You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Millán-Zambrano G, Burton A, Bannister AJ and Schneider R: Histone post-translational modifications-cause and consequence of genome function. Nat Rev Genet. 23:563–580. 2022. View Article : Google Scholar | |
|
Zhao S, Zhang X and Li H: Beyond histone acetylation-writing and erasing histone acylations. Curr Opin Struct Biol. 53:169–177. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shvedunova M and Akhtar A: Modulation of cellular processes by histone and Non-histone protein acetylation. Nat Rev Mol Cell Biol. 23:329–349. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shakespear MR, Halili MA, Irvine KM, Fairlie DP and Sweet MJ: Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 32:335–343. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV and Schiöth HB: Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br J Clin Pharmacol. 87:4577–4597. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rooks MG and Garrett WS: Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 16:341–352. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, He M, Yang M and Ai X: Gut microbiota as a key regulator of intestinal mucosal immunity. Life Sci. 345:1226122024. View Article : Google Scholar : PubMed/NCBI | |
|
Woo V and Alenghat T: Epigenetic regulation by gut microbiota. Gut Microbes. 14:20224072022. View Article : Google Scholar : PubMed/NCBI | |
|
Mann ER, Lam YK and Uhlig HH: Short-chain fatty acids: Linking diet, the microbiome and immunity. Nat Rev Immunol. 24:577–595. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lin MY, de Zoete MR, van Putten JP and Strijbis K: Redirection of epithelial immune responses by Short-Chain fatty acids through inhibition of histone deacetylases. Front Immunol. 6:5542015. View Article : Google Scholar : PubMed/NCBI | |
|
Licciardi PV, Ververis K and Karagiannis TC: Histone deacetylase inhibition and dietary Short-chain Fatty acids. ISRN Allergy. 2011:8696472011. View Article : Google Scholar : PubMed/NCBI | |
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 372:n712021. View Article : Google Scholar : PubMed/NCBI | |
|
Wardman JF, Bains RK, Rahfeld P and Withers SG: Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol. 20:542–556. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki M, Suaini NHA, Afghani J, Heye KN, O'Mahony L, Venter C, Lauener R, Frei R and Roduit C: Systematic review of the association between Short-chain fatty acids and allergic diseases. Allergy. 79:1789–1811. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Deleu S, Machiels K, Raes J, Verbeke K and Vermeire S: Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine. 66:1032932021. View Article : Google Scholar : PubMed/NCBI | |
|
Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, Khalil M, Wang DQ, Sperandio M and Di Ciaula A: Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int J Mol Sci. 23:11052022. View Article : Google Scholar : PubMed/NCBI | |
|
Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ and Louis P: Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8:1323–1335. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Louis P and Flint HJ: Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 19:29–41. 2017. View Article : Google Scholar | |
|
Mahdi T, Desmons A, Krasniqi P, Lacorte JM, Kapel N, Lamazière A, Fourati S and Eguether T: Effect of stool sampling on a routine clinical method for the quantification of six short chain fatty acids in stool using gas Chromatography-mass spectrometry. Microorganisms. 12:8282024. View Article : Google Scholar : PubMed/NCBI | |
|
Sivaprakasam S, Bhutia YD, Yang S and Ganapathy V: Short-chain fatty acid transporters: Role in colonic homeostasis. Compr Physiol. 8:299–314. 2017. View Article : Google Scholar | |
|
Wang LY, He LH, Xu LJ and Li SB: Short-chain fatty acids: Bridges between diet, gut microbiota, and health. J Gastroenterol Hepatol. 39:1728–1736. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Morrison DJ and Preston T: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 7:189–200. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yao Y, Cai X, Fei W, Ye Y, Zhao M and Zheng C: The role of Short-chain fatty acids in immunity, inflammation and metabolism. Crit Rev Food Sci Nutr. 62:1–12. 2022. View Article : Google Scholar | |
|
Li M, van Esch B, Wagenaar GTM, Garssen J, Folkerts G and Henricks PAJ: Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol. 831:52–59. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Seto E and Yoshida M: Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6:a0187132014. View Article : Google Scholar : PubMed/NCBI | |
|
Bassett SA and Barnett MP: The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients. 6:4273–4301. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kutil Z, Novakova Z, Meleshin M, Mikesova J, Schutkowski M and Barinka C: Histone deacetylase 11 is a Fatty-acid deacylase. ACS Chem Biol. 13:685–693. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Schiedel M, Robaa D, Rumpf T, Sippl W and Jung M: The current state of NAD+ -Dependent histone deacetylases (Sirtuins) as novel therapeutic targets. Med Res Rev. 38:147–200. 2018. View Article : Google Scholar | |
|
