You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
IDF Diabetes Atlas 11th Edition 2025. The International Diabetes Federation; 2025 | |
|
Karamanou M, Protogerou A, Tsoucalas G, Androutsos G and Poulakou-Rebelakou E: Milestones in the history of diabetes mellitus: The main contributors. World J Diabetes. 7:1–7. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Ley SH and Hu FB: Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 14:88–98. 2018. View Article : Google Scholar | |
|
Roden M and Shulman GI: The integrative biology of type 2 diabetes. Nature. 576:51–60. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Holst JJ and Orskov C: Incretin hormones-an update. Scand J Clin Lab Invest Suppl. 234:75–85. 2001. | |
|
Kwak SH and Park KS: Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med. 48:e2202016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Ding Y, Tanaka Y and Zhang W: Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 11:1185–1200. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tan MH: α-Glucosidase inhibitors in the treatment of diabetes. Curr Opin Endocrinol Diabetes Obesity. 4:48–55. 1997. View Article : Google Scholar | |
|
Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K, et al: Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne). 8:62017. View Article : Google Scholar : PubMed/NCBI | |
|
Nauck MA, Wefers J and Meier JJ: Treatment of type 2 diabetes: Challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol. 9:525–544. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenstock J, Bajaj HS, Lingvay I and Heller SR: Clinical perspectives on the frequency of hypoglycemia in treat-to-target randomized controlled trials comparing basal insulin analogs in type 2 diabetes: A narrative review. BMJ Open Diabetes Res Care. 12:e0039302024. View Article : Google Scholar : PubMed/NCBI | |
|
Malakar S, Singh SK and Usman K: Optimizing blood pressure management in type 2 Diabetes: A comparative investigation of One-time versus periodic lifestyle modification counseling. Cureus. 16:e616072024.PubMed/NCBI | |
|
Pitak P, Tasai S, Kumpat N, Na Songkla P, Fuangchan A, Krass I and Dhippayom T: The prevalence of glycemic control in patients with type 2 diabetes treated with insulin: A systematic review and meta-analysis. Public Health. 225:218–228. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wei S, Binbin L, Yuan W, Zhong Z, Donghai L and Caihua H: β-Hydroxybutyrate in Cardiovascular diseases: A minor metabolite of great expectations. Front Mol Biosci. 9:8236022022. View Article : Google Scholar | |
|
Holmes E, Wilson ID and Nicholson JK: Metabolic phenotyping in health and disease. Cell. 134:714–717. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wishart DS: Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev. 99:1819–1875. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu D, Wang L, Gao H, Wang Z, Li K, Ma X, Zhao L and Xiao W: Aerobic exercise delays Age-related sarcopenia in mice via alleviating imbalance in mitochondrial quality control. Metabolites. 15:4722025. View Article : Google Scholar : PubMed/NCBI | |
|
Ge Z, Chen C, Chen J, Jiang Z, Chen L, Wei Y, Chen H, He L, Zou Y, Long X, et al: Gut Microbiota-derived 3-Hydroxybutyrate blocks GPR43-mediated IL6 signaling to ameliorate radiation proctopathy. Adv Sci (Weinh). 11:e23062172024. View Article : Google Scholar : PubMed/NCBI | |
|
Li K, Wang WH, Wu JB and Xiao WH: β-hydroxybutyrate: A crucial therapeutic target for diverse liver diseases. Biomed Pharmacother. 165:1151912023. View Article : Google Scholar | |
|
Huang M, Yu Y, Tang X, Dong R, Li X, Li F, Jin Y, Gong S, Wang X, Zeng Z, et al: 3-Hydroxybutyrate ameliorates sepsis-associated acute lung injury by promoting autophagy through the activation of GPR109α in macrophages. Biochem Pharmacol. 213:1156322023. View Article : Google Scholar | |
|
Mishima M, Takeda S, Nagane M, Suzuki T, Ogata M, Shima A, Aihara N, Kamiie J, Suzuki R, Mizugaki H, et al: Prebiotic effect of poly-D-3-hydroxybutyrate prevents dyslipidemia in obese mice. FASEB J. 37:e231212023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li Z, Liu X, Chen X, Zhang S, Chen Y, Chen J, Chen J, Wu F and Chen GQ: 3-Hydroxybutyrate ameliorates insulin resistance by inhibiting PPARγ Ser273 phosphorylation in type 2 diabetic mice. Signal Transduct Target Ther. 8:1902023. View Article : Google Scholar | |
|
Zhou J, Lu Y, Jia Y, Lu J, Jiang Z and Chen K: Ketogenic diet ameliorates lipid dysregulation in type 2 diabetic mice by downregulating hepatic pescadillo 1. Mol Med. 28:12022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Z, Zhong F, Hou M, Xie J, Zhang AZ, Li X, Li Y, Chang B and Yang J: Key enzyme in charge of ketone reabsorption of renal tubular SMCT1 may be a new target in diabetic kidney disease. Nephrol Dial Transplant. 38:2754–2766. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Nishitani S, Fukuhara A, Shin J, Okuno Y, Otsuki M and Shimomura I: Metabolomic and microarray analyses of adipose tissue of dapagliflozin-treated mice, and effects of 3-hydroxybutyrate on induction of adiponectin in adipocytes. Sci Rep. 8:88052018. View Article : Google Scholar : PubMed/NCBI | |
|
