Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2026 Volume 57 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 57 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Microbial short chain fatty acids: Effective histone deacetylase inhibitors in immune regulation (Review)

  • Authors:
    • Jing Wang
    • Qin Zhao
    • Shuwan Zhang
    • Jia Liu
    • Xingyue Fan
    • Bin Han
    • Yaqin Hou
    • Xiaopeng Ai
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 16
    |
    Published online on: November 5, 2025
       https://doi.org/10.3892/ijmm.2025.5687
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Histone acetylation modification represents a common epigenetic regulatory mechanism, carrying out an indispensable role in cellular gene transcription and function. Histone deacetylases (HDACs) are responsible for regulating gene expression by controlling the deacetylation of histones and non‑histone proteins, and can serve as effective targets for participating in immune regulation. Short‑chain fatty acids (SCFAs) are important metabolites produced by the gut microbiota that modulate host immunity. SCFAs possess extensive inhibitory activities on class I and II HDACs, as well as acetylation‑modifying effects. Based on these, the present review initially introduces the microbial synthesis and intestinal absorption of SCFAs, as well as the classification and function of HDACs. Subsequently, the present review comprehensively summarizes the direct regulatory effects of SCFAs on immune cells through HDAC inhibition, encompassing innate immune cells (macrophages, dendritic cells, neutrophils, mast cells and natural killer cells) as well as T/B lymphocytes. Moreover, the present review further discusses the local intestinal and extra‑intestinal (primarily involving the liver, kidney, nerves and blood vessels) protective effects of SCFAs, which are mediated by their HDAC‑inhibiting activities. Finally, the present review summarizes the therapeutic potential of SCFAs as effective HDAC inhibitors in ameliorating intestinal and extra‑intestinal diseases and discusses the research prospects. The present review aims to elucidate the regulatory effects of SCFAs on host immunity through HDAC inhibition, highlighting their therapeutic potential for human diseases.
View Figures

Figure 1

Outline of the present review. Left
panel: The major processes that SCFAs mediate the immune regulation
via HDAC inhibition. Middle and right panels: The corresponding
sections of the present review. SCFAs, short chain fatty acids;
HDAC, histone deacetylase; HDACi, histone deacetylase
inhibitor.

Figure 2

The main pathways by which gut
microbiota hydrolyze carbohydrates to synthesize SCFAs. The
synthetic routes for the three primary SCFAs-acetate, propionate
and butyrate-are listed as follows: i) The Wood-Ljungdahl pathway
or acetyl-CoA pathway for acetate synthesis; ii) the acrylate
pathway, succinate pathway or propanediol pathway for propionate
synthesis; iii) the pathway for butyrate synthesis relying on key
enzymes such as butyrate kinase or butyryl-CoA: Acetate CoA
transferase.

Figure 3

Classification of HDACs. There exist
two principal types of HDACs that carry out deacetylation function,
namely classic HDACs and SIRTs. Classic HDACs include class I, II
and IV HDACs, all of which belong to the family of Zinc-dependent
hydrolases. SIRTs, on the other hand, are categorized as class III
HDACs and are well-known as NAD+-dependent deacetylases. The enzyme
domains are shown in color, and the numbers indicate the counts of
amino acids. HDACs, histone deacetylases; SIRTs, sirtuins.

Figure 4

Regulatory effects of microbial SCFAs
on immune cell activities and function via HDAC inhibition. SCFAs,
primarily consisting of acetate, propionate and butyrate, are
capable of promoting acetylation modifications at histones H3
(K9/K14/K27), H4 (K16) and other sites by inhibiting class I/II
HDACs. In the majority of cases, the intensity of HDAC inhibition
by SCFAs is in the order of butyrate > propionate > acetate.
The HDACi effect of SCFAs enables them to modulate the expression
of various genes and signaling pathways, ultimately influencing the
activities and functions of immune cells. SCFAs, short chain fatty
acids; HDACs, histone deacetylases; HDACi, histone deacetylase
inhibitor; ROS, reactive oxygen species; AMPs, antimicrobial
peptides; NETs, neutrophil extracellular traps; M2, macrophage
subset 2.

Figure 5

Regulatory effects of SCFAs on the
activities and function of IECs through HDAC inhibition. SCFAs,
such as acetate, propionate and primarily butyrate, can extensively
modulate various cellular signaling pathways by inhibiting class
I/II HDACs (2, 3 and 8) and promoting acetylation modifications of
histones H3 (K9/K14/K18), H4 (K16) and other sites. Consequently,
these actions have a notable impact on the activities and function
of IECs. IECs, intestinal epithelial cells; SCFAs, short chain
fatty acids; HDACs, histone deacetylases; AP-1, activator
protein-1; AMPs, antimicrobial peptides; MCT, monocarboxylate
transporters; SYNPO, synaptopodin; hSVCT, human sodium-dependent
vitamin C transporters; CYP1A1, cytochrome P450 1A1; CXCL10, C-X-C
motif chemokine ligand 10; IDO-1, indolamine 2,3-dioxygenase 1;
AhR, aryl hydrocarbon receptor; 5-HT,
5-hydroxytryptamine/serotonin.

Figure 6

The extraintestinal protective
effects of SCFAs based on HDAC inhibition. The SCFAs, namely
acetate, propionate and primarily butyrate, exert immunoprotective
effects on extra-intestinal organs, including the liver, kidney,
nerves and blood vessels. These effects are achieved through the
mechanism of HDAC inhibition. Mechanistically, SCFAs are capable of
inhibiting the activities of class I and II HDACs (1, 2, 3, 4 and
8), while simultaneously regulating acetylation modifications at
histone H3 (K9/K18/K27), H4 (K8/K12/K16) and other sites. These
actions modulate the activities and functions of different
tissue-resident cells, ultimately contributing to the systemic
protection of SCFAs. SCFAs, short chain fatty acids; HDAC, histone
deacetylase; CREB, cyclic adenosine monophosphate response element
binding protein; SREBP, sterol regulatory element-binding
transcription factor; GLP-1R, glucagon-like peptide-1 receptor;
FGF21, fibroblast growth factor 21; AhR, aryl hydrocarbon receptor;
CYP, cytochromes P450; GFAP, glial fibrillary acidic protein; PRKN,
parkin RBR E3 ubiquitin protein ligase; M1, macrophage subset 1;
M2, macrophage subset 2; PGs, prostaglandins; GDNF, glial cell line
derived neurotrophic factor; HSCs, hepatic stellate cellsHIF-1α,
hypoxia inducible factor-1α; TLR, toll-like receptor; ULK1, unc-51
like autophagy activating kinase 1; SLC22A6, solute carrier family
22 member 6; OAT1, organic anion transporter-1; VCAM-1, vascular
cell adhesion molecule-1; eNOS, endothelial nitric oxide
synthase.

