You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Li H, Xiao Z, Quarles LD and Li W: Osteoporosis: Mechanism, molecular target and current status on drug development. Curr Med Chem. 28:1489–1507. 2021. View Article : Google Scholar | |
|
Zhang X, Wang Z, Zhang D, Ye D, Zhou Y, Qin J and Zhang Y: The prevalence and treatment rate trends of osteoporosis in postmenopausal women. PLoS One. 18:e02902892023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Yu W, Yin X, Cui L, Tang S, Jiang N, Cui L, Zhao N, Lin Q, Chen L, et al: Prevalence of osteoporosis and fracture in China: The China osteoporosis prevalence study. JAMA Netw Open. 4:e21211062021. View Article : Google Scholar : PubMed/NCBI | |
|
Center JR, Nguyen TV, Schneider D, Sambrook PN and Eisman JA: Mortality after all major types of osteoporotic fracture in men and women: An observational study. Lancet. 353:878–882. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Harada S and Rodan GA: Control of osteoblast function and regulation of bone mass. Nature. 423:349–355. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Raisz LG: Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J Clin Invest. 115:3318–3325. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gao M, Gao W, Papadimitriou JM, Zhang C, Gao J and Zheng M: Exosomes-the enigmatic regulators of bone homeostasis. Bone Res. 6:362018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li Q, Peng X, Ji P, Zhang Y, Jin J, Yuan Z, Jiang J, Tian G, Cai M, et al: Targeting chaperone-mediated autophagy to regulate osteoclast activity as a therapeutic strategy for osteoporosis. Mater Today Bio. 35:1023112025. View Article : Google Scholar : PubMed/NCBI | |
|
Harper AE, Miller RH and Block KP: Branched-chain amino acid metabolism. Annu Rev Nutr. 4:409–454. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
Mansoori S, Ho MY, Ng KK and Cheng KK: Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev. 26:e138562025. View Article : Google Scholar | |
|
Trautman ME, Richardson NE and Lamming DW: Protein restriction and branched-chain amino acid restriction promote geroprotective shifts in metabolism. Aging Cell. 21:e136262022. View Article : Google Scholar : PubMed/NCBI | |
|
Go M, Shin E, Jang SY, Nam M, Hwang GS and Lee SY: BCAT1 promotes osteoclast maturation by regulating branched-chain amino acid metabolism. Exp Mol Med. 54:825–833. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Weiner S and Traub W: Bone structure: From angstroms to microns. FASEB J. 6:879–885. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Hua R, Han Y, Ni Q, Fajardo RJ, Iozzo RV, Ahmed R, Nyman JS, Wang X and Jiang JX: Pivotal roles of biglycan and decorin in regulating bone mass, water retention, and bone toughness. Bone Res. 13:22025. View Article : Google Scholar : PubMed/NCBI | |
|
Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, et al: Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 425:841–846. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, et al: Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 425:836–841. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Taichman RS and Emerson SG: Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 179:1677–1682. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Bolamperti S, Villa I and Rubinacci A: Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res. 10:482022. View Article : Google Scholar : PubMed/NCBI | |
|
Hattner R, Epker BN and Frost HM: Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature. 206:489–490. 1965. View Article : Google Scholar : PubMed/NCBI | |
|
Barak MM: Bone modeling or bone remodeling: That is the question. Am J Phys Anthropol. 172:153–155. 2020. View Article : Google Scholar | |
|
Yan C, Zhang P, Qin Q, Jiang K, Luo Y, Xiang C, He J, Chen L, Jiang D, Cui W and Li Y: 3D-printed bone regeneration scaffolds modulate bone metabolic homeostasis through vascularization for osteoporotic bone defects. Biomaterials. 311:1226992024. View Article : Google Scholar : PubMed/NCBI | |
|
Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ and Suda T: Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA. 87:7260–7264. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Boyle WJ, Simonet WS and Lacey DL: Osteoclast differentiation and activation. Nature. 423:337–342. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Teitelbaum SL: Bone resorption by osteoclasts. Science. 289:1504–1508. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Nakahama KI, Hidaka S, Goto K, Tada M, Doi T, Nakamura H, Akiyama M and Shinohara M: Visualization and quantification of RANK-RANKL binding for application to disease investigations and drug discovery. Bone. 195:1174732025. View Article : Google Scholar : PubMed/NCBI | |
|
Holliday LS, Patel SS and Rody WJ Jr: RANKL and RANK in extracellular vesicles: Surprising new players in bone remodeling. Extracell Vesicles Circ Nucl Acids. 2:18–28. 2021.PubMed/NCBI | |
|