Reichert N, Choukrallah MA and Matthias P: Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci. 69:2173–2187. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Parra M: Class IIa HDACs-new insights into their functions in physiology and pathology. FEBS J. 282:1736–1744. 2015. View Article : Google Scholar | |
|
Witt O, Deubzer HE, Milde T and Oehme I: HDAC family: What are the cancer relevant targets? Cancer Lett. 277:8–21. 2009. View Article : Google Scholar | |
|
Hull EE, Montgomery MR and Leyva KJ: HDAC Inhibitors as epigenetic regulators of the immune system: Impacts on cancer therapy and inflammatory diseases. Biomed Res Int. 2016:87972062016. View Article : Google Scholar : PubMed/NCBI | |
|
Grabiec AM and Potempa J: Epigenetic regulation in bacterial infections: Targeting histone deacetylases. Crit Rev Microbiol. 44:336–350. 2018. View Article : Google Scholar : | |
|
Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, Chomka A, Ilott NE, Johnston DGW, Pires E, et al: The short Chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. 50:432–445.e437. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Xie X, Sun N, Liu X, Liu J, Zhang W and Cao Y: Gut microbiota-derived butyrate improved acute leptospirosis in hamster via promoting macrophage ROS mediated by HDAC3 inhibition. mBio. 15:e01906242024. View Article : Google Scholar : PubMed/NCBI | |
|
Fernando MR, Saxena A, Reyes JL and McKay DM: Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages. Am J Physiol Gastrointest Liver Physiol. 310:G822–G831. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Pineda Molina C, Hussey GS, Eriksson J, Shulock MA, Cárdenas Bonilla LL, Giglio RM, Gandhi RM, Sicari BM, Wang D, Londono R, et al: 4-Hydroxybutyrate promotes endogenous antimicrobial peptide expression in macrophages. Tissue Eng Part A. 25:693–706. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley LK and Striz I: M1/M2 macrophages and their overlaps-myth or reality? Clin Sci (Lond). 137:1067–1093. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chang PV, Hao L, Offermanns S and Medzhitov R: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 111:2247–2252. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Park JW, Kim HY, Kim MG, Jeong S, Yun CH and Han SH: Short-chain fatty acids inhibit staphylococcal Lipoprotein-induced nitric oxide production in murine macrophages. Immune Netw. 19:e92019. View Article : Google Scholar : PubMed/NCBI | |
|
Maa MC, Chang MY, Hsieh MY, Chen YJ, Yang CJ, Chen ZC, Li YK, Yen CK, Wu RR and Leu TH: Butyrate reduced lipopolysaccharide-mediated macrophage migration by suppression of Src enhancement and focal adhesion kinase activity. J Nutr Biochem. 21:1186–1192. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ji J, Shu D, Zheng M, Wang J, Luo C, Wang Y, Guo F, Zou X, Lv X, Li Y, et al: Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci Rep. 6:248382016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Dernst A, Martin B, Lorenzi L, Cadefau-Fabregat M, Phulphagar K, Wagener A, Budden C, Stair N, Wagner T, et al: Butyrate and propionate are microbial danger signals that activate the NLRP3 inflammasome in human macrophages upon TLR stimulation. Cell Rep. 43:1147362024. View Article : Google Scholar : PubMed/NCBI | |
|
Park GY, Joo M, Pedchenko T, Blackwell TS and Christman JW: Regulation of macrophage cyclooxygenase-2 gene expression by modifications of histone H3. Am J Physiol Lung Cell Mol Physiol. 286:L956–L962. 2004. View Article : Google Scholar | |
|
Cougoule C, Lastrucci C, Guiet R, Mascarau R, Meunier E, Lugo-Villarino G, Neyrolles O, Poincloux R and Maridonneau-Parini I: Podosomes, but not the maturation status, determine the protease-Dependent 3D migration in human dendritic cells. Front Immunol. 9:8462018. View Article : Google Scholar : PubMed/NCBI | |
|
Singh N, Thangaraju M, Prasad PD, Martin PM, Lambert NA, Boettger T, Offermanns S and Ganapathy V: Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J Biol Chem. 285:27601–27608. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Li L, Min J, Wang J, Wu H, Zeng Y, Chen S and Chu Z: Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell Immunol. 277:66–73. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Nascimento CR, Freire-de-Lima CG, da Silva de Oliveira A, Rumjanek FD and Rumjanek VM: The short chain fatty acid sodium butyrate regulates the induction of CD1a in developing dendritic cells. Immunobiology. 216:275–284. 2011. View Article : Google Scholar | |
|
Kim YH and Lee JK: Histone deacetylase inhibitors suppress immature dendritic cell's migration by regulating CC chemokine receptor 1 expression. Cell Immunol. 316:11–20. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kim YH, Han SB and Lee JK: Histone deacetylase inhibitors suppress CXCR4-mediated dendritic cell migration by regulation of maturation process. Cell Immunol. 284:139–145. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Inamoto T, Furuta K, Han C, Uneme M, Kano T, Ishikawa K and Kaito C: Short-chain fatty acids stimulate dendrite elongation in dendritic cells by inhibiting histone deacetylase. FEBS J. 290:5794–5810. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Andrusaite A, Lewis J, Frede A, Farthing A, Kästele V, Montgomery J, Mowat A, Mann E and Milling S: Microbiota-derived butyrate inhibits cDC development via HDAC inhibition, diminishing their ability to prime T cells. Mucosal Immunol. 17:1199–1211. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kaisar MMM, Pelgrom LR, van der Ham AJ, Yazdanbakhsh M and Everts B: Butyrate conditions human dendritic cells to prime type 1 Regulatory T cells via both histone deacetylase inhibition and G Protein-coupled receptor 109A signaling. Front Immunol. 8:14292017. View Article : Google Scholar : PubMed/NCBI | |
