You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Gao S, Qian X, Huang S, Deng W, Li Z and Hu Y: Association between macronutrients intake distribution and bone mineral density. Clin Nutr. 41:1689–1696. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Golshan M, Dortaj H, Rajabi M, Omidi Z, Golshan M, Pourentezari M and Rajabi A: Animal origins free products in cell culture media: A new frontier. Cytotechnology. 77:122025. View Article : Google Scholar | |
|
Hellmann A, Turyn J, Zwara A, Korczynska J, Taciak A and Mika A: Alterations in the amino acid profile in patients with papillary thyroid carcinoma with and without Hashimoto's thyroiditis. Front Endocrinol (Lausanne). 14:11992912023. View Article : Google Scholar : PubMed/NCBI | |
|
Thompson R and Pickard BS: The amino acid composition of a protein influences its expression. PLoS One. 19:e02842342024. View Article : Google Scholar : PubMed/NCBI | |
|
Li B, Roden DM and Capra JA: The 3D mutational constraint on amino acid sites in the human proteome. Nat Commun. 13:32732022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Fan C, Zhang Y, Kang T and Jiang J: Untargeted metabolomics reveals the role of lipocalin-2 in the pathological changes of lens and retina in diabetic mice. Invest Ophthalmol Vis Sci. 65:192024.PubMed/NCBI | |
|
Zhu ZG, Ma JW, Ji DD, Li QQ, Diao XY and Bao J: Mendelian randomization analysis identifies causal associations between serum lipidomic profile, amino acid biomarkers and sepsis. Heliyon. 10:e327792024. View Article : Google Scholar : PubMed/NCBI | |
|
Jin J, Meng T, Yu Y, Wu S, Jiao CC, Song S, Li YX, Zhang Y, Zhao YY, Li X, et al: Human HDAC6 senses valine abundancy to regulate DNA damage. Nature. 637:215–223. 2025. View Article : Google Scholar | |
|
Scalise M, Console L, Rovella F, Galluccio M, Pochini L and Indiveri C: Membrane transporters for amino acids as players of cancer metabolic rewiring. Cells. 9:20282020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Y, Han X, Fang J and Jiang H: Role of dietary amino acids and microbial metabolites in the regulation of pig intestinal health. Anim Nutr. 9:1–6. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Van Winkle LJ: Amino acid transport and metabolism regulate early embryo development: Species differences, clinical significance, and evolutionary implications. Cells. 10:31542021. View Article : Google Scholar : PubMed/NCBI | |
|
Grobben Y: Targeting amino Acid-metabolizing enzymes for cancer immunotherapy. Front Immunol. 15:14402692024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu N, Shi F, Yang L, Liao W and Cao Y: Oncogenic viral infection and amino acid metabolism in cancer progression: Molecular insights and clinical implications. Biochim Biophys Acta Rev Cancer. 1877:1887242022. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Y, Xue H, Li Z, Huo M, Gao H and Guan X: Exploiting the Achilles' heel of cancer: Disrupting glutamine metabolism for effective cancer treatment. Front Pharmacol. 15:13455222024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F and Huang C: A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol. 260:1296072024. View Article : Google Scholar : PubMed/NCBI | |
|
Kadivar D, Eslami Moghadam M and Notash B: Effect of geometric isomerism on the anticancer property of new platinum complexes with glycine derivatives as asymmetric N, O donate ligands against human cancer. Spectrochim Acta A Mol Biomol Spectrosc. 322:1248092024. View Article : Google Scholar : PubMed/NCBI | |
|
Kelly B and Pearce EL: Amino Assets: How Amino Acids Support Immunity. Cell Metab. 32:154–175. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hushmandi K, Einollahi B, Saadat SH, Lee EHC, Farani MR, Okina E, Huh YS, Nabavi N, Salimimoghadam S and Kumar AP: Amino acid transporters within the solute carrier superfamily: Underappreciated proteins and novel opportunities for cancer therapy. Mol Metab. 84:1019522024. View Article : Google Scholar : PubMed/NCBI | |
|
Jakobsen S and Nielsen CU: Exploring amino acid transporters as therapeutic targets for cancer: An examination of inhibitor structures, selectivity issues, and discovery approaches. Pharmaceutics. 16:1972024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Lin X, Hou Q, Hu Z, Wang Y and Wang Z: Regulation of mTORC1 by amino acids in mammalian cells: A general picture of recent advances. Anim Nutr. 7:1009–1023. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gold LT and Masson GR: GCN2: Roles in tumour development and progression. Biochem Soc Trans. 50:737–745. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tang H, Kang R, Liu J and Tang D: ATF4 in cellular stress, ferroptosis, and cancer. Archi Toxicol. 98:1025–1041. 2024. View Article : Google Scholar | |
|
Jiang C, Dai X, He S, Zhou H, Fang L, Guo J, Liu S, Zhang T, Pan W and Yu H: Ring domains are essential for GATOR2-dependent mTORC1 activation. Mol Cell. 83:74–89.e9. 2023. View Article : Google Scholar | |
|
