You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ and Olzmann JA: The cell biology of ferroptosis. Nat Rev Mol Cell Biol. 25:424–442. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mishima E, Nakamura T, Doll S, Proneth B, Fedorova M, Pratt DA, Friedmann Angeli JP, Dixon SJ, Wahida A and Conrad M: Recommendations for robust and reproducible research on ferroptosis. Nat Rev Mol Cell Biol. 26:615–630. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X and Deng G: Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther. 9:552024. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z and Yu T: Lactate metabolism in human health and disease. Signal Transduct Target Ther. 7:3052022. View Article : Google Scholar : PubMed/NCBI | |
|
Brooks GA: The science and translation of lactate shuttle theory. Cell Metab. 27:757–785. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Felmlee MA, Jones RS, Rodriguez-Cruz V, Follman KE and Morris ME: Monocarboxylate transporters (SLC16): Function, regulation, and role in health and disease. Pharmacol Rev. 72:466–485. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Brown TP and Ganapathy V: Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther. 206:1074512020. View Article : Google Scholar | |
|
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hua S, Jeong HN, Dimapasoc LM, Kang I, Han C, Choi JS, Lebrilla CB and An HJ: Isomer-specific LC/MS and LC/MS/MS profiling of the mouse serum N-glycome revealing a number of novel sialylated N-glycans. Anal Chem. 85:4636–4643. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Sun L, Gao P and Hu H: Lactylation in cancer: Current understanding and challenges. Cancer Cell. 42:1803–1807. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu YQ, Yang Q and He GW: Post-translational acylation of proteins in cardiac hypertrophy. Nat Rev Cardiol. 22:944–960. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Conrad M and Pratt DA: The chemical basis of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liang D, Minikes AM and Jiang X: Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A, Kapilian J, Firl CEM, et al: Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 368:85–89. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Liang W, Huo D, Wang H, Wang Y, Cong C, Zhang C, Yan S, Gao M, Su X, et al: SPY1 inhibits neuronal ferroptosis in amyotrophic lateral sclerosis by reducing lipid peroxidation through regulation of GCH1 and TFR1. Cell Death Differ. 30:369–382. 2023. View Article : Google Scholar : | |
|
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kappler A, Bryce C, Mansor M, Lueder U, Byrne JM and Swanner ED: An evolving view on biogeochemical cycling of iron. Nat Rev Microbiol. 19:360–374. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cañeque T, Baron L, Müller S, Carmona A, Colombeau L, Versini A, Solier S, Gaillet C, Sindikubwabo F, Sampaio JL, et al: Activation of lysosomal iron triggers ferroptosis in cancer. Nature. 642:492–500. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Magtanong L, Ko PJ and Dixon SJ: Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ. 23:1099–1109. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Schwörer S, Vardhana SA and Thompson CB: Cancer metabolism drives a stromal regenerative response. Cell Metab. 29:576–591. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Won W, Bhalla M, Lee JH and Lee CJ: Astrocytes as key regulators of neural signaling in health and disease. Annu Rev Neurosci. 48:251–276. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Certo M, Tsai CH, Pucino V, Ho PC and Mauro C: Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 21:151–161. 2021. View Article : Google Scholar | |
|
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rabinowitz JD and Enerbäck S: Lactate: The ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y and Patti GJ: The Warburg effect: A signature of mitochondrial overload. Trends Cell Biol. 33:1014–1020. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Zhan L, Yanxiang Guo J, et al: Glucose feeds the TCA cycle via circulating lactate. Nature. 551:115–118. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al: Lactate metabolism in human lung tumors. Cell. 171:358–371.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Huang Y, Yang J, Zhou FQ, Zhao L and Zhou H: Pyruvate is a prospective alkalizer to correct hypoxic lactic acidosis. Mil Med Res. 5:132018.PubMed/NCBI | |
|
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S and Thompson CB: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 104:19345–19350. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Dang CV: MYC on the path to cancer. Cell. 149:22–35. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ivashkiv LB: The hypoxia-lactate axis tempers inflammation. Nat Rev Immunol. 20:85–86. 2020. View Article : Google Scholar : | |
|
Taylor CT and Scholz CC: The effect of HIF on metabolism and immunity. Nat Rev Nephrol. 18:573–587. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang GL and Semenza GL: General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA. 90:4304–4308. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Silagi ES, Schipani E, Shapiro IM and Risbud MV: The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat Rev Rheumatol. 17:426–439. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY and Semenza GL: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12:149–162. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K and Johnson RS: Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 21:3436–3444. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Papandreou I, Cairns RA, Fontana L, Lim AL and Denko NC: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3:187–197. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Claps G, Faouzi S, Quidville V, Chehade F, Shen S, Vagner S and Robert C: The multiple roles of LDH in cancer. Nat Rev Clin Oncol. 19:749–762. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ždralević M, Brand A, Di Ianni L, Dettmer K, Reinders J, Singer K, Peter K, Schnell A, Bruss C, Decking SM, et al: Double genetic disruption of lactate dehydrogenases A and B is required to ablate the 'Warburg effect' restricting tumor growth to oxidative metabolism. J Biol Chem. 293:15947–15961. 2018. View Article : Google Scholar | |