|
Berndt BE, Zhang M, Owyang SY, Cole TS, Wang TW, Luther J, Veniaminova NA, Merchant JL, Chen CC, Huffnagle GB, et al: Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol Gastrointest Liver Physiol. 303:G1384–G1392. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Íñiguez-Gutiérrez L, Godínez-Méndez LA, Fafutis-Morris M, Padilla-Arellano JR, Corona-Rivera A, Bueno-Topete MR, Rojas-Rejón ÓA and Delgado-Rizo V: Physiological concentrations of short-chain fatty acids induce the formation of neutrophil extracellular traps in vitro. Int J Immunopathol Pharmacol. 34:20587384209589492020. View Article : Google Scholar : PubMed/NCBI | |
|
Yasuda H, Takishita Y, Morita A, Tsutsumi T, Nakagawa N and Sato EF: Sodium acetate enhances neutrophil extracellular trap formation via histone acetylation pathway in Neutrophil-like HL-60 Cells. Int J Mol Sci. 25:87572024. View Article : Google Scholar : PubMed/NCBI | |
|
Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC and Curi R: Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 22:849–855. 2011. View Article : Google Scholar | |
|
Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, Zhu R, Li Z, Li M and Liu Z: Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 13:19682572021. View Article : Google Scholar : PubMed/NCBI | |
|
Aoyama M, Kotani J and Usami M: Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition. 26:653–661. 2010. View Article : Google Scholar | |
|
Bartels M, Geest CR, Bierings M, Buitenhuis M and Coffer PJ: Histone deacetylase inhibition modulates cell fate decisions during myeloid differentiation. Haematologica. 95:1052–1060. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Folkerts J, Redegeld F, Folkerts G, Blokhuis B, van den Berg MPM, de Bruijn MJW, van IWFJ, Junt T, Tam SY, Galli SJ, et al: Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy. 75:1966–1978. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Du M, Yang Q and Zhu MJ: Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase. J Nutr Biochem. 27:299–306. 2016. View Article : Google Scholar | |
|
Gudneppanavar R, Sabu Kattuman EE, Teegala LR, Southard E, Tummala R, Joe B, Thodeti CK and Paruchuri S: Epigenetic histone modification by butyrate downregulates KIT and attenuates mast cell function. J Cell Mol Med. 27:2983–2994. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
MacDonald CA, Qian H, Pundir P and Kulka M: Sodium butyrate supresses malignant human mast cell proliferation, downregulates expression of KIT and promotes differentiation. Front Allergy. 4:11097172023. View Article : Google Scholar : PubMed/NCBI | |
|
Carlini F, Squillario M, Casella V, Capaia M, Lusi V, Bagnara D, Colombo M, Palmeri S, Ivaldi F, Loiacono F, et al: Butyrate enhances CD56bright NK cell-driven killing of activated T cells and modulates NK cell chromatin accessibility. Genes Immun. 26:342–351. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Schmudde M, Braun A, Pende D, Sonnemann J, Klier U, Beck JF, Moretta L and Bröker BM: Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells. Cancer Lett. 272:110–121. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Dong C: Cytokine regulation and function in T cells. Annu Rev Immunol. 39:51–76. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kibbie JJ, Dillon SM, Thompson TA, Purba CM, McCarter MD and Wilson CC: Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase (HDAC) inhibition and GPR43 signaling. Immunobiology. 226:1521262021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, Sun J, Pan F, Zhou J, Zhang W, et al: Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 11:44572020. View Article : Google Scholar : PubMed/NCBI | |
|
Dagtas AS, Edens RE and Gilbert KM: Histone deacetylase inhibitor uses p21(Cip1) to maintain anergy in CD4+ T cells. Int Immunopharmacol. 9:1289–1297. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL, Shi H, Robertson KD, Munn DH and Liu K: Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol. 302:G1405–G415. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Moore TV, Scurti GM, DeJong M, Wang SY, Dalheim AV, Wagner CR, Hutchens KA, Speiser JJ, Godellas CV, Fountain C, et al: HDAC inhibition prevents transgene expression downregulation and loss-of-function in T-cell-receptor-transduced T cells. Mol Ther Oncolytics. 20:352–363. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Luu M, Riester Z, Baldrich A, Reichardt N, Yuille S, Busetti A, Klein M, Wempe A, Leister H, Raifer H, et al: Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat Commun. 12:40772021. View Article : Google Scholar : | |
|
Luu M, Weigand K, Wedi F, Breidenbend C, Leister H, Pautz S, Adhikary T and Visekruna A: Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci Rep. 8:144302018. View Article : Google Scholar : | |
|
Bolduc JF, Hany L, Barat C, Ouellet M and Tremblay MJ: Epigenetic metabolite acetate inhibits class I/II histone deacetylases, promotes histone acetylation, and increases HIV-1 integration in CD4+ T cells. J Virol. 91:e01943–e01916. 2017. View Article : Google Scholar : | |
|
Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J and Kim CH: Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8:80–93. 2015. View Article : Google Scholar | |
|
Chen L, Sun M, Wu W, Yang W, Huang X, Xiao Y, Ma C, Xu L, Yao S, Liu Z and Cong Y: Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells' Differentiation and function in induction of colitis. Inflamm Bowel Dis. 25:1450–1461. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kespohl M, Vachharajani N, Luu M, Harb H, Pautz S, Wolff S, Sillner N, Walker A, Schmitt-Kopplin P, Boettger T, et al: The microbial metabolite butyrate induces expression of Th1-associated factors in CD4+ T cells. Front Immunol. 8:10362017. View Article : Google Scholar : | |
|
Wang J, Hou Y, Mu L, Yang M and Ai X: Gut microbiota contributes to the intestinal and extraintestinal immune homeostasis by balancing Th17/Treg cells. Int Immunopharmacol. 143:1135702024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Zhou L, Wang Y, Dorfman RG, Tang D, Xu L, Pan Y, Zhou Q, Li Y, Yin Y, et al: Faecalibacterium prausnitzii produces butyrate to decrease c-Myc-related metabolism and Th17 differentiation by inhibiting histone deacetylase 3. Int Immunol. 31:499–514. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Zhang M, Wang Y, Dorfman RG, Liu H, Yu T, Chen X, Tang D, Xu L, Yin Y, et al: Faecalibacterium prausnitzii produces butyrate to maintain Th17/treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm Bowel Dis. 24:1926–1940. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sałkowska A, Karaś K, Walczak-Drzewiecka A, Dastych J and Ratajewski M: Differentiation stage-specific effect of histone deacetylase inhibitors on the expression of RORγT in human lymphocytes. J Leukoc Biol. 102:1487–1495. 2017. View Article : Google Scholar | |
|
Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ and Rudensky AY: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 504:451–455. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sanchez HN, Moroney JB, Gan H, Shen T, Im JL, Li T, Taylor JR, Zan H and Casali P: B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun. 11:602020. View Article : Google Scholar : PubMed/NCBI | |
|
Zou F, Qiu Y, Huang Y, Zou H, Cheng X, Niu Q, Luo A and Sun J: Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function. Cell Death Dis. 12:5822021. View Article : Google Scholar : PubMed/NCBI | |
|
Föh B, Buhre JS, Lunding HB, Moreno-Fernandez ME, König P, Sina C, Divanovic S and Ehlers M: Microbial metabolite butyrate promotes induction of IL-10+IgM+ plasma cells. PLoS One. 17:e02660712022. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao P, Cai X, Zhang Z, Guo K, Ke Y, Hu Z, Song Z, Zhao Y, Yao L, Shen M, et al: Butyrate prevents the pathogenic Anemia-inflammation circuit by facilitating macrophage iron export. Adv Sci (Weinh). 11:e23065712024. View Article : Google Scholar : PubMed/NCBI | |
|
Dupraz L, Magniez A, Rolhion N, Richard ML, Da Costa G, Touch S, Mayeur C, Planchais J, Agus A, Danne C, et al: Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep. 36:1093322021. View Article : Google Scholar | |
|
Nepelska M, Cultrone A, Béguet-Crespel F, Le Roux K, Doré J, Arulampalam V and Blottière HM: Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells. PLoS One. 7:e528692012. View Article : Google Scholar | |
|
Eshleman EM, Rice T, Potter C, Waddell A, Hashimoto-Hill S, Woo V, Field S, Engleman L, Lim HW, Schumacher MA, et al: Microbiota-derived butyrate restricts tuft cell differentiation via histone deacetylase 3 to modulate intestinal type 2 immunity. Immunity. 57:319–332.e316. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Bilotta AJ, Ma C, Yang W, Yu Y, Yu Y, Zhao X, Zhou Z, Yao S, Dann SM and Cong Y: Propionate enhances cell speed and persistence to promote intestinal epithelial turnover and repair. Cell Mol Gastroenterol Hepatol. 11:1023–1044. 2021. View Article : Google Scholar : | |
|
Mariadason JM, Velcich A, Wilson AJ, Augenlicht LH and Gibson PR: Resistance to butyrate-induced cell differentiation and apoptosis during spontaneous Caco-2 cell differentiation. Gastroenterology. 120:889–899. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Gibson PR, Rosella O, Wilson AJ, Mariadason JM, Rickard K, Byron K and Barkla DH: Colonic epithelial cell activation and the paradoxical effects of butyrate. Carcinogenesis. 20:539–544. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Siavoshian S, Segain JP, Kornprobst M, Bonnet C, Cherbut C, Galmiche JP and Blottière HM: Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: Induction of cyclin D3 and p21 expression. Gut. 46:507–514. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Fischer N, Sechet E, Friedman R, Amiot A, Sobhani I, Nigro G, Sansonetti PJ and Sperandio B: Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge. Proc Natl Acad Sci USA. 113:E2993–E3001. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Schauber J, Iffland K, Frisch S, Kudlich T, Schmausser B, Eck M, Menzel T, Gostner A, Lührs H and Scheppach W: Histone-deacetylase inhibitors induce the cathelicidin LL-37 in gastrointestinal cells. Mol Immunol. 41:847–854. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Beisner J, Filipe Rosa L, Kaden-Volynets V, Stolzer I, Günther C and Bischoff SC: Prebiotic inulin and sodium butyrate attenuate Obesity-induced intestinal barrier dysfunction by induction of antimicrobial peptides. Front Immunol. 12:6783602021. View Article : Google Scholar : PubMed/NCBI | |
