You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Marin W, Marin D, Ao X and Liu Y: Mitochondria as a therapeutic target for cardiac ischemia-reperfusion injury (Review). Int J Mol Med. 47:485–499. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang M, Linn BS, Zhang Y and Ren J: Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis. 1865:2293–2302. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF and Gao XM: The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci. 80:3412023. View Article : Google Scholar : PubMed/NCBI | |
|
Abbate A, Kontos MC and Biondi-Zoccai GGL: No-reflow: The next challenge in treatment of ST-elevation acute myocardial infarction. Eur Heart J. 29:1795–1797. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Davidson SM, Arjun S, Basalay MV, Bell RM, Bromage DI, Bøtker HE, Carr RD, Cunningham J, Ghosh AK, Heusch G, et al: The 10th biennial hatter cardiovascular institute workshop: Cellular protection-evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology. Basic Res Cardiol. 113:432018. View Article : Google Scholar : PubMed/NCBI | |
|
de Waha S, Patel MR, Granger CB, Ohman EM, Maehara A, Eitel I, Ben-Yehuda O, Jenkins P, Thiele H and Stone GW: Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: An individual patient data pooled analysis from seven randomized trials. Eur Heart J. 38:3502–3510. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Eitel I, de Waha S, Wöhrle J, Fuernau G, Lurz P, Pauschinger M, Desch S, Schuler G and Thiele H: Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction. J Am Coll Cardiol. 64:1217–1226. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gao P, Yan Z and Zhu Z: Mitochondria-associated endoplasmic reticulum membranes in cardiovascular diseases. Front Cell Dev Biol. 8:6042402020. View Article : Google Scholar : PubMed/NCBI | |
|
Kuznetsov AV, Javadov S, Margreiter R, Grimm M, Hagenbuchner J and Ausserlechner MJ: The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants (Basel). 8:4542019. View Article : Google Scholar : PubMed/NCBI | |
|
Kluge MA, Fetterman JL and Vita JA: Mitochondria and endothelial function. Circ Res. 112:1171–1188. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bertero E, Popoiu TA and Maack C: Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection. Basic Res Cardiol. 119:569–585. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wong R, Steenbergen C and Murphy E: Mitochondrial permeability transition pore and calcium handling. Methods Mol Biol. 810:235–242. 2012. View Article : Google Scholar : | |
|
Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y and Chang X: Emerging insights into the pathogenesis and therapeutic strategies for vascular endothelial injury-associated diseases: Focus on mitochondrial dysfunction. Angiogenesis. 27:623–639. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Z, Yao J, Wang Z and Xu J: Mitochondria in endothelial cells angiogenesis and function: Current understanding and future perspectives. J Transl Med. 21:4412023. View Article : Google Scholar : PubMed/NCBI | |
|
Parkkinen I, Their A, Asghar MY, Sree S, Jokitalo E and Airavaara M: Pharmacological regulation of endoplasmic reticulum structure and calcium dynamics: Importance for neurodegenerative diseases. Pharmacol Rev. 75:959–978. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Jiang Y, Wang Y, Fan L, Zhu Y, Chen Y, Wang Y, Zhu Y, Wang H, Pan Z, et al: Endothelial FIS1 DeSUMOylation protects against hypoxic pulmonary hypertension. Circ Res. 133:508–531. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ren J, Bi Y, Sowers JR, Hetz C and Zhang Y: Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol. 18:499–521. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lackner LL: The expanding and unexpected functions of mitochondria contact sites. Trends Cell Biol. 29:580–590. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Copeland DE and Dalton AJ: An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J Biophys Biochem Cytol. 5:393–396. 1959. View Article : Google Scholar : PubMed/NCBI | |
|
Vance JE: Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem. 265:7248–7256. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Ronayne CT and Latorre-Muro P: Navigating the landscape of mitochondrial-ER communication in health and disease. Front Mol Biosci. 11:13565002024. View Article : Google Scholar : PubMed/NCBI | |
|
Anderson AJ, Jackson TD, Stroud DA and Stojanovski D: Mitochondria-hubs for regulating cellular biochemistry: Emerging concepts and networks. Open Biol. 9:1901262019. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra SR, Mahapatra KK, Behera BP, Patra S, Bhol CS, Panigrahi DP, Praharaj PP, Singh A, Patil S, Dhiman R and Bhutia SK: Mitochondrial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics. Int J Biochem Cell Biol. 136:1060132021. View Article : Google Scholar : PubMed/NCBI | |
|
Leung SWS and Shi Y: The glycolytic process in endothelial cells and its implications. Acta Pharmacol Sin. 43:251–259. 2022. View Article : Google Scholar : | |
|
Kühlbrandt W: Structure and function of mitochondrial membrane protein complexes. BMC Biol. 13:892015. View Article : Google Scholar : PubMed/NCBI | |
|
Vázquez-Meza H, Vilchis-Landeros MM, Vázquez-Carrada M, Uribe-Ramírez D and Matuz-Mares D: Cellular compartmentalization, glutathione transport and its relevance in some pathologies. Antioxidants (Basel). 12:8342023. View Article : Google Scholar : PubMed/NCBI | |
|
Jagtap YA, Kumar P, Kinger S, Dubey AR, Choudhary A, Gutti RK, Gutti RK, Singh S, Jha HC, Poluri KM and Mishra A: Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front Cell Dev Biol. 11:11465642023. View Article : Google Scholar : PubMed/NCBI | |
|
Schiaffarino O, Valdivieso González D, García-Pérez IM, Peñalva DA, Almendro-Vedia VG, Natale P and López-Montero I: Mitochondrial membrane models built from native lipid extracts: Interfacial and transport properties. Front Mol Biosci. 9:9109362022. View Article : Google Scholar : PubMed/NCBI | |
|