Puchalska P, Nelson AB, Stagg DB and Crawford PA: Determination of ketone bodies in biological samples via rapid UPLC-MS/MS. Talanta. 225:1220482021. View Article : Google Scholar : PubMed/NCBI | |
|
Newman JC and Verdin E: β-Hydroxybutyrate: A signaling metabolite. Annu Rev Nutr. 37:51–76. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
McGarry JD and Foster DW: Ketogenesis and its regulation. Am J Med. 61:9–13. 1976. View Article : Google Scholar : PubMed/NCBI | |
|
Guzmán M and Blázquez C: Is there an astrocyte-neuron ketone body shuttle? Trends Endocrinol Metab. 12:169–173. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Silva B, Mantha OL, Schor J, Pascual A, Plaçais PY, Pavlowsky A and Preat T: Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation. Nat Metab. 4:213–224. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang D, Yang H, Kong X, Wang K, Mao X, Yan X, Wang Y, Liu S, Zhang X, Li J, et al: Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes. Am J Physiol Endocrinol Metab. 300:E287–E295. 2011. View Article : Google Scholar | |
|
El Azzouny M, Longacre MJ, Ansari IH, Kennedy RT, Burant CF and MacDonald MJ: Knockdown of ATP citrate lyase in pancreatic beta cells does not inhibit insulin secretion or glucose flux and implicates the acetoacetate pathway in insulin secretion. Mol Metab. 5:980–987. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Adijanto J, Du J, Moffat C, Seifert EL, Hurle JB and Philp NJ: The retinal pigment epithelium utilizes fatty acids for ketogenesis. J Biol Chem. 289:20570–20582. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Reyes-Reveles J, Dhingra A, Alexander D, Bragin A, Philp NJ and Boesze-Battaglia K: Phagocytosis-dependent ketogenesis in retinal pigment epithelium. J Biol Chem. 292:8038–8047. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Grabacka MM, Wilk A, Antonczyk A, Banks P, Walczyk-Tytko E, Dean M, Pierzchalska M and Reiss K: Fenofibrate induces ketone body production in melanoma and glioblastoma cells. Front Endocrinol (Lausanne). 7:52016. View Article : Google Scholar : PubMed/NCBI | |
|
Venable AH, Lee LE, Feola K, Santoyo J, Broomfield T and Huen SC: Fasting-induced HMGCS2 expression in the kidney does not contribute to circulating ketones. Am J Physiol Renal Physiol. 322:F460–F467. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Puchalska P and Crawford PA: Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25:262–284. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mudaliar S, Alloju S and Henry RR: Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 39:1115–1122. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Orii KE, Fukao T, Song XQ, Mitchell GA and Kondo N: Liver-specific silencing of the human gene encoding succinyl-CoA: 3-ketoacid CoA transferase. Tohoku J Exp Med. 215:227–236. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Halestrap AP: The monocarboxylate transporter family-Structure and functional characterization. IUBMB Life. 64:1–9. 2012. View Article : Google Scholar | |
|
Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, et al: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 337:96–100. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Halestrap AP: The SLC16 gene family-structure, role and regulation in health and disease. Mol Aspects Med. 34:337–349. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Halestrap AP and Meredith D: The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 447:619–628. 2004. View Article : Google Scholar | |
|
Carneiro L and Pellerin L: Monocarboxylate transporters: New players in body weight regulation. Obes Rev. 16(Suppl 1): S55–S66. 2015. View Article : Google Scholar | |
|
Vijay N and Morris ME: Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des. 20:1487–1498. 2014. View Article : Google Scholar : | |
|
Martin PM, Gopal E, Ananth S, Zhuang L, Itagaki S, Prasad BM, Smith SB, Prasad PD and Ganapathy V: Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain. J Neurochem. 98:279–288. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Bröer S, Schneider HP, Bröer A, Rahman B, Hamprecht B and Deitmer JW: Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J. 333:167–174. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Hugo SE, Cruz-Garcia L, Karanth S, Anderson RM, Stainier DY and Schlegel A: A monocarboxylate transporter required for hepatocyte secretion of ketone bodies during fasting. Genes Dev. 26:282–293. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Koehler-Stec EM, Simpson IA, Vannucci SJ, Landschulz KT and Landschulz WH: Monocarboxylate transporter expression in mouse brain. Am J Physiol. 275:E516–E524. 1998.PubMed/NCBI | |
|
Bonen A: The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol. 86:6–11. 2001. View Article : Google Scholar | |
|
Enerson BE and Drewes LR: Molecular features, regulation, and function of monocarboxylate transporters: Implications for drug delivery. J Pharm Sci. 92:1531–1544. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Felmlee MA, Morse BL and Morris ME: γ-Hydroxybutyric acid: Pharmacokinetics, pharmacodynamics, and toxicology. AAPS J. 23:222021. View Article : Google Scholar | |
|