Soriano P, Montgomery C, Geske R and Bradley A: Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 64:693–702. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Boyce BF, Yoneda T, Lowe C, Soriano P and Mundy GR: Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest. 90:1622–1627. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Gelb BD, Shi GP, Chapman HA and Desnick RJ: Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 273:1236–1238. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Saftig P, Hunziker E, Everts V, Jones S, Boyde A, Wehmeyer O, Suter A and von Figura K: Functions of cathepsin K in bone resorption. Lessons from cathepsin K deficient mice. Adv Exp Med Biol. 477:293–303. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Mizoguchi T and Ono N: The diverse origin of bone-forming osteoblasts. J Bone Miner Res. 36:1432–1447. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, et al: TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 15:757–765. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bodine PV and Komm BS: Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord. 7:33–39. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Eriksen EF: Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord. 11:219–227. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hong AR, Kim K, Lee JY, Yang JY, Kim JH, Shin CS and Kim SW: Transformation of mature osteoblasts into bone lining cells and RNA sequencing-based transcriptome profiling of mouse bone during mechanical unloading. Endocrinol Metab (Seoul). 35:456–469. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JS and Wein MN: Pathways controlling formation and maintenance of the osteocyte dendrite network. Curr Osteoporos Rep. 20:493–504. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Komori T: Cell death in chondrocytes, osteoblasts, and osteocytes. Int J Mol Sci. 17:20452016. View Article : Google Scholar : PubMed/NCBI | |
|
Takeuchi O and Akira S: Pattern recognition receptors and inflammation. Cell. 140:805–820. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B, Tracey KJ and Chiorazzi N: High mobility group box protein 1: An endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol. 173:307–313. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Giannoni P, Marini C, Cutrona G, Matis S, Capra MC, Puglisi F, Luzzi P, Pigozzi S, Gaggero G, Neri A, et al: Chronic lymphocytic leukemia cells impair osteoblastogenesis and promote osteoclastogenesis: Role of TNFα, IL-6 and IL-11 cytokines. Haematologica. 106:2598–2612. 2021. View Article : Google Scholar | |
|
Kringelbach TM, Aslan D, Novak I, Schwarz P and Jørgensen NR: UTP-induced ATP release is a fine-tuned signalling pathway in osteocytes. Purinergic Signal. 10:337–347. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Verborgt O, Gibson GJ and Schaffler MB: Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 15:60–67. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Cheung WY, Fritton JC, Morgan SA, Seref-Ferlengez Z, Basta-Pljakic J, Thi MM, Suadicani SO, Spray DC, Majeska RJ and Schaffler MB: Pannexin-1 and P2X7-receptor are required for apoptotic osteocytes in fatigued bone to trigger RANKL production in neighboring bystander osteocytes. J Bone Miner Res. 31:890–899. 2016. View Article : Google Scholar | |
|
Luckprom P, Wongkhantee S, Yongchaitrakul T and Pavasant P: Adenosine triphosphate stimulates RANKL expression through P2Y1 receptor-cyclo-oxygenase-dependent pathway in human periodontal ligament cells. J Periodontal Res. 45:404–411. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Buckley KA, Hipskind RA, Gartland A, Bowler WB and Gallagher JA: Adenosine triphosphate stimulates human osteoclast activity via upregulation of osteoblast-expressed receptor activator of nuclear factor-kappa B ligand. Bone. 31:582–590. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Gallagher JA: ATP P2 receptors and regulation of bone effector cells. J Musculoskelet Neuronal Interact. 4:125–127. 2004.PubMed/NCBI | |
|
Cusato K, Bosco A, Rozental R, Guimarães CA, Reese BE, Linden R and Spray DC: Gap junctions mediate bystander cell death in developing retina. J Neurosci. 23:6413–6422. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Cawley KM, Bustamante-Gomez NC, Guha AG, MacLeod RS, Xiong J, Gubrij I, Liu Y, Mulkey R, Palmieri M, Thostenson JD, et al: Local production of osteoprotegerin by osteoblasts suppresses bone resorption. Cell Rep. 32:1080522020. View Article : Google Scholar : PubMed/NCBI | |
|
Kennedy OD, Laudier DM, Majeska RJ, Sun HB and Schaffler MB: Osteocyte apoptosis is required for production of osteoclastogenic signals following bone fatigue in vivo. Bone. 64:132–137. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Verborgt O, Tatton NA, Majeska RJ and Schaffler MB: Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation? J Bone Miner Res. 17:907–914. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Lieben L, Carmeliet G and Masuyama R: Calcemic actions of vitamin D: Effects on the intestine, kidney and bone. Best Pract Res Clin Endocrinol Metab. 25:561–572. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zarei A, Morovat A, Javaid K and Brown CP: Vitamin D receptor expression in human bone tissue and dose-dependent activation in resorbing osteoclasts. Bone Res. 4:160302016. View Article : Google Scholar : PubMed/NCBI | |