|
Dou X, Gao N, Lan J, Han J, Yang Y and Shan A: TLR2/EGFR are two sensors for pBD3 and pEP2C induction by sodium butyrate independent of HDAC inhibition. J Agric Food Chem. 68:512–522. 2020. View Article : Google Scholar | |
|
Korsten S, Vromans H, Garssen J and Willemsen LEM: Butyrate protects barrier integrity and suppresses immune activation in a Caco-2/PBMC Co-Culture model while HDAC inhibition mimics butyrate in restoring Cytokine-induced barrier disruption. Nutrients. 15:27602023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, Wang RX, Onyiah JC, Kominsky DJ and Colgan SP: Microbial-derived butyrate promotes epithelial barrier function through IL-10 Receptor-dependent repression of Claudin-2. J Immunol. 199:2976–2984. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang RX, Lee JS, Campbell EL and Colgan SP: Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proc Natl Acad Sci USA. 117:11648–11657. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ohata A, Usami M and Miyoshi M: Short-chain fatty acids alter tight junction permeability in intestinal monolayer cells via lipoxygenase activation. Nutrition. 21:838–847. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gaudier E, Jarry A, Blottière HM, de Coppet P, Buisine MP, Aubert JP, Laboisse C, Cherbut C and Hoebler C: Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol. 287:G1168–G1174. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Borthakur A, Saksena S, Gill RK, Alrefai WA, Ramaswamy K and Dudeja PK: Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: Involvement of NF-kappaB pathway. J Cell Biochem. 103:1452–1463. 2008. View Article : Google Scholar | |
|
Larraufie P, Martin-Gallausiaux C, Lapaque N, Dore J, Gribble FM, Reimann F and Blottiere HM: SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep. 8:742018. View Article : Google Scholar : PubMed/NCBI | |
|
Subramanian VS, Teafatiller T, Moradi H and Marchant JS: Histone deacetylase inhibitors regulate vitamin C transporter functional expression in intestinal epithelial cells. J Nutr Biochem. 98:1088382021. View Article : Google Scholar : PubMed/NCBI | |
|
Zapletal O, Tylichová Z, Neča J, Kohoutek J, Machala M, Milcová A, Pokorná M, Topinka J, Moyer MP, Hofmanová J, et al: Butyrate alters expression of cytochrome P450 1A1 and metabolism of benzo[a]pyrene via its histone deacetylase activity in colon epithelial cell models. Arch Toxicol. 91:2135–2150. 2017. View Article : Google Scholar | |
|
Bachmann M, Meissner C, Pfeilschifter J and Mühl H: Cooperation between the bacterial-derived short-chain fatty acid butyrate and interleukin-22 detected in human Caco2 colon epithelial/carcinoma cells. Biofactors. 43:283–292. 2017. View Article : Google Scholar | |
|
Kobori A, Bamba S, Imaeda H, Ban H, Tsujikawa T, Saito Y, Fujiyama Y and Andoh A: Butyrate stimulates IL-32alpha expression in human intestinal epithelial cell lines. World J Gastroenterol. 16:2355–2361. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Korsten S, Peracic L, van Groeningen LMB, Diks MAP, Vromans H, Garssen J and Willemsen LEM: Butyrate prevents induction of CXCL10 and Non-canonical IRF9 expression by activated human intestinal epithelial cells via HDAC inhibition. Int J Mol Sci. 23:39802022. View Article : Google Scholar : PubMed/NCBI | |
|
Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW and Giardina C: The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology. 118:724–734. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Martin-Gallausiaux C, Larraufie P, Jarry A, Béguet-Crespel F, Marinelli L, Ledue F, Reimann F, Blottière HM and Lapaque N: Butyrate produced by commensal bacteria Down-regulates indolamine 2,3-Dioxygenase 1 (IDO-1) expression via a dual mechanism in human intestinal epithelial cells. Front Immunol. 9:28382018. View Article : Google Scholar | |
|
Martin-Gallausiaux C, Béguet-Crespel F, Marinelli L, Jamet A, Ledue F, Blottière HM and Lapaque N: Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci Rep. 8:97422018. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Ma C, Huang X, Yang W, Chen L, Bilotta AJ, Yao S and Cong Y: Microbiota metabolites short-chain fatty acid butyrate conditions intestinal epithelial cells to promote development of Treg cells and T cell IL-10 production. J Immunol. 200:53.162018. View Article : Google Scholar | |
|
Jin UH, Cheng Y, Park H, Davidson LA, Callaway ES, Chapkin RS, Jayaraman A, Asante A, Allred C, Weaver EA and Safe S: Short chain fatty acids enhance aryl hydrocarbon (Ah) responsiveness in mouse colonocytes and Caco-2 human colon cancer cells. Sci Rep. 7:101632017. View Article : Google Scholar : PubMed/NCBI | |
|
Modoux M, Rolhion N, Lefevre JH, Oeuvray C, Nádvorník P, Illes P, Emond P, Parc Y, Mani S, Dvorak Z and Sokol H: Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes. 14:21056372022. View Article : Google Scholar : PubMed/NCBI | |
|
Fawad JA, Luzader DH, Hanson GF, Moutinho TJ Jr, McKinney CA, Mitchell PG, Brown-Steinke K, Kumar A, Park M, Lee S, et al: Histone deacetylase inhibition by gut microbe-Generated Short-Chain fatty acids entrains intestinal epithelial circadian rhythms. Gastroenterology. 163:1377–1390.e11. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gill RK, Kumar A, Malhotra P, Maher D, Singh V, Dudeja PK, Alrefai W and Saksena S: Regulation of intestinal serotonin transporter expression via epigenetic mechanisms: Role of HDAC2. Am J Physiol Cell Physiol. 304:C334–C341. 2013. View Article : Google Scholar : | |
|
Schilderink R, Verseijden C, Seppen J, Muncan V, van den Brink GR, Lambers TT, van Tol EA and de Jonge WJ: The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am J Physiol Gastrointest Liver Physiol. 310:G1138–G1146. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng M, Yang X, Wu Q, Gong Y, Pang N, Ge X, Nagaratnam N, Jiang P, Zhou M, Hu T, et al: Butyrate attenuates hepatic steatosis induced by a High-fat and Fiber-deficient diet via the hepatic GPR41/43-CaMKII/HDAC1-CREB pathway. Mol Nutr Food Res. 67:e22005972023. View Article : Google Scholar | |
|
Zhou D, Chen YW, Zhao ZH, Yang RX, Xin FZ, Liu XL, Pan Q, Zhou H and Fan JG: Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression. Exp Mol Med. 50:1–12. 2018. View Article : Google Scholar | |
|
Li H, Gao Z, Zhang J, Ye X, Xu A, Ye J and Jia W: Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes. 61:797–806. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bridgeman S, Woo HC, Newsholme P and Mamotte C: Butyrate lowers cellular cholesterol through HDAC Inhibition and Impaired SREBP-2 Signalling. Int J Mol Sci. 23:155062022. View Article : Google Scholar : PubMed/NCBI | |
|
Jourova L, Anzenbacherova E, Dostal Z, Anzenbacher P, Briolotti P, Rigal E, Daujat-Chavanieu M and Gerbal-Chaloin S: Butyrate, a typical product of gut microbiome, affects function of the AhR gene, being a possible agent of crosstalk between gut microbiome, and hepatic drug metabolism. J Nutr Biochem. 107:1090422022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Xu X, Liu S, Wang X, Musha J, Li T, Ge L, Sun Y, Zhang S, Zhao L and Zhan J: Butyrate inhibits histone deacetylase 2 expression to alleviate liver fibrosis in biliary atresia. BMC Pediatr. 25:2862025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Wang W, Liang S, Zhou X, Rekha RS, Gudmundsson GH, Bergman P, Ai Q, Mai K and Wan M: Butyrate induces STAT3/HIF-1α/IL-22 signaling via GPCR and HDAC3 inhibition to activate autophagy in head kidney macrophages from turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 143:1092142023. View Article : Google Scholar | |
|
Ma X and Wang Q: Short-Chain fatty acids attenuate renal fibrosis and enhance autophagy of renal tubular cells in diabetic mice through the HDAC2/ULK1 axis. Endocrinol Metab (Seoul). 37:432–443. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Giordano L, Ahmed S, van der Made TK, Masereeuw R and Mihăilă SM: Gut microbial-derived short chain fatty acids enhance kidney proximal tubule cell secretory function. Biomed Pharmacother. 188:1182142025. View Article : Google Scholar : PubMed/NCBI | |
|
Du Y, Tang G and Yuan W: Suppression of HDAC2 by sodium butyrate alleviates apoptosis of kidney cells in db/db mice and HG-induced NRK-52E cells. Int J Mol Med. 45:210–222. 2020. | |
|
Felizardo RJF, de Almeida DC, Pereira RL, Watanabe IKM, Doimo NTS, Ribeiro WR, Cenedeze MA, Hiyane MI, Amano MT, Braga TT, et al: Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms. FASEB J. 33:11894–11908. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Wei S, Zhu L, Huang C, Yang T, Wang S, Zhang Y, Duan Y, Li X, Wang Z, et al: Low expression of the intestinal metabolite butyric acid and the corresponding memory pattern regulate HDAC4 to promote apoptosis in rat hippocampal neurons. Ecotoxicol Environ Saf. 253:1146602023. View Article : Google Scholar : PubMed/NCBI | |
|
Cho JH, Chae CW, Lim JR, Jung YH, Han SJ, Yoon JH, Park JY and Han HJ: Sodium butyrate ameliorates high glucose-suppressed neuronal mitophagy by restoring PRKN expression via inhibiting the RELA-HDAC8 complex. Autophagy. 20:1505–1522. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Song L, Sun Q, Zheng H, Zhang Y, Wang Y, Liu S and Duan L: Roseburia hominis alleviates neuroinflammation via Short-Chain fatty acids through histone deacetylase inhibition. Mol Nutr Food Res. 66:e22001642022. View Article : Google Scholar : PubMed/NCBI | |
|
Ziabska K, Gargas J, Sypecka J and Ziemka-Nalecz M: The impact of the histone deacetylase inhibitor sodium butyrate on microglial polarization after oxygen and glucose deprivation. Pharmacol Rep. 74:909–919. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen PS, Wang CC, Bortner CD, Peng GS, Wu X, Pang H, Lu RB, Gean PW, Chuang DM and Hong JS: Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience. 149:203–212. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wang P, Zhang Y, Gong Y, Yang R, Chen Z, Hu W, Wu Y, Gao M, Xu X, Qin Y and Huang C: Sodium butyrate triggers a functional elongation of microglial process via Akt-small RhoGTPase activation and HDACs inhibition. Neurobiol Dis. 111:12–25. 2018. View Article : Google Scholar | |
|
Singh V, Bhatia HS, Kumar A, de Oliveira AC and Fiebich BL: Histone deacetylase inhibitors valproic acid and sodium butyrate enhance prostaglandins release in lipopolysaccharide-activated primary microglia. Neuroscience. 265:147–157. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Chen PS, Dallas S, Wilson B, Block ML, Wang CC, Kinyamu H, Lu N, Gao X, Leng Y, et al: Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol. 11:1123–1134. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wu KLH, Liu WC, Wu CW, Fu MH, Huang HM, Tain YL, Liang CK, Hung CY, Chen IC, Hung PL, et al: Butyrate reduction and HDAC4 increase underlie maternal high fructose-induced metabolic dysfunction in hippocampal astrocytes in female rats. J Nutr Biochem. 126:1095712024. View Article : Google Scholar : PubMed/NCBI | |
|
Kanski R, Sneeboer MA, van Bodegraven EJ, Sluijs JA, Kropff W, Vermunt MW, Creyghton MP, De Filippis L, Vescovi A, Aronica E, et al: Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network. J Cell Sci. 127:4368–4380. 2014.PubMed/NCBI | |
|
Li M, van Esch B, Henricks PAJ, Folkerts G and Garssen J: The Anti-inflammatory effects of short Chain fatty acids on Lipopolysaccharide- or tumor necrosis factor α-Stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Front Pharmacol. 9:5332018. View Article : Google Scholar | |
|
Li M, van Esch B, Henricks PAJ, Garssen J and Folkerts G: IL-33 is involved in the Anti-inflammatory effects of butyrate and propionate on TNFα-activated endothelial cells. Int J Mol Sci. 22:24472021. View Article : Google Scholar | |
|
Miyoshi M, Usami M and Ohata A: Short-chain fatty acids and trichostatin A alter tight junction permeability in human umbilical vein endothelial cells. Nutrition. 24:1189–1198. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Nicese MN, Bijkerk R, Van Zonneveld AJ, Van den Berg BM and Rotmans JI: Sodium butyrate as key regulator of mitochondrial function and barrier integrity of human glomerular endothelial cells. Int J Mol Sci. 24:130902023. View Article : Google Scholar : PubMed/NCBI | |
|
Rössig L, Li H, Fisslthaler B, Urbich C, Fleming I, Förstermann U, Zeiher AM and Dimmeler S: Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res. 91:837–844. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Farsetti A, Illi B and Gaetano C: How epigenetics impacts on human diseases. Eur J Intern Med. 114:15–22. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Surace AEA and Hedrich CM: The role of epigenetics in Autoimmune/inflammatory disease. Front Immunol. 10:15252019. View Article : Google Scholar : PubMed/NCBI | |
|
Tang J, Yan H and Zhuang S: Histone deacetylases as targets for treatment of multiple diseases. Clin Sci (Lond). 124:651–662. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang SY, Zhang LY, Wen R, Yang N and Zhang TN: Histone deacetylases and their inhibitors in inflammatory diseases. Biomed Pharmacother. 179:1172952024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang LY, Zhang SY, Wen R, Zhang TN and Yang N: Role of histone deacetylases and their inhibitors in neurological diseases. Pharmacol Res. 208:1074102024. View Article : Google Scholar : PubMed/NCBI | |
|
Peng K, Xiao S, Xia S, Li C, Yu H and Yu Q: Butyrate inhibits the HDAC8/NF-κB Pathway to Enhance Slc26a3 expression and improve the intestinal epithelial barrier to relieve colitis. J Agric Food Chem. 72:24400–24416. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lee C, Kim BG, Kim JH, Chun J, Im JP and Kim JS: Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner. Int Immunopharmacol. 51:47–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Simeoli R, Mattace Raso G, Pirozzi C, Lama A, Santoro A, Russo R, Montero-Melendez T, Berni Canani R, Calignano A, Perretti M and Meli R: An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis. Br J Pharmacol. 174:1484–1496. 2017. View Article : Google Scholar | |
|
Feng Z, Wang X, Kang G, Zhao J, Ye Y, Liu L, Huang H and Cao X: P006 Engineered propionate-producing bacteria attenuates murine colitis by modulating the immune function of resident macrophages via histone deacetylase. J Crohn's Colitis. 17:i174–i177. 2023. View Article : Google Scholar | |
|
Kang G, Wang X, Gao M, Wang L, Feng Z, Meng S, Wu J, Zhu Z, Gao X, Cao X and Huang H: Propionate-producing engineered probiotics ameliorated murine ulcerative colitis by restoring anti-inflammatory macrophage via the GPR43/HDAC1/IL-10 axis. Bioeng Transl Med. 9:e106822024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Ma Z, Zhang X, Wang J, Tian W, Ren Y, Liu Y, Wang T, Li Y, Liu Y, et al: Butyrate alleviates alcoholic liver disease-associated inflammation through macrophage regulation and polarization via the HDAC1/miR-155 axis. Int Immunopharmacol. 131:1118522024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun J, Wu Q, Sun H and Qiao Y: Inhibition of histone deacetylase by butyrate protects rat liver from ischemic reperfusion injury. Int J Mol Sci. 15:21069–21079. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Olaniyi KS and Amusa OA: Sodium acetate-mediated inhibition of histone deacetylase alleviates hepatic lipid dysregulation and its accompanied injury in streptozotocin-nicotinamide-induced diabetic rats. Biomed Pharmacother. 128:1102262020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Li YJ, Loh YW, Singer J, Zhu W, Macia L, Mackay CR, Wang W, Chadban SJ and Wu H: Fiber derived microbial metabolites prevent acute kidney injury through G-Protein coupled receptors and HDAC inhibition. Front Cell Dev Biol. 9:6486392021. View Article : Google Scholar : PubMed/NCBI | |
|
Khan S and Jena G: Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol. 73:127–139. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Harbi NO, Nadeem A, Ahmad SF, Alotaibi MR, AlAsmari AF, Alanazi WA, Al-Harbi MM, El-Sherbeeny AM and Ibrahim KE: Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells. Int Immunopharmacol. 58:24–31. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Sun T, He Z, Li Z, Zhang W, Wang J and Xiang H: SCFAs ameliorate chronic postsurgical Pain-related cognition dysfunction via the ACSS2-HDAC2 axis in rats. Mol Neurobiol. 59:6211–6227. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Patnala R, Arumugam TV, Gupta N and Dheen ST: HDAC inhibitor sodium Butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Mol Neurobiol. 54:6391–6411. 2017. View Article : Google Scholar | |