Berdenis van Berlekom A, Kübler R, Hoogeboom JW, Vonk D, Sluijs JA, Pasterkamp RJ, Middeldorp J, Kraneveld AD, Garssen J, Kahn RS, et al: Exposure to the amino acids histidine, lysine, and threonine reduces mTOR activity and affects neurodevelopment in a human cerebral organoid model. Nutrients. 14:21752022. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar M, Sahoo SS, Jamaluddin MFB and Tanwar PS: Loss of liver kinase B1 in human seminoma. Front Oncol. 13:10811102023. View Article : Google Scholar : PubMed/NCBI | |
|
Yue S, Li G, He S and Li T: The central role of mTORC1 in amino acid sensing. Cancer Res. 82:2964–2974. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K, Iemura S, Natsume T and Mizushima N: Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 285:20109–20116. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Xu C, Pan X, Wang D, Guan Y, Yang W, Chen X and Liu Y: O-GlcNAcylation of Raptor transduces glucose signals to mTORC1. Mol Cell. 83:3027–3040.e11. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jie H, Wei J, Li Z, Yi M, Qian X, Li Y, Liu C, Li C, Wang L, Deng P, et al: Serine starvation suppresses the progression of esophageal cancer by regulating the synthesis of purine nucleotides and NADPH. Cancer Metab. 13:102025. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Y, Fu Z, Su Z, Li L, Yang Y, Tan Y, Xiang Y, Shi Y, Xie S, Sun L and Peng G: mLST8 is essential for coronavirus replication and regulates its replication through the mTORC1 pathway. mBio. 14:e00899232023. View Article : Google Scholar : PubMed/NCBI | |
|
Ma K, Xian W, Liu H, Shu R, Ge J, Luo ZQ, Liu X and Qiu J: Bacterial ubiquitin ligases hijack the host deubiquitinase OTUB1 to inhibit MTORC1 signaling and promote autophagy. Autophagy. 20:1968–1983. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C and Jiang D: Exogenous PRAS40 reduces KLF4 expression and alleviates hypertrophic scar fibrosis and collagen deposition through inhibiting mTORC1. Burns. 50:936–946. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Q, Zhou W, Xu S, Que Q, Zhan Q, Zhang L, Zheng S, Ling S and Xu X: Ubiquitin-specific protease 22 promotes tumorigenesis and progression by an FKBP12/mTORC1/autophagy positive feedback loop in hepatocellular carcinoma. MedComm (2020). 4:e4392023. View Article : Google Scholar : PubMed/NCBI | |
|
Fernandes SA, Angelidaki DD, Nüchel J, Pan J, Gollwitzer P, Elkis Y, Artoni F, Wilhelm S, Kovacevic-Sarmiento M and Demetriades C: Spatial and functional separation of mTORC1 signalling in response to different amino acid sources. Nat Cell Biol. 26:1918–1933. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Meng D, Yang Q, Melick CH, Park BC, Hsieh TS, Curukovic A, Jeong MH, Zhang J, James NG and Jewell JL: ArfGAP1 inhibits mTORC1 lysosomal localization and activation. EMBO J. 40:e1064122021. View Article : Google Scholar : PubMed/NCBI | |
|
Daigh LH, Saha D, Rosenthal DL, Ferrick KR and Meyer T: Uncoupling of mTORC1 from E2F activity maintains DNA damage and senescence. Nat Commun. 15:91812024. View Article : Google Scholar : PubMed/NCBI | |
|
Condon KJ, Orozco JM, Adelmann CH, Spinelli JB, van der Helm PW, Roberts JM, Kunchok T and Sabatini DM: Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction. Proc Natl Acad Sci USA. 118:e20221201182021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang C, Tan X, Liu N, Yan P, Hou T and Wei W: Nutrient sensing of mTORC1 signaling in cancer and aging. Semin Cancer Biol. 106-107:1–12. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu M, Teng F, Li N, Zhang L, Zhang S, Xu F, Shao J, Sun H and Zhu H: Monomethyl branched-chain fatty acid mediates amino acid sensing upstream of mTORC1. Dev Cell. 56:31712021. View Article : Google Scholar : PubMed/NCBI | |
|
Yao Y, Hong S, Yoshida S, Swaroop V, Curtin B and Inoki K: The Cullin3-Rbx1-KLHL9 E3 ubiquitin ligase complex ubiquitinates Rheb and supports amino Acid-induced mTORC1 activation. Cell Rep. 44:1151012025. View Article : Google Scholar : | |
|
Hartung J, Müller C and Calkhoven CF: The dual role of the TSC complex in cancer. Trends Mol Med. 31:452–465. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wan ZY, Tian JS, Tan HW, Chow AL, Sim AY, Ban KH and Long YC: Mechanistic target of rapamycin complex 1 is an essential mediator of metabolic and mitogenic effects of fibroblast growth factor 19 in hepatoma cells. Hepatology. 64:1289–1301. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Y, Li T, Li Y, Lin Z, Han X, Pei X, Zhang Y, Li F, Yang J, Shao D and Li C: Glutaredoxin-1 promotes lymphangioleiomyomatosis progression through inhibiting Bim-mediated apoptosis via COX2/PGE2/ERK pathway. Clin Transl Med. 13:e13332023. View Article : Google Scholar : PubMed/NCBI | |
|
Deng L, Chen L, Zhao L, Xu Y, Peng X, Wang X, Ding L, Jin J, Teng H, Wang Y, et al: Ubiquitination of Rheb governs growth factor-induced mTORC1 activation. Cell Res. 29:136–150. 2019. View Article : Google Scholar : | |
|
Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, Karam CJ, Maywood ES, Stangherlin A, Chesham JE, Hayter EA, et al: Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell. 177:896–909.e20. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Xiao B, Hirukawa A, Smith HW, Zuo D, Sanguin-Gendreau V, McCaffrey L, Nam AJ and Muller WJ: Ezh2 promotes mammary tumor initiation through epigenetic regulation of the Wnt and mTORC1 signaling pathways. Proc Natl Acad Sci USA. 120:e23030101202023. View Article : Google Scholar : PubMed/NCBI | |
|
Shi H, Chapman NM, Wen J, Guy C, Long L, Dhungana Y, Rankin S, Pelletier S, Vogel P, Wang H, et al: Amino acids license kinase mTORC1 activity and treg cell function via small G proteins rag and rheb. Immunity. 51:1012–1027.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L and Sabatini DM: The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 320:1496–1501. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kim E, Goraksha-Hicks P, Li L, Neufeld TP and Guan KL: Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 10:935–945. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Rogala KB, Gu X, Kedir JF, Abu-Remaileh M, Bianchi LF, Bottino AMS, Dueholm R, Niehaus A, Overwijn D, Fils AP, et al: Structural basis for the docking of mTORC1 on the lysosomal surface. Science. 366:468–475. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Anandapadamanaban M, Masson GR, Perisic O, Berndt A, Kaufman J, Johnson CM, Santhanam B, Rogala KB, Sabatini DM and Williams RL: Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science. 366:203–210. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Doxsey DD, Tettoni SD, Egri SB and Shen K: Redundant electrostatic interactions between GATOR1 and the Rag GTPase heterodimer drive efficient amino acid sensing in human cells. J Biol Chem. 299:1048802023. View Article : Google Scholar : PubMed/NCBI | |
|
Egri SB, Ouch C, Chou HT, Yu Z, Song K, Xu C and Shen K: Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism. Mol Cell. 82:1836–1849.e5. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sanders SS, De Simone FI and Thomas GM: mTORC1 signaling is Palmitoylation-dependent in hippocampal neurons and Non-neuronal cells and involves dynamic palmitoylation of LAMTOR1 and mTOR. Front Cell Neurosci. 13:1152019. View Article : Google Scholar : PubMed/NCBI | |
|
Laufenberg LJ, Crowell KT and Lang CH: Alcohol acutely antagonizes Refeeding-induced alterations in the Rag GTPase-ragulator complex in skeletal muscle. Nutrients. 13:12362021. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng J, Lou Y and Jiang K: Downregulation of long non-coding RNA LINC00460 inhibits the proliferation, migration and invasion, and promotes apoptosis of pancreatic cancer cells via modulation of the miR-320b/ARF1 axis. Bioengineered. 12:96–107. 2021. View Article : Google Scholar | |
|
Li FL and Guan KL: The Arf family GTPases: Regulation of vesicle biogenesis and beyond. BioEssays: News and reviews in molecular, cellular and developmental Biology. 45:e22002142023. View Article : Google Scholar : PubMed/NCBI | |
|
Fan SJ, Snell C, Turley H, Li JL, McCormick R, Perera SM, Heublein S, Kazi S, Azad A, Wilson C, et al: PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer. Oncogene. 35:3004–3015. 2016. View Article : Google Scholar : | |
|
Huang T, Chen B, Wang F, Cai W, Wang X, Huang B, Liu F, Jiang B and Zhang Y: Rab1A promotes IL-4R/JAK1/STAT6-dependent metastasis and determines JAK1 inhibitor sensitivity in non-small cell lung cancer. Cancer Lett. 523:182–194. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Qian M, Zhao B, Wu C, Maskey N, Song H, Li D, Song J, Hua K and Fang L: Inhibition of RAB1A suppresses epithelial-mesenchymal transition and proliferation of triple-negative breast cancer cells. Oncol Rep. 37:1619–1626. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao T, Fan J, Abu-Zaid A, Burley SK and Zheng XFS: Nuclear mTOR signaling orchestrates transcriptional programs underlying cellular growth and metabolism. Cells. 13:7812024. View Article : Google Scholar : PubMed/NCBI | |
|
Wolfson RL and Sabatini DM: The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell. 26:301–309. 2017. | |
|
Talaia G, Bentley-DeSousa A and Ferguson SM: Lysosomal TBK1 responds to amino acid availability to relieve Rab7-dependent mTORC1 inhibition. EMBO J. 43:3948–3967. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen F, Peng S, Li C, Yang F, Yi Y, Chen X, Xu H, Cheng B, Xu Y and Xie X: Nitidine chloride inhibits mTORC1 signaling through ATF4-mediated Sestrin2 induction and targets IGF2R for lysosomal degradation. Life Sci. 353:1229182024. View Article : Google Scholar : PubMed/NCBI | |
|
Oricchio E, Katanayeva N, Donaldson MC, Sungalee S, Pasion JP, Béguelin W, Battistello E, Sanghvi VR, Jiang M, Jiang Y, et al: Genetic and epigenetic inactivation of SESTRIN1 controls mTORC1 and response to EZH2 inhibition in follicular lymphoma. Sci Transl Med. 9:eaak99692017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Ou Y, Luo R, Wang J, Wang D, Guan J, Li Y, Xia P, Chen PR and Liu Y: SAR1B senses leucine levels to regulate mTORC1 signalling. Nature. 596:281–284. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JH, Jung K, Lee C, Song D, Kim K, Yoo HC, Park SJ, Kang JS, Lee KR, Kim S, et al: Structure-based modification of pyrazolone derivatives to inhibit mTORC1 by targeting the leucyl-tRNA synthetase-RagD interaction. Bioorg Chem. 112:1049072021. View Article : Google Scholar : PubMed/NCBI | |
|
Gai Z, Hu S, He Y, Yan S, Wang R, Gong G and Zhao J: L-arginine alleviates heat stress-induced mammary gland injury through modulating CASTOR1-mTORC1 axis mediated mitochondrial homeostasis. Sci Total Environ. 926:1720172024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Shen C, Zhao G, Hanigan MD and Li M: Dietary protein re-alimentation following restriction improves protein deposition via changing amino acid metabolism and transcriptional profiling of muscle tissue in growing beef bulls. Anim Nutr. 19:117–130. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Jung JW, Kim JE, Kim E and Lee JW: Amino acid transporters as tetraspanin TM4SF5 binding partners. Exp Mol Med. 52:7–14. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jung JW, Macalino SJY, Cui M, Kim JE, Kim HJ, Song DG, Nam SH, Kim S, Choi S and Lee JW: Transmembrane 4 L six family member 5 senses arginine for mTORC1 signaling. Cell Metab. 29:1306–1319.e7. 2019. View Article : Google Scholar | |
|
Gu X, Orozco JM, Saxton RA, Condon KJ, Liu GY, Krawczyk PA, Scaria SM, Harper JW, Gygi SP and Sabatini DM: SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science. 358:813–818. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SH, Choi JH, Wang P, Go CD, Hesketh GG, Gingras AC, Jafarnejad SM and Sonenberg N: Mitochondrial Threonyl-tRNA synthetase TARS2 is required for Threonine-sensitive mTORC1 activation. Mol Cell. 81:398–407.e4. 2021. View Article : Google Scholar | |
|
Wang D, Wan X, Du X, Zhong Z, Peng J, Xiong Q, Chai J and Jiang S: Insights into the Interaction of lysosomal amino acid transporters SLC38A9 and SLC36A1 involved in mTORC1 signaling in C2C12 Cells. Biomolecules. 11:13142021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, et al: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 347:188–194. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Zhang T, Li W, Wang H, Yan L, Zhang X, Zhao L, Wang N and Zhang B: Arginine alleviates Clostridium perfringens α toxin-induced intestinal injury in vivo and in vitro via the SLC38A9/mTORC1 pathway. Front Immunol. 15:13570722024. View Article : Google Scholar | |
|
Dev G, Chawla AS, Gupta S, Bal V, George A, Rath S and Arimbasseri GA: Differential Regulation of two arms of mTORC1 pathway Fine-tunes global protein synthesis in resting B lymphocytes. Int J Mol Sci. 23:160172022. View Article : Google Scholar : PubMed/NCBI | |
|
Knight JRP, Alexandrou C, Skalka GL, Vlahov N, Pennel K, Officer L, Teodosio A, Kanellos G, Gay DM, May-Wilson S, et al: MNK inhibition sensitizes KRAS-mutant colorectal cancer to mTORC1 inhibition by reducing eIF4E phosphorylation and c-MYC expression. Cancer Discov. 11:1228–1247. 2021. View Article : Google Scholar : | |
|
Savukaitytė A, Gudoitytė G, Bartnykaitė A, Ugenskienė R and Juozaitytė E: siRNA knockdown of REDD1 facilitates Aspirin-mediated dephosphorylation of mTORC1 target 4E-BP1 in MDA-MB-468 human breast cancer cell line. Cancer Manag Res. 13:1123–1133. 2021. View Article : Google Scholar | |
|
Llanos S and García-Pedrero JM: A new mechanism of regulation of p21 by the mTORC1/4E-BP1 pathway predicts clinical outcome of head and neck cancer. Mol Cell Oncol. 3:e11592752016. View Article : Google Scholar : PubMed/NCBI | |
|
Amar-Schwartz A, Ben Hur V, Jbara A, Cohen Y, Barnabas GD, Arbib E, Siegfried Z, Mashahreh B, Hassouna F, Shilo A, et al: S6K1 phosphorylates Cdk1 and MSH6 to regulate DNA repair. ELife. 11:e791282022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Miao L, Liang F, Huang H, Teng X, Li S, Nuriddinov J, Selzer ME and Hu Y: The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration. Nat Commun. 5:54162014. View Article : Google Scholar : PubMed/NCBI | |
|
Jang SK, Kim G, Ahn SH, Hong J, Jin HO and Park IC: Duloxetine enhances the sensitivity of non-small cell lung cancer cells to EGFR inhibitors by REDD1-induced mTORC1/S6K1 suppression. Am J Cancer Res. 14:1087–1100. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Song W, Gao Y, Zhang Y, Zhao Y, Hao S and Ni T: The role of tumor metabolic reprogramming in tumor immunity. Int J Mol Sci. 24:174222023. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
He L, Cho S and Blenis J: mTORC1, the maestro of cell metabolism and growth. Genes Dev. 39:109–131. 2025. | |
|
Vaidyanathan S, Salmi TM, Sathiqu RM, McConville MJ, Cox AG and Brown KK: YAP regulates an SGK1/mTORC1/SREBP-dependent lipogenic program to support proliferation and tissue growth. Dev Cell. 57:719–731.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Solanki S, Sanchez K, Ponnusamy V, Kota V, Bell HN, Cho CS, Kowalsky AH, Green M, Lee JH and Shah YM: Dysregulated amino acid sensing drives colorectal cancer growth and metabolic reprogramming leading to chemoresistance. Gastroenterology. 164:376–391.e13. 2023. View Article : Google Scholar | |
|