Figure 7

Therapeutic activities of SCFAs
against various diseases based on HDAC inhibition and acetylation
modification. SCFAs, namely acetate, propionate and butyrate, can
exert a wide array of therapeutic activities against diseases of
the intestine, liver, kidney, nervous system and blood vessels.
Their underlying mechanisms are associated with the inhibition of
class I/II HDACs activities and the regulation of acetylation
modifications on histone H3 (K9/K27) and H4 (K8/K12/K16). SCFAs,
short chain fatty acids; HDACs, histone deacetylase.
View References

1 

Millán-Zambrano G, Burton A, Bannister AJ and Schneider R: Histone post-translational modifications-cause and consequence of genome function. Nat Rev Genet. 23:563–580. 2022. View Article : Google Scholar

2 

Zhao S, Zhang X and Li H: Beyond histone acetylation-writing and erasing histone acylations. Curr Opin Struct Biol. 53:169–177. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Shvedunova M and Akhtar A: Modulation of cellular processes by histone and Non-histone protein acetylation. Nat Rev Mol Cell Biol. 23:329–349. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Shakespear MR, Halili MA, Irvine KM, Fairlie DP and Sweet MJ: Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 32:335–343. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV and Schiöth HB: Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br J Clin Pharmacol. 87:4577–4597. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Rooks MG and Garrett WS: Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 16:341–352. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Wang J, He M, Yang M and Ai X: Gut microbiota as a key regulator of intestinal mucosal immunity. Life Sci. 345:1226122024. View Article : Google Scholar : PubMed/NCBI

8 

Woo V and Alenghat T: Epigenetic regulation by gut microbiota. Gut Microbes. 14:20224072022. View Article : Google Scholar : PubMed/NCBI

9 

Mann ER, Lam YK and Uhlig HH: Short-chain fatty acids: Linking diet, the microbiome and immunity. Nat Rev Immunol. 24:577–595. 2024. View Article : Google Scholar : PubMed/NCBI

10 

Lin MY, de Zoete MR, van Putten JP and Strijbis K: Redirection of epithelial immune responses by Short-Chain fatty acids through inhibition of histone deacetylases. Front Immunol. 6:5542015. View Article : Google Scholar : PubMed/NCBI

11 

Licciardi PV, Ververis K and Karagiannis TC: Histone deacetylase inhibition and dietary Short-chain Fatty acids. ISRN Allergy. 2011:8696472011. View Article : Google Scholar : PubMed/NCBI

12 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 372:n712021. View Article : Google Scholar : PubMed/NCBI

13 

Wardman JF, Bains RK, Rahfeld P and Withers SG: Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol. 20:542–556. 2022. View Article : Google Scholar : PubMed/NCBI

14 

Sasaki M, Suaini NHA, Afghani J, Heye KN, O'Mahony L, Venter C, Lauener R, Frei R and Roduit C: Systematic review of the association between Short-chain fatty acids and allergic diseases. Allergy. 79:1789–1811. 2024. View Article : Google Scholar : PubMed/NCBI

15 

Deleu S, Machiels K, Raes J, Verbeke K and Vermeire S: Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine. 66:1032932021. View Article : Google Scholar : PubMed/NCBI

16 

Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, Khalil M, Wang DQ, Sperandio M and Di Ciaula A: Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int J Mol Sci. 23:11052022. View Article : Google Scholar : PubMed/NCBI

17 

Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ and Louis P: Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8:1323–1335. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Louis P and Flint HJ: Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 19:29–41. 2017. View Article : Google Scholar

19 

Mahdi T, Desmons A, Krasniqi P, Lacorte JM, Kapel N, Lamazière A, Fourati S and Eguether T: Effect of stool sampling on a routine clinical method for the quantification of six short chain fatty acids in stool using gas Chromatography-mass spectrometry. Microorganisms. 12:8282024. View Article : Google Scholar : PubMed/NCBI

20 

Sivaprakasam S, Bhutia YD, Yang S and Ganapathy V: Short-chain fatty acid transporters: Role in colonic homeostasis. Compr Physiol. 8:299–314. 2017. View Article : Google Scholar

21 

Wang LY, He LH, Xu LJ and Li SB: Short-chain fatty acids: Bridges between diet, gut microbiota, and health. J Gastroenterol Hepatol. 39:1728–1736. 2024. View Article : Google Scholar : PubMed/NCBI

22 

Morrison DJ and Preston T: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 7:189–200. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Yao Y, Cai X, Fei W, Ye Y, Zhao M and Zheng C: The role of Short-chain fatty acids in immunity, inflammation and metabolism. Crit Rev Food Sci Nutr. 62:1–12. 2022. View Article : Google Scholar

24 

Li M, van Esch B, Wagenaar GTM, Garssen J, Folkerts G and Henricks PAJ: Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol. 831:52–59. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Seto E and Yoshida M: Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6:a0187132014. View Article : Google Scholar : PubMed/NCBI

26 

Bassett SA and Barnett MP: The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients. 6:4273–4301. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Kutil Z, Novakova Z, Meleshin M, Mikesova J, Schutkowski M and Barinka C: Histone deacetylase 11 is a Fatty-acid deacylase. ACS Chem Biol. 13:685–693. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Schiedel M, Robaa D, Rumpf T, Sippl W and Jung M: The current state of NAD+ -Dependent histone deacetylases (Sirtuins) as novel therapeutic targets. Med Res Rev. 38:147–200. 2018. View Article : Google Scholar

29 

Reichert N, Choukrallah MA and Matthias P: Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci. 69:2173–2187. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Parra M: Class IIa HDACs-new insights into their functions in physiology and pathology. FEBS J. 282:1736–1744. 2015. View Article : Google Scholar

31 

Witt O, Deubzer HE, Milde T and Oehme I: HDAC family: What are the cancer relevant targets? Cancer Lett. 277:8–21. 2009. View Article : Google Scholar

32 

Hull EE, Montgomery MR and Leyva KJ: HDAC Inhibitors as epigenetic regulators of the immune system: Impacts on cancer therapy and inflammatory diseases. Biomed Res Int. 2016:87972062016. View Article : Google Scholar : PubMed/NCBI

33 

Grabiec AM and Potempa J: Epigenetic regulation in bacterial infections: Targeting histone deacetylases. Crit Rev Microbiol. 44:336–350. 2018. View Article : Google Scholar :

34 

Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, Chomka A, Ilott NE, Johnston DGW, Pires E, et al: The short Chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. 50:432–445.e437. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Chen X, Xie X, Sun N, Liu X, Liu J, Zhang W and Cao Y: Gut microbiota-derived butyrate improved acute leptospirosis in hamster via promoting macrophage ROS mediated by HDAC3 inhibition. mBio. 15:e01906242024. View Article : Google Scholar : PubMed/NCBI

36 

Fernando MR, Saxena A, Reyes JL and McKay DM: Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages. Am J Physiol Gastrointest Liver Physiol. 310:G822–G831. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Pineda Molina C, Hussey GS, Eriksson J, Shulock MA, Cárdenas Bonilla LL, Giglio RM, Gandhi RM, Sicari BM, Wang D, Londono R, et al: 4-Hydroxybutyrate promotes endogenous antimicrobial peptide expression in macrophages. Tissue Eng Part A. 25:693–706. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley LK and Striz I: M1/M2 macrophages and their overlaps-myth or reality? Clin Sci (Lond). 137:1067–1093. 2023. View Article : Google Scholar : PubMed/NCBI

39 

Chang PV, Hao L, Offermanns S and Medzhitov R: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 111:2247–2252. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Park JW, Kim HY, Kim MG, Jeong S, Yun CH and Han SH: Short-chain fatty acids inhibit staphylococcal Lipoprotein-induced nitric oxide production in murine macrophages. Immune Netw. 19:e92019. View Article : Google Scholar : PubMed/NCBI

41 

Maa MC, Chang MY, Hsieh MY, Chen YJ, Yang CJ, Chen ZC, Li YK, Yen CK, Wu RR and Leu TH: Butyrate reduced lipopolysaccharide-mediated macrophage migration by suppression of Src enhancement and focal adhesion kinase activity. J Nutr Biochem. 21:1186–1192. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Ji J, Shu D, Zheng M, Wang J, Luo C, Wang Y, Guo F, Zou X, Lv X, Li Y, et al: Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci Rep. 6:248382016. View Article : Google Scholar : PubMed/NCBI

43 

Wang W, Dernst A, Martin B, Lorenzi L, Cadefau-Fabregat M, Phulphagar K, Wagener A, Budden C, Stair N, Wagner T, et al: Butyrate and propionate are microbial danger signals that activate the NLRP3 inflammasome in human macrophages upon TLR stimulation. Cell Rep. 43:1147362024. View Article : Google Scholar : PubMed/NCBI

44 

Park GY, Joo M, Pedchenko T, Blackwell TS and Christman JW: Regulation of macrophage cyclooxygenase-2 gene expression by modifications of histone H3. Am J Physiol Lung Cell Mol Physiol. 286:L956–L962. 2004. View Article : Google Scholar

45 

Cougoule C, Lastrucci C, Guiet R, Mascarau R, Meunier E, Lugo-Villarino G, Neyrolles O, Poincloux R and Maridonneau-Parini I: Podosomes, but not the maturation status, determine the protease-Dependent 3D migration in human dendritic cells. Front Immunol. 9:8462018. View Article : Google Scholar : PubMed/NCBI

46 

Singh N, Thangaraju M, Prasad PD, Martin PM, Lambert NA, Boettger T, Offermanns S and Ganapathy V: Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J Biol Chem. 285:27601–27608. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Liu L, Li L, Min J, Wang J, Wu H, Zeng Y, Chen S and Chu Z: Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell Immunol. 277:66–73. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Nascimento CR, Freire-de-Lima CG, da Silva de Oliveira A, Rumjanek FD and Rumjanek VM: The short chain fatty acid sodium butyrate regulates the induction of CD1a in developing dendritic cells. Immunobiology. 216:275–284. 2011. View Article : Google Scholar

49 

Kim YH and Lee JK: Histone deacetylase inhibitors suppress immature dendritic cell's migration by regulating CC chemokine receptor 1 expression. Cell Immunol. 316:11–20. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Kim YH, Han SB and Lee JK: Histone deacetylase inhibitors suppress CXCR4-mediated dendritic cell migration by regulation of maturation process. Cell Immunol. 284:139–145. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Inamoto T, Furuta K, Han C, Uneme M, Kano T, Ishikawa K and Kaito C: Short-chain fatty acids stimulate dendrite elongation in dendritic cells by inhibiting histone deacetylase. FEBS J. 290:5794–5810. 2023. View Article : Google Scholar : PubMed/NCBI

52 

Andrusaite A, Lewis J, Frede A, Farthing A, Kästele V, Montgomery J, Mowat A, Mann E and Milling S: Microbiota-derived butyrate inhibits cDC development via HDAC inhibition, diminishing their ability to prime T cells. Mucosal Immunol. 17:1199–1211. 2024. View Article : Google Scholar : PubMed/NCBI

53 

Kaisar MMM, Pelgrom LR, van der Ham AJ, Yazdanbakhsh M and Everts B: Butyrate conditions human dendritic cells to prime type 1 Regulatory T cells via both histone deacetylase inhibition and G Protein-coupled receptor 109A signaling. Front Immunol. 8:14292017. View Article : Google Scholar : PubMed/NCBI

54 

Berndt BE, Zhang M, Owyang SY, Cole TS, Wang TW, Luther J, Veniaminova NA, Merchant JL, Chen CC, Huffnagle GB, et al: Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol Gastrointest Liver Physiol. 303:G1384–G1392. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Íñiguez-Gutiérrez L, Godínez-Méndez LA, Fafutis-Morris M, Padilla-Arellano JR, Corona-Rivera A, Bueno-Topete MR, Rojas-Rejón ÓA and Delgado-Rizo V: Physiological concentrations of short-chain fatty acids induce the formation of neutrophil extracellular traps in vitro. Int J Immunopathol Pharmacol. 34:20587384209589492020. View Article : Google Scholar : PubMed/NCBI

56 

Yasuda H, Takishita Y, Morita A, Tsutsumi T, Nakagawa N and Sato EF: Sodium acetate enhances neutrophil extracellular trap formation via histone acetylation pathway in Neutrophil-like HL-60 Cells. Int J Mol Sci. 25:87572024. View Article : Google Scholar : PubMed/NCBI

57 

Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC and Curi R: Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 22:849–855. 2011. View Article : Google Scholar

58 

Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, Zhu R, Li Z, Li M and Liu Z: Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 13:19682572021. View Article : Google Scholar : PubMed/NCBI

59 

Aoyama M, Kotani J and Usami M: Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition. 26:653–661. 2010. View Article : Google Scholar

60 

Bartels M, Geest CR, Bierings M, Buitenhuis M and Coffer PJ: Histone deacetylase inhibition modulates cell fate decisions during myeloid differentiation. Haematologica. 95:1052–1060. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Folkerts J, Redegeld F, Folkerts G, Blokhuis B, van den Berg MPM, de Bruijn MJW, van IWFJ, Junt T, Tam SY, Galli SJ, et al: Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy. 75:1966–1978. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Zhang H, Du M, Yang Q and Zhu MJ: Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase. J Nutr Biochem. 27:299–306. 2016. View Article : Google Scholar

63 

Gudneppanavar R, Sabu Kattuman EE, Teegala LR, Southard E, Tummala R, Joe B, Thodeti CK and Paruchuri S: Epigenetic histone modification by butyrate downregulates KIT and attenuates mast cell function. J Cell Mol Med. 27:2983–2994. 2023. View Article : Google Scholar : PubMed/NCBI

64 

MacDonald CA, Qian H, Pundir P and Kulka M: Sodium butyrate supresses malignant human mast cell proliferation, downregulates expression of KIT and promotes differentiation. Front Allergy. 4:11097172023. View Article : Google Scholar : PubMed/NCBI

65 

Carlini F, Squillario M, Casella V, Capaia M, Lusi V, Bagnara D, Colombo M, Palmeri S, Ivaldi F, Loiacono F, et al: Butyrate enhances CD56bright NK cell-driven killing of activated T cells and modulates NK cell chromatin accessibility. Genes Immun. 26:342–351. 2025. View Article : Google Scholar : PubMed/NCBI

66 

Schmudde M, Braun A, Pende D, Sonnemann J, Klier U, Beck JF, Moretta L and Bröker BM: Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells. Cancer Lett. 272:110–121. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Dong C: Cytokine regulation and function in T cells. Annu Rev Immunol. 39:51–76. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Kibbie JJ, Dillon SM, Thompson TA, Purba CM, McCarter MD and Wilson CC: Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase (HDAC) inhibition and GPR43 signaling. Immunobiology. 226:1521262021. View Article : Google Scholar : PubMed/NCBI

69 

Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, Sun J, Pan F, Zhou J, Zhang W, et al: Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 11:44572020. View Article : Google Scholar : PubMed/NCBI

70 

Dagtas AS, Edens RE and Gilbert KM: Histone deacetylase inhibitor uses p21(Cip1) to maintain anergy in CD4+ T cells. Int Immunopharmacol. 9:1289–1297. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL, Shi H, Robertson KD, Munn DH and Liu K: Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol. 302:G1405–G415. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Moore TV, Scurti GM, DeJong M, Wang SY, Dalheim AV, Wagner CR, Hutchens KA, Speiser JJ, Godellas CV, Fountain C, et al: HDAC inhibition prevents transgene expression downregulation and loss-of-function in T-cell-receptor-transduced T cells. Mol Ther Oncolytics. 20:352–363. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Luu M, Riester Z, Baldrich A, Reichardt N, Yuille S, Busetti A, Klein M, Wempe A, Leister H, Raifer H, et al: Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat Commun. 12:40772021. View Article : Google Scholar :

74 

Luu M, Weigand K, Wedi F, Breidenbend C, Leister H, Pautz S, Adhikary T and Visekruna A: Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci Rep. 8:144302018. View Article : Google Scholar :

75 

Bolduc JF, Hany L, Barat C, Ouellet M and Tremblay MJ: Epigenetic metabolite acetate inhibits class I/II histone deacetylases, promotes histone acetylation, and increases HIV-1 integration in CD4+ T cells. J Virol. 91:e01943–e01916. 2017. View Article : Google Scholar :

76 

Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J and Kim CH: Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8:80–93. 2015. View Article : Google Scholar

77 

Chen L, Sun M, Wu W, Yang W, Huang X, Xiao Y, Ma C, Xu L, Yao S, Liu Z and Cong Y: Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells' Differentiation and function in induction of colitis. Inflamm Bowel Dis. 25:1450–1461. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Kespohl M, Vachharajani N, Luu M, Harb H, Pautz S, Wolff S, Sillner N, Walker A, Schmitt-Kopplin P, Boettger T, et al: The microbial metabolite butyrate induces expression of Th1-associated factors in CD4+ T cells. Front Immunol. 8:10362017. View Article : Google Scholar :

79 

Wang J, Hou Y, Mu L, Yang M and Ai X: Gut microbiota contributes to the intestinal and extraintestinal immune homeostasis by balancing Th17/Treg cells. Int Immunopharmacol. 143:1135702024. View Article : Google Scholar : PubMed/NCBI

80 

Zhang M, Zhou L, Wang Y, Dorfman RG, Tang D, Xu L, Pan Y, Zhou Q, Li Y, Yin Y, et al: Faecalibacterium prausnitzii produces butyrate to decrease c-Myc-related metabolism and Th17 differentiation by inhibiting histone deacetylase 3. Int Immunol. 31:499–514. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Zhou L, Zhang M, Wang Y, Dorfman RG, Liu H, Yu T, Chen X, Tang D, Xu L, Yin Y, et al: Faecalibacterium prausnitzii produces butyrate to maintain Th17/treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm Bowel Dis. 24:1926–1940. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Sałkowska A, Karaś K, Walczak-Drzewiecka A, Dastych J and Ratajewski M: Differentiation stage-specific effect of histone deacetylase inhibitors on the expression of RORγT in human lymphocytes. J Leukoc Biol. 102:1487–1495. 2017. View Article : Google Scholar

83 

Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ and Rudensky AY: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 504:451–455. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Sanchez HN, Moroney JB, Gan H, Shen T, Im JL, Li T, Taylor JR, Zan H and Casali P: B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun. 11:602020. View Article : Google Scholar : PubMed/NCBI

85 

Zou F, Qiu Y, Huang Y, Zou H, Cheng X, Niu Q, Luo A and Sun J: Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function. Cell Death Dis. 12:5822021. View Article : Google Scholar : PubMed/NCBI

86 

Föh B, Buhre JS, Lunding HB, Moreno-Fernandez ME, König P, Sina C, Divanovic S and Ehlers M: Microbial metabolite butyrate promotes induction of IL-10+IgM+ plasma cells. PLoS One. 17:e02660712022. View Article : Google Scholar : PubMed/NCBI

87 

Xiao P, Cai X, Zhang Z, Guo K, Ke Y, Hu Z, Song Z, Zhao Y, Yao L, Shen M, et al: Butyrate prevents the pathogenic Anemia-inflammation circuit by facilitating macrophage iron export. Adv Sci (Weinh). 11:e23065712024. View Article : Google Scholar : PubMed/NCBI

88 

Dupraz L, Magniez A, Rolhion N, Richard ML, Da Costa G, Touch S, Mayeur C, Planchais J, Agus A, Danne C, et al: Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep. 36:1093322021. View Article : Google Scholar

89 

Nepelska M, Cultrone A, Béguet-Crespel F, Le Roux K, Doré J, Arulampalam V and Blottière HM: Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells. PLoS One. 7:e528692012. View Article : Google Scholar

90 

Eshleman EM, Rice T, Potter C, Waddell A, Hashimoto-Hill S, Woo V, Field S, Engleman L, Lim HW, Schumacher MA, et al: Microbiota-derived butyrate restricts tuft cell differentiation via histone deacetylase 3 to modulate intestinal type 2 immunity. Immunity. 57:319–332.e316. 2024. View Article : Google Scholar : PubMed/NCBI

91 

Bilotta AJ, Ma C, Yang W, Yu Y, Yu Y, Zhao X, Zhou Z, Yao S, Dann SM and Cong Y: Propionate enhances cell speed and persistence to promote intestinal epithelial turnover and repair. Cell Mol Gastroenterol Hepatol. 11:1023–1044. 2021. View Article : Google Scholar :

92 

Mariadason JM, Velcich A, Wilson AJ, Augenlicht LH and Gibson PR: Resistance to butyrate-induced cell differentiation and apoptosis during spontaneous Caco-2 cell differentiation. Gastroenterology. 120:889–899. 2001. View Article : Google Scholar : PubMed/NCBI

93 

Gibson PR, Rosella O, Wilson AJ, Mariadason JM, Rickard K, Byron K and Barkla DH: Colonic epithelial cell activation and the paradoxical effects of butyrate. Carcinogenesis. 20:539–544. 1999. View Article : Google Scholar : PubMed/NCBI

94 

Siavoshian S, Segain JP, Kornprobst M, Bonnet C, Cherbut C, Galmiche JP and Blottière HM: Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: Induction of cyclin D3 and p21 expression. Gut. 46:507–514. 2000. View Article : Google Scholar : PubMed/NCBI

95 

Fischer N, Sechet E, Friedman R, Amiot A, Sobhani I, Nigro G, Sansonetti PJ and Sperandio B: Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge. Proc Natl Acad Sci USA. 113:E2993–E3001. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Schauber J, Iffland K, Frisch S, Kudlich T, Schmausser B, Eck M, Menzel T, Gostner A, Lührs H and Scheppach W: Histone-deacetylase inhibitors induce the cathelicidin LL-37 in gastrointestinal cells. Mol Immunol. 41:847–854. 2004. View Article : Google Scholar : PubMed/NCBI

97 

Beisner J, Filipe Rosa L, Kaden-Volynets V, Stolzer I, Günther C and Bischoff SC: Prebiotic inulin and sodium butyrate attenuate Obesity-induced intestinal barrier dysfunction by induction of antimicrobial peptides. Front Immunol. 12:6783602021. View Article : Google Scholar : PubMed/NCBI

98 

Dou X, Gao N, Lan J, Han J, Yang Y and Shan A: TLR2/EGFR are two sensors for pBD3 and pEP2C induction by sodium butyrate independent of HDAC inhibition. J Agric Food Chem. 68:512–522. 2020. View Article : Google Scholar

99 

Korsten S, Vromans H, Garssen J and Willemsen LEM: Butyrate protects barrier integrity and suppresses immune activation in a Caco-2/PBMC Co-Culture model while HDAC inhibition mimics butyrate in restoring Cytokine-induced barrier disruption. Nutrients. 15:27602023. View Article : Google Scholar : PubMed/NCBI

100 

Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, Wang RX, Onyiah JC, Kominsky DJ and Colgan SP: Microbial-derived butyrate promotes epithelial barrier function through IL-10 Receptor-dependent repression of Claudin-2. J Immunol. 199:2976–2984. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Wang RX, Lee JS, Campbell EL and Colgan SP: Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proc Natl Acad Sci USA. 117:11648–11657. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Ohata A, Usami M and Miyoshi M: Short-chain fatty acids alter tight junction permeability in intestinal monolayer cells via lipoxygenase activation. Nutrition. 21:838–847. 2005. View Article : Google Scholar : PubMed/NCBI

103 

Gaudier E, Jarry A, Blottière HM, de Coppet P, Buisine MP, Aubert JP, Laboisse C, Cherbut C and Hoebler C: Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol. 287:G1168–G1174. 2004. View Article : Google Scholar : PubMed/NCBI

104 

Borthakur A, Saksena S, Gill RK, Alrefai WA, Ramaswamy K and Dudeja PK: Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: Involvement of NF-kappaB pathway. J Cell Biochem. 103:1452–1463. 2008. View Article : Google Scholar

105 

Larraufie P, Martin-Gallausiaux C, Lapaque N, Dore J, Gribble FM, Reimann F and Blottiere HM: SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep. 8:742018. View Article : Google Scholar : PubMed/NCBI

106 

Subramanian VS, Teafatiller T, Moradi H and Marchant JS: Histone deacetylase inhibitors regulate vitamin C transporter functional expression in intestinal epithelial cells. J Nutr Biochem. 98:1088382021. View Article : Google Scholar : PubMed/NCBI

107 

Zapletal O, Tylichová Z, Neča J, Kohoutek J, Machala M, Milcová A, Pokorná M, Topinka J, Moyer MP, Hofmanová J, et al: Butyrate alters expression of cytochrome P450 1A1 and metabolism of benzo[a]pyrene via its histone deacetylase activity in colon epithelial cell models. Arch Toxicol. 91:2135–2150. 2017. View Article : Google Scholar

108 

Bachmann M, Meissner C, Pfeilschifter J and Mühl H: Cooperation between the bacterial-derived short-chain fatty acid butyrate and interleukin-22 detected in human Caco2 colon epithelial/carcinoma cells. Biofactors. 43:283–292. 2017. View Article : Google Scholar

109 

Kobori A, Bamba S, Imaeda H, Ban H, Tsujikawa T, Saito Y, Fujiyama Y and Andoh A: Butyrate stimulates IL-32alpha expression in human intestinal epithelial cell lines. World J Gastroenterol. 16:2355–2361. 2010. View Article : Google Scholar : PubMed/NCBI

110 

Korsten S, Peracic L, van Groeningen LMB, Diks MAP, Vromans H, Garssen J and Willemsen LEM: Butyrate prevents induction of CXCL10 and Non-canonical IRF9 expression by activated human intestinal epithelial cells via HDAC inhibition. Int J Mol Sci. 23:39802022. View Article : Google Scholar : PubMed/NCBI

111 

Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW and Giardina C: The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology. 118:724–734. 2000. View Article : Google Scholar : PubMed/NCBI

112 

Martin-Gallausiaux C, Larraufie P, Jarry A, Béguet-Crespel F, Marinelli L, Ledue F, Reimann F, Blottière HM and Lapaque N: Butyrate produced by commensal bacteria Down-regulates indolamine 2,3-Dioxygenase 1 (IDO-1) expression via a dual mechanism in human intestinal epithelial cells. Front Immunol. 9:28382018. View Article : Google Scholar

113 

Martin-Gallausiaux C, Béguet-Crespel F, Marinelli L, Jamet A, Ledue F, Blottière HM and Lapaque N: Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci Rep. 8:97422018. View Article : Google Scholar : PubMed/NCBI

114 

Xu L, Ma C, Huang X, Yang W, Chen L, Bilotta AJ, Yao S and Cong Y: Microbiota metabolites short-chain fatty acid butyrate conditions intestinal epithelial cells to promote development of Treg cells and T cell IL-10 production. J Immunol. 200:53.162018. View Article : Google Scholar

115 

Jin UH, Cheng Y, Park H, Davidson LA, Callaway ES, Chapkin RS, Jayaraman A, Asante A, Allred C, Weaver EA and Safe S: Short chain fatty acids enhance aryl hydrocarbon (Ah) responsiveness in mouse colonocytes and Caco-2 human colon cancer cells. Sci Rep. 7:101632017. View Article : Google Scholar : PubMed/NCBI

116 

Modoux M, Rolhion N, Lefevre JH, Oeuvray C, Nádvorník P, Illes P, Emond P, Parc Y, Mani S, Dvorak Z and Sokol H: Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes. 14:21056372022. View Article : Google Scholar : PubMed/NCBI

117 

Fawad JA, Luzader DH, Hanson GF, Moutinho TJ Jr, McKinney CA, Mitchell PG, Brown-Steinke K, Kumar A, Park M, Lee S, et al: Histone deacetylase inhibition by gut microbe-Generated Short-Chain fatty acids entrains intestinal epithelial circadian rhythms. Gastroenterology. 163:1377–1390.e11. 2022. View Article : Google Scholar : PubMed/NCBI

118 

Gill RK, Kumar A, Malhotra P, Maher D, Singh V, Dudeja PK, Alrefai W and Saksena S: Regulation of intestinal serotonin transporter expression via epigenetic mechanisms: Role of HDAC2. Am J Physiol Cell Physiol. 304:C334–C341. 2013. View Article : Google Scholar :