|
Kim EY, Chung TW, Han CW, Park SY, Park KH, Jang SB and Ha KT: A novel lactate dehydrogenase inhibitor, 1-(Phenylseleno)-4-(Trifluoromethyl) benzene, suppresses tumor growth through apoptotic cell death. Sci Rep. 9:39692019. View Article : Google Scholar : PubMed/NCBI | |
|
Park JS, Saeed K, Jo MH, Kim MW, Lee HJ, Park CB, Lee G and Kim MO: LDHB deficiency promotes mitochondrial dysfunction mediated oxidative stress and neurodegeneration in adult mouse brain. Antioxidants (Basel). 11:2612022. View Article : Google Scholar : PubMed/NCBI | |
|
Yin M, Li S, Liu M, Zhu W, Chen Y, Qiu W, Li Q, Li Y, Chen J, Zhou Y, et al: GUCY1A1-LDHA axis suppresses ferroptosis in cardiac ischemia-reperfusion injury. Circ Res. 137:986–1005. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Deng H, Zhang J, Zamboni N, Yang H, Gao Y, Yang Z, Xu D, Zhong H, van Geest G, et al: Lactate dehydrogenase B noncanonically promotes ferroptosis defense in KRAS-driven lung cancer. Cell Death Differ. 32:632–645. 2025. View Article : Google Scholar : | |
|
Doherty JR, Yang C, Scott KE, Cameron MD, Fallahi M, Li W, Hall MA, Amelio AL, Mishra JK, Li F, et al: Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Res. 74:908–920. 2014. View Article : Google Scholar : | |
|
Wang N, Wang W, Wang X, Mang G, Chen J, Yan X, Tong Z, Yang Q, Wang M, Chen L, et al: Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 131:893–908. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmed K, Tunaru S, Tang C, Müller M, Gille A, Sassmann A, Hanson J and Offermanns S: An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab. 11:311–319. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Roland CL, Arumugam T, Deng D, Liu SH, Philip B, Gomez S, Burns WR, Ramachandran V, Wang H, Cruz-Monserrate Z and Logsdon CD: Cell surface lactate receptor GPR81 is crucial for cancer cell survival. Cancer Res. 74:5301–5310. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YJ, Shin KJ, Park SA, Park KS, Park S, Heo K, Seo YK, Noh DY, Ryu SH and Suh PG: G-protein-coupled receptor 81 promotes a malignant phenotype in breast cancer through angiogenic factor secretion. Oncotarget. 7:70898–70911. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, Yang M, Cao W, Wang L and Wu Z: Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene. 36:5829–5839. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Luo M, Zhu J, Ren J, Tong Y, Wang L, Ma S and Wang J: Lactate increases tumor malignancy by promoting tumor small extracellular vesicles production via the GPR81-cAMP-PKA-HIF-1α axis. Front Oncol. 12:10365432022. View Article : Google Scholar | |
|
Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z, Cai K, Zhao Y and Luo Z: HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. 33:1084872020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang P, Li H, Sun M, Guo X, Liao Y, Hu M, Ye P and Liu R: Zinc deficiency drives ferroptosis resistance by lactate production in esophageal squamous cell carcinoma. Free Radic Biol Med. 213:512–522. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Benjamin D, Robay D, Hindupur SK, Pohlmann J, Colombi M, El-Shemerly MY, Maira SM, Moroni C, Lane HA and Hall MN: Dual inhibition of the lactate transporters MCT1 and MCT4 Is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep. 25:3047–3058.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Liu W, Ganz T and Liu S: Exploring the relationship between hyperlactatemia and anemia. Trends Endocrinol Metab. 35:300–307. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Sim M, Garvican-Lewis LA, Cox GR, Govus A, McKay AKA, Stellingwerff T and Peeling P: Iron considerations for the athlete: A narrative review. Eur J Appl Physiol. 119:1463–1478. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T and Kaplan J: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 306:2090–2093. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Zhang S, Li Q, Wu Y, Jia X, Feng W, Li Z, Shi Y, Hou Q, Ma J, et al: Lactate modulates iron metabolism by binding soluble adenylyl cyclase. Cell Metab. 35:1597–1612.e6. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Wu Y, Wei H, Ma J, Feng W, Yang Q, Zhang S, Ganz T and Liu S: Lactate administration improves laboratory parameters in murine models of iron overload. Blood. 143:1045–1049. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Wang Y, Fan M, Guan Y, Zhang W, Huang F, Zhang Z, Li X, Yuan B, Liu W, et al: Reactive oxygen species regulation by NCF1 governs ferroptosis susceptibility of Kupffer cells to MASH. Cell Metab. 36:1745–1763.e6. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Davaanyam D, Lee H, Seol SI, Oh SA, Kim SW and Lee JK: HMGB1 induces hepcidin upregulation in astrocytes and causes an acute iron surge and subsequent ferroptosis in the postischemic brain. Exp Mol Med. 55:2402–2416. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Davaanyam D, Seol SI, Oh SA, Lee H and Lee JK: Hepatocyte activation and liver injury following cerebral ischemia promote HMGB1-mediated hepcidin upregulation in hepatocytes and regulation of systemