|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI
|
|
2
|
Cao W, Chen HD, Yu YW, Li N and Chen WQ:
Changing profiles of cancer burden worldwide and in China: A
secondary analysis of the global cancer statistics 2020. Chin Med J
(Engl). 134:783–791. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bullock AJ, Schlechter BL, Fakih MG,
Tsimberidou AM, Grossman JE, Gordon MS, Wilky BA, Pimentel A,
Mahadevan D, Balmanoukian AS, et al: Botensilimab plus balstilimab
in relapsed/refractory microsatellite stable metastatic colorectal
cancer: A phase 1 trial. Nat Med. 30:2558–2567. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tripathi PK, Mittal KR, Jain N, Sharma N
and Jain CK: KRAS pathways: A potential gateway for cancer
therapeutics and diagnostics. Recent Pat Anticancer Drug Discov.
19:268–279. 2024. View Article : Google Scholar
|
|
5
|
Capdevila J, Elez E, Peralta S, Macarulla
T, Ramos FJ and Tabernero J: Oxaliplatin-based chemotherapy in the
management of colorectal cancer. Expert Rev Anticancer Ther.
8:1223–1236. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sargent D, Sobrero A, Grothey A, O'Connell
MJ, Buyse M, Andre T, Zheng Y, Green E, Labianca R, O'Callaghan C,
et al: Evidence for cure by adjuvant therapy in colon cancer:
Observations based on individual patient data from 20,898 patients
on 18 randomized trials. J Clin Oncol. 27:872–877. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zeng K, Li W, Wang Y, Zhang Z, Zhang L,
Zhang W, Xing Y and Zhou C: Inhibition of CDK1 overcomes
oxaliplatin resistance by regulating ACSL4-mediated ferroptosis in
colorectal cancer. Adv Sci (Weinh). 10:e23010882023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Li Y, Gan Y, Liu J, Li J, Zhou Z, Tian R,
Sun R, Liu J, Xiao Q, Li Y, et al: Downregulation of MEIS1 mediated
by ELFN1-AS1/EZH2/DNMT3a axis promotes tumorigenesis and
oxaliplatin resistance in colorectal cancer. Signal Transduct
Target Ther. 7:872022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Abdul Razak AR, Mau-Soerensen M, Gabrail
NY, Gerecitano JF, Shields AF, Unger TJ, Saint-Martin JR, Carlson
R, Landesman Y, McCauley D, et al: First-in-class, first-in-human
phase I study of selinexor, a selective inhibitor of nuclear
export, in patients with advanced solid tumors. J Clin Oncol.
34:4142–4150. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ben-Barouch S and Kuruvilla J: Selinexor
(KTP-330)-a selective inhibitor of nuclear export (SINE):
Anti-tumor activity in diffuse large B-cell lymphoma (DLBCL).
Expert Opin Investig Drugs. 29:15–21. 2020. View Article : Google Scholar
|
|
11
|
Ferreiro-Neira I, Torres NE, Liesenfeld
LF, Chan CH, Penson T, Landesman Y, Senapedis W, Shacham S, Hong TS
and Cusack JC: XPO1 inhibition enhances radiation response in
preclinical models of rectal cancer. Clin Cancer Res. 22:1663–1673.
2016. View Article : Google Scholar
|
|
12
|
Inoue A, Robinson FS, Minelli R, Tomihara
H, Rizi BS, Rose JL, Kodama T, Srinivasan S, Harris AL, Zuniga AM,
et al: Sequential administration of XPO1 and ATR inhibitors
enhances therapeutic response in TP53-mutated colorectal cancer.
Gastroenterology. 161:196–210. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Quintanal-Villalonga A, Taniguchi H, Hao
Y, Chow A, Zhan YA, Chavan SS, Uddin F, Allaj V, Manoj P, Shah NS,
et al: Inhibition of XPO1 sensitizes small cell lung cancer to
first- and second-line chemotherapy. Cancer Res. 82:472–483. 2022.
View Article : Google Scholar :
|
|
14
|
Chen Y, Camacho SC, Silvers TR, Razak AR,
Gabrail NY, Gerecitano JF, Kalir E, Pereira E, Evans BR, Ramus SJ,
et al: Inhibition of the nuclear export receptor XPO1 as a
therapeutic target for platinum-resistant ovarian cancer. Clinical
Cancer Research. 23:1552–1563. 2017. View Article : Google Scholar
|
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
|
16
|
Zhou J, Lei Z, Chen J, Liao S, Chen Y, Liu
C, Huang S, Li L, Zhang Y, Wang P, et al: Nuclear export of BATF2
enhances colorectal cancer proliferation through binding to CRM1.
Clin Transl Med. 13:e12602023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Azmi AS, Kauffman M, McCauley D, Shacham S
and Mohammad RM: Novel small-molecule CRM-1 inhibitor for GI cancer
therapy. J Clin Oncol. 30(suppl 4): abstr 245. 2012. View Article : Google Scholar
|
|
18
|
Chiu SJ, Lee YJ, Hsu TS and Chen WS:
Oxaliplatin-induced gamma-H2AX activation via both p53-dependent
and -independent pathways but is not associated with cell cycle
arrest in human colorectal cancer cells. Chem Biol Interact.
182:173–182. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Schmidt AK, Pudelko K, Boekenkamp JE,
Berger K, Kschischo M and Bastians H: The p53/p73-p21(CIP1) tumor
suppressor axis guards against chromosomal instability by
restraining CDK1 in human cancer cells. Oncogene. 40:436–451. 2021.
View Article : Google Scholar
|
|
20
|
Martinez-Balibrea E, Martinez-Cardus A,
Gines A, Ruiz de Porras V, Moutinho C, Layos L, Manzano JL, Bugés
C, Bystrup S, Esteller M and Abad A: Tumor-related molecular
mechanisms of oxaliplatin resistance. Mol Cancer Ther.
14:1767–1776. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yapasert R, Khaw-On P and Banjerdpongchai
R: Coronavirus Infection-associated cell death signaling and
potential therapeutic targets. Molecules. 26:74592021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Arango D, Wilson AJ, Shi Q, Corner GA,
Arañes MJ, Nicholas C, Lesser M, Mariadason JM and Augenlicht LH:
Molecular mechanisms of action and prediction of response to
oxaliplatin in colorectal cancer cells. Br J Cancer. 91:1931–1946.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xu X, Lai Y and Hua ZC: Apoptosis and
apoptotic body: Disease message and therapeutic target potentials.
Biosci Rep. 39:BSR201809922019. View Article : Google Scholar :
|
|
24
|
Stockwell BR, Friedmann Angeli JP, Bayir
H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK,
Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking
metabolism, redox biology, and disease. Cell. 171:273–285. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang C, Zhang Y, Lin S, Liu Y and Li W:
Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces
ferroptosis and enhances the sensitivity of colorectal cancer to
oxaliplatin. Aging (Albany NY). 13:13515–13534. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lin JF, Hu PS, Wang YY, Tan YT, Yu K, Liao
K, Wu QN, Li T, Meng Q, Lin JZ, et al: Phosphorylated NFS1 weakens
oxaliplatin-based chemosensitivity of colorectal cancer by
preventing PANoptosis. Signal Transduct Target Ther. 7:542022.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Di Y, Zhang X, Wen X, Qin J, Ye L, Wang Y,
Song M, Wang Z and He W: MAPK Signaling-mediated RFNG
phosphorylation and nuclear translocation restrain
oxaliplatin-induced apoptosis and ferroptosis. Adv Sci (Weinh).
11:e24027952024. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang Z, Zhan Y, Xu J, Wang Y, Sun M, Chen
J, Liang T, Wu L and Xu K: β-Sitosterol reverses multidrug
resistance via BCRP suppression by inhibiting the p53-MDM2
interaction in colorectal cancer. J Agric Food Chem. 68:3850–3858.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
O'Brate A and Giannakakou P: The
importance of p53 location: Nuclear or cytoplasmic zip code? Drug
Resist Updat. 6:313–322. 2003. View Article : Google Scholar
|
|
30
|
Kanemitsu Y, Shimizu Y, Mizusawa J, Inaba
Y, Hamaguchi T, Shida D, Ohue M, Komori K, Shiomi A, Shiozawa M, et
al: Hepatectomy followed by mFOLFOX6 versus hepatectomy alone for
liver-only metastatic colorectal cancer (JCOG0603): A phase II or
III randomized controlled trial. J Clin Oncol. 39:3789–3799. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Luo S, Yue M, Wang D, Lu Y, Wu Q and Jiang
J: Breaking the barrier: Epigenetic strategies to combat platinum
resistance in colorectal cancer. Drug Resist Updat. 77:1011522024.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kau TR, Way JC and Silver PA: Nuclear
transport and cancer: From mechanism to intervention. Nat Rev
Cancer. 4:106–117. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lai C, Xu L and Dai S: The nuclear export
protein exportin-1 in solid malignant tumours: From biology to
clinical trials. Clin Transl Med. 14:e16842024. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Turner JG, Dawson JL, Grant S, Shain KH,
Dalton WS, Dai Y, Meads M, Baz R, Kauffman M, Shacham S and
Sullivan DM: Treatment of acquired drug resistance in multiple
myeloma by combination therapy with XPO1 and topoisomerase II
inhibitors. J Hematol Oncol. 9:732016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Saenz-Ponce N, Pillay R, de Long LM,
Kashyap T, Argueta C, Landesman Y, Hazar-Rethinam M, Boros S,
Panizza B, Jacquemyn M, et al: Targeting the XPO1-dependent nuclear
export of E2F7 reverses anthracycline resistance in head and neck
squamous cell carcinomas. Sci Transl Med. 10:eaar72232018.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kim J, McMillan E, Kim HS, Venkateswaran
N, Makkar G, Rodriguez-Canales J, Villalobos P, Neggers JE,
Mendiratta S, Wei S, et al: XPO1-dependent nuclear export is a
druggable vulnerability in-mutant lung cancer. Nature. 538:114–117.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Oren M and Rotter V: Mutant p53
gain-of-function in cancer. Cold Spring Harb Perspect Biol.
2:a0011072010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Toscano F, Parmentier B, Fajoui ZE,
Estornes Y, Chayvialle JA, Saurin JC and Abello J: p53 dependent
and independent sensitivity to oxaliplatin of colon cancer cells.
Biochem Pharmacol. 74:392–406. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Nishitsuji K, Mito R, Ikezaki M, Yano H,
Fujiwara Y, Matsubara E, Nishikawa T, Ihara Y, Uchimura K, Iwahashi
N, et al: Impacts of cytoplasmic p53 aggregates on the prognosis
and the transcriptome in lung squamous cell carcinoma. Cancer Sci.
115:2947–2960. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Komlodi-Pasztor E, Trostel S, Sackett D,
Poruchynsky M and Fojo T: Impaired p53 binding to importin: A novel
mechanism of cytoplasmic sequestration identified in
oxaliplatin-resistant cells. Oncogene. 28:3111–3120. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Prokocimer M and Peller S: Cytoplasmic
sequestration of wild-type p53 in a patient with therapy-related
resistant AML: First report. Med Oncol. 29:1148–1150. 2012.
View Article : Google Scholar
|
|
42
|
Fang J, Zou M, Yang M, Cui Y, Pu R and
Yang Y: TAF15 inhibits p53 nucleus translocation and promotes HCC
cell 5-FU resistance via post-transcriptional regulation of UBE2N.
J Physiol Biochem. 80:919–933. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang Z, Pan B, Yao Y, Qiu J, Zhang X, Wu X
and Tang N: XPO1 intensifies sorafenib resistance by stabilizing
acetylation of NPM1 and enhancing epithelial-mesenchymal transition
in hepatocellular carcinoma. Biomed Pharmacother. 160:1144022023.
View Article : Google Scholar : PubMed/NCBI
|