|
Lips P and van Schoor NM: The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab. 25:585–591. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bikle DD: Vitamin D and bone. Curr Osteoporos Rep. 10:151–159. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Arnaud CD Jr, Tenenhouse AM and Rasmussen H: Parathyroid hormone. Annu Rev Physiol. 29:349–372. 1967. View Article : Google Scholar : PubMed/NCBI | |
|
Martin TJ, Sims NA and Seeman E: Physiological and pharmacological roles of PTH and PTHrP in bone using their shared receptor, PTH1R. Endocr Rev. 42:383–406. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Quarles LD: Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol. 8:276–286. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jüppner H: Phosphate and FGF-23. Kidney Int. 79121:S24–S27. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Naot D, Musson DS and Cornish J: The activity of peptides of the calcitonin family in bone. Physiol Rev. 99:781–805. 2019. View Article : Google Scholar | |
|
Xu J, Wang J, Chen X, Li Y, Mi J and Qin L: The effects of calcitonin gene-related peptide on bone homeostasis and regeneration. Curr Osteoporos Rep. 18:621–632. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH and Civitelli R: Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol. 151:931–944. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Chung DJ, Castro CH, Watkins M, Stains JP, Chung MY, Szejnfeld VL, Willecke K, Theis M and Civitelli R: Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43. J Cell Sci. 119(Pt 20): 4187–4198. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Paul EM, Sathyendra V, Davison A, Sharkey N, Bronson S, Srinivasan S, Gross TS and Donahue HJ: Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One. 6:e235162011. View Article : Google Scholar : PubMed/NCBI | |
|
Tiede-Lewis LM, Xie Y, Hulbert MA, Campos R, Dallas MR, Dusevich V, Bonewald LF and Dallas SL: Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging (Albany NY). 9:2190–2208. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dole NS, Mazur CM, Acevedo C, Lopez JP, Monteiro DA, Fowler TW, Gludovatz B, Walsh F, Regan JN, Messina S, et al: Osteocyte-Intrinsic TGF-β signaling regulates bone quality through perilacunar/canalicular remodeling. Cell Rep. 21:2585–2596. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kreis NN, Friemel A, Ritter A, Hentrich AE, Siebelitz E, Louwen F and Yuan J: In-depth analysis of obesity-associated changes in adipose tissue-derived mesenchymal stromal/stem cells and primary cilia function. Commun Biol. 8:14622025. View Article : Google Scholar : PubMed/NCBI | |
|
Olney RC: Regulation of bone mass by growth hormone. Med Pediatr Oncol. 41:228–234. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Iglesias L, Yeh JK, Castro-Magana M and Aloia JF: Effects of growth hormone on bone modeling and remodeling in hypophysectomized young female rats: A bone histomorphometric study. J Bone Miner Metab. 29:159–167. 2011. View Article : Google Scholar | |
|
Hayashi M, Nakashima T, Yoshimura N, Okamoto K, Tanaka S and Takayanagi H: Autoregulation of osteocyte Sema3A orchestrates estrogen action and counteracts bone aging. Cell Metab. 29:627–637.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma D, Larriera AI, Palacio-Mancheno PE, Gatti V, Fritton JC, Bromage TG, Cardoso L, Doty SB and Fritton SP: The effects of estrogen deficiency on cortical bone microporosity and mineralization. Bone. 110:1–10. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jackson E, Lara-Castillo N, Akhter MP, Dallas M, Scott JM, Ganesh T and Johnson ML: Osteocyte Wnt/β-catenin pathway activation upon mechanical loading is altered in ovariectomized mice. Bone Rep. 15:1011292021. View Article : Google Scholar | |
|
Ma L, Hua R, Tian Y, Cheng H, Fajardo RJ, Pearson JJ, Guda T, Shropshire DB, Gu S and Jiang JX: Connexin 43 hemichannels protect bone loss during estrogen deficiency. Bone Res. 7:112019. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Li H, Han X, Zhou F, Du J, Yang Y, Xu Q, Zhang S, Zhang S, Zhao N, et al: Irisin inhibits osteocyte apoptosis by activating the Erk signaling pathway in vitro and attenuates ALCT-induced osteoarthritis in mice. Bone. 141:1155732020. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Suhaimi EA and Al-Jafary MA: Endocrine roles of vitamin K-dependent-osteocalcin in the relation between bone metabolism and metabolic disorders. Rev Endocr Metab Disord. 21:117–125. 2020. View Article : Google Scholar | |
|
Yang D, Gong G, Song J, Chen J, Wang S, Li J and Wang G: Ferroptosis-mediated osteoclast-osteoblast crosstalk: Signaling pathways governing bone remodeling in osteoporosis. J Orthop Surg Res. 20:8882025. View Article : Google Scholar : PubMed/NCBI | |
|
Baek KH, Chung YS, Koh JM, Kim IJ, Kim KM, Min YK, Park KD, Dinavahi R, Maddox J, Yang W, et al: Romosozumab in postmenopausal Korean women with osteoporosis: A Randomized, double-blind, placebo-controlled efficacy and safety study. Endocrinol Metab (Seoul). 36:60–69. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kasiske BL, Kumar R, Kimmel PL, Pesavento TE, Kalil RS, Kraus ES, Rabb H, Posselt AM, Anderson-Haag TL, Steffes MW, et al: Abnormalities in biomarkers of mineral and bone metabolism in kidney donors. Kidney Int. 90:861–868. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Schwetz V, Pieber T and Obermayer-Pietsch B: The endocrine role of the skeleton: Background and clinical evidence. Eur J Endocrinol. 166:959–967. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kärkkäinen M, Tuppurainen M, Salovaara K, Sandini L, Rikkonen T, Sirola J, Honkanen R, Jurvelin J, Alhava E and Kröger H: Effect of calcium and vitamin D supplementation on bone mineral density in women aged 65-71 years: A 3-year randomized population-based trial (OSTPRE-FPS). Osteoporos Int. 21:2047–2055. 2010. View Article : Google Scholar | |
|
Remer T, Krupp D and Shi L: Dietary protein's and dietary acid load's influence on bone health. Crit Rev Food Sci Nutr. 54:1140–1150. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Langeveld M and Hollak CEM: Bone health in patients with inborn errors of metabolism. Rev Endocr Metab Disord. 19:81–92. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang K, Li J and Tao L: Purine metabolism in the development of osteoporosis. Biomed Pharmacother. 155:1137842022. View Article : Google Scholar : PubMed/NCBI | |
|
Iantomasi T, Romagnoli C, Palmini G, Donati S, Falsetti I, Miglietta F, Aurilia C, Marini F, Giusti F and Brandi ML: Oxidative stress and inflammation in osteoporosis: Molecular mechanisms involved and the relationship with microRNAs. Int J Mol Sci. 24:37722023. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson JT, Hussain MA, Cherian KE, Kapoor N and Paul TV: Chronic alcohol consumption and its impact on bone and metabolic health - A narrative review. Indian J Endocrinol Metab. 26:206–212. 2022.PubMed/NCBI | |
|
Ehnert S, Aspera-Werz RH, Ihle C, Trost M, Zirn B, Flesch I, Schröter S, Relja B and Nussler AK: Smoking dependent alterations in bone formation and inflammation represent major risk factors for complications following total joint arthroplasty. J Clin Med. 8:4062019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang YS, Gao JW, Ao RF, Liu XY, Wu DZ, Huang JL, Tu C, Zhuang JS, Zhu SY and Zhong ZM: Accumulation of advanced oxidation protein products aggravates bone-fat imbalance during skeletal aging. J Orthop Translat. 51:24–36. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Schröder K: NADPH oxidases in bone homeostasis and osteoporosis. Free Radic Biol Med. 132:67–72. 2019. View Article : Google Scholar | |
|
Jiang N, Liu J, Guan C, Ma C, An J and Tang X: Thioredoxin-interacting protein: A new therapeutic target in bone metabolism disorders? Front Immunol. 13:9551282022. View Article : Google Scholar : PubMed/NCBI | |
|
Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, Cooney GJ and Simpson SJ: Branched chain amino acids, aging and age-related health. Ageing Res Rev. 64:1011982020. View Article : Google Scholar : PubMed/NCBI | |
|
Brosnan JT and Brosnan ME: Branched-chain amino acids: Enzyme and substrate regulation. J Nutr. 136(1 Suppl): 207S–211S. 2006. View Article : Google Scholar | |
|
Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH and Kim S: Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell. 149:410–424. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Zeng X, Ren M, Mao X and Qiao S: Novel metabolic and physiological functions of branched chain amino acids: A review. J Anim Sci Biotechnol. 8:102017. View Article : Google Scholar : PubMed/NCBI | |
|
Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, Li X, Zhan L, White E, Anthony TG, et al: Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 29:417–429.e4. 2019. View Article : Google Scholar | |
|
Wang W, Liu Z, Liu L, Han T, Yang X and Sun C: Genetic predisposition to impaired metabolism of the branched chain amino acids, dietary intakes, and risk of type 2 diabetes. Genes Nutr. 16:202021. View Article : Google Scholar : PubMed/NCBI | |
|
Bonvini A, Coqueiro AY, Tirapegui J, Calder PC and Rogero MM: Immunomodulatory role of branched-chain amino acids. Nutr Rev. 76:840–856. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L and Su JC: Bone-organ axes: Bidirectional crosstalk. Mil Med Res. 11:372024.PubMed/NCBI | |
|
Hasegawa T, Kikuta J, Sudo T, Matsuura Y, Matsui T, Simmons S, Ebina K, Hirao M, Okuzaki D, Yoshida Y, et al: Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat Immunol. 20:1631–1643. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS and Kimball SR: Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr. 130:2413–2419. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Yang M, Zhang X, Ding Y, Yang L, Ren W, Gao Y, Yao K, Zhou Y and Shao W: The effect of valine on the synthesis of α-Casein in MAC-T cells and the expression and phosphorylation of genes related to the mTOR signaling pathway. Int J Mol Sci. 26:31792025. View Article : Google Scholar | |
|
Glantschnig H, Fisher JE, Wesolowski G, Rodan GA and Reszka AA: M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 10:1165–1177. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Kneissel M, Luong-Nguyen NH, Baptist M, Cortesi R, Zumstein-Mecker S, Kossida S, O'Reilly T, Lane H and Susa M: Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone. 35:1144–1156. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Ory B, Moriceau G, Redini F and Heymann D: mTOR inhibitors (rapamycin and its derivatives) and nitrogen containing bisphosphonates: Bi-functional compounds for the treatment of bone tumours. Curr Med Chem. 14:1381–1387. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Benslimane-Ahmim Z, Heymann D, Dizier B, Lokajczyk A, Brion R, Laurendeau I, Bièche I, Smadja DM, Galy-Fauroux I, Colliec-Jouault S, et al: Osteoprotegerin, a new actor in vasculogenesis, stimulates endothelial colony-forming cells properties. J Thromb Haemost. 9:834–843. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Gnant M, Baselga J, Rugo HS, Noguchi S, Burris HA, Piccart M, Hortobagyi GN, Eakle J, Mukai H, Iwata H, et al: Effect of everolimus on bone marker levels and progressive disease in bone in BOLERO-2. J Natl Cancer Inst. 105:654–663. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Roberts LD, Boström P, O'Sullivan JF, Schinzel RT, Lewis GD, Dejam A, Lee YK, Palma MJ, Calhoun S, Georgiadi A, et al: β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19:96–108. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, Rhee J, Hoshino A, Kim B, Ibrahim A, et al: A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 22:421–426. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Batch BC, Shah SH, Newgard CB, Turer CB, Haynes C, Bain JR, Muehlbauer M, Patel MJ, Stevens RD, Appel LJ, et al: Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism. 62:961–969. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Connelly MA, Wolak-Dinsmore J and Dullaart RPF: Branched chain amino acids are associated with insulin resistance independent of leptin and adiponectin in subjects with varying degrees of glucose tolerance. Metab Syndr Relat Disord. 15:183–186. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, Schmidt AF, Imamura F, Stewart ID, Perry JR, et al: Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: A mendelian randomisation analysis. PLoS Med. 13:e10021792016. View Article : Google Scholar : PubMed/NCBI | |
|
Felig P, Marliss E and Cahill GF Jr: Plasma amino acid levels and insulin secretion in obesity. N Engl J Med. 281:811–816. 1969. View Article : Google Scholar : PubMed/NCBI | |
|
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, et al: A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9:311–326. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Holmes MV, Davey Smith G and Ala-Korpela M: Genetic support for a causal role of insulin resistance on circulating branched-chain amino acids and inflammation. Diabetes Care. 40:1779–1786. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mahendran Y, Jonsson A, Have CT, Allin KH, Witte DR, Jørgensen ME, Grarup N, Pedersen O, Kilpeläinen TO and Hansen T: Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia. 60:873–878. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lynch CJ and Adams SH: Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 10:723–736. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liang Z, Su Z, Yang H, Zheng J, Wu X, Huang M, Duan L, Chen S, Wei B, Fan X and Lin S: Branched-chain amino acids in bone health: From molecular mechanisms to therapeutic potential. Biomed Pharmacother. 192:1186452025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Zhang F, Sun D, Wang X, Zhang X, Zhang J, Yan F, Huang C, Xie H, Lin C, et al: Branched-Chain amino acids exacerbate obesity-related hepatic glucose and lipid metabolic disorders via attenuating Akt2 signaling. Diabetes. 69:1164–1177. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pereira M, Ko JH, Logan J, Protheroe H, Kim KB, Tan ALM, Croucher PI, Park KS, Rotival M, Petretto E, et al: A trans-eQTL network regulates osteoclast multinucleation and bone mass. Elife. 9:e555492020. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JH and Kim N: Regulation of NFATc1 in osteoclast differentiation. J Bone Metab. 21:233–241. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, et al: DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 2005. 202:345–351. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ishii M, Iwai K, Koike M, Ohshima S, Kudo-Tanaka E, Ishii T, Mima T, Katada Y, Miyatake K, Uchiyama Y and Saeki Y: RANKL-induced expression of tetraspanin CD9 in lipid raft membrane microdomain is essential for cell fusion during osteoclastogenesis. J Bone Miner Res. 21:965–976. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Singha UK, Jiang Y, Yu S, Luo M, Lu Y, Zhang J and Xiao G: Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J Cell Biochem. 103:434–446. 2008. View Article : Google Scholar | |