Giacomello M and Pellegrini L: The coming of age of the mitochondria-ER contact: A matter of thickness. Cell Death Differ. 23:1417–1427. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA and Hajnóczky G: Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 174:915–921. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Filadi R, Theurey P and Pizzo P: The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance. Cell Calcium. 62:1–15. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang N, Wang C, Zhao H, He Y, Lan B, Sun L and Gao Y: The MAMs structure and its role in cell death. Cells. 10:6572021. View Article : Google Scholar : PubMed/NCBI | |
|
Mohan AA and Talwar P: MAM kinases: Physiological roles, related diseases, and therapeutic perspectives-a systematic review. Cell Mol Biol Lett. 30:352025. View Article : Google Scholar : PubMed/NCBI | |
|
Adesina SE, Kang BY, Bijli KM, Ma J, Cheng J, Murphy TC, Michael Hart C and Sutliff RL: Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension. Free Radic Biol Med. 87:36–47. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Haslip M, Dostanic I, Huang Y, Zhang Y, Russell KS, Jurczak MJ, Mannam P, Giordano F, Erzurum SC and Lee PJ: Endothelial uncoupling protein 2 regulates mitophagy and pulmonary hypertension during intermittent hypoxia. Arterioscler Thromb Vasc Biol. 35:1166–1178. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ye JX, Wang SS, Ge M and Wang DJ: Suppression of endothelial PGC-1α is associated with hypoxia-induced endothelial dysfunction and provides a new therapeutic target in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 310:L1233–L1242. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lei W, Li J, Li C, Chen L, Huang F, Xiao D, Zhang J, Zhao J, Li G, Qu T, et al: MARCH5 restores endothelial cell function against ischaemic/hypoxia injury via Akt/eNOS pathway. J Cell Mol Med. 25:3182–3193. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, Wang J, Zhu P, Hu S and Ren J: Ripk3 regulates cardiac microvascular reperfusion injury: The role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration. Cell Signal. 45:12–22. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Li S, Zhang Y, Wang M, Li X, Liu S, Xu D, Bao Y, Jia P, Wu N, et al: The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics. Redox Biol. 41:1019102021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong Z, Hou Y, Zhou C, Wang J, Gao L, Wu X, Zhou G, Liu S, Xu Y and Yang W: FL3 mitigates cardiac ischemia-reperfusion injury by promoting mitochondrial fusion to restore calcium homeostasis. Cell Death Discov. 11:3042025. View Article : Google Scholar : PubMed/NCBI | |
|
Groschner LN, Waldeck-Weiermair M, Malli R and Graier WF: Endothelial mitochondria-less respiration, more integration. Pflugers Arch. 464:63–76. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Toan S and Zhou H: New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis. 23:299–314. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y and Chang X: Advances in pathogenesis and treatment of vascular endothelial injury-related diseases mediated by mitochondrial abnormality. Front Pharmacol. 15:14226862024. View Article : Google Scholar : PubMed/NCBI | |
|
Dorn GW II: Evolving concepts of mitochondrial dynamics. Annu Rev Physiol. 81:1–17. 2019. View Article : Google Scholar | |
|
Murphy E and Steenbergen C: Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 88:581–609. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wang HH, Wu YJ, Tseng YM, Su CH, Hsieh CL and Yeh HI: Mitochondrial fission protein 1 up-regulation ameliorates senescence-related endothelial dysfunction of human endothelial progenitor cells. Angiogenesis. 22:569–582. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Huo JL, Ren K, Pan S, Liu H, Zheng Y, Chen J, Qiao Y, Yang Y and Feng Q: Mitochondria-associated endoplasmic reticulum membrane (MAM): A dark horse for diabetic cardiomyopathy treatment. Cell Death Discov. 10:1482024. View Article : Google Scholar : PubMed/NCBI | |
|
Tagaya M and Arasaki K: Regulation of mitochondrial dynamics and autophagy by the mitochondria-associated membrane. Adv Exp Med Biol. 997:33–47. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bernal AF, Mota N, Pamplona R, Area-Gomez E and Portero-Otin M: Hakuna MAM-Tata: Investigating the role of mitochondrial-associated membranes in ALS. Biochim Biophys Acta Mol Basis Dis. 1869:1667162023. View Article : Google Scholar : PubMed/NCBI | |
|
Chan DC: Fusion and fission: Interlinked processes critical for mitochondrial health. Annu Rev Genet. 46:265–287. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Zhao H and Li Y: Mitochondrial dynamics in health and disease: Mechanisms and potential targets. Signal Transduct Target Ther. 8:3332023. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrier V: Mitochondrial fission in life and death. Nat Cell Biol. 3:E2692001. View Article : Google Scholar | |
|
Gatti P, Schiavon C, Cicero J, Manor U and Germain M: Mitochondria- and ER-associated actin are required for mitochondrial fusion. Nat Commun. 16:4512025. View Article : Google Scholar : PubMed/NCBI | |
|
Hemel IMGM, Sarantidou R and Gerards M: It takes two to tango: The essential role of ER-mitochondrial contact sites in mitochondrial dynamics. Int J Biochem Cell Biol. 141:1061012021. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Li D, Zhang S, Yang Y, Liu JJ, Wang X, Liu C, Milkie DE, Moore RP, Tulu US, et al: Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell. 175:1430–1442.e17. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Al Ojaimi M, Salah A and El-Hattab AW: Mitochondrial fission and fusion: Molecular mechanisms, biological functions, and related disorders. Membranes (Basel). 12:8932022. View Article : Google Scholar : PubMed/NCBI | |
|
Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J and Voeltz GK: ER tubules mark sites of mitochondrial division. Science. 334:358–362. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hyun HW, Min SJ and Kim JE: CDK5 inhibitors prevent astroglial apoptosis and reactive astrogliosis by regulating PKA and DRP1 phosphorylations in the rat hippocampus. Neurosci Res. 119:24–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ganesan V, Willis SD, Chang KT, Beluch S, Cooper KF and Strich R: Cyclin C directly stimulates Drp1 GTP affinity to mediate stress-induced mitochondrial hyperfission. Mol Biol Cell. 30:302–311. 2019. View Article : Google Scholar : | |
|
Bravo-Sagua R, Parra V, Ortiz-Sandoval C, Navarro-Marquez M, Rodríguez AE, Diaz-Valdivia N, Sanhueza C, Lopez-Crisosto C, Tahbaz N, Rothermel BA, et al: Author correction: Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria communication during the early phase of ER stress. Cell Death Differ. 26:24942019. View Article : Google Scholar : PubMed/NCBI | |
|
Giedt RJ, Yang C, Zweier JL, Matzavinos A and Alevriadou BR: Mitochondrial fission in endothelial cells after simulated ischemia/reperfusion: Role of nitric oxide and reactive oxygen species. Free Radic Biol Med. 52:348–356. 2012. View Article : Google Scholar | |
|
Ko AR, Hyun HW, Min SJ and Kim JE: The differential DRP1 phosphorylation and mitochondrial dynamics in the regional specific astroglial death induced by status epilepticus. Front Cell Neurosci. 10:1242016. View Article : Google Scholar : PubMed/NCBI | |
|
Otera H, Ishihara N and Mihara K: New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta. 1833:1256–1268. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ding Y, Liu N, Zhang D, Guo L, Shang Q, Liu Y, Ren G and Ma X: Mitochondria-associated endoplasmic reticulum membranes as a therapeutic target for cardiovascular diseases. Front Pharmacol. 15:13983812024. View Article : Google Scholar : PubMed/NCBI | |
|
Ilamathi HS and Germain M: ER-mitochondria contact sites in mitochondrial DNA dynamics, maintenance, and distribution. Int J Biochem Cell Biol. 166:1064922024. View Article : Google Scholar | |
|
Losón OC, Song Z, Chen H and Chan DC: Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 24:659–667. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ and Mihara K: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol. 191:1141–1158. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wu W, Lin C, Wu K, Jiang L, Wang X, Li W, Zhuang H, Zhang X, Chen H, Li S, et al: FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35:1368–1384. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Korobova F, Ramabhadran V and Higgs HN: An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science. 339:464–467. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ji WK, Chakrabarti R, Fan X, Schoenfeld L, Strack S and Higgs HN: Receptor-mediated Drp1 oligomerization on endoplasmic reticulum. J Cell Biol. 216:4123–4139. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Li J, Li Y, Ye Q, Wang R, Liu X, Li H, Peng D and Duan X: Regulation of NR4A1 by Taohong Siwu decoction inhibits endothelial cell apoptosis in cerebral ischemia-reperfusion injury. J Ethnopharmacol. 353:1202852025. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J and Zhou H: DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol. 14:576–587. 2018. View Article : Google Scholar | |
|
Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J and Chen Y: NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α. Basic Res Cardiol. 113:232018. View Article : Google Scholar | |
|
Landes T and Martinou JC: Mitochondrial outer membrane permeabilization during apoptosis: The role of mitochondrial fission. Biochim Biophys Acta. 1813:540–545. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Adebayo M, Singh S, Singh AP and Dasgupta S: Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis. FASEB J. 35:e216202021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu SY, Zhang Y, Zhu PJ, Zhou H and Chen YD: Liraglutide directly protects cardiomyocytes against reperfusion injury possibly via modulation of intracellular calcium homeostasis. J Geriatr Cardiol. 14:57–66. 2017.PubMed/NCBI | |
|
Zhu H, Jin Q, Li Y, Ma Q, Wang J, Li D, Zhou H and Chen Y: Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca2+] c/VDAC-[Ca2+]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperones. 23:101–113. 2018. View Article : Google Scholar | |
|
Zhou H, Hu S, Jin Q, Shi C, Zhang Y, Zhu P, Ma Q, Tian F and Chen Y: Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc. 6:e0053282017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, Jin Q, Cao F, Tian F and Chen Y: Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res. 63:e124132017. View Article : Google Scholar : PubMed/NCBI | |
|
Shenouda SM, Widlansky ME, Chen K, Xu G, Holbrook M, Tabit CE, Hamburg NM, Frame AA, Caiano TL, Kluge MA, et al: Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation. 124:444–453. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Qu K, Yan F, Qin X, Zhang K, He W, Dong M and Wu G: Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol. 13:10846042022. View Article : Google Scholar | |
|
Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM and Hausenloy DJ: Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 121:2012–2022. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Han X, You Y, Xin G, Li L, Gao J, Meng H, Cao C, Liu J, Zhang Y, et al: Shuangshen ningxin formula attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial function. J Ethnopharmacol. 323:1176902024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, Wang J, Hu S, Zhu H, Toanc S and Ren J: BI1 alleviates cardiac microvascular ischemia-reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F-actin pathways. J Cell Physiol. 234:5056–5069. 2019. View Article : Google Scholar | |
|
Zhou H, Shi C, Hu S, Zhu H, Ren J and Chen Y: BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk-Nox2-Drp1-mitochondrial fission pathways. Angiogenesis. 21:599–615. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Liu C, Zhou P, Li J, Zhao X, Wang Y, Chen R, Song L, Zhao H and Yan H: Coronary endothelium no-reflow injury is associated with ROS-modified mitochondrial fission through the JNK-Drp1 signaling pathway. Oxid Med Cell Longev. 2021:66995162021. View Article : Google Scholar : PubMed/NCBI | |