|
Sharma S, Taliyan R and Singh S: Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity. Behav Brain Res. 291:306–314. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Soliman ML, Smith MD, Houdek HM and Rosenberger TA: Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation. J Neuroinflammation. 9:512012. View Article : Google Scholar | |
|
Moleón J, González-Correa C, Miñano S, Robles-Vera I, de la Visitación N, Barranco AM, Gómez-Guzmán M, Sánchez M, Riesco P, Guerra-Hernández E, et al: Protective effect of microbiota-derived short chain fatty acids on vascular dysfunction in mice with systemic lupus erythematosus induced by toll like receptor 7 activation. Pharmacol Res. 198:1069972023. View Article : Google Scholar : PubMed/NCBI | |
|
Ma H, Yang L, Liu Y, Yan R, Wang R, Zhang P, Bai Z, Liu Y, Ren Y, Li Y, et al: Butyrate suppresses atherosclerotic inflammation by regulating macrophages and polarization via GPR43/HDAC-miRNAs axis in ApoE-/-mice. PLoS One. 18:e02826852023. View Article : Google Scholar | |
|
Karoor V, Strassheim D, Sullivan T, Verin A, Umapathy NS, Dempsey EC, Frank DN, Stenmark KR and Gerasimovskaya E: The Short-Chain fatty acid butyrate attenuates pulmonary vascular remodeling and inflammation in Hypoxia-induced pulmonary hypertension. Int J Mol Sci. 22:99162021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Wang SH, Li HL, Zhou XB, Zhou LW, Chen C, Mansell T, Novakovic B, Saffery R, Baker PN, et al: The attenuation of gut microbiota-derived short-chain fatty acids elevates lipid transportation through suppression of the intestinal HDAC3-H3K27ac-PPAR-γ axis in gestational diabetes mellitus. J Nutr Biochem. 133:1097082024. View Article : Google Scholar | |
|
Jiang M, Wang J, Li Z, Xu D, Jing J, Li F, Ding J and Li Q: Dietary Fiber-derived microbial butyrate suppresses ILC2-dependent airway inflammation in COPD. Mediators Inflamm. 2024:62634472024. View Article : Google Scholar : PubMed/NCBI | |
|
Whitt J, Woo V, Lee P, Moncivaiz J, Haberman Y, Denson L, Tso P and Alenghat T: Disruption of epithelial HDAC3 in intestine prevents Diet-induced obesity in mice. Gastroenterology. 155:501–513. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Islam R, Dash D and Singh R: Intranasal curcumin and sodium butyrate modulates airway inflammation and fibrosis via HDAC inhibition in allergic asthma. Cytokine. 149:1557202022. View Article : Google Scholar | |
|
Olaniyi KS, Areloegbe SE and Fiemotongha FE: Cardiac energy depletion in a rat model of polycystic ovarian syndrome is reversed by acetate and associated with inhibitory effect of HDAC2/mTOR. Eur J Pharmacol. 962:1762432024. View Article : Google Scholar | |
|
Olaniyi KS, Amusa OA, Areola ED and Olatunji LA: Suppression of HDAC by sodium acetate rectifies cardiac metabolic disturbance in streptozotocin-nicotinamide-induced diabetic rats. Exp Biol Med (Maywood). 245:667–676. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Du HX, Yue SY, Niu D, Liu C, Zhang LG, Chen J, Chen Y, Guan Y, Hua XL, Li C, et al: Gut microflora modulates Th17/Treg cell differentiation in experimental autoimmune prostatitis via the Short-Chain fatty acid propionate. Front Immunol. 13:9152182022. View Article : Google Scholar : PubMed/NCBI | |
|
Cavalli G and Heard E: Advances in epigenetics link genetics to the environment and disease. Nature. 571:489–499. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Narita T, Weinert BT and Choudhary C: Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 20:156–174. 2019. View Article : Google Scholar | |
|
Lang C, Campbell KR, Ryan BJ, Carling P, Attar M, Vowles J, Perestenko OV, Bowden R, Baig F, Kasten M, et al: Single-cell sequencing of iPSC-dopamine neurons reconstructs disease progression and identifies HDAC4 as a regulator of parkinson cell phenotypes. Cell Stem Cell. 24:93–106.e6. 2019. View Article : Google Scholar : | |
|
Sussman JH, Xu J, Amankulor N and Tan K: Dissecting the tumor microenvironment of epigenetically driven gliomas: Opportunities for single-cell and spatial multiomics. Neurooncol Adv. 5:vdad1012023.PubMed/NCBI | |
|
Camargo Tavares L and Marques FZ: Clinical trial evidence of the gut microbial metabolite butyrate in hypertension. Hypertension. 81:2137–2139. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gong X, Geng H, Yang Y, Zhang S, He Z, Fan Y, Yin F, Zhang Z and Chen GQ: Metabolic engineering of commensal bacteria for gut butyrate delivery and dissection of host-microbe interaction. Metab Eng. 80:94–106. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dalile B, Van Oudenhove L, Vervliet B and Verbeke K: The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 16:461–478. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
van der Beek CM, Bloemen JG, van den Broek MA, Lenaerts K, Venema K, Buurman WA and Dejong CH: Hepatic uptake of rectally administered butyrate prevents an increase in systemic butyrate concentrations in humans. J Nutr. 145:2019–2024. 2015. View Article : Google Scholar : PubMed/NCBI |