|
Han HS, Ahn E, Park ES, Huh T, Choi S, Kwon Y, Choi BH, Lee J, Choi YH, Jeong YL, et al: Impaired BCAA catabolism in adipose tissues promotes age-associated metabolic derangement. Nat Aging. 3:982–1000. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen A, Jin J, Cheng S, Liu Z, Yang C, Chen Q, Liang W, Li K, Kang D, Ouyang Z, et al: mTORC1 induces plasma membrane depolarization and promotes preosteoblast senescence by regulating the sodium channel Scn1a. Bone Res. 10:252022. View Article : Google Scholar : PubMed/NCBI | |
|
Gayatri MB, Gajula NN, Chava S and Reddy ABM: High glutamine suppresses osteogenesis through mTORC1-mediated inhibition of the mTORC2/AKT-473/RUNX2 axis. Cell Death Discov. 8:2772022. View Article : Google Scholar : PubMed/NCBI | |
|
Arany Z and Neinast M: Branched chain amino acids in metabolic disease. Curr Diab Rep. 18:762018. View Article : Google Scholar : PubMed/NCBI | |
|
Yoon MS: The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients. 8:4052016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou M, Shao J, Wu CY, Shu L, Dong W, Liu Y, Chen M, Wynn RM, Wang J, Wang J, et al: Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance. Diabetes. 68:1730–1746. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou C, Zhang J, Liu Q, Guo Y, Li M, Tao J, Peng S, Li R, Deng X, Zhang G and Liu H: Role of amino acid metabolism in osteoporosis: Effects on the bone microenvironment and treatment strategies (Review). Mol Med Rep. 32:2122025. View Article : Google Scholar : PubMed/NCBI | |
|
Lerin C, Goldfine AB, Boes T, Liu M, Kasif S, Dreyfuss JM, De Sousa-Coelho AL, Daher G, Manoli I, Sysol JR, et al: Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism. Mol Metab. 5:926–936. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
White PJ, Lapworth AL, An J, Wang L, McGarrah RW, Stevens RD, Ilkayeva O, George T, Muehlbauer MJ, Bain JR, et al: Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol Metab. 5:538–551. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jian H, Xu Q, Wang X, Liu Y, Miao S, Li Y, Mou T, Dong X and Zou X: Amino acid and fatty acid metabolism disorders trigger oxidative stress and inflammatory response in excessive dietary valine-induced NAFLD of laying hens. Front Nutr. 9:8497672022. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Z, Wang S, Zhang C and Zhao Y: Coordinated modulation of energy metabolism and inflammation by branched-chain amino acids and fatty acids. Front Endocrinol (Lausanne). 11:6172020. View Article : Google Scholar : PubMed/NCBI | |
|
Surugihalli C, Muralidaran V, Ryan CE, Patel K, Zhao D and Sunny NE: Branched-chain amino acids alter cellular redox to induce lipid oxidation and reduce de novo lipogenesis in the liver. Am J Physiol Endocrinol Metab. 324:E299–E313. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin S, Miao Y, Zheng X, Dong Y, Yang Q, Yang Q, Du S, Xu J, Zhou S and Yuan T: ANGPTL4 negatively regulates the progression of osteosarcoma by remodeling branched-chain amino acid metabolism. Cell Death Discov. 8:2252022. View Article : Google Scholar : PubMed/NCBI | |
|
Rachner TD, Khosla S and Hofbauer LC: Osteoporosis: Now and the future. Lancet. 377:1276–1287. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA and Melton LJ III: Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest. 70:716–723. 1982. View Article : Google Scholar : PubMed/NCBI | |
|
Wang LT, Chen LR and Chen KH: Hormone-related and drug-induced osteoporosis: A cellular and molecular overview. Int J Mol Sci. 24:58142023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A and Aurora R: T-cell mediated inflammation in postmenopausal osteoporosis. Front Immunol. 12:6875512021. View Article : Google Scholar : PubMed/NCBI | |
|
Bruyère O, Malaise O, Neuprez A, Collette J and Reginster JY: Prevalence of vitamin D inadequacy in European postmenopausal women. Curr Med Res Opin. 23:1939–1944. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YH, Lim YW, Ling PS, Tan YY, Cheong M and Lam KS: Inadequate dietary calcium intake in elderly patients with hip fractures. Singapore Med J. 48:1117–1121. 2007.PubMed/NCBI | |
|
Nieves JW: Osteoporosis: The role of micronutrients. Am J Clin Nutr. 81:1232S–1239S. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hu M, Xing L, Zhang L, Liu F, Wang S, Xie Y, Wang J, Jiang H, Guo J, Li X, et al: NAP1L2 drives mesenchymal stem cell senescence and suppresses osteogenic differentiation. Aging Cell. 21:e135512022. View Article : Google Scholar : PubMed/NCBI | |