|
Zou R, Shi W, Qiu J, Zhou N, Du N, Zhou H, Chen X and Ma L: Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol. 21:1062022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng YH, Chiang CY, Wu CH and Chien CT: 2'-Hydroxycinnamaldehyde, a natural product from cinnamon, alleviates ischemia/reperfusion-induced microvascular dysfunction and oxidative damage in rats by upregulating cytosolic BAG3 and Nrf2/HO-1. Int J Mol Sci. 25:129622024. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra P, Carelli V, Manfredi G and Chan DC: Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 19:630–641. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Zhuang J, Wang Y, Zhou D, Zhao D, Zhu S, Pu J, Zhang H, Yin M, Zhao W, et al: Propofol ameliorates H9c2 cells apoptosis induced by oxygen glucose deprivation and reperfusion injury via inhibiting high levels of mitochondrial fusion and fission. Front Pharmacol. 10:612019. View Article : Google Scholar : PubMed/NCBI | |
|
de Brito OM and Scorrano L: Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 456:605–610. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Stuppia G, Rizzo F, Riboldi G, Del Bo R, Nizzardo M, Simone C, Comi GP, Bresolin N and Corti S: MFN2-related neuropathies: Clinical features, molecular pathogenesis and therapeutic perspectives. J Neurol Sci. 356:7–18. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T and Pizzo P: Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci USA. 112:E2174–E2181. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Prinz WA: Bridging the gap: Membrane contact sites in signaling, metabolism, and organelle dynamics. J Cell Biol. 205:759–769. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Wu R, Jiang Z, Chen J, Nan J, Su S, Zhang N, Wang C, Zhao J, Ni C, et al: Leptin increases mitochondrial OPA1 via GSK3-mediated OMA1 ubiquitination to enhance therapeutic effects of mesenchymal stem cell transplantation. Cell Death Dis. 9:5562018. View Article : Google Scholar : PubMed/NCBI | |
|
Sprenger HG and Langer T: The good and the bad of mitochondrial breakups. Trends Cell Biol. 29:888–900. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Romanello V, Scalabrin M, Albiero M, Blaauw B, Scorrano L and Sandri M: Inhibition of the fission machinery mitigates OPA1 impairment in adult skeletal muscles. Cells. 9:5972019. View Article : Google Scholar | |
|
Yin W, Li R, Feng X and James Kang Y: The involvement of cytochrome c oxidase in mitochondrial fusion in primary cultures of neonatal rat cardiomyocytes. Cardiovasc Toxicol. 19:365–373. 2018. View Article : Google Scholar | |
|
Anderson CJ, Kahl A, Fruitman H, Qian L, Zhou P, Manfredi G and Iadecola C: Prohibitin levels regulate OMA1 activity and turnover in neurons. Cell Death Differ. 27:1896–1906. 2020. View Article : Google Scholar : | |
|
Schulman JJ, Szczesniak LM, Bunker EN, Nelson HA, Roe MW, Wagner LE II, Yule DI and Wojcikiewicz RJH: Bok regulates mitochondrial fusion and morphology. Cell Death Differ. 26:2682–2694. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ding M, Liu C, Shi R, Yu M, Zeng K, Kang J, Fu F and Mi M: Mitochondrial fusion promoter restores mitochondrial dynamics balance and ameliorates diabetic cardiomyopathy in an optic atrophy 1-dependent way. Acta Physiol (Oxf). 229:e134282020. View Article : Google Scholar | |
|
Hong Y, Tak H, Kim C, Kang H, Ji E, Ahn S, Jung M, Kim HL, Lee JH, Kim W and Lee EK: RNA binding protein HuD contributes to β-cell dysfunction by impairing mitochondria dynamics. Cell Death Differ. 27:1633–1643. 2020. View Article : Google Scholar | |
|
Meyer JN, Leuthner TC and Luz AL: Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology. 391:42–53. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu W, Zhao D, Shah SZA, Zhang X, Lai M, Yang D, Wu X, Guan Z, Li J, Zhao H, et al: OPA1 overexpression ameliorates mitochondrial cristae remodeling, mitochondrial dysfunction, and neuronal apoptosis in prion diseases. Cell Death Dis. 10:7102019. View Article : Google Scholar : PubMed/NCBI | |
|
Lugus JJ, Ngoh GA, Bachschmid MM and Walsh K: Mitofusins are required for angiogenic function and modulate different signaling pathways in cultured endothelial cells. J Mol Cell Cardiol. 51:885–893. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Sabouny R and Shutt TE: The role of mitochondrial dynamics in mtDNA maintenance. J Cell Sci. 134:jcs2589442021. View Article : Google Scholar : PubMed/NCBI | |
|
Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O'Shea KM, Riley DD, Lugus JJ, Colucci WS, Lederer WJ, et al: Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 31:1309–1328. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Peng C, Rao W, Zhang L, Wang K, Hui H, Wang L, Su N, Luo P, Hao YL, Tu Y, et al: Corrigendum to 'Mitofusin 2 ameliorates hypoxia-induced apoptosis via mitochondrial function and signaling pathways title of article' [International Journal of Biochemistry and Cell Biology 69 (2015) 29-40]. Int J Biochem Cell Biol. 73:1372016. View Article : Google Scholar : PubMed/NCBI | |
|
Tan Y, Mui D, Toan S, Zhu P, Li R and Zhou H: SERCA overexpression improves mitochondrial quality control and attenuates cardiac microvascular ischemia-reperfusion injury. Mol Ther Nucleic Acids. 22:696–707. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Huang D, Jia L, Shangguan F, Gong S, Lan L, Song Z, Xu J, Yan C, Chen T, et al: LonP1 links mitochondria-er interaction to regulate heart function. Research (Wash D C). 6:01752023.PubMed/NCBI | |
|
Liu P, Xie Q, Wei T, Chen Y, Chen H and Shen W: Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats. Biochem Biophys Res Commun. 468:319–325. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jung M, Dodsworth M and Thum T: Inflammatory cells and their non-coding RNAs as targets for treating myocardial infarction. Basic Res Cardiol. 114:42018. View Article : Google Scholar : PubMed/NCBI | |
|
Xue J, Yan X, Yang Y, Chen M, Wu L, Gou Z, Sun Z, Talabieke S, Zheng Y and Luo D: Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic Res Cardiol. 114:402019. View Article : Google Scholar : PubMed/NCBI | |
|
Veeranki S and Tyagi SC: Mdivi-1 induced acute changes in the angiogenic profile after ischemia-reperfusion injury in female mice. Physiol Rep. 5:e132982017. View Article : Google Scholar : PubMed/NCBI | |
|
Rouault P, Guimbal S, Cornuault L, Bourguignon C, Foussard N, Alzieu P, Choveau F, Benoist D, Chapouly C, Gadeau AP, et al: Thrombosis in the coronary microvasculature impairs cardiac relaxation and induces diastolic dysfunction. Arterioscler Thromb Vasc Biol. 44:e1–e18. 2024. View Article : Google Scholar | |
|
Paillard M, Tubbs E, Thiebaut PA, Gomez L, Fauconnier J, Da Silva CC, Teixeira G, Mewton N, Belaidi E, Durand A, et al: Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation. 128:1555–1565. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hall AR, Burke N, Dongworth RK, Kalkhoran SB, Dyson A, Vicencio JM, Dorn GW II, Yellon DM and Hausenloy DJ: Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis. 7:e22382016. View Article : Google Scholar : PubMed/NCBI | |
|
Hu C, Huang Y and Li L: Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals. Int J Mol Sci. 18:1442017. View Article : Google Scholar : PubMed/NCBI | |
|
He P, Talukder MAH and Gao F: Oxidative stress and microvessel barrier dysfunction. Front Physiol. 11:4722020. View Article : Google Scholar : PubMed/NCBI | |
|
Ivanina AV, Nesmelova I, Leamy L, Sokolov EP and Sokolova IM: Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. J Exp Biol. 219:1659–1674. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao RZ, Jiang S, Zhang L and Yu ZB: Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 44:3–15. 2019.PubMed/NCBI | |
|
Qing G, Huang C, Pei J and Peng B: Alteration of cardiac energetics and mitochondrial function in doxorubicin-induced cardiotoxicity: Molecular mechanism and prospective implications (Review). Int J Mol Med. 56:1832025. View Article : Google Scholar : | |
|
Potier E, Ferreira E, Meunier A, Sedel L, Logeart-Avramoglou D and Petite H: Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 13:1325–1331. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, Yang J, Xin T, Li D, Guo J, Hu S, Zhou S, Zhang T, Zhang Y, Han T and Chen Y: Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3K/Akt-Sfrp2 pathways. Free Radic Biol Med. 77:363–375. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Granger DN and Kvietys PR: Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 9:524–551. 2015. View Article : Google Scholar | |
|
Kar S and Kavdia M: Modeling of biopterin-dependent pathways of eNOS for nitric oxide and superoxide production. Free Radic Biol Med. 51:1411–1427. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR and Pinton P: Mitochondria-associated membranes: Composition, molecular mechanisms, and physio-pathological implications. Antioxid Redox Signal. 22:995–1019. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Missiroli S, Patergnani S, Caroccia N, Pedriali G, Perrone M, Previati M, Wieckowski MR and Giorgi C: Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis. 9:3292018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Lian K, Zhang L, Wang R, Yi F, Gao C, Xin C, Zhu D, Li Y, Yan W, et al: TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res Cardiol. 109:4152014. View Article : Google Scholar : PubMed/NCBI | |
|
Ovciarikova J, Shikha S, Lacombe A, Courjol F, McCrone R, Hussain W, Maclean A, Lemgruber L, Martins-Duarte ES, Gissot M and Sheiner L: Two ancient membrane pores mediate mitochondrial-nucleus membrane contact sites. J Cell Biol. 223:e2023040752024. View Article : Google Scholar : PubMed/NCBI | |
|
Yan YR, Zhang L, Lin YN, Sun XW, Ding YJ, Li N, Li HP, Li SQ, Zhou JP and Li QY: Chronic intermittent hypoxia-induced mitochondrial dysfunction mediates endothelial injury via the TXNIP/NLRP3/IL-1β signaling pathway. Free Radic Biol Med. 165:401–410. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Francisco J and Del Re DP: Inflammation in myocardial ischemia/reperfusion injury: Underlying mechanisms and therapeutic potential. Antioxidants (Basel). 12:19442023. View Article : Google Scholar : PubMed/NCBI | |
|
van Hout GPJ, Bosch L, Ellenbroek GHJM, de Haan JJ, van Solinge WW, Cooper MA, Arslan F, de Jager SC, Robertson AAB, Pasterkamp G and Hoefer IE: The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J. 38:828–836. 2017. | |
|
Zhang X, Zeng W, Zhang Y, Yu Q, Zeng M, Gan J, Zhang W, Jiang X and Li H: Focus on the role of mitochondria in NLRP3 inflammasome activation: A prospective target for the treatment of ischemic stroke (Review). Int J Mol Med. 49:742022. View Article : Google Scholar : PubMed/NCBI | |
|
Toldo S, Mauro AG, Cutter Z and Abbate A: Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 315:H1553–H1568. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Frand AR and Kaiser CA: Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell. 4:469–477. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, et al: Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 122:221–233. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gilady SY, Bui M, Lynes EM, Benson MD, Watts R, Vance JE and Simmen T: Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones. 15:619–629. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Anelli T, Bergamelli L, Margittai E, Rimessi A, Fagioli C, Malgaroli A, Pinton P, Ripamonti M, Rizzuto R and Sitia R: Ero1α regulates Ca(2+) fluxes at the endoplasmic reticulum-mitochondria interface (MAM). Antioxid Redox Signal. 16:1077–1087. 2012. View Article : Google Scholar | |
|
Bassot A, Chen J, Takahashi-Yamashiro K, Yap MC, Gibhardt CS, Le GNT, Hario S, Nasu Y, Moore J, Gutiérrez T, et al: The endoplasmic reticulum kinase PERK interacts with the oxidoreductase ERO1 to metabolically adapt mitochondria. Cell Rep. 42:1118992023. View Article : Google Scholar : PubMed/NCBI | |
|
Muñoz JP, Ivanova S, Sánchez-Wandelmer J, Martínez-Cristóbal P, Noguera E, Sancho A, Díaz-Ramos A, Hernández-Alvarez MI, Sebastián D, Mauvezin C, et al: Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32:2348–2361. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
van Vliet AR, Giordano F, Gerlo S, Segura I, Van Eygen S, Molenberghs G, Rocha S, Houcine A, Derua R, Verfaillie T, et al: The ER stress sensor PERK coordinates ER-plasma membrane contact site formation through interaction with filamin-A and F-actin remodeling. Mol Cell. 65:885–899.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A and Agostinis P: PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19:1880–1891. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR and Tabas I: Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol. 186:783–792. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M, Contursi C, Minucci S, Mantovani F, Wieckowski MR, et al: Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science. 315:659–663. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Akhmedov A, Montecucco F, Braunersreuther V, Camici GG, Jakob P, Reiner MF, Glanzmann M, Burger F, Paneni F, Galan K, et al: Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways. Eur Heart J. 36:516–526a. 2015. View Article : Google Scholar | |
|
Carreras-Sureda A, Jaña F, Urra H, Durand S, Mortenson DE, Sagredo A, Bustos G, Hazari Y, Ramos-Fernández E, Sassano ML, et al: Publisher correction: Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nat Cell Biol. 21:9132019. View Article : Google Scholar | |
|
Braunersreuther V, Montecucco F, Asrih M, Pelli G, Galan K, Frias M, Burger F, Quinderé AL, Montessuit C, Krause KH, et al: Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol. 64:99–107. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Beretta M, Santos CX, Molenaar C, Hafstad AD, Miller CC, Revazian A, Betteridge K, Schröder K, Streckfuß-Bömeke K, Doroshow JH, et al: Nox4 regulates InsP3 receptor-dependent Ca2+ release into mitochondria to promote cell survival. EMBO J. 39:e1035302020. View Article : Google Scholar | |
|
Fang G, Shen Y and Liao D: ENPP2 alleviates hypoxia/reoxygenation injury and ferroptosis by regulating oxidative stress and mitochondrial function in human cardiac microvascular endothelial cells. Cell Stress Chaperones. 28:253–263. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Y, Madungwe NB, Imam Aliagan AD, Tombo N and Bopassa JC: Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem Biophys Res Commun. 520:606–611. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
You W, Wu Z, Ye F and Wu X: Ginkgolide A protects adverse cardiac remodeling through enhancing antioxidation and nitric oxide utilization in mice with pressure overload. Pharmazie. 74:698–702. 2019.PubMed/NCBI | |
|
Helmstädter J, Frenis K, Filippou K, Grill A, Dib M, Kalinovic S, Pawelke F, Kus K, Kröller-Schön S, Oelze M, et al: Endothelial GLP-1 (glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension. Arterioscler Thromb Vasc Biol. 40:145–158. 2020. View Article : Google Scholar : | |
|
Yang J, Moraga A, Xu J, Zhao Y, Luo P, Lao KH, Margariti A, Zhao Q, Ding W, Wang G, et al: A histone deacetylase 7-derived peptide promotes vascular regeneration via facilitating 14-3-3γ phosphorylation. Stem Cells. 38:556–573. 2020. View Article : Google Scholar | |
|
Guan X, Yang Z, Wang J, Lu W, Wang S, Yang M, Sun P, Hu W, Yang L and Li H: Naringin attenuates myocardial ischemia-reperfusion injury by promoting mitochondrial translocation of NDUFS1 and suppressing cardiac microvascular endothelial cell ferroptosis. J Nutr Biochem. 145:1100192025. View Article : Google Scholar : PubMed/NCBI | |
|
Mao Y, Hu Y, Feng W, Yu L, Li P, Cai B, Li C and Guan H: Effects and mechanisms of PSS-loaded nanoparticles on coronary microcirculation dysfunction in streptozotocin-induced diabetic cardiomyopathy rats. Biomed Pharmacother. 121:1092802020. View Article : Google Scholar | |
|
Booth DM, Enyedi B, Geiszt M, Várnai P and Hajnóczky G: Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol Cell. 63:240–248. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ježek J, Cooper KF and Strich R: The impact of mitochondrial fission-stimulated ROS production on pro-apoptotic chemotherapy. Biology (Basel). 10:332021. | |
|
Li B, Yang WW, Yao BC, Chen QL, Zhao LL, Song YQ, Jiang N and Guo ZG: Liriodendrin alleviates myocardial ischemia-reperfusion injury via partially attenuating apoptosis, inflammation and mitochondria damage in rats. Int J Mol Med. 55:652025. View Article : Google Scholar : | |
|
Chen Z, Liu T, Xiong L and Liu Z: Shen-fu injection modulates HIF-1α/BNIP3-mediated mitophagy to alleviate myocardial ischemia-reperfusion injury. Cardiovasc Toxicol. 25:898–914. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Ashrafi G and Schwarz TL: The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20:31–42. 2013. View Article : Google Scholar | |
|
Puri R, Cheng XT, Lin MY, Huang N and Sheng ZH: Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts. Nat Commun. 10:36452019. View Article : Google Scholar : PubMed/NCBI | |
|
Martens S and Fracchiolla D: Activation and targeting of ATG8 protein lipidation. Cell Discov. 6:232020. View Article : Google Scholar : PubMed/NCBI | |
|
Condon KJ and Sabatini DM: Nutrient regulation of mTORC1 at a glance. J Cell Sci. 132:jcs2225702019. View Article : Google Scholar : PubMed/NCBI | |
|
Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, et al: Autophagosomes form at ER-mitochondria contact sites. Nature. 459:389–393. 2013. View Article : Google Scholar | |
|
Barazzuol L, Giamogante F, Brini M and Calì T: PINK1/Parkin mediated mitophagy, Ca2+ signalling, and ER-mitochondria contacts in Parkinson's disease. Int J Mol Sci. 21:17722020. View Article : Google Scholar | |
|
McLelland GL, Goiran T, Yi W, Dorval G, Chen CX, Lauinger ND, Krahn AI, Valimehr S, Rakovic A, Rouiller I, et al: Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. Elife. 7:e328662018. View Article : Google Scholar : PubMed/NCBI | |
|
Gelmetti V, De Rosa P, Torosantucci L, Marini ES, Romagnoli A, Di Rienzo M, Arena G, Vignone D, Fimia GM and Valente EM: PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy. 13:654–669. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fu M, St-Pierre P, Shankar J, Wang PT, Joshi B and Nabi IR: Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol Biol Cell. 24:1153–1162. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Wang Z, Wang L, Jiang T, Dong D and Sun M: The PINK1/Parkin signaling pathway-mediated mitophagy: A forgotten protagonist in myocardial ischemia/reperfusion injury. Pharmacol Res. 209:1074662024. View Article : Google Scholar : PubMed/NCBI | |
|
Quiles JM, Najor RH, Gonzalez E, Jeung M, Liang W, Burbach SM, Zumaya EA, Diao RY, Lampert MA and Gustafsson ÅB: Deciphering functional roles and interplay between Beclin1 and Beclin2 in autophagosome formation and mitophagy. Sci Signal. 16:eabo44572023. View Article : Google Scholar : PubMed/NCBI | |
|
Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A and Guan KL: ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 15:741–750. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA and Thompson CB: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 112:1493–1502. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Sun W, Lu H, Dong S, Li R, Chu Y, Wang N, Zhao Y, Zhang Y, Wang L, Sun L and Lu D: Beclin1 controls caspase-4 inflammsome activation and pyroptosis in mouse myocardial reperfusion-induced microvascular injury. Cell Commun Signal. 19:1072021. View Article : Google Scholar : PubMed/NCBI | |
|
Lampert MA, Orogo AM, Najor RH, Hammerling BC, Leon LJ, Wang BJ, Kim T, Sussman MA and Gustafsson ÅB: BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation. Autophagy. 15:1182–1198. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Dai X, Wu S, Xu W, Song P, Huang K and Zou MH: FUNDC1-dependent mitochondria-associated endoplasmic reticulum membranes are involved in angiogenesis and neoangiogenesis. Nat Commun. 12:26162021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C, et al: A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell. 54:362–377. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L, et al: ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 15:566–575. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Zhuang H, Liu H and Feng D: Molecular regulations of FUNDC1 at ER-mitochondria contacts under hypoxic stress. Contact (Thousand Oaks). 5:251525642210924872022.PubMed/NCBI | |
|
Ji H, Wang J, Muid D, Song W, Jiang Y and Zhou H: FUNDC1 activates the mitochondrial unfolded protein response to preserve mitochondrial quality control in cardiac ischemia/reperfusion injury. Cell Signal. 92:1102492022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, Zhu P, Guo J, Hu N, Wang S, Li D, Hu S, Ren J, Cao F and Chen Y: Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol. 13:498–507. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cai C, Guo Z, Chang X, Li Z, Wu F, He J, Cao T, Wang K, Shi N, Zhou H, et al: Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 52:1022882022. View Article : Google Scholar | |
|
Zhou H, Li D, Zhu P, Hu S, Hu N, Ma S, Zhang Y, Han T, Ren J, Cao F and Chen Y: Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways. J Pineal Res. 63:e124382017. View Article : Google Scholar | |
|
Li JJ, Wang YJ, Wang CM, Li YJ, Yang Q, Cai WY, Chen Y and Zhu XX: Shenlian extract decreases mitochondrial autophagy to regulate mitochondrial function in microvascular to alleviate coronary artery no-reflow. Phytother Res. 37:1864–1882. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Faitg J, Tissot C, Konstantopoulos D, Laws R, Bourdier G, Andreux PA, Davey T, Gallart-Ayala H, Ivanisevic J, et al: Urolithin A provides cardioprotection and mitochondrial quality enhancement preclinically and improves human cardiovascular health biomarkers. iScience. 28:1118142025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Toan S and Zhou H: Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: New insights into the mechanisms and therapeutic potentials. Pharmacol Res. 156:1047712020. View Article : Google Scholar : PubMed/NCBI | |
|
Shirihai OS, Song M and Dorn GW II: How mitochondrial dynamism orchestrates mitophagy. Circ Res. 116:1835–1849. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wong YC, Ysselstein D and Krainc D: Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature. 554:382–386. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zhu P, Li R, Ren J and Zhou H: Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol. 30:1014152020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang CH, Chiang CY, Pen RH, Tsai MS, Chen HW, Hsu CY, Wang TD, Ma MH, Chen SC and Chen WJ: Hypothermia treatment preserves mitochondrial integrity and viability of cardiomyocytes after ischaemic reperfusion injury. Injury. 46:233–239. 2015. View Article : Google Scholar | |
|
Wang Z, Liu D, Varin A, Nicolas V, Courilleau D, Mateo P, Caubere C, Rouet P, Gomez AM, Vandecasteele G, et al: A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death. Cell Death Dis. 7:e21982016. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang RQ, Li QQ and Sheng R: Mitochondria associated ER membranes and cerebral ischemia: Molecular mechanisms and therapeutic strategies. Pharmacol Res. 191:1067612023. View Article : Google Scholar : PubMed/NCBI | |
|
He X, Bi XY, Lu XZ, Zhao M, Yu XJ, Sun L, Xu M, Wier WG and Zang WJ: Reduction of mitochondria-endoplasmic reticulum interactions by acetylcholine protects human umbilical vein endothelial cells from hypoxia/reoxygenation injury. Arterioscler Thromb Vasc Biol. 35:1623–1634. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Lu Q, Wang Q, Ding Y, Ma Z, Mao X, Huang K, Xie Z and Zou MH: Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation. 136:2248–2266. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Ma Q, Toan S, Wang J, Zhou H and Liang J: SERCA overexpression reduces reperfusion-mediated cardiac microvascular damage through inhibition of the calcium/MCU/mPTP/necroptosis signaling pathways. Redox Biol. 36:1016592020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang R, Zhang X, Xing P, Zhang S, Zhang F, Wang J, Yu J, Zhu X and Chang P: Grpel2 alleviates myocardial ischemia/reperfusion injury by inhibiting MCU-mediated mitochondrial calcium overload. Biochem Biophys Res Commun. 609:169–175. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Carreras-Sureda A, Jaña F, Urra H, Durand S, Mortenson DE, Sagredo A, Bustos G, Hazari Y, Ramos-Fernández E, Sassano ML, et al: Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nat Cell Biol. 21:755–767. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Goodman JB, Qin F, Morgan RJ, Chambers JM, Croteau D, Siwik DA, Hobai I, Panagia M, Luptak I, Bachschmid M, et al: Redox-Resistant SERCA [Sarco(endo)plasmic Reticulum Calcium ATPase] attenuates oxidant-stimulated mitochondrial calcium and apoptosis in cardiac myocytes and pressure overload-induced myocardial failure in mice. Circulation. 142:2459–2469. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen LT, Xu TT, Qiu YQ, Liu NY, Ke XY, Fang L, Yan JP and Zhu DY: Homocysteine induced a calcium-mediated disruption of mitochondrial function and dynamics in endothelial cells. J Biochem Mol Toxicol. 35:e227372021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma L, Zou R, Shi W, Zhou N, Chen S, Zhou H, Chen X and Wu Y: SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Theranostics. 12:5034–5050. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hoppe UC: Mitochondrial calcium channels. FEBS Lett. 584:1975–1981. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Israelson A, Abu-Hamad S, Zaid H, Nahon E and Shoshan-Barmatz V: Localization of the voltage-dependent anion channel-1 Ca2+-binding sites. Cell Calcium. 41:235–244. 2007. View Article : Google Scholar | |
|
Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto R: Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 175:901–911. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Hu H, Chu C and Yang J: Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review). Int J Mol Med. 55:402025. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Guan N, Ren YL, Wei QJ, Tao YH, Yang GS, Liu XY, Bu DF, Zhang Y and Zhu SN: IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an Adriamycin nephropathy rat model. BMC Nephrol. 19:1402018. View Article : Google Scholar | |
|
Gomez L, Thiebaut PA, Paillard M, Ducreux S, Abrial M, Crola Da Silva C, Durand A, Alam MR, Van Coppenolle F, Sheu SS and Ovize M: The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death Differ. 23:313–322. 2016. View Article : Google Scholar | |
|
Hayashi T and Su TP: Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell. 131:596–610. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Embi N, Rylatt DB and Cohen P: Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 107:519–527. 1980. View Article : Google Scholar : PubMed/NCBI | |
|
Woodgett JR and Cohen P: Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthase kinase-3 and casein kinase-II (glycogen synthase kinase-5). Biochim Biophys Acta. 788:339–347. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
Thoudam T, Jeon JH, Ha CM and Lee IK: Role of mitochondria-associated endoplasmic reticulum membrane in inflammation-mediated metabolic diseases. Mediators Inflamm. 2016:18514202016. View Article : Google Scholar | |
|
Elrod JW and Molkentin JD: Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore. Circ J. 77:1111–1122. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T and Tsujimoto Y: Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 434:652–658. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Stoica R, De Vos KJ, Paillusson S, Mueller S, Sancho RM, Lau KF, Vizcay-Barrena G, Lin WL, Xu YF, Lewis J, et al: ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun. 5:39962014. View Article : Google Scholar : PubMed/NCBI | |
|
Gomez-Suaga P, Paillusson S, Stoica R, Noble W, Hanger DP and Miller CCJ: The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr Biol. 27:371–385. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
De Vos KJ, Mórotz GM, Stoica R, Tudor EL, Lau KF, Ackerley S, Warley A, Shaw CE and Miller CC: VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet. 21:1299–1311. 2012. View Article : Google Scholar : | |
|
Fucikova J, Spisek R, Kroemer G and Galluzzi L: Calreticulin and cancer. Cell Res. 31:5–16. 2021. View Article : Google Scholar : | |
|
Liu M, Li S, Yin M, Li Y, Chen J, Chen Y, Zhou Y, Li Q, Xu F, Dai C, et al: Pinacidil ameliorates cardiac microvascular ischemia-reperfusion injury by inhibiting chaperone-mediated autophagy of calreticulin. Basic Res Cardiol. 119:113–131. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Wang L, Xie W, Hu S, Zhou H, Zhu P, Zhu P and Zhu H: Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy: A new mechanism involving BAP31 upregulation and MAPK-ERK pathway. J Cell Physiol. 235:2847–2856. 2020. View Article : Google Scholar | |
|
Li S, Chen J, Liu M, Chen Y, Wu Y, Li Q, Ma T, Gao J, Xia Y, Fan M, et al: Protective effect of HINT2 on mitochondrial function via repressing MCU complex activation attenuates cardiac microvascular ischemia-reperfusion injury. Basic Res Cardiol. 116:652021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H and Toan S: Pathological roles of mitochondrial oxidative stress and mitochondrial dynamics in cardiac microvascular ischemia/reperfusion injury. Biomolecules. 10:852020. View Article : Google Scholar : PubMed/NCBI | |
|
Vallese F, Catoni C, Cieri D, Barazzuol L, Ramirez O, Calore V, Bonora M, Giamogante F, Pinton P, Brini M and Calì T: An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo. Nat Commun. 11:60692020. View Article : Google Scholar : PubMed/NCBI | |
|
Calì T and Brini M: Quantification of organelle contact sites by split-GFP-based contact site sensors (SPLICS) in living cells. Nat Protoc. 16:5287–5308. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Marshall AG, Neikirk K, Stephens DC, Vang L, Vue Z, Beasley HK, Crabtree A, Scudese E, Lopez EG, Shao B, et al: Serial block face-scanning electron microscopy as a burgeoning technology. Adv Biol (Weinh). 7:e23001392023. View Article : Google Scholar : PubMed/NCBI |