|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI
|
|
2
|
De Toni EN, Schlesinger-Raab A, Fuchs M,
Schepp W, Ehmer U, Geisler F, Ricke J, Paprottka P, Friess H,
Werner J, et al: Age independent survival benefit for patients with
hepatocellular carcinoma (HCC) without metastases at diagnosis: A
population-based study. Gut. 69:168–176. 2020. View Article : Google Scholar
|
|
3
|
Ma W, Chen Y, Xiong W, Li W, Xu Z, Wang Y,
Wei Z, Mou T, Wu Z, Cheng M, et al: STOML2 interacts with PHB
through activating MAPK signaling pathway to promote colorectal
cancer proliferation. J Exp Clin Cancer Res. 40:3592021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Keum N and Giovannucci E: Global burden of
colorectal cancer: Emerging trends, risk factors and prevention
strategies. Nat Rev Gastroenterol Hepatol. 16:713–732. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pinter M, Scheiner B and Pinato DJ: Immune
checkpoint inhibitors in hepatocellular carcinoma: Emerging
challenges in clinical practice. Lancet Gastroenterol Hepatol.
8:760–770. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Owczarek CM, Treutlein HR, Portbury KJ,
Gulluyan LM, Kola I and Hertzog PJ: A novel member of the
STOMATIN/EPB72/mec-2 family, stomatin-like 2 (STOML2), is
ubiquitously expressed and localizes to HSA chromosome 9p13.1.
Cytogenet Cell Genet. 92:196–203. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang Y and Morrow JS: Identification and
characterization of human SLP-2, a novel homologue of stomatin
(band 7.2b) present in erythrocytes and other tissues. J Biol Chem.
275:8062–8071. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mitsopoulos P, Chang Y, Wai T, König T,
Dunn SD, Langer T and Madrenas J: Stomatin-like protein 2 is
required for in vivo mitochondrial respiratory chain supercomplex
formation and optimal cell function. Mol Cell Biol. 35:1838–1847.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mitsopoulos P, Lapohos O, Weraarpachai W,
Antonicka H, Chang Y and Madrenas J: Stomatin-like protein 2
deficiency results in impaired mitochondrial translation. PLoS One.
12:e01799672017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Guo X and Guo H and Guo H: Clinical
significance of SLP-2 in epithelial ovarian cancer and its
regulatory effect on the Notch signaling pathway. Eur Rev Med
Pharmacol Sci. 24:1666–1671. 2020.PubMed/NCBI
|
|
11
|
Wang WX, Lin QF, Shen D, Liu SP, Mao WD,
Ma G and Qi WD: Clinicopathological significance of SLP-2
overexpression in human gallbladder cancer. Tumour Biol.
35:419–423. 2014. View Article : Google Scholar
|
|
12
|
Zhang J, Song X, Li C and Tian Y:
Expression and clinical significance of SLP-2 in ovarian tumors.
Oncol Lett. 17:4626–4632. 2019.PubMed/NCBI
|
|
13
|
Liu D, Zhang L, Shen Z, Tan F, Hu Y, Yu J
and Li G: Increased levels of SLP-2 correlate with poor prognosis
in gastric cancer. Gastric Cancer. 16:498–504. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Attia AS, Hussein S, Sameh H, Khalil A,
Waley AB, Matar I and Sameh R: Diagnostic and prognostic utility of
TROP-2, SLP-2, and CXCL12 expression in papillary thyroid
carcinoma. Cancer Biomark. 39:211–221. 2024. View Article : Google Scholar :
|
|
15
|
Zhou C, Li Y, Wang G, Niu W, Zhang J, Wang
G, Zhao Q and Fan L: Enhanced SLP-2 promotes invasion and
metastasis by regulating Wnt/β-catenin signal pathway in colorectal
cancer and predicts poor prognosis. Pathol Res Pract. 215:57–67.
2019. View Article : Google Scholar
|
|
16
|
Yin R, Tao Y, Han J, Zhang J, Yu K, Zheng
Y, Li X and Huang C: STOML2 inhibits sorafenib-induced ferroptosis
in hepatocellular carcinoma via p-AKT signaling pathway. Am J
Cancer Res. 15:1614–1628. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Qu H, Jiang W, Wang Y and Chen P: STOML2
as a novel prognostic biomarker modulates cell proliferation,
motility and chemo-sensitivity via IL6-Stat3 pathway in head and
neck squamous cell carcinoma. Am J Transl Res. 11:683–695.
2019.PubMed/NCBI
|
|
18
|
Shao YY, Shau WY, Chan SY, Lu LC, Hsu CH
and Cheng AL: Treatment efficacy differences of sorafenib for
advanced hepatocellular carcinoma: A meta-analysis of randomized
clinical trials. Oncology. 88:345–352. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kitano K, Murayama T, Sakamoto M, Nagayama
K, Ueno K, Murakawa T and Nakajima J: Outcome and survival analysis
of pulmonary metastasectomy for hepatocellular carcinoma. Eur J
Cardiothorac Surg. 41:376–382. 2012. View Article : Google Scholar
|
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-delta delta c(t)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
|
21
|
Shi Y, Wang Y, Zhang W, Niu K, Mao X, Feng
K and Zhang Y: N6-methyladenosine with immune infiltration and
PD-L1 in hepatocellular carcinoma: Novel perspective to
personalized diagnosis and treatment. Front Endocrinol (Lausanne).
14:11538022023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Roessler S, Lin G, Forgues M, Budhu A,
Hoover S, Simpson RM, Wu X, He P, Qin L, Tang Z, et al: Integrative
genomic and transcriptomic characterization of matched primary and
metastatic liver and colorectal carcinoma. Int J Biol Sci.
11:88–98. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ji F, Zhang J, Mao L, Tan Y, Ye M, He X,
Zhao Y, Liu J, Zhang Y, Zhang N, et al: Liver-specific gene PGRMC1
blocks c-Myc-induced hepatocarcinogenesis through ER
stress-independent PERK activation. Nat Commun. 16:502025.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Cao T, Li Q, Huang Y and Li A:
plotnineSeqSuite: A Python package for visualizing sequence data
using ggplot2 style. BMC Genomics. 24:5852023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li X, Zheng Y, Yu K, Hou S, Cui H, Yin R,
Zhou Y, Sun Q, Zhang J and Huang C: Stomatin-like protein 2
promotes cell proliferation and survival under 5-fluorouracil
stress in hepatocellular carcinoma. Mol Biol Rep. 51:2282024.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zheng Y, Huang C, Lu L, Yu K, Zhao J, Chen
M, Liu L, Sun Q, Lin Z, Zheng J, et al: STOML2 potentiates
metastasis of hepatocellular carcinoma by promoting PINK1-mediated
mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol.
14:162021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liu P, Li L, Wang W, He C and Xu C: MST4
promotes proliferation, invasion, and metastasis of gastric cancer
by enhancing autophagy. Heliyon. 9:e167352023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D and
Tao Y: Mechanisms and cross-talk of regulated cell death and their
epigenetic modifications in tumor progression. Mol Cancer.
23:2672024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Genin EC, Bannwarth S, Ropert B,
Lespinasse F, Mauri-Crouzet A, Augé G, Fragaki K, Cochaud C,
Donnarumma E, Lacas-Gervais S, et al: CHCHD10 and SLP2 control the
stability of the PHB complex: A key factor for motor neuron
viability. Brain. 145:3415–3430. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lapatsina L, Brand J, Poole K, Daumke O
and Lewin GR: Stomatin-domain proteins. Eur J Cell Biol.
91:240–245. 2012. View Article : Google Scholar
|
|
32
|
Tondera D, Grandemange S, Jourdain A,
Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke
I, Merkwirth C, et al: SLP-2 is required for stress-induced
mitochondrial hyperfusion. EMBO J. 28:1589–1600. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cui Z, Zhang L, Hua Z, Cao W, Feng W and
Liu Z: Stomatin-like protein 2 is overexpressed and related to cell
growth in human endometrial adenocarcinoma. Oncol Rep. 17:829–833.