Costa TJ, Linder BA, Hester S, Fontes M, Pernomian L, Wenceslau CF, Robinson AT and McCarthy CG: The janus face of ketone bodies in hypertension. J Hypertens. 40:2111–2119. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yao A, Li Z, Lyu J, Yu L, Wei S, Xue L, Wang H and Chen GQ: On the nutritional and therapeutic effects of ketone body D-β-hydroxybutyrate. Appl Microbiol Biotechnol. 105:6229–6243. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Chen P and Xiao W: β-hydroxybutyrate as an Anti-aging metabolite. Nutrients. 13:34202021. View Article : Google Scholar | |
|
Balasse EO and Féry F: Ketone body production and disposal: Effects of fasting, diabetes, and exercise. Diabetes Metab Rev. 5:247–270. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Veech RL, Chance B, Kashiwaya Y, Lardy HA and Cahill GF Jr: Ketone bodies, potential therapeutic uses. IUBMB Life. 51:241–247. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Veech RL: The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids. 70:309–319. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Hawkins RA and Biebuyck JF: Ketone bodies are selectively used by individual brain regions. Science. 205:325–327. 1979. View Article : Google Scholar : PubMed/NCBI | |
|
Taggart AK, Kero J, Gan X, Cai TQ, Cheng K, Ippolito M, Ren N, Kaplan R, Wu K, Wu TJ, et al: (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem. 280:26649–26652. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A and Tsujimoto G: Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci USA. 108:8030–8035. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Won YJ, Lu VB, Puhl HL III and Ikeda SR: β-Hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3. J Neuroscience. 33:19314–19325. 2013. View Article : Google Scholar | |
|
Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, et al: Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 339:211–214. 2013. View Article : Google Scholar | |
|
Xie Z, Zhang D, Chung D, Tang Z, Huang H, Dai L, Qi S, Li J, Colak G, Chen Y, et al: Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol Cell. 62:194–206. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Newman JC and Verdin E: Ketone bodies as signaling metabolites. Trends Endocrinol Metab. 25:42–52. 2014. View Article : Google Scholar : | |
|
Lund TM, Ploug KB, Iversen A, Jensen AA and Jansen-Olesen I: The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity. J Neurochem. 132:520–531. 2015. View Article : Google Scholar | |
|
Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D'Agostino D, Planavsky N, Lupfer C, Kanneganti TD, et al: The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 21:263–269. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Robinson AM and Williamson DH: Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiological Rev. 60:143–187. 1980. View Article : Google Scholar | |
|
Pięta A, Frączek B, Wiecek M and Mazur-Kurach P: Impact of paleo diet on body composition, carbohydrate and fat metabolism of professional handball players. Nutrients. 15:41552023. View Article : Google Scholar | |
|
Evans M, Cogan KE and Egan B: Metabolism of ketone bodies during exercise and training: Physiological basis for exogenous supplementation. J Physiol. 595:2857–2871. 2017. View Article : Google Scholar : | |
|
Keller U, Lustenberger M, Müller-Brand J, Gerber PP and Stauffacher W: Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones. Diabetes Metab Rev. 5:285–298. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Poff AM, Koutnik AP and Egan B: Nutritional ketosis with ketogenic diets or exogenous ketones: Features, convergence, and divergence. Curr Sports Med Rep. 19:251–259. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Crabtree CD, Kackley ML, Buga A, Fell B, LaFountain RA, Hyde PN, Sapper TN, Kraemer WJ, Scandling D, Simonetti OP and Volek JS: Comparison of ketogenic diets with and without ketone salts versus a Low-fat diet: Liver fat responses in overweight adults. Nutrients. 13:9662021. View Article : Google Scholar : PubMed/NCBI | |
|
Di Lorenzo C, Pinto A, Ienca R, Coppola G, Sirianni G, Di Lorenzo G, Parisi V, Serrao M, Spagnoli A, Vestri A, et al: A Randomized Double-blind, Cross-over trial of very Low-calorie diet in overweight migraine patients: A possible role for ketones? Nutrients. 11:17422019. View Article : Google Scholar : PubMed/NCBI | |
|
Joo NS, Lee DJ, Kim KM, Kim BT, Kim CW, Kim KN and Kim SM: Ketonuria after fasting may be related to the metabolic superiority. J Korean Med Sci. 25:1771–1776. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kim G, Lee SG, Lee BW, Kang ES, Cha BS, Ferrannini E, Lee YH and Cho NH: Spontaneous ketonuria and risk of incident diabetes: A 12 year prospective study. Diabetologia. 62:779–788. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Firman CH, Mellor DD, Unwin D and Brown A: Does a ketogenic diet have a place within diabetes clinical practice? review of current evidence and controversies. Diabetes Ther. 15:77–97. 2024. View Article : Google Scholar : | |
|
Dhillon KK and Gupta S: Biochemistry, Ketogenesis. StatPearls StatPearls Publishing Copyright © 2025. StatPearls Publishing LLC., Treasure Island (FL) ineligible companies. Disclosure: Sonu Gupta declares no relevant financial relationships with ineligible companies. 2025 | |
|
Dhatariya KK, Glaser NS, Codner E and Umpierrez GE: Diabetic ketoacidosis. Nat Rev Dis Primers. 6:402020. View Article : Google Scholar : PubMed/NCBI | |
|
Umpierrez GE, Davis GM, ElSayed NA, Fadini GP, Galindo RJ, Hirsch IB, Klonoff DC, McCoy RG, Misra S, Gabbay RA, et al: Hyperglycemic crises in adults with diabetes: A consensus report. Diabetes Care. 47:1257–1275. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Cahill GF Jr and Veech RL: Ketoacids? Good medicine? Trans Am Clin Climatol Assoc. 114:149–163. 2003.PubMed/NCBI | |
|
Stumvoll M, Goldstein BJ and van Haeften TW: Type 2 diabetes: Principles of pathogenesis and therapy. Lancet. 365:1333–1346. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H and Martín C: Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 21:62752020. View Article : Google Scholar : PubMed/NCBI | |
|
Christensen AA and Gannon M: The beta cell in type 2 diabetes. Curr Diab Rep. 19:812019. View Article : Google Scholar : PubMed/NCBI | |
|
Yurista SR, Chong CR, Badimon JJ, Kelly DP, de Boer RA and Westenbrink BD: Therapeutic potential of ketone bodies for patients with cardiovascular disease: JACC State-of-the-Art review. J Am Coll Cardiol. 77:1660–1669. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Wang H, Wu J, Ji C, Wang Y, Gu M, Li M and Yang H: Gut microbiota and metabolomics in metabolic dysfunction-associated fatty liver disease: Interaction, mechanism, and therapeutic value. Front Cell Infect Microbiol. 15:16356382025. View Article : Google Scholar : PubMed/NCBI | |
|
Song K, Kong X, Xian Y, Yu Z, He M, Xiao D, Liang D, Zhang Z, Liu T, Huang Z, et al: Roux-en-Y gastric bypass improves liver and glucose homeostasis in Zucker diabetic fatty rats by upregulating hepatic trefoil factor family 3 and activating the phosphatidylinositol 3-kinase/protein kinase B pathway. Surg Obes Relat Dis. 21:792–805. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang H, Lyu Q, Chen S, Ouyang J, Xiao D, Liu Q, Long H, Zheng X, Yang X and Lu H: PACS2/CPT1A/DHODH signaling promotes cardiomyocyte ferroptosis in diabetic cardiomyopathy. Cardiovasc Diabetol. 23:4322024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu BT, Teng FY, Wu Q, Wan SR, Li XY, Tan XZ, Xu Y and Jiang ZZ: Bdh1 overexpression ameliorates hepatic injury by activation of Nrf2 in a MAFLD mouse model. Cell Death Discov. 8:492022. View Article : Google Scholar : PubMed/NCBI | |
|
Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V and Zoccali C: A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int. 96:1048–1050. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P and Uribarri J: Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 102:248–260. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sagoo MK and Gnudi L: Diabetic Nephropathy: An Overview. Diabetic Nephropathy: Methods and Protocols. Gnudi L and Long DA: Springer US; New York, NY: pp. 3–7. 2020, View Article : Google Scholar | |
|
Gopal E, Fei YJ, Sugawara M, Miyauchi S, Zhuang L, Martin P, Smith SB, Prasad PD and Ganapathy V: Expression of slc5a8 in kidney and its role in Na(+)-coupled transport of lactate. J Biol Chem. 279:44522–44532. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Xie J, Zhong F, Guo Z, Li X, Wang J, Gao Z, Chang B and Yang J: Hyperinsulinemia impairs the metabolic switch to ketone body utilization in proximal renal tubular epithelial cells under energy crisis via the inhibition of the SIRT3/SMCT1 pathway. Front Endocrinol (Lausanne). 13:9608352022. View Article : Google Scholar : PubMed/NCBI | |
|
Wan SR, Teng FY, Fan W, Xu BT, Li XY, Tan XZ, Guo M, Gao CL, Zhang CX, Jiang ZZ and Xu Y: BDH1-mediated βOHB metabolism ameliorates diabetic kidney disease by activation of NRF2-mediated antioxidative pathway. Aging. 15:13384–13410. 2023. View Article : Google Scholar | |
|
Fang Y, Chen B, Gong AY, Malhotra DK, Gupta R, Dworkin LD and Gong R: The ketone body β-hydroxybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults. Kidney Int. 100:1037–1053. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lean ME: Obesity: Burdens of illness and strategies for prevention or management. Drugs Today. 36:773–784. 2000. View Article : Google Scholar | |
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F and Natalicchio A: Adipose tissue secretion pattern influences β-cell wellness in the transition from obesity to type 2 diabetes. Int J Mol Sci. 23:55222022. View Article : Google Scholar | |
|
Schaffer JE: Lipotoxicity: When tissues overeat. Curr Opin Lipidol. 14:281–287. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Meex RCR, Blaak EE and van Loon LJC: Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obesity Rev. 20:1205–1217. 2019. View Article : Google Scholar | |
|
Kim JE, Kim JS, Jo MJ, Cho E, Ahn SY, Kwon YJ and Ko GJ: The roles and associated mechanisms of adipokines in development of metabolic syndrome. Molecules. 27:3342022. View Article : Google Scholar : PubMed/NCBI | |
|
Booth A, Magnuson A, Fouts J and Foster MT: Adipose tissue: An endocrine organ playing a role in metabolic regulation. Horm Mol Biol Clin Investig. 26:25–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kim AY, Park YJ, Pan X, Shin KC, Kwak SH, Bassas AF, Sallam RM, Park KS, Alfadda AA, Xu A and Kim JB: Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 6:75852015. View Article : Google Scholar : PubMed/NCBI | |
|
Sakurai N, Mochizuki K and Goda T: Modifications of histone H3 at lysine 9 on the adiponectin gene in 3T3-L1 adipocytes. J Nutr Sci Vitaminol (Tokyo). 55:131–138. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M and Shimomura I: Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes. 52:1655–1663. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Segawa K, Matsuda M, Fukuhara A, Morita K, Okuno Y, Komuro R and Shimomura I: Identification of a novel distal enhancer in human adiponectin gene. J Endocrinol. 200:107–116. 2009. View Article : Google Scholar | |
|
Park S, Kim DS, Kang S and Daily JW III: A ketogenic diet impairs energy and glucose homeostasis by the attenuation of hypothalamic leptin signaling and hepatic insulin signaling in a rat model of non-obese type 2 diabetes. Exp Biol Med (Maywood). 236:194–204. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Biesiekierska M, Strigini M, Śliwińska A, Pirola L and Balcerczyk A: The impact of ketogenic nutrition on obesity and metabolic health: Mechanisms and clinical implications. Nutr Rev. 83:1957–1972. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Carrière A, Jeanson Y, Berger-Müller S, André M, Chenouard V, Arnaud E, Barreau C, Walther R, Galinier A, Wdziekonski B, et al: Browning of white adipose cells by intermediate metabolites: An adaptive mechanism to alleviate redox pressure. Diabetes. 63:3253–3265. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
de Oliveira Caminhotto R, Andreotti S, Komino ACM, de Fatima Silva F, Antônio Laurato Sertié R, Augusto Christoffolete M, Boltes Reis G and Lima FB: Physiological concentrations of β-hydroxybutyrate do not promote adipocyte browning. Life Sci. 232:1166832019. View Article : Google Scholar | |
|
Gast KB, Tjeerdema N, Stijnen T, Smit JW and Dekkers OM: Insulin resistance and risk of incident cardiovascular events in adults without diabetes: Meta-analysis. PLoS One. 7:e520362012. View Article : Google Scholar | |
|
Nesto RW: Correlation between cardiovascular disease and diabetes mellitus: Current concepts. Am J Med. 116(Suppl 5A): 11S–22S. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Dillmann WH: Diabetic Cardiomyopathy. Circ Res. 124:1160–1162. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ritchie RH and Abel ED: Basic mechanisms of diabetic heart disease. Circ Res. 126:1501–1525. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Song K, Liang D, Xiao D, Kang A and Ren Y: Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review). Mol Med Rep. 30:1992024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Zhou J, Lu J, Lin Y, Liu S and Chen K: A ketogenic diet improves vascular hyperpermeability in type 2 diabetic mice by downregulating vascular pescadillo1 expression. J Cell Mol Med. 27:1410–1422. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Thai PN, Miller CV, King MT, Schaefer S, Veech RL, Chiamvimonvat N, Bers DM and Dedkova EN: Ketone Ester D-β-Hydroxybutyrate-(R)-1,3 butanediol prevents decline in cardiac function in type 2 diabetic mice. J Am Heart Assoc. 10:e0207292021. View Article : Google Scholar | |
|
Lin J, Ren Q, Zhang F, Gui J, Xiang X and Wan Q: D-β-Hydroxybutyrate dehydrogenase mitigates Diabetes-induced atherosclerosis through the activation of Nrf2. Thromb Haemost. 123:1003–1015. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Uchihashi M, Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Tateishi S, Ono K, Yamanaka R, Hato D, Fushimura Y, et al: Cardiac-Specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure. Circ Heart Fail. 10:e0044172017. View Article : Google Scholar : PubMed/NCBI | |
|
van Knegsel AT, van den Brand H, Dijkstra J, Tamminga S and Kemp B: Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle. Reprod Nutr Dev. 45:665–688. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Liepinsh E, Vilskersts R, Zvejniece L, Svalbe B, Skapare E, Kuka J, Cirule H, Grinberga S, Kalvinsh I and Dambrova M: Protective effects of mildronate in an experimental model of type 2 diabetes in Goto-Kakizaki rats. Br J Pharmacol. 157:1549–1556. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Antal B, McMahon LP, Sultan SF, Lithen A, Wexler DJ, Dickerson B, Ratai EM and Mujica-Parodi LR: Type 2 diabetes mellitus accelerates brain aging and cognitive decline: Complementary findings from UK Biobank and meta-analyses. eLife. 11:e731382022. View Article : Google Scholar : PubMed/NCBI | |
|
Reske-Nielsen E, Lundbaek K, Gregersen G and Harmsen A: Pathological changes in the central and peripheral nervous system of young long-term diabetics. The terminal neuro-muscular apparatus. Diabetologia. 6:98–103. 1970. View Article : Google Scholar : PubMed/NCBI | |
|
Lionetti N, Di Lago MG, Brescia T, Bevilacqua F and Gnoni A: Diabetes and brain: Omics approaches to study diabetic encephalopathy. Front Endocrinol. 16:15705852025. View Article : Google Scholar | |
|
Xu Y, Huang C, Zhang Y, Li H, Yang H, Liu M, Zhu L, Li C, Zhong Y, Tang L, et al: Diabetic encephalopathy models: A systematic review from cells to animals. Exp Neurol. 395:1154772025. View Article : Google Scholar : PubMed/NCBI | |
|
Hein ZM, Arbain MFF, Kumar S, Mehat MZ, Hamid HA, Che Ramli MD and Che Mohd Nassir CMN: Intermittent fasting as a neuroprotective strategy: Gut-brain axis modulation and metabolic reprogramming in neurodegenerative disorders. Nutrients. 17:22662025. View Article : Google Scholar : PubMed/NCBI | |
|
Andersen JV, Christensen SK, Nissen JD and Waagepetersen HS: Improved cerebral energetics and ketone body metabolism in db/db mice. J Cereb Blood Flow Metab. 37:1137–1147. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pierre K, Parent A, Jayet PY, Halestrap AP, Scherrer U and Pellerin L: Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice. J Physiol. 583:469–486. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Pellerin L, Bergersen LH, Halestrap AP and Pierre K: Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res. 79:55–64. 2005. View Article : Google Scholar | |
|
Park S, Kim DS and Daily JW: Central infusion of ketone bodies modulates body weight and hepatic insulin sensitivity by modifying hypothalamic leptin and insulin signaling pathways in type 2 diabetic rats. Brain Res. 1401:95–103. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Majrashi M, Altukri M, Ramesh S, Govindarajulu M, Schwartz J, Almaghrabi M, Smith F, Thomas T, Suppiramaniam V, Moore T, et al: β-hydroxybutyric acid attenuates oxidative stress and improves markers of mitochondrial function in the HT-22 hippocampal cell line. J Integr Neurosci. 20:321–329. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dabke P, Brogden G, Naim HY and Das AM: Ketogenic diet: Impact on cellular lipids in hippocampal murine neurons. Nutrients. 12:38702020. View Article : Google Scholar : PubMed/NCBI | |
|
Sayin N, Kara N and Pekel G: Ocular complications of diabetes mellitus. World J Diabetes. 6:92–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jian Q, Wu Y and Zhang F: Metabolomics in diabetic retinopathy: From potential biomarkers to molecular basis of oxidative stress. Cells. 11:30052022. View Article : Google Scholar : PubMed/NCBI | |
|
Herat LY, Matthews VB, Rakoczy PE, Carnagarin R and Schlaich M: Focusing on sodium glucose cotransporter-2 and the sympathetic nervous system: Potential impact in diabetic retinopathy. Int J Endocrinol. 2018:92541262018. View Article : Google Scholar : PubMed/NCBI | |
|
Heng LZ, Comyn O, Peto T, Tadros C, Ng E, Sivaprasad S and Hykin PG: Diabetic retinopathy: Pathogenesis, clinical grading, management and future developments. Diabet Med. 30:640–650. 2013. View Article : Google Scholar | |
|
Wong TY, Cheung CM, Larsen M, Sharma S and Simó R: Diabetic retinopathy. Nat Rev Dis Primers. 2:160122016. View Article : Google Scholar : PubMed/NCBI | |
|
Saika S, Yamanaka O, Okada Y, Tanaka S, Miyamoto T, Sumioka T, Kitano A, Shirai K and Ikeda K: TGF beta in fibroproliferative diseases in the eye. Front Biosci (Schol Ed). 1:376–390. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W, Zerfas P, Zhigang D, Wright EC, Stuelten C, et al: Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14:67–79. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chen HY, Ho YJ, Chou HC, Liao EC, Tsai YT, Wei YS, Lin LH, Lin MW, Wang YS, Ko ML and Chan HL: The role of transforming growth factor-beta in retinal ganglion cells with hyperglycemia and oxidative stress. Int J Mol Sci. 21:64822020. View Article : Google Scholar : PubMed/NCBI | |
|
Trotta MC, Maisto R, Guida F, Boccella S, Luongo L, Balta C, D'Amico G, Herman H, Hermenean A, Bucolo C and D'Amico M: The activation of retinal HCA2 receptors by systemic beta-hydroxybutyrate inhibits diabetic retinal damage through reduction of endoplasmic reticulum stress and the NLRP3 inflammasome. PLoS One. 14:e02110052019. View Article : Google Scholar : PubMed/NCBI | |
|
Szili-Torok T, de Borst MH, Garcia E, Gansevoort RT, Dullaart RPF, Connelly MA, Bakker SJL and Tietge UJF: Fasting ketone bodies and incident type 2 diabetes in the general population. Diabetes. 72:1187–1192. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bae J, Kim YE, Jung KJ, Jee SH and Lee BW: Association between serum beta-hydroxybutyrate levels and risk of type 2 diabetes mellitus in patients with impaired fasting glucose. Nutr Diabetes. 15:162025. View Article : Google Scholar : PubMed/NCBI | |
|
Mahendran Y, Vangipurapu J, Cederberg H, Stancáková A, Pihlajamäki J, Soininen P, Kangas AJ, Paananen J, Civelek M, Saleem NK, et al: Association of ketone body levels with hyperglycemia and type 2 diabetes in 9,398 Finnish men. Diabetes. 62:3618–3626. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lucidi P, Perriello G, Porcellati F, Pampanelli S, De Fano M, Tura A, Bolli GB and Fanelli CG: Diurnal cycling of insulin sensitivity in type 2 diabetes: Evidence for deviation from physiology at an early stage. Diabetes. 72:1364–1373. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Garcia E, Shalaurova I, Matyus SP, Oskardmay DN, Otvos JD, Dullaart RPF and Connelly MA: Ketone bodies are mildly elevated in subjects with type 2 diabetes mellitus and are inversely associated with insulin resistance as measured by the lipoprotein insulin resistance index. J Clin Med. 9:3212020. View Article : Google Scholar : PubMed/NCBI | |
|
Gogna N, Krishna M, Oommen AM and Dorai K: Investigating correlations in the altered metabolic profiles of obese and diabetic subjects in a South Indian Asian population using an NMR-based metabolomic approach. Mol Biosyst. 11:595–606. 2015. View Article : Google Scholar | |
|
Fikri AM, Smyth R, Kumar V, Al-Abadla Z, Abusnana S and Munday MR: Pre-diagnostic biomarkers of type 2 diabetes identified in the UAE's obese national population using targeted metabolomics. Sci Rep. 10:176162020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee S, Bae J, Jo DR, Lee M, Lee YH, Kang ES, Cha BS and Lee BW: Impaired ketogenesis is associated with metabolic-associated fatty liver disease in subjects with type 2 diabetes. Front Endocrinol. 14:11245762023. View Article : Google Scholar | |
|
Lim K, Kang M and Park J: Association between fasting ketonuria and advanced liver fibrosis in non-alcoholic fatty liver disease patients without prediabetes and diabetes mellitus. Nutrients. 13:34002021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wang J, Xu F, Zhang S, Cui S, Li Y, Wang X, Zheng H, Li J, Kong Y, et al: A J-shaped relationship between ketones and the risk of diabetic kidney disease in patients with type 2 diabetes: New insights from a cross-sectional study. Diabetes Obes Metab. 25:3317–3326. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lee M, Cho Y, Lee YH, Kang ES, Cha BS and Lee BW: β-hydroxybutyrate as a biomarker of β-cell function in new-onset type 2 diabetes and its association with treatment response at 6 months. Diabetes Metab. 49:1014272023. View Article : Google Scholar | |
|
Park SB and Yang SJ: Ketogenic diet preserves muscle mass and strength in a mouse model of type 2 diabetes. PLoS One. 19:e02966512024. View Article : Google Scholar : PubMed/NCBI | |
|
Miller VJ, Villamena FA and Volek JS: Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J Nutr Metab. 2018:51576452018. View Article : Google Scholar : PubMed/NCBI | |
|
Arnason TG, Bowen MW and Mansell KD: Effects of intermittent fasting on health markers in those with type 2 diabetes: A pilot study. World J Diabetes. 8:154–164. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nuttall FQ, Almokayyad RM and Gannon MC: Circulating lipids in men with type 2 diabetes following 3 days on a carbohydrate-free diet versus 3 days of fasting. Physiological Rep. 8:e145692020. View Article : Google Scholar | |
|
Steven S, Hollingsworth KG, Al-Mrabeh A, Avery L, Aribisala B, Caslake M and Taylor R: Very low-calorie diet and 6 months of weight stability in type 2 diabetes: Pathophysiological changes in responders and nonresponders. Diabetes Care. 39:808–815. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Vigili de Kreutzenberg S and Avogaro A: The role of point-of-care 3-hydroxybutyrate testing in patients with type 2 diabetes undergoing coronary angiography. J Endocrinol Invest. 40:627–634. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Goldberg IJ, Ibrahim N, Bredefeld C, Foo S, Lim V, Gutman D, Huggins LA and Hegele RA: Ketogenic diets, not for everyone. J Clin Lipidol. 15:61–67. 2021. View Article : Google Scholar : | |
|
Goday A, Bellido D, Sajoux I, Crujeiras AB, Burguera B, García-Luna PP, Oleaga A, Moreno B and Casanueva FF: Short-term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus. Nutr Diabetes. 6:e2302016. View Article : Google Scholar : PubMed/NCBI | |
|
Merovci A, Finley B, Hansis-Diarte A, Neppala S, Abdul-Ghani MA, Cersosimo E, Triplitt C and DeFronzo RA: Effect of weight-maintaining ketogenic diet on glycemic control and insulin sensitivity in obese T2D subjects. BMJ Open Diabetes Res Care. 12:e0041992024. View Article : Google Scholar : PubMed/NCBI | |
|
Durrer C, Lewis N, Wan Z, Ainslie PN, Jenkins NT and Little JP: Short-term Low-carbohydrate high-fat diet in healthy young males renders the endothelium susceptible to hyperglycemia-induced damage, an exploratory analysis. Nutrients. 11:4892019. View Article : Google Scholar : PubMed/NCBI | |
|
Harvey C, Schofield GM and Williden M: The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: A narrative review. PeerJ. 6:e44882018. View Article : Google Scholar : PubMed/NCBI | |
|
Holland AM, Qazi AS, Beasley KN and Bennett HR: Blood and cardiovascular health parameters after supplementing with ketone salts for six weeks. J Insul Resist. 4:e472019. | |
|
Falkenhain K, Islam H and Little JP: Exogenous ketone supplementation: An emerging tool for physiologists with potential as a metabolic therapy. Exp Physiol. 108:177–187. 2023. View Article : Google Scholar | |
|
Suissa L, Kotchetkov P, Guigonis JM, Doche E, Osman O, Pourcher T and Lindenthal S: Ingested ketone ester leads to a rapid rise of Acetyl-CoA and competes with glucose metabolism in the brain of Non-fasted mice. Int J Mol Sci. 22:5242021. View Article : Google Scholar : PubMed/NCBI | |
|
Stubbs BJ, Cox PJ, Evans RD, Santer P, Miller JJ, Faull OK, Magor-Elliott S, Hiyama S, Stirling M and Clarke K: On the metabolism of exogenous ketones in humans. Front Physiol. 8:8482017. View Article : Google Scholar : PubMed/NCBI | |
|
Soto-Mota A, Norwitz NG, Evans R, Clarke K and Barber TM: Exogenous ketosis in patients with type 2 diabetes: Safety, tolerability and effect on glycaemic control. Endocrinol Diabetes Metab. 4:e002642021. View Article : Google Scholar : PubMed/NCBI | |
|
Monteyne AJ, Falkenhain K, Whelehan G, Neudorf H, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB and Little JP: A ketone monoester drink reduces postprandial blood glucose concentrations in adults with type 2 diabetes: A randomised controlled trial. Diabetologia. 67:1107–1113. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Falkenhain K, Oliveira BF, Islam H, Neudorf H, Cen HH, Johnson JD, Madden K, Singer J, Walsh JJ and Little JP: The effect of acute and 14-day exogenous ketone supplementation on glycemic control in adults with type 2 diabetes: Two randomized controlled trials. Am J Physiol Endocrinol Metab. 326:E61–E72. 2024. View Article : Google Scholar | |
|
Jensen NJ, Nilsson M, Ingerslev JS, Olsen DA, Fenger M, Svart M, Møller N, Zander M, Miskowiak KW and Rungby J: Effects of β-hydroxybutyrate on cognition in patients with type 2 diabetes. Eur J Endocrinol. 182:233–242. 2020. View Article : Google Scholar | |
|
Baranowski BJ, Oliveira BF, Falkenhain K, Little JP, Mohammad A, Beaudette SM, Finch MS, Caldwell HG, Neudorf H, MacPherson REK and Walsh JJ: Effect of exogenous β-hydroxybutyrate on BDNF signaling, cognition, and amyloid precursor protein processing in humans with T2D and insulin-resistant rodents. Am J Physiol Cell Physiol. 328:C541–C556. 2025. View Article : Google Scholar | |
|
Solis-Herrera C, Qin Y, Honka H, Cersosimo E, Triplitt C, Neppala S, Rajan J, Acosta FM, Moody AJ, Iozzo P, et al: Effect of hyperketonemia on myocardial function in patients with heart failure and type 2 diabetes. Diabetes. 74:43–52. 2025. View Article : Google Scholar | |
|
Gopalasingam N, Berg-Hansen K, Christensen KH, Ladefoged BT, Poulsen SH, Andersen MJ, Borlaug BA, Nielsen R, Møller N and Wiggers H: Randomized crossover trial of 2-week ketone ester treatment in patients with type 2 diabetes and heart failure with preserved ejection fraction. Circulation. 150:1570–1583. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Clarke K, Tchabanenko K, Pawlosky R, Carter E, Knight NS, Murray AJ, Cochlin LE, King MT, Wong AW, Roberts A, et al: Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate. Regul Toxicol Pharmacol. 63:196–208. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Clarke K, Tchabanenko K, Pawlosky R, Carter E, Todd King M, Musa-Veloso K, Ho M, Roberts A, Robertson J, Vanitallie TB and Veech RL: Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol. 63:401–408. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Engel MH and Macko SA: Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature. 389:265–268. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Fischer T, Och U, Klawon I, Och T, Grüneberg M, Fobker M, Bordewick-Dell U and Marquardt T: Effect of a Sodium and Calcium DL-β-Hydroxybutyrate salt in healthy adults. J Nutr Metab. 2018:98128062018. View Article : Google Scholar | |
|
Soto-Mota A, Vansant H, Evans RD and Clarke K: Safety and tolerability of sustained exogenous ketosis using ketone monoester drinks for 28 days in healthy adults. Regul Toxicol Pharmacol. 109:1045062019. View Article : Google Scholar : PubMed/NCBI | |
|
Elebring E, Casselbrant A, Persson SMT, Fändriks L and Wallenius V: βHB inhibits glucose-induced GLP-1 secretion in GLUTag and human jejunal enteroids. J Mol Endocrinol. 70:e2201152023. View Article : Google Scholar | |
|
Wallenius V, Elias E, Elebring E, Haisma B, Casselbrant A, Larraufie P, Spak E, Reimann F, le Roux CW, Docherty NG, et al: Suppression of enteroendocrine cell glucagon-like peptide (GLP)-1 release by fat-induced small intestinal ketogenesis: A mechanism targeted by Roux-en-Y gastric bypass surgery but not by preoperative very-low-calorie diet. Gut. 69:1423–1431. 2020. View Article : Google Scholar | |
|
Wang N, Yang A, Tian X, Liao J, Yang Z, Pan Y, Guo Y and He S: Label-free analysis of the β-hydroxybutyricacid drug on mitochondrial redox states repairment in type 2 diabetic mice by resonance raman scattering. Biomed Pharmacother. 172:1163202024. View Article : Google Scholar | |
|
Féry F and Balasse EO: Response of ketone body metabolism to exercise during transition from postabsorptive to fasted state. Am J Physiol. 250:E495–E501. 1986.PubMed/NCBI | |
|
Féry F and Balasse EO: Effect of exercise on the disposal of infused ketone bodies in humans. J Clin Endocrinol Metab. 67:245–250. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T, Ning M, Mo Y, Tian X, Fu Y, Laher I and Li S: Metabolomic profiling reveals that exercise lowers biomarkers of cardiac dysfunction in rats with type 2 diabetes. Antioxidants (Basel). 13:11672024. View Article : Google Scholar : PubMed/NCBI | |
|
Kramer CK, Zinman B, Feig DS and Retnakaran R: Effect of time-restricted eating on β-cell function in adults with type 2 diabetes: A randomized cross-over trial. J Clin Endocrinol Metab. 110:e2045–e2053. 2025. View Article : Google Scholar |