Jin C, Zhu M, Ye J, Song Z, Zheng C and Chen W: Autophagy: Are amino acid signals dependent on the mTORC1 pathway or independent? Curr Issues Mol Biol. 46:8780–8793. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Z, Liu J, Gao X, Chen Z, Hu Y, Chen J, Zang W and Xue W: SCYL1-mediated regulation of the mTORC1 signaling pathway inhibits autophagy and promotes gastric cancer metastasis. J Cancer Res Clin Oncol. 150:4562024. View Article : Google Scholar : PubMed/NCBI | |
|
Tan HWS, Sim AYL and Long YC: Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat Commun. 8:3382017. View Article : Google Scholar : PubMed/NCBI | |
|
Ro SH, Xue X, Ramakrishnan SK, Cho CS, Namkoong S, Jang I, Semple IA, Ho A, Park HW, Shah YM and Lee JH: Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. ELife. 5:e122042016. View Article : Google Scholar : PubMed/NCBI | |
|
Byun JK, Choi YK, Kim JH, Jeong JY, Jeon HJ, Kim MK, Hwang I, Lee SY, Lee YM, Lee IK and Park KG: A positive feedback loop between sestrin2 and mTORC2 is required for the survival of Glutamine-depleted lung cancer cells. Cell Rep. 20:586–599. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shen S, Zhou H, Xiao Z, Zhan S, Tuo Y, Chen D, Pang X, Wang Y and Wang J: PRMT1 in human neoplasm: Cancer biology and potential therapeutic target. Cell Commun Signal. 22:1022024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou M, Huang Y, Xu P, Li S, Duan C, Lin X, Bao S, Zou W, Pan J, Liu C and Jin Y: PRMT1 promotes the Self-renewal of leukemia stem cells by regulating protein synthesis. Adv Sci (Weinh). 12:e23085862025. View Article : Google Scholar | |
|
Yin JZ, Keszei AFA, Houliston S, Filandr F, Beenstock J, Daou S, Kitaygorodsky J, Schriemer DC, Mazhab-Jafari MT, Gingras AC and Sicheri F: The HisRS-like domain of GCN2 is a pseudoenzyme that can bind uncharged tRNA. Structure. 32:795–811.e6. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kim Y, Sundrud MS, Zhou C, Edenius M, Zocco D, Powers K, Zhang M, Mazitschek R, Rao A, Yeo CY, et al: Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proc Natl Acad Sci USA. 117:8900–8911. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Brüggenthies JB, Fiore A, Russier M, Bitsina C, Brötzmann J, Kordes S, Menninger S, Wolf A, Conti E, Eickhoff JE and Murray PJ: A cell-based chemical-genetic screen for amino acid stress response inhibitors reveals torins reverse stress kinase GCN2 signaling. J Biol Chem. 298:1026292022. View Article : Google Scholar : PubMed/NCBI | |
|
Sannino S, Yates ME, Schurdak ME, Oesterreich S, Lee AV, Wipf P and Brodsky JL: Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised. ELife. 10:e649772021. View Article : Google Scholar : PubMed/NCBI | |
|
Nelson AT, Cicardi ME, Markandaiah SS, Han JY, Philp NJ, Welebob E, Haeusler AR, Pasinelli P, Manfredi G, Kawamata H and Trotti D: Glucose hypometabolism prompts RAN translation and exacerbates C9orf72-related ALS/FTD phenotypes. EMBO Rep. 25:2479–2510. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan J, Yu Z, Gao J, Luo K, Shen X, Cui B and Lu Z: Inhibition of GCN2 alleviates hepatic steatosis and oxidative stress in obese mice: Involvement of NRF2 regulation. Redox Biol. 49:1022242022. View Article : Google Scholar : | |
|
Missiaen R, Anderson NM, Kim LC, Nance B, Burrows M, Skuli N, Carens M, Riscal R, Steensels A, Li F and Simon MC: GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment. Cell Metab. 34:1151–1167.e7. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Stonyte V, Mastrangelopoulou M, Timmer R, Lindbergsengen L, Vietri M, Campsteijn C and Grallert B: The GCN2/eIF2αK stress kinase regulates PP1 to ensure mitotic fidelity. EMBO Rep. 24:e561002023. View Article : Google Scholar | |
|
Weber SL, Hustedt K, Schnepel N, Visscher C and Muscher-Banse AS: Modulation of GCN2/eIF2α/ATF4 pathway in the liver and induction of FGF21 in young goats fed a Protein- and/or Phosphorus-reduced diet. Int J Mol Sci. 24:71532023. View Article : Google Scholar | |
|
Ge MK, Zhang C, Zhang N, He P, Cai HY, Li S, Wu S, Chu XL, Zhang YX, Ma HM, et al: The tRNA-GCN2-FBXO22-axis-mediated mTOR ubiquitination senses amino acid insufficiency. Cell Metab. 35:2216–2230.e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Müller MBD, Kasturi P, Jayaraj GG and Hartl FU: Mechanisms of readthrough mitigation reveal principles of GCN1-mediated translational quality control. Cell. 186:3227–3244.e20. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bou-Nader C, Gaikwad S, Bahmanjah S, Zhang F, Hinnebusch AG and Zhang J: Gcn2 structurally mimics and functionally repurposes the HisRS enzyme for the integrated stress response. Proc Natl Acad Sci USA. 121:e24096281212024. View Article : Google Scholar : PubMed/NCBI | |
|
Ishimura R, Nagy G, Dotu I, Chuang JH and Ackerman SL: Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. ELife. 5:e142952016. View Article : Google Scholar : PubMed/NCBI | |
|
Inglis AJ, Masson GR, Shao S, Perisic O, McLaughlin SH, Hegde RS and Williams RL: Activation of GCN2 by the ribosomal P-stalk. Proc Natl Acad Sci USA. 116:4946–4954. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Piecyk M, Ferraro-Peyret C, Laville D, Perros F and Chaveroux C: Novel insights into the GCN2 pathway and its targeting. Therapeutic value in cancer and lessons from lung fibrosis development. FEBS J. 291:4867–4889. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Xie Y and Qian S: Multifaceted role of GCN2 in tumor adaptation and therapeutic targeting. Transl Oncol. 49:1020962024. View Article : Google Scholar : PubMed/NCBI | |
|
Nofal M, Wang T, Yang L, Jankowski CSR, Hsin-Jung Li S, Han S, Parsons L, Frese AN, Gitai Z, Anthony TG, et al: GCN2 adapts protein synthesis to scavenging-dependent growth. Cell Syst. 13:158–172.e9. 2022. View Article : Google Scholar : | |
|
St Paul M, Saibil SD, Kates M, Han S, Lien SC, Laister RC, Hezaveh K, Kloetgen A, Penny S, Guo T, et al: Ex vivo activation of the GCN2 pathway metabolically reprograms T cells, leading to enhanced adoptive cell therapy. Cell Rep Med. 5:1014652024. View Article : Google Scholar | |
|
Zhao L, Deng L, Zhang Q, Jing X, Ma M, Yi B, Wen J, Ma C, Tu J, Fu T and Shen J: Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy. 14:702–714. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nakamura A, Nambu T, Ebara S, Hasegawa Y, Toyoshima K, Tsuchiya Y, Tomita D, Fujimoto J, Kurasawa O, Takahara C, et al: Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response. Proc Natl Acad Sci USA. 115:e7776–e7785. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Blagojevic B, Almouhanna F, Poschet G and Wölfl S: Cell Type-specific metabolic response to amino acid starvation dictates the role of Sestrin2 in regulation of mTORC1. Cells. 11:38632022. View Article : Google Scholar : PubMed/NCBI | |
|
Ye J, Palm W, Peng M, King B, Lindsten T, Li MO, Koumenis C and Thompson CB: GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 29:2331–2336. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Averous J, Lambert-Langlais S, Mesclon F, Carraro V, Parry L, Jousse C, Bruhat A, Maurin AC, Pierre P, Proud CG and Fafournoux P: GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Sci Rep. 6:276982016. View Article : Google Scholar : PubMed/NCBI | |
|
Carlson KR, Georgiadis MM, Tameire F, Staschke KA and Wek RC: Activation of Gcn2 by small molecules designed to be inhibitors. J Biol Chem. 299:1045952023. View Article : Google Scholar : PubMed/NCBI | |
|
Krall AS, Mullen PJ, Surjono F, Momcilovic M, Schmid EW, Halbrook CJ, Thambundit A, Mittelman SD, Lyssiotis CA, Shackelford DB, et al: Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. Cell Metab. 33:1013–1026.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kardos GR, Wastyk HC and Robertson GP: Disruption of proline synthesis in melanoma inhibits protein production mediated by the GCN2 pathway. Mol Cancer Res. 13:1408–1420. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Vynnytska-Myronovska BO, Kurlishchuk Y, Chen O, Bobak Y, Dittfeld C, Hüther M, Kunz-Schughart LA and Stasyk OV: Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution. Exp Cell Res. 341:67–74. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ren W, Li Y, Xia X, Guo W, Zhai T, Jin Y, Che Y, Gao H, Duan X, Ma H, et al: Arginine inhibits the malignant transformation induced by interferon-gamma through the NF-κB-GCN2/eIF2α signaling pathway in mammary epithelial cells in vitro and in vivo. Expl Cell Res. 368:236–247. 2018. View Article : Google Scholar | |
|
Cordova RA, Misra J, Amin PH, Klunk AJ, Damayanti NP, Carlson KR, Elmendorf AJ, Kim HG, Mirek ET, Elzey BD, et al: GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis. ELife. 11:e810832022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C and Zhang J: Enhancing leukemia treatment: The role of combined therapies based on amino acid starvation. Cancers (Basel). 16:11712024. View Article : Google Scholar : PubMed/NCBI | |
|
Szczygiel M, Derewenda U, Scheiner S, Minor W and Derewenda ZS: A structural role for tryptophan in proteins, and the ubiquitous Trp Cδ1-H...O=C (backbone) hydrogen bond. Acta Crystallogr D Struct Biol. 80:551–562. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Basson C, Serem JC, Hlophe YN and Bipath P: The tryptophan-kynurenine pathway in immunomodulation and cancer metastasis. Cancer Med. 12:18691–18701. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hanif N and Sari S: Discovery of novel IDO1/TDO2 dual inhibitors: A consensus Virtual screening approach with molecular dynamics simulations, and binding free energy analysis. J Biomol Struct Dyn. 43:6954–6970. 2025. View Article : Google Scholar | |
|
Thapa K, Khan H, Kaur G, Kumar P and Singh TG: Therapeutic targeting of angiopoietins in tumor angiogenesis and cancer development. Biochem Biophys Res Commun. 687:1491302023. View Article : Google Scholar : PubMed/NCBI | |
|
Longchamp A, Mirabella T, Arduini A, MacArthur MR, Das A, Treviño-Villarreal JH, Hine C, Ben-Sahra I, Knudsen NH, Brace LE, et al: Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production. Cell. 173:117–129.e14. 2018. View Article : Google Scholar : | |
|
Hsu CC, Tseng LM and Lee HC: Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood). 241:1281–1295. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Quirós PM, Mottis A and Auwerx J: Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol. 17:213–226. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Zhu J, Abulizi G and Hasim A: Metabolism and spatial transcription resolved heterogeneity of glutamine metabolism in cervical carcinoma. BMC Cancer. 24:15042024. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Chen Y, Yang Y, Yang Y and Wu Z: High-level L-Gln compromises intestinal amino acid utilization efficiency and inhibits protein synthesis by GCN2/eIF2α/ATF4 signaling pathway in piglets fed low-crude protein diets. Anim Nutr. 19:480–487. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Patel R, Alfarsi LH, El-Ansari R, Masisi BK, Erkan B, Fakroun A, Ellis IO, Rakha EA and Green AR: ATF4 as a prognostic marker and modulator of glutamine metabolism in oestrogen Receptor-positive breast cancer. Pathobiology. 91:411–421. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Huang X, Zhang S and Zhu X: ATF4 inhibits tumor development and mediates p-GCN2/ASNS upregulation in colon cancer. Sci Rep. 14:130422024. View Article : Google Scholar : PubMed/NCBI | |
|
Jin HO, Hong SE, Kim JY, Jang SK and Park IC: Amino acid deprivation induces AKT activation by inducing GCN2/ATF4/REDD1 axis. Cell Death Dis. 12:11272021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao C, Guo H, Hou Y, Lei T, Wei D and Zhao Y: Multiple roles of the stress sensor GCN2 in immune cells. Int J Mol Sci. 24:42852023. View Article : Google Scholar : PubMed/NCBI | |
|
Bartok O, Pataskar A, Nagel R, Laos M, Goldfarb E, Hayoun D, Levy R, Körner PR, Kreuger IZM, Champagne J, et al: Anti-tumour immunity induces aberrant peptide presentation in melanoma. Nature. 590:332–337. 2021. View Article : Google Scholar | |
|
Halaby MJ, Hezaveh K, Lamorte S, Ciudad MT, Kloetgen A, MacLeod BL, Guo M, Chakravarthy A, Medina TDS, Ugel S, et al: GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment. Sci Immunol. 4:eaax81892019. View Article : Google Scholar : PubMed/NCBI | |
|
Gauthier-Coles G, Rahimi F, Bröer A and Bröer S: Inhibition of GCN2 Reveals Synergy with Cell-Cycle Regulation and Proteostasis. Metabolites. 13:10642023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang CW, Wang YN and Ge XL: Lenalidomide use in multiple myeloma (review). Mol Clin Oncol. 20:72024. View Article : Google Scholar | |
|
Chattopadhyay N, Berger AJ, Koenig E, Bannerman B, Garnsey J, Bernard H, Hales P, Maldonado Lopez A, Yang Y, Donelan J, et al: KRAS genotype correlates with proteasome inhibitor ixazomib activity in preclinical in vivo models of colon and Non-small cell lung cancer: Potential role of tumor metabolism. PLoS One. 10:e01448252015. View Article : Google Scholar : PubMed/NCBI | |
|
Saavedra-García P, Roman-Trufero M, Al-Sadah HA, Blighe K, López-Jiménez E, Christoforou M, Penfold L, Capece D, Xiong X, Miao Y, et al: Systems level profiling of chemotherapy-induced stress resolution in cancer cells reveals druggable trade-offs. Proc Natl Acad Sci USA. 118:e20182291182021. View Article : Google Scholar : PubMed/NCBI | |
|
Punnasseril JMJ, Auwal A, Gopalan V, Lam AK and Islam F: Metabolic reprogramming of cancer cells and therapeutics targeting cancer metabolism. Cancer Med. 14:e712442025. View Article : Google Scholar : PubMed/NCBI | |
|
Darawshi O, Yassin O, Shmuel M, Wek RC, Mahdizadeh SJ, Eriksson LA, Hatzoglou M and Tirosh B: Phosphorylation of GCN2 by mTOR confers adaptation to conditions of hyper-mTOR activation under stress. J Biol Chem. 300:1075752024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Chen J, Liu J, Lin T, Liu X, Zhang S, Yue X, Zhang X, Zeng X and Ren M: Leucine and arginine enhance milk fat and milk protein synthesis via the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 pathways. Eur J Nutr. 62:2873–2890. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Chu WK, Yam JCS, Pang CP, Leung YC, Shum ASW and Chan SO: GCN2-SLC7A11 axis coordinates autophagy, cell cycle and apoptosis and regulates cell growth in retinoblastoma upon arginine deprivation. Cancer Metab. 12:312024. View Article : Google Scholar : PubMed/NCBI | |
|
Mossmann D, Müller C, Park S, Ryback B, Colombi M, Ritter N, Weißenberger D, Dazert E, Coto-Llerena M, Nuciforo S, et al: Arginine reprograms metabolism in liver cancer via RBM39. Cell. 186:5068–5083.e23. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Carpentier J, Pavlyk I, Mukherjee U, Hall PE and Szlosarek PW: Arginine deprivation in SCLC: Mechanisms and perspectives for therapy. Lung Cancer (Auckl). 13:53–66. 2022.PubMed/NCBI | |
|
Chen T, Xu Y, Yang F, Pan Y, Ji N, Li J, Zeng X, Chen Q, Jiang L and Shen YQ: Crosstalk of glutamine metabolism between cancer-associated fibroblasts and cancer cells. Cell Signal. 133:1118742025. View Article : Google Scholar : PubMed/NCBI | |
|
Kim DH, Kim DJ, Park SJ, Jang WJ and Jeong CH: Inhibition of GLS1 and ASCT2 synergistically enhances the anticancer effects in pancreatic cancer cells. J Microbiol Biotechnol. 35:e24120322025. View Article : Google Scholar : PubMed/NCBI | |
|
Pu X, Wu Y, Long W, Sun X, Yuan X, Wang D, Wang X and Xu M: The m6A reader IGF2BP2 promotes pancreatic cancer progression through the m6A-SLC1A5-mTORC1 axis. Cancer Cell Int. 25:1222025. View Article : Google Scholar : PubMed/NCBI | |
|
Ihlamur M, Akgul B, Zengin Y, Korkut ŞV, Kelleci K and Abamor E: The mTOR signaling pathway and mTOR inhibitors in cancer: Next-generation inhibitors and approaches. Curr Mol Med. 24:478–494. 2024. View Article : Google Scholar | |
|
Marafie SK, Al-Mulla F and Abubaker J: mTOR: Its critical role in metabolic diseases, cancer, and the aging process. Int J Mol Sci. 25:61412024. View Article : Google Scholar : PubMed/NCBI | |
|
Hassan B, Akcakanat A, Sangai T, Evans KW, Adkins F, Eterovic AK, Zhao H, Chen K, Chen H, Do KA, et al: Catalytic mTOR inhibitors can overcome intrinsic and acquired resistance to allosteric mTOR inhibitors. Oncotarget. 5:8544–8557. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Powles T, Wheater M, Din O, Geldart T, Boleti E, Stockdale A, Sundar S, Robinson A, Ahmed I, Wimalasingham A, et al: A Randomised phase 2 study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer. Eur Urol. 69:450–456. 2016. View Article : Google Scholar | |
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Eftekhari M, Safari A and Najafi M: MicroRNAs targeted mTOR as therapeutic agents to improve radiotherapy outcome. Cancer Cell Int. 24:2332024. View Article : Google Scholar : PubMed/NCBI | |
|
Cai Y, Xu G, Wu F, Michelini F, Chan C, Qu X, Selenica P, Ladewig E, Castel P, Cheng Y, et al: Genomic alterations in PIK3CA-mutated breast cancer result in mTORC1 activation and limit the sensitivity to PI3Kα inhibitors. Cancer Res. 81:2470–2480. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jia W, Luo S, Guo H and Kong D: Development of PI3Kα inhibitors for tumor therapy. J Biomol Struct Dyn. 41:8587–8604. 2023. View Article : Google Scholar | |
|
Kearney AL and Vasan N: A new wave of PI3Kα inhibitors. Cancer Discov. 13:2313–2315. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Watanabe T: Recent advances in treatment of follicular lymphoma: Efficacy of PI3Kα/δ inhibitor (TQ-B3525). Signal Transduct Target Ther. 9:1342024. View Article : Google Scholar | |
|
Heydt Q, Xintaropoulou C, Clear A, Austin M, Pislariu I, Miraki-Moud F, Cutillas P, Korfi K, Calaminici M, Cawthorn W, et al: Adipocytes disrupt the translational programme of acute lymphoblastic leukaemia to favour tumour survival and persistence. Nat Commun. 12:55072021. View Article : Google Scholar : PubMed/NCBI | |
|
Duan Z, Yang M, Yang J, Wu Z, Zhu Y, Jia Q, Ma X, Yin Y, Zheng J, Yang J, et al: AGFG1 increases cholesterol biosynthesis by disrupting intracellular cholesterol homeostasis to promote PDAC progression. Cancer Lett. 598:2171302024. View Article : Google Scholar : PubMed/NCBI | |
|
Mijit M, Boner M, Cordova RA, Gampala S, Kpenu E, Klunk AJ, Zhang C, Kelley MR, Staschke KA and Fishel ML: Activation of the integrated stress response (ISR) pathways in response to Ref-1 inhibition in human pancreatic cancer and its tumor microenvironment. Front Med (Lausanne). 10:11461152023. View Article : Google Scholar : PubMed/NCBI | |
|
Drainas AP, Hsu WH, Dallas AE, Poltorack CD, Kim JW, He A, Coles GL, Baron M, Bassik MC and Sage J: GCN2 is a determinant of the response to WEE1 kinase inhibition in small-cell lung cancer. Cell Rep. 43:1146062024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu T, Yu Z, Dai J, Li J, Ning F, Liu X, Zhu N and Zhang X: JPH203 alleviates peritoneal fibrosis via inhibition of amino acid-mediated mTORC1 signaling. Biochem Biophys Res Commun. 734:1506562024. View Article : Google Scholar : PubMed/NCBI | |
|
Bo T, Kobayashi S, Inanami O, Fujii J, Nakajima O, Ito T and Yasui H: LAT1 inhibitor JPH203 sensitizes cancer cells to radiation by enhancing radiation-induced cellular senescence. Transl Oncol. 14:1012122021. View Article : Google Scholar : PubMed/NCBI | |
|
Häfliger P, Graff J, Rubin M, Stooss A, Dettmer MS, Altmann KH, Gertsch J and Charles RP: The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model. J Exp Clin Cancer Res. 37:2342018. View Article : Google Scholar : PubMed/NCBI | |
|
Okano N, Naruge D, Kawai K, Kobayashi T, Nagashima F, Endou H and Furuse J: First-in-human phase I study of JPH203, an L-type amino acid transporter 1 inhibitor, in patients with advanced solid tumors. Invest New Drugs. 38:1495–1506. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Liu R, Shuai Y, Huang Y, Jin R, Wang X and Luo J: ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br J Cancer. 122:82–93. 2020. View Article : Google Scholar : | |
|
Chen XY, Chen X, Liang XH, Lu D, Pan RR, Xiong QY, Liu XX, Lin JY, Zhang LJ, Chen HZ, et al: Yuanhuacine suppresses head and neck cancer growth by promoting ASCT2 degradation and inhibiting glutamine uptake. Acta Pharmacol Sin. 46:2779–2792. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Barisaac AS, Abu-Zhayia ER and Ayoub N: Leveraging valine-restriction-induced DNA damage for targeted cancer therapy. Mol Cell. 85:468–470. 2025. View Article : Google Scholar : PubMed/NCBI |