2007.PubMed/NCBI
|
|
34
|
Wang Y, Cao W, Yu Z and Liu Z:
Downregulation of a mitochondria associated protein SLP-2 inhibits
tumor cell motility, proliferation and enhances cell sensitivity to
chemotherapeutic reagents. Cancer Biol Ther. 8:1651–1658. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Qin C, Wang Y, Zhao B, Li Z, Li T, Yang X,
Zhao Y and Wang W: STOML2 restricts mitophagy and increases
chemosensitivity in pancreatic cancer through stabilizing
PARL-induced PINK1 degradation. Cell Death Dis. 14:1912023.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y,
Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, et al: Autophagy in
cancer development, immune evasion, and drug resistance. Drug
Resist Updat. 78:1011702025. View Article : Google Scholar
|
|
37
|
Klionsky DJ, Petroni G, Amaravadi RK,
Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K,
Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO
J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Guo L, Ding Z, Huang N, Huang Z, Zhang N
and Xia Z: Forkhead Box M1 positively regulates UBE2C and protects
glioma cells from autophagic death. Cell Cycle. 16:1705–1718. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mcclung JK, Jupe ER, Liu XT and Dell'Orco
RT: Prohibitin: Potential role in senescence, development, and
tumor suppression. Exp Gerontol. 30:99–124. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Da Cruz S, Parone PA, Gonzalo P, Bienvenut
WV, Tondera D, Jourdain A, Quadroni M and Martinou JC: SLP-2
interacts with prohibitins in the mitochondrial inner membrane and
contributes to their stability. Biochim Biophys Acta. 1783:904–911.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Christie DA, Lemke CD, Elias IM, Chau LA,
Kirchhof MG, Li B, Ball EH, Dunn SD, Hatch GM and Madrenas J:
Stomatin-like protein 2 binds cardiolipin and regulates
mitochondrial biogenesis and function. Mol Cell Biol. 31:3845–3856.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Downward J: Targeting RAS signalling
pathways in cancer therapy. Nat Rev Cancer. 3:11–22. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wellbrock C, Karasarides M and Marais R:
The RAF proteins take centre stage. Nat Rev Mol Cell Biol.
5:875–885. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Xu L, Meng L, Xiang W, Wang X, Yang J, Shu
C, Zhao XH, Rong Z and Ye Y: Prohibitin 2 confers NADPH oxidase
1-mediated cytosolic oxidative signaling to promote gastric cancer
progression by ERK activation. Free Radic Biol Med. 224:130–143.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sharma A and Qadri A: Vi polysaccharide of
salmonella typhi targets the prohibitin family of molecules in
intestinal epithelial cells and suppresses early inflammatory
responses. Proc Natl Acad Sci USA. 101:17492–17497. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ma W, Xu Z, Wang Y, Li W, Wei Z, Chen T,
Mou T, Cheng M, Luo J, Luo T, et al: A positive feedback loop of
SLP2 activates MAPK signaling pathway to promote gastric cancer
progression. Theranostics. 8:5744–5757. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wai T, Saita S, Nolte H, Müller S, König
T, Richter-Dennerlein R, Sprenger HG, Madrenas J, Mühlmeister M,
Brandt U, et al: The membrane scaffold SLP2 anchors a proteolytic
hub in mitochondria containing PARL and the i-AAA protease YME1L.
EMBO Rep. 17:1844–1856. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lierman E, Lahortiga I, Van Miegroet H,
Mentens N, Marynen P and Cools J: The ability of sorafenib to
inhibit oncogenic PDGFRbeta and FLT3 mutants and overcome
resistance to other small molecule inhibitors. Haematologica.
92:27–34. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Abdelgalil AA, Alkahtani HM and Al-Jenoobi
FI: Sorafenib. Profiles Drug Subst Excip Relat Methodol.
44:239–266. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Fischer PM: Approved and experimental
small-molecule oncology kinase inhibitor drugs: A mid-2016
overview. Med Res Rev. 37:314–367. 2017. View Article : Google Scholar
|
|
51
|
Tsvetkov P, Detappe A, Cai K, Keys HR,
Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, et al:
Mitochondrial metabolism promotes adaptation to proteotoxic stress.
Nat Chem Biol. 15:681–689. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lin X, Zheng J, Li Y, Liu L, Liu Q, Lin J
and Sun Y: Mitochondria-related genes as prognostic signature of
endometrial cancer and the effect of MACC1 on tumor cells. PLoS
One. 20:e03230022025. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sun B, Ding P, Song Y, Zhou J, Chen X,
Peng C and Liu S: FDX1 downregulation activates mitophagy and the
PI3K/AKT signaling pathway to promote hepatocellular carcinoma
progression by inducing ROS production. Redox Biol. 75:1033022024.
View Article : Google Scholar : PubMed/NCBI
|