119 

Schilderink R, Verseijden C, Seppen J, Muncan V, van den Brink GR, Lambers TT, van Tol EA and de Jonge WJ: The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am J Physiol Gastrointest Liver Physiol. 310:G1138–G1146. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Zheng M, Yang X, Wu Q, Gong Y, Pang N, Ge X, Nagaratnam N, Jiang P, Zhou M, Hu T, et al: Butyrate attenuates hepatic steatosis induced by a High-fat and Fiber-deficient diet via the hepatic GPR41/43-CaMKII/HDAC1-CREB pathway. Mol Nutr Food Res. 67:e22005972023. View Article : Google Scholar

121 

Zhou D, Chen YW, Zhao ZH, Yang RX, Xin FZ, Liu XL, Pan Q, Zhou H and Fan JG: Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression. Exp Mol Med. 50:1–12. 2018. View Article : Google Scholar

122 

Li H, Gao Z, Zhang J, Ye X, Xu A, Ye J and Jia W: Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes. 61:797–806. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Bridgeman S, Woo HC, Newsholme P and Mamotte C: Butyrate lowers cellular cholesterol through HDAC Inhibition and Impaired SREBP-2 Signalling. Int J Mol Sci. 23:155062022. View Article : Google Scholar : PubMed/NCBI

124 

Jourova L, Anzenbacherova E, Dostal Z, Anzenbacher P, Briolotti P, Rigal E, Daujat-Chavanieu M and Gerbal-Chaloin S: Butyrate, a typical product of gut microbiome, affects function of the AhR gene, being a possible agent of crosstalk between gut microbiome, and hepatic drug metabolism. J Nutr Biochem. 107:1090422022. View Article : Google Scholar : PubMed/NCBI

125 

Zhao Y, Xu X, Liu S, Wang X, Musha J, Li T, Ge L, Sun Y, Zhang S, Zhao L and Zhan J: Butyrate inhibits histone deacetylase 2 expression to alleviate liver fibrosis in biliary atresia. BMC Pediatr. 25:2862025. View Article : Google Scholar : PubMed/NCBI

126 

Zhang J, Wang W, Liang S, Zhou X, Rekha RS, Gudmundsson GH, Bergman P, Ai Q, Mai K and Wan M: Butyrate induces STAT3/HIF-1α/IL-22 signaling via GPCR and HDAC3 inhibition to activate autophagy in head kidney macrophages from turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 143:1092142023. View Article : Google Scholar

127 

Ma X and Wang Q: Short-Chain fatty acids attenuate renal fibrosis and enhance autophagy of renal tubular cells in diabetic mice through the HDAC2/ULK1 axis. Endocrinol Metab (Seoul). 37:432–443. 2022. View Article : Google Scholar : PubMed/NCBI

128 

Giordano L, Ahmed S, van der Made TK, Masereeuw R and Mihăilă SM: Gut microbial-derived short chain fatty acids enhance kidney proximal tubule cell secretory function. Biomed Pharmacother. 188:1182142025. View Article : Google Scholar : PubMed/NCBI

129 

Du Y, Tang G and Yuan W: Suppression of HDAC2 by sodium butyrate alleviates apoptosis of kidney cells in db/db mice and HG-induced NRK-52E cells. Int J Mol Med. 45:210–222. 2020.

130 

Felizardo RJF, de Almeida DC, Pereira RL, Watanabe IKM, Doimo NTS, Ribeiro WR, Cenedeze MA, Hiyane MI, Amano MT, Braga TT, et al: Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms. FASEB J. 33:11894–11908. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Xu Y, Wei S, Zhu L, Huang C, Yang T, Wang S, Zhang Y, Duan Y, Li X, Wang Z, et al: Low expression of the intestinal metabolite butyric acid and the corresponding memory pattern regulate HDAC4 to promote apoptosis in rat hippocampal neurons. Ecotoxicol Environ Saf. 253:1146602023. View Article : Google Scholar : PubMed/NCBI

132 

Cho JH, Chae CW, Lim JR, Jung YH, Han SJ, Yoon JH, Park JY and Han HJ: Sodium butyrate ameliorates high glucose-suppressed neuronal mitophagy by restoring PRKN expression via inhibiting the RELA-HDAC8 complex. Autophagy. 20:1505–1522. 2024. View Article : Google Scholar : PubMed/NCBI

133 

Song L, Sun Q, Zheng H, Zhang Y, Wang Y, Liu S and Duan L: Roseburia hominis alleviates neuroinflammation via Short-Chain fatty acids through histone deacetylase inhibition. Mol Nutr Food Res. 66:e22001642022. View Article : Google Scholar : PubMed/NCBI

134 

Ziabska K, Gargas J, Sypecka J and Ziemka-Nalecz M: The impact of the histone deacetylase inhibitor sodium butyrate on microglial polarization after oxygen and glucose deprivation. Pharmacol Rep. 74:909–919. 2022. View Article : Google Scholar : PubMed/NCBI

135 

Chen PS, Wang CC, Bortner CD, Peng GS, Wu X, Pang H, Lu RB, Gean PW, Chuang DM and Hong JS: Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience. 149:203–212. 2007. View Article : Google Scholar : PubMed/NCBI

136 

Wang P, Zhang Y, Gong Y, Yang R, Chen Z, Hu W, Wu Y, Gao M, Xu X, Qin Y and Huang C: Sodium butyrate triggers a functional elongation of microglial process via Akt-small RhoGTPase activation and HDACs inhibition. Neurobiol Dis. 111:12–25. 2018. View Article : Google Scholar

137 

Singh V, Bhatia HS, Kumar A, de Oliveira AC and Fiebich BL: Histone deacetylase inhibitors valproic acid and sodium butyrate enhance prostaglandins release in lipopolysaccharide-activated primary microglia. Neuroscience. 265:147–157. 2014. View Article : Google Scholar : PubMed/NCBI

138 

Wu X, Chen PS, Dallas S, Wilson B, Block ML, Wang CC, Kinyamu H, Lu N, Gao X, Leng Y, et al: Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol. 11:1123–1134. 2008. View Article : Google Scholar : PubMed/NCBI

139 

Wu KLH, Liu WC, Wu CW, Fu MH, Huang HM, Tain YL, Liang CK, Hung CY, Chen IC, Hung PL, et al: Butyrate reduction and HDAC4 increase underlie maternal high fructose-induced metabolic dysfunction in hippocampal astrocytes in female rats. J Nutr Biochem. 126:1095712024. View Article : Google Scholar : PubMed/NCBI

140 

Kanski R, Sneeboer MA, van Bodegraven EJ, Sluijs JA, Kropff W, Vermunt MW, Creyghton MP, De Filippis L, Vescovi A, Aronica E, et al: Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network. J Cell Sci. 127:4368–4380. 2014.PubMed/NCBI

141 

Li M, van Esch B, Henricks PAJ, Folkerts G and Garssen J: The Anti-inflammatory effects of short Chain fatty acids on Lipopolysaccharide- or tumor necrosis factor α-Stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Front Pharmacol. 9:5332018. View Article : Google Scholar

142 

Li M, van Esch B, Henricks PAJ, Garssen J and Folkerts G: IL-33 is involved in the Anti-inflammatory effects of butyrate and propionate on TNFα-activated endothelial cells. Int J Mol Sci. 22:24472021. View Article : Google Scholar

143 

Miyoshi M, Usami M and Ohata A: Short-chain fatty acids and trichostatin A alter tight junction permeability in human umbilical vein endothelial cells. Nutrition. 24:1189–1198. 2008. View Article : Google Scholar : PubMed/NCBI

144 

Nicese MN, Bijkerk R, Van Zonneveld AJ, Van den Berg BM and Rotmans JI: Sodium butyrate as key regulator of mitochondrial function and barrier integrity of human glomerular endothelial cells. Int J Mol Sci. 24:130902023. View Article : Google Scholar : PubMed/NCBI

145 

Rössig L, Li H, Fisslthaler B, Urbich C, Fleming I, Förstermann U, Zeiher AM and Dimmeler S: Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res. 91:837–844. 2002. View Article : Google Scholar : PubMed/NCBI

146 

Farsetti A, Illi B and Gaetano C: How epigenetics impacts on human diseases. Eur J Intern Med. 114:15–22. 2023. View Article : Google Scholar : PubMed/NCBI

147 

Surace AEA and Hedrich CM: The role of epigenetics in Autoimmune/inflammatory disease. Front Immunol. 10:15252019. View Article : Google Scholar : PubMed/NCBI

148 

Tang J, Yan H and Zhuang S: Histone deacetylases as targets for treatment of multiple diseases. Clin Sci (Lond). 124:651–662. 2013. View Article : Google Scholar : PubMed/NCBI

149 

Zhang SY, Zhang LY, Wen R, Yang N and Zhang TN: Histone deacetylases and their inhibitors in inflammatory diseases. Biomed Pharmacother. 179:1172952024. View Article : Google Scholar : PubMed/NCBI

150 

Zhang LY, Zhang SY, Wen R, Zhang TN and Yang N: Role of histone deacetylases and their inhibitors in neurological diseases. Pharmacol Res. 208:1074102024. View Article : Google Scholar : PubMed/NCBI

151 

Peng K, Xiao S, Xia S, Li C, Yu H and Yu Q: Butyrate inhibits the HDAC8/NF-κB Pathway to Enhance Slc26a3 expression and improve the intestinal epithelial barrier to relieve colitis. J Agric Food Chem. 72:24400–24416. 2024. View Article : Google Scholar : PubMed/NCBI

152 

Lee C, Kim BG, Kim JH, Chun J, Im JP and Kim JS: Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner. Int Immunopharmacol. 51:47–56. 2017. View Article : Google Scholar : PubMed/NCBI

153 

Simeoli R, Mattace Raso G, Pirozzi C, Lama A, Santoro A, Russo R, Montero-Melendez T, Berni Canani R, Calignano A, Perretti M and Meli R: An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis. Br J Pharmacol. 174:1484–1496. 2017. View Article : Google Scholar

154 

Feng Z, Wang X, Kang G, Zhao J, Ye Y, Liu L, Huang H and Cao X: P006 Engineered propionate-producing bacteria attenuates murine colitis by modulating the immune function of resident macrophages via histone deacetylase. J Crohn's Colitis. 17:i174–i177. 2023. View Article : Google Scholar

155 

Kang G, Wang X, Gao M, Wang L, Feng Z, Meng S, Wu J, Zhu Z, Gao X, Cao X and Huang H: Propionate-producing engineered probiotics ameliorated murine ulcerative colitis by restoring anti-inflammatory macrophage via the GPR43/HDAC1/IL-10 axis. Bioeng Transl Med. 9:e106822024. View Article : Google Scholar : PubMed/NCBI

156 

Zhang L, Ma Z, Zhang X, Wang J, Tian W, Ren Y, Liu Y, Wang T, Li Y, Liu Y, et al: Butyrate alleviates alcoholic liver disease-associated inflammation through macrophage regulation and polarization via the HDAC1/miR-155 axis. Int Immunopharmacol. 131:1118522024. View Article : Google Scholar : PubMed/NCBI

157 

Sun J, Wu Q, Sun H and Qiao Y: Inhibition of histone deacetylase by butyrate protects rat liver from ischemic reperfusion injury. Int J Mol Sci. 15:21069–21079. 2014. View Article : Google Scholar : PubMed/NCBI

158 

Olaniyi KS and Amusa OA: Sodium acetate-mediated inhibition of histone deacetylase alleviates hepatic lipid dysregulation and its accompanied injury in streptozotocin-nicotinamide-induced diabetic rats. Biomed Pharmacother. 128:1102262020. View Article : Google Scholar : PubMed/NCBI

159 

Liu Y, Li YJ, Loh YW, Singer J, Zhu W, Macia L, Mackay CR, Wang W, Chadban SJ and Wu H: Fiber derived microbial metabolites prevent acute kidney injury through G-Protein coupled receptors and HDAC inhibition. Front Cell Dev Biol. 9:6486392021. View Article : Google Scholar : PubMed/NCBI

160 

Khan S and Jena G: Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol. 73:127–139. 2014. View Article : Google Scholar : PubMed/NCBI

161 

Al-Harbi NO, Nadeem A, Ahmad SF, Alotaibi MR, AlAsmari AF, Alanazi WA, Al-Harbi MM, El-Sherbeeny AM and Ibrahim KE: Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells. Int Immunopharmacol. 58:24–31. 2018. View Article : Google Scholar : PubMed/NCBI

162 

Li Z, Sun T, He Z, Li Z, Zhang W, Wang J and Xiang H: SCFAs ameliorate chronic postsurgical Pain-related cognition dysfunction via the ACSS2-HDAC2 axis in rats. Mol Neurobiol. 59:6211–6227. 2022. View Article : Google Scholar : PubMed/NCBI

163 

Patnala R, Arumugam TV, Gupta N and Dheen ST: HDAC inhibitor sodium Butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Mol Neurobiol. 54:6391–6411. 2017. View Article : Google Scholar

164 

Sharma S, Taliyan R and Singh S: Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity. Behav Brain Res. 291:306–314. 2015. View Article : Google Scholar : PubMed/NCBI

165 

Soliman ML, Smith MD, Houdek HM and Rosenberger TA: Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation. J Neuroinflammation. 9:512012. View Article : Google Scholar

166 

Moleón J, González-Correa C, Miñano S, Robles-Vera I, de la Visitación N, Barranco AM, Gómez-Guzmán M, Sánchez M, Riesco P, Guerra-Hernández E, et al: Protective effect of microbiota-derived short chain fatty acids on vascular dysfunction in mice with systemic lupus erythematosus induced by toll like receptor 7 activation. Pharmacol Res. 198:1069972023. View Article : Google Scholar : PubMed/NCBI

167 

Ma H, Yang L, Liu Y, Yan R, Wang R, Zhang P, Bai Z, Liu Y, Ren Y, Li Y, et al: Butyrate suppresses atherosclerotic inflammation by regulating macrophages and polarization via GPR43/HDAC-miRNAs axis in ApoE-/-mice. PLoS One. 18:e02826852023. View Article : Google Scholar

168 

Karoor V, Strassheim D, Sullivan T, Verin A, Umapathy NS, Dempsey EC, Frank DN, Stenmark KR and Gerasimovskaya E: The Short-Chain fatty acid butyrate attenuates pulmonary vascular remodeling and inflammation in Hypoxia-induced pulmonary hypertension. Int J Mol Sci. 22:99162021. View Article : Google Scholar : PubMed/NCBI

169 

Chen H, Wang SH, Li HL, Zhou XB, Zhou LW, Chen C, Mansell T, Novakovic B, Saffery R, Baker PN, et al: The attenuation of gut microbiota-derived short-chain fatty acids elevates lipid transportation through suppression of the intestinal HDAC3-H3K27ac-PPAR-γ axis in gestational diabetes mellitus. J Nutr Biochem. 133:1097082024. View Article : Google Scholar

170 

Jiang M, Wang J, Li Z, Xu D, Jing J, Li F, Ding J and Li Q: Dietary Fiber-derived microbial butyrate suppresses ILC2-dependent airway inflammation in COPD. Mediators Inflamm. 2024:62634472024. View Article : Google Scholar : PubMed/NCBI

171 

Whitt J, Woo V, Lee P, Moncivaiz J, Haberman Y, Denson L, Tso P and Alenghat T: Disruption of epithelial HDAC3 in intestine prevents Diet-induced obesity in mice. Gastroenterology. 155:501–513. 2018. View Article : Google Scholar : PubMed/NCBI

172 

Islam R, Dash D and Singh R: Intranasal curcumin and sodium butyrate modulates airway inflammation and fibrosis via HDAC inhibition in allergic asthma. Cytokine. 149:1557202022. View Article : Google Scholar

173 

Olaniyi KS, Areloegbe SE and Fiemotongha FE: Cardiac energy depletion in a rat model of polycystic ovarian syndrome is reversed by acetate and associated with inhibitory effect of HDAC2/mTOR. Eur J Pharmacol. 962:1762432024. View Article : Google Scholar

174 

Olaniyi KS, Amusa OA, Areola ED and Olatunji LA: Suppression of HDAC by sodium acetate rectifies cardiac metabolic disturbance in streptozotocin-nicotinamide-induced diabetic rats. Exp Biol Med (Maywood). 245:667–676. 2020. View Article : Google Scholar : PubMed/NCBI

175 

Du HX, Yue SY, Niu D, Liu C, Zhang LG, Chen J, Chen Y, Guan Y, Hua XL, Li C, et al: Gut microflora modulates Th17/Treg cell differentiation in experimental autoimmune prostatitis via the Short-Chain fatty acid propionate. Front Immunol. 13:9152182022. View Article : Google Scholar : PubMed/NCBI

176 

Cavalli G and Heard E: Advances in epigenetics link genetics to the environment and disease. Nature. 571:489–499. 2019. View Article : Google Scholar : PubMed/NCBI

177 

Narita T, Weinert BT and Choudhary C: Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 20:156–174. 2019. View Article : Google Scholar

178 

Lang C, Campbell KR, Ryan BJ, Carling P, Attar M, Vowles J, Perestenko OV, Bowden R, Baig F, Kasten M, et al: Single-cell sequencing of iPSC-dopamine neurons reconstructs disease progression and identifies HDAC4 as a regulator of parkinson cell phenotypes. Cell Stem Cell. 24:93–106.e6. 2019. View Article : Google Scholar :

179 

Sussman JH, Xu J, Amankulor N and Tan K: Dissecting the tumor microenvironment of epigenetically driven gliomas: Opportunities for single-cell and spatial multiomics. Neurooncol Adv. 5:vdad1012023.PubMed/NCBI

180 

Camargo Tavares L and Marques FZ: Clinical trial evidence of the gut microbial metabolite butyrate in hypertension. Hypertension. 81:2137–2139. 2024. View Article : Google Scholar : PubMed/NCBI

181 

Gong X, Geng H, Yang Y, Zhang S, He Z, Fan Y, Yin F, Zhang Z and Chen GQ: Metabolic engineering of commensal bacteria for gut butyrate delivery and dissection of host-microbe interaction. Metab Eng. 80:94–106. 2023. View Article : Google Scholar : PubMed/NCBI

182 

Dalile B, Van Oudenhove L, Vervliet B and Verbeke K: The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 16:461–478. 2019. View Article : Google Scholar : PubMed/NCBI

183 

van der Beek CM, Bloemen JG, van den Broek MA, Lenaerts K, Venema K, Buurman WA and Dejong CH: Hepatic uptake of rectally administered butyrate prevents an increase in systemic butyrate concentrations in humans. J Nutr. 145:2019–2024. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang J, Zhao Q, Zhang S, Liu J, Fan X, Han B, Hou Y and Ai X: Microbial short chain fatty acids: Effective histone deacetylase inhibitors in immune regulation (Review). Int J Mol Med 57: 16, 2026.
APA
Wang, J., Zhao, Q., Zhang, S., Liu, J., Fan, X., Han, B. ... Ai, X. (2026). Microbial short chain fatty acids: Effective histone deacetylase inhibitors in immune regulation (Review). International Journal of Molecular Medicine, 57, 16. https://doi.org/10.3892/ijmm.2025.5687
MLA
Wang, J., Zhao, Q., Zhang, S., Liu, J., Fan, X., Han, B., Hou, Y., Ai, X."Microbial short chain fatty acids: Effective histone deacetylase inhibitors in immune regulation (Review)". International Journal of Molecular Medicine 57.1 (2026): 16.
Chicago
Wang, J., Zhao, Q., Zhang, S., Liu, J., Fan, X., Han, B., Hou, Y., Ai, X."Microbial short chain fatty acids: Effective histone deacetylase inhibitors in immune regulation (Review)". International Journal of Molecular Medicine 57, no. 1 (2026): 16. https://doi.org/10.3892/ijmm.2025.5687
Copy and paste a formatted citation
x
Spandidos Publications style
Wang J, Zhao Q, Zhang S, Liu J, Fan X, Han B, Hou Y and Ai X: Microbial short chain fatty acids: Effective histone deacetylase inhibitors in immune regulation (Review). Int J Mol Med 57: 16, 2026.
APA
Wang, J., Zhao, Q., Zhang, S., Liu, J., Fan, X., Han, B. ... Ai, X. (2026). Microbial short chain fatty acids: Effective histone deacetylase inhibitors in immune regulation (Review). International Journal of Molecular Medicine, 57, 16. https://doi.org/10.3892/ijmm.2025.5687
MLA
Wang, J., Zhao, Q., Zhang, S., Liu, J., Fan, X., Han, B., Hou, Y., Ai, X."Microbial short chain fatty acids: Effective histone deacetylase inhibitors in immune regulation (Review)". International Journal of Molecular Medicine 57.1 (2026): 16.
Chicago
Wang, J., Zhao, Q., Zhang, S., Liu, J., Fan, X., Han, B., Hou, Y., Ai, X."Microbial short chain fatty acids: Effective histone deacetylase inhibitors in immune regulation (Review)". International Journal of Molecular Medicine 57, no. 1 (2026): 16. https://doi.org/10.3892/ijmm.2025.5687
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team