, Huxley R, Mok Y, Jee SH and Samet JM: Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol. 29:1592–1598. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mondul AM, Clipp SL, Helzlsouer KJ and Platz EA: Association between plasma total cholesterol concentration and incident prostate cancer in the CLUE II cohort. Cancer Causes Control. 21:61–68. 2010. | |
|
Nielsen SF, Nordestgaard BG and Bojesen SE: Statin use and reduced cancer-related mortality. N Engl J Med. 367:1792–1802. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Q, Liu W, Xu S and Sun L: Associations of preoperative serum high-density lipoprotein cholesterol and low-density lipoprotein cholesterol levels with the prognosis of ovarian cancer. Arch Gynecol Obstet. 305:683–691. 2022. View Article : Google Scholar | |
|
Penet MF, Krishnamachary B, Wildes FB, Mironchik Y, Hung CF, Wu TC and Bhujwalla ZM: Ascites volumes and the ovarian cancer microenvironment. Front Oncol. 8:5952018. View Article : Google Scholar | |
|
Lu L, Katsaros D, Wiley A, Rigault de la Longrais IA, Puopolo M and Yu H: Expression of MDR1 in epithelial ovarian cancer and its association with disease progression. Oncol Res. 16:395–403. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Mentella MC, Scaldaferri F, Ricci C, Gasbarrini A and Miggiano GAD: Cancer and mediterranean diet: A review. Nutrients. 11:20592019. View Article : Google Scholar : PubMed/NCBI | |
|
Mittelman SD: The role of diet in cancer prevention and chemotherapy efficacy. Annu Rev Nutr. 40:273–297. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nencioni A, Caffa I, Cortellino S and Longo VD: Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 18:707–719. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Yang L, Zhang D and Jiang W: Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer. Nutr Res. 36:627–635. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bandera EV, Kushi LH, Moore DF, Gifkins DM and McCullough ML: Dietary lipids and endometrial cancer: The current epidemiologic evidence. Cancer Causes Control. 18:687–703. 2007.PubMed/NCBI | |
|
Yang H, Wang F, Hallemeier CL, Lerut T and Fu J: Oesophageal cancer. Lancet. 404:1991–2005. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Yang T, Li D and Ding W: Effect of dietary cholesterol intake on the risk of esophageal cancer: A meta-analysis. J Int Med Res. 47:4059–4068. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang QL, Khil J, Hong S, Lee DH, Ha KH, Keum N, Kim HC and Giovannucci EL: Temporal association of total serum cholesterol and pancreatic cancer incidence. Nutrients. 14:49382022. View Article : Google Scholar : PubMed/NCBI | |
|
Di Maso M, Augustin LSA, Jenkins DJA, Crispo A, Toffolutti F, Negri E, La Vecchia C, Ferraroni M and Polesel J: Adherence to a cholesterol-lowering diet and the risk of pancreatic cancer: A case-control study. Nutrients. 16:25082024. View Article : Google Scholar : PubMed/NCBI | |
|
Hu J, La Vecchia C, de Groh M, Negri E, Morrison H and Mery L; Canadian Cancer Registries Epidemiology Research Group: Dietary cholesterol intake and cancer. Ann Oncol. 23:491–500. 2012. View Article : Google Scholar | |
|
Rice MS, Poole EM, Willett WC and Tworoger SS: Adult dietary fat intake and ovarian cancer risk. Int J Cancer. 146:2756–2772. 2020. View Article : Google Scholar : | |
|
Chlebowski RT, Anderson GL, Manson JE, Prentice RL, Aragaki AK, Snetselaar L, Beresford SAA, Kuller LH, Johnson K, Lane D, et al: Low-fat dietary pattern and cancer mortality in the women's health initiative (WHI) randomized controlled trial. JNCI Cancer Spectr. 2:pky0652019. View Article : Google Scholar : PubMed/NCBI | |
|
Lin X, Liu L, Fu Y, Gao J, He Y, Wu Y and Lian X: Dietary cholesterol intake and risk of lung cancer: A meta-analysis. Nutrients. 10:1852018. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Zheng W, Sellers TA, Kushi LH, Bostick RM and Potter JD: Dietary cholesterol, fat, and lung cancer incidence among older women: The Iowa women's health study (United States). Cancer Causes Control. 5:395–400. 1994.PubMed/NCBI | |
|
Habis M, Wroblewski K, Bradaric M, Ismail N, Yamada SD, Litchfield L, Lengyel E and Romero IL: Statin therapy is associated with improved survival in patients with non-serous-papillary epithelial ovarian cancer: A retrospective cohort analysis. PLoS One. 9:e1045212014. View Article : Google Scholar : PubMed/NCBI | |
|
Iyengar NM, Gucalp A, Dannenberg AJ and Hudis CA: Obesity and cancer mechanisms: Tumor microenvironment and inflammation. J Clin Oncol. 34:4270–4276. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yan P and Zhao D: Association between serum total cholesterol and the development of gastric cancer: A two-way two-sample Mendelian randomization study. Medicine (Baltimore). 103:e389002024. View Article : Google Scholar : PubMed/NCBI | |
|
Gruenbacher G and Thurnher M: Mevalonate metabolism in immuno-oncology. Front Immunol. 8:17142017. View Article : Google Scholar : PubMed/NCBI | |
|
Madan B, Virshup DM, Nes WD and Leaver DJ: Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol. 196:1146112022. View Article : Google Scholar | |
|
Murto MO, Simolin N, Arponen O, Siltari A, Artama M, Visvanathan K, Jukkola A and Murtola TJ: Statin use, cholesterol level, and mortality among females with breast cancer. JAMA Netw Open. 6:e23438612023. View Article : Google Scholar : PubMed/NCBI | |
|
Kansal V, Burnham AJ, Kinney BLC, Saba NF, Paulos C, Lesinski GB, Buchwald ZS and Schmitt NC: Statin drugs enhance responses to immune checkpoint blockade in head and neck cancer models. J Immunother Cancer. 11:e0059402023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Wu K, Chan AT, Meyerhardt JA and Giovannucci EL: Long-term statin use, total cholesterol level, and risk of colorectal cancer: A prospective cohort study. Am J Gastroenterol. 117:158–166. 2022. View Article : Google Scholar : | |
|
Morote J, Celma A, Planas J, Placer J, de Torres I, Olivan M, Carles J, Reventós J and Doll A: Role of serum cholesterol and statin use in the risk of prostate cancer detection and tumor aggressiveness. Int J Mol Sci. 15:13615–13623. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hillis AL, Martin TD, Manchester HE, Högström J, Zhang N, Lecky E, Kozlova N, Lee J, Persky NS, Root DE, et al: Targeting cholesterol biosynthesis with statins synergizes with AKT inhibitors in triple-negative breast cancer. Cancer Res. 84:3250–3266. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Trotta F, Avena P, Chimento A, Rago V, De Luca A, Sculco S, Nocito MC, Malivindi R, Fallo F, Pezzani R, et al: Statins reduce intratumor cholesterol affecting adrenocortical cancer growth. Mol Cancer Ther. 19:1909–1921. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu W, Su W, Xu J, Liang M, Ma X, Xue P, Kang Y, Sun ZJ and Xu Z: Immunomodulatory-photodynamic nanostimulators for invoking pyroptosis to augment tumor immunotherapy. Adv Healthc Mater. 11:e22012332022. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen TTT, Ishida CT, Shang E, Shu C, Torrini C, Zhang Y, Bianchetti E, Sanchez-Quintero MJ, Kleiner G, Quinzii CM, et al: Activation of LXRβ inhibits tumor respiration and is synthetically lethal with Bcl-xL inhibition. EMBO Mol Med. 11:e107692019. View Article : Google Scholar | |
|
Nguyen TTT, Ishida CT, Shang E, Shu C, Bianchetti E, Karpel-Massler G and Siegelin MD: Activation of LXR receptors and inhibition of TRAP1 causes synthetic lethality in solid tumors. Cancers (Basel). 11:7882019. View Article : Google Scholar : PubMed/NCBI | |
|
Cai J, Ye Z, Hu Y, Ye L, Gao L, Wang Y, Sun Q, Tong S, Zhang S, Wu L, et al: Fatostatin induces ferroptosis through inhibition of the AKT/mTORC1/GPX4 signaling pathway in glioblastoma. Cell Death Dis. 14:2112023. View Article : Google Scholar : PubMed/NCBI | |
|
Gao S, Shi Z, Li X, Li W, Wang Y, Liu Z and Jiang J: Fatostatin suppresses growth and enhances apoptosis by blocking SREBP-regulated metabolic pathways in endometrial carcinoma. Oncol Rep. 39:1919–1929. 2018.PubMed/NCBI | |
|
Lee HJ, Li J, Vickman RE, Li J, Liu R, Durkes AC, Elzey BD, Yue S, Liu X, Ratliff TL and Cheng JX: Cholesterol esterification inhibition suppresses prostate cancer metastasis by impairing the Wnt/β-catenin pathway. Mol Cancer Res. 16:974–985. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li L, Chu F, Wu H, Xiao X, Ye J and Li K: Itraconazole inhibits tumor growth via CEBPB-mediated glycolysis in colorectal cancer. Cancer Sci. 115:1154–1169. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Aftab BT, Dobromilskaya I, Liu JO and Rudin CM: Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer. Cancer Res. 71:6764–6772. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Link F, Han M, Chaudhary R, Asimakopoulos A, Liebe R, Yao Y, Hammad S, Dropmann A, Krizanac M, et al: The interplay of TGF-β1 and cholesterol orchestrating hepatocyte cell fate, EMT, and signals for HSC activation. Cell Mol Gastroenterol Hepatol. 17:567–587. 2024. View Article : Google Scholar | |
|
Wang Y, Zhou X, Lei Y, Chu Y, Yu X, Tong Q, Zhu T, Yu H, Fang S, Li G, et al: NNMT contributes to high metastasis of triple negative breast cancer by enhancing PP2A/MEK/ERK/c-Jun/ABCA1 pathway mediated membrane fluidity. Cancer Lett. 547:2158842022. View Article : Google Scholar : PubMed/NCBI | |
|
Brindisi M, Frattaruolo L, Fiorillo M, Dolce V, Sotgia F, Lisanti MP and Cappello AR: New insights into cholesterol-mediated ERRα activation in breast cancer progression and pro-tumoral microenvironment orchestration. FEBS J. 290:1481–1501. 2023. View Article : Google Scholar | |
|
Jin H, He Y, Zhao P, Hu Y, Tao J, Chen J and Huang Y: Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics. 9:265–278. 2019. View Article : Google Scholar : | |
|
Gao CQ, Chu ZZ, Zhang D, Xiao Y, Zhou XY, Wu JR, Yuan H, Jiang YC, Chen D, Zhang JC, et al: Serine/threonine kinase TBK1 promotes cholangiocarcinoma progression via direct regulation of β-catenin. Oncogene. 42:1492–1507. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wen Q, Xie X, Chen C, Wen B, Liu Y, Zhou J, Lin X, Jin H and Shi K: Lipid reprogramming induced by the NNMT-ABCA1 axis enhanced membrane fluidity to promote endometrial cancer progression. Aging (Albany NY). 15:11860–11874. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dong G, Huang X, Jiang S, Ni L, Ma L, Zhu C and Chen S: SCAP mediated GDF15-induced invasion and EMT of esophageal cancer. Front Oncol. 10:5647852020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Zhang Q, Dai X, Chen X, Zhang C, Bai R, Chen Y, Zhang K, Duan X, Qiao Y, et al: PGC-1α promotes colorectal carcinoma metastasis through regulating ABCA1 transcription. Oncogene. 42:2456–2470. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Qin WH, Yang ZS, Li M, Chen Y, Zhao XF, Qin YY, Song JQ, Wang BB, Yuan B, Cui XL, et al: High serum levels of cholesterol increase antitumor functions of nature killer Cells and reduce growth of liver tumors in mice. Gastroenterology. 158:1713–1727. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Esposito G, Augustin LSA, Jenkins DJA, Ferraroni M, Parazzini F, Crispo A, Dal Maso L, Negri E, La Vecchia C, Polesel J and Di Maso M: Adherence to a cholesterol-lowering diet and the risk of female hormone-related cancers: An analysis from a case-control study network. BJOG. 132:1791–1801. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Furberg AS, Veierød MB, Wilsgaard T, Bernstein L and Thune I: Serum high-density lipoprotein cholesterol, metabolic profile, and breast cancer risk. J Natl Cancer Inst. 96:1152–1160. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Di Maso M, Dal Maso L, Augustin LSA, Puppo A, Falcini F, Stocco C, Mattioli V, Serraino D and Polesel J: Adherence to the mediterranean diet and mortality after breast cancer. Nutrients. 12:36492020. View Article : Google Scholar : PubMed/NCBI | |
|
Maddineni G, Xie JJ, Brahmbhatt B and Mutha P: Diet and carcinogenesis of gastric cancer. Curr Opin Gastroenterol. 38:588–591. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bidoli E, La Vecchia C, Montella M, Maso LD, Conti E, Negri E, Scarabelli C, Carbone A, Decarli A and Franceschi S: Nutrient intake and ovarian cancer: An Italian case-control study. Cancer Causes Control. 13:255–261. 2002.PubMed/NCBI | |
|
Quan L, Liu Y, Cui W, Wang X, Zhang W, Wang Z, Guo C, Lu C, Hu F and Chen X: The associations between serum high-density lipoprotein cholesterol levels and malignant behavior in pancreatic neuroendocrine neoplasms. Lipids Health Dis. 21:582022. View Article : Google Scholar : PubMed/NCBI | |
|
de Martino M, Leitner CV, Seemann C, Hofbauer SL, Lucca I, Haitel A, Shariat SF and Klatte T: Preoperative serum cholesterol is an independent prognostic factor for patients with renal cell carcinoma (RCC). BJU Int. 115:397–404. 2015. View Article : Google Scholar | |
|
Li L, Yu Z, Ren J and Niu T: Low cholesterol levels are associated with increasing risk of plasma cell neoplasm: A UK biobank cohort study. Cancer Med. 12:20964–20975. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Tang H, Lu S, Sun X and Rao B: Relationship between serum lipid level and colorectal cancer: A systemic review and meta-analysis. BMJ Open. 12:e0523732022. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan F, Wen W, Jia G, Long J, Shu XO and Zheng W: Serum lipid profiles and cholesterol-lowering medication use in relation to subsequent risk of colorectal cancer in the UK biobank cohort. Cancer Epidemiol Biomarkers Prev. 32:524–530. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Karayama M, Inui N, Inoue Y, Yoshimura K, Mori K, Hozumi H, Suzuki Y, Furuhashi K, Fujisawa T, Enomoto N, et al: Increased serum cholesterol and long-chain fatty acid levels are associated with the efficacy of nivolumab in patients with non-small cell lung cancer. Cancer Immunol Immunother. 71:203–217. 2022. View Article : Google Scholar : | |
|
Narii N, Zha L, Komatsu M, Kitamura T, Sobue T and Ogawa T: Cholesterol and breast cancer risk: A cohort study using health insurance claims and health checkup databases. Breast Cancer Res Treat. 199:315–322. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Zhang D, Sima X, Fu Y, Zeng H, Hu Z, Hou J, Pan Y, Zhang Y, Zhou Z, et al: Levels of pretreatment serum lipids predict responses to PD-1 inhibitor treatment in advanced intrahepatic cholangiocarcinoma. Int Immunopharmacol. 115:1096872023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang F, Li S, Wang X, Wang C, Pan X, Chen X, Zhang W and Hong J: Serum lipids concentration on prognosis of high-grade glioma. Cancer Causes Control. 34:801–811. 2023.PubMed/NCBI | |
|
Min J, Wu Y, Huang S, Li Y, Lv X, Tang R, Zhao H and Wang J: Serum cholesterol level as a predictive biomarker for prognosis of neuroblastoma. BMC Pediatr. 24:2052024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Li Y, Wang Y, Hu S, Liu Y, Liang X, Chen ZJ, Zhang Y and Zhao H: Genetic associations of metabolic factors and therapeutic drug targets with polycystic ovary syndrome. J Adv Res. 75:581–590. 2025. View Article : Google Scholar | |
|
Qian L, Qian B, Xu J, Yang J, Wu G, Zhao Y, Liu Q, Yuan Z, Fan Y and Li H: Clinical relevance of serum lipids in the carcinogenesis of oral squamous cell carcinoma. BMC Oral Health. 23:2002023. View Article : Google Scholar : PubMed/NCBI | |
|
Leeper H, Viall A, Ruaux C and Bracha S: Preliminary evaluation of serum total cholesterol concentrations in dogs with osteosarcoma. J Small Anim Pract. 58:562–569. 2017. View Article : Google Scholar : PubMed/NCBI |