|
Xue Y, Hu S, Chen C, He J, Sun J, Jin Y, Zhang Y, Zhu G, Shi Q and Rui Y: Myokine Irisin promotes osteogenesis by activating BMP/SMAD signaling via αV integrin and regulates bone mass in mice. Int J Biol Sci. 18:572–584. 2022. View Article : Google Scholar : | |
|
Mi B, Yan C, Xue H, Chen L, Panayi AC, Hu L, Hu Y, Cao F, Sun Y, Zhou W, et al: Inhibition of circulating miR-194-5p reverses osteoporosis through Wnt5a/β-catenin-dependent induction of osteogenic differentiation. Mol Ther Nucleic Acids. 21:814–823. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Futai M, Sun-Wada GH, Wada Y, Matsumoto N and Nakanishi-Matsui M: Vacuolar-type ATPase: A proton pump to lysosomal trafficking. Proc Jpn Acad Ser B Phys Biol Sci. 95:261–277. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shen S, Si M, Zeng C, Liu EK, Chen Y, Vacher J, Zhao H, Mohan S and Xing W: Leucine repeat rich kinase 1 controls osteoclast activity by managing lysosomal trafficking and secretion. Biology (Basel). 12:5112023.PubMed/NCBI | |
|
Li MCM, Chow SKH, Wong RMY, Qin L and Cheung WH: The role of osteocytes-specific molecular mechanism in regulation of mechanotransduction - A systematic review. J Orthop Translat. 29:1–9. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Vasiliadis ES, Evangelopoulos DS, Kaspiris A, Benetos IS, Vlachos C and Pneumaticos SG: The role of sclerostin in bone diseases. J Clin Med. 11:8062022. View Article : Google Scholar : PubMed/NCBI | |
|
Mann G, Mora S, Madu G and Adegoke OAJ: Branched-chain amino acids: Catabolism in skeletal muscle and implications for muscle and whole-body metabolism. Front Physiol. 12:7028262021. View Article : Google Scholar : PubMed/NCBI | |
|
Hatazawa Y, Tadaishi M, Nagaike Y, Morita A, Ogawa Y, Ezaki O, Takai-Igarashi T, Kitaura Y, Shimomura Y, Kamei Y and Miura S: PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle. PLoS One. 9:e910062014. View Article : Google Scholar | |
|
Lv Z, Shi W and Zhang Q: Role of essential amino acids in age-induced bone loss. Int J Mol Sci. 23:112812022. View Article : Google Scholar : PubMed/NCBI | |
|
Takegahara N, Kim H and Choi Y: Unraveling the intricacies of osteoclast differentiation and maturation: Insight into novel therapeutic strategies for bone-destructive diseases. Exp Mol Med. 56:264–272. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liang Y, Cardoso FF, Parys C, Cardoso FC and Loor JJ: Branched-Chain amino acid supplementation alters the abundance of mechanistic target of rapamycin and insulin signaling proteins in subcutaneous adipose explants from lactating holstein cows. Animals (Basel). 11:27142021. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JM, Yang YS, Hong J, Chaugule S, Chun H, van der Meulen MCH, Xu R, Greenblatt MB and Shim JH: Biphasic regulation of osteoblast development via the ERK MAPK-mTOR pathway. Elife. 11:e780692022. View Article : Google Scholar : PubMed/NCBI | |
|
Carbone L, Bůžková P, Fink HA, Robbins JA, Barzilay JI, Elam RE, Isales C, Connelly MA and Mukamal KJ: Plasma levels of branched chain amino acids, incident hip fractures, and bone mineral density of the hip and spine. J Clin Endocrinol Metab. 108:e1358–e1364. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Urano T, Kuroda T, Uenishi K and Shiraki M: Serum branched-chain amino acid levels are associated with fracture risk in Japanese women. Geriatr Gerontol Int. 24:603–608. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Plotkin DL, Delcastillo K, Van Every DW, Tipton KD, Aragon AA and Schoenfeld BJ: Isolated leucine and branched-chain amino acid supplementation for enhancing muscular strength and hypertrophy: A narrative review. Int J Sport Nutr Exerc Metab. 31:292–301. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cereda E, Pisati R, Rondanelli M and Caccialanza R: Whey protein, leucine- and vitamin-D-enriched oral nutritional supplementation for the treatment of sarcopenia. Nutrients. 14:15242022. View Article : Google Scholar : PubMed/NCBI | |
|
Ely IA, Phillips BE, Smith K, Wilkinson DJ, Piasecki M, Breen L, Larsen MS and Atherton PJ: A focus on leucine in the nutritional regulation of human skeletal muscle metabolism in ageing, exercise and unloading states. Clin Nutr. 42:1849–1865. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kitajima Y, Takahashi H, Akiyama T, Murayama K, Iwane S, Kuwashiro T, Tanaka K, Kawazoe S, Ono N, Eguchi T, et al: Supplementation with branched-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. J Gastroenterol. 53:427–437. 2018. View Article : Google Scholar | |
|
Wang S, Guo W and Dong R: Unraveling the transcriptomic effects of leucine supplementation on muscle growth and performance in basketball athletes. PLoS One. 20:e03166032025. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Y, Yuan H, Ma G and Cao H: Bone-muscle crosstalk under physiological and pathological conditions. Cell Mol Life Sci. 81:3102024. View Article : Google Scholar : PubMed/NCBI | |
|
Watanabe-Takano H, Ochi H, Chiba A, Matsuo A, Kanai Y, Fukuhara S, Ito N, Sako K, Miyazaki T, Tainaka K, et al: Mechanical load regulates bone growth via periosteal osteocrin. Cell Rep. 36:1093802021. View Article : Google Scholar : PubMed/NCBI | |
|
Klein-Nulend J, van Oers RF, Bakker AD and Bacabac RG: Nitric oxide signaling in mechanical adaptation of bone. Osteoporos Int. 25:1427–1437. 2014. | |
|
Holmes D: Bone: Irisin boosts bone mass. Nat Rev Endocrinol. 11:6892015. | |
|
Sheng R, Cao M, Song M, Wang M, Zhang Y, Shi L, Xie T, Li Y, Wang J and Rui Y: Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J Orthop Translat. 43:36–46. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Guo Q, Duan Y, Wang W, Yang Y and Yin Y, Gong S, Han M, Li F and Yin Y: Potential nutritional healthy-aging strategy: Enhanced protein metabolism by balancing branched-chain amino acids in a finishing pig model. Food Funct. 13:6217–6232. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ikeda T, Matsunaga Y, Kanbara M, Kamono A, Masuda T, Watanabe M, Nakanishi R and Jinno T: Effect of exercise therapy combined with branched-chain amino acid supplementation on muscle strength in elderly women after total hip arthroplasty: A randomized controlled trial. Asia Pac J Clin Nutr. 28:720–726. 2019.PubMed/NCBI | |
|
Huynh H and Wan Y: mTORC1 impedes osteoclast differentiation via calcineurin and NFATc1. Commun Biol. 1:292018. View Article : Google Scholar : PubMed/NCBI | |
|
Ozaki K, Yamada T, Horie T, Ishizaki A, Hiraiwa M, Iezaki T, Park G, Fukasawa K, Kamada H, Tokumura K, et al: The L-type amino acid transporter LAT1 inhibits osteoclastogenesis and maintains bone homeostasis through the mTORC1 pathway. Sci Signal. 12:eaaw39212019. View Article : Google Scholar : PubMed/NCBI | |
|
Rivera CN, Watne RM, Wommack AJ and Vaughan RA: The effect of insulin resistance on extracellular BCAA accumulation and SLC25A44 expression in a myotube model of skeletal muscle insulin resistance. Amino Acids. 55:1701–1705. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
da Silva FMO, Pimenta AM, Juvanhol LL, Hermsdorff HHM and Bressan J: Obesity incidence according to branched-chain amino acid intake and plant-based diet index among Brazilian adults: A six-year follow-up of the CUME study. Nutrients. 17:2272025. View Article : Google Scholar : PubMed/NCBI | |
|
Holeček M: The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiol Res. 70:293–305. 2021. View Article : Google Scholar | |
|
You Y, Leng S, Shi J, Yang H, Chang M, Ma Q, Zhang D, Sun H, Wang L, Gao Z, et al: Integration of bone-targeted delivery and crosstalk modulation of liver-bone axis for improved osteoporosis therapy. ACS Nano. 19:23955–23968. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zuo X, Zhao R, Wu M, Wang Y, Wang S, Tang K, Wang Y, Chen J, Yan X, Cao Y and Li T: Multi-omic profiling of sarcopenia identifies disrupted branched-chain amino acid catabolism as a causal mechanism and therapeutic target. Nat Aging. 5:419–436. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Tilg H and Moschen AR: Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 6:772–783. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Olson OC, Quail DF and Joyce JA: Obesity and the tumor microenvironment. Science. 358:1130–1131. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jarvis SE, Nguyen M and Malik VS: Association between adherence to plant-based dietary patterns and obesity risk: A systematic review of prospective cohort studies. Appl Physiol Nutr Metab. 47:1115–1133. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Singh L, Tyagi S, Myers D and Duque G: Good, bad, or ugly: The biological roles of bone marrow fat. Curr Osteoporos Rep. 16:130–137. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bo T and Fujii J: Primary roles of branched chain amino acids (BCAAs) and their metabolism in physiology and metabolic disorders. Molecules. 30:562024. View Article : Google Scholar | |
|
Habibi M, Shili CN, Sutton J, Goodarzi P and Pezeshki A: Dietary branched-chain amino acids modulate the dynamics of calcium absorption and reabsorption in protein-restricted pigs. J Anim Sci Biotechnol. 13:152022. View Article : Google Scholar : PubMed/NCBI | |
|
Salem A, Ben Maaoui K, Jahrami H, AlMarzooqi MA, Boukhris O, Messai B, Clark CCT, Glenn JM, Ghazzaoui HA, Bragazzi NL, et al: Attenuating muscle damage biomarkers and muscle soreness after an exercise-induced muscle damage with branched-chain amino acid (BCAA) supplementation: A systematic review and meta-analysis with meta-regression. Sports Med Open. 10:422024. View Article : Google Scholar : PubMed/NCBI | |
|
Choi BH, Hyun S and Koo SH: The role of BCAA metabolism in metabolic health and disease. Exp Mol Med. 56:1552–1559. 2024. View Article : Google Scholar : PubMed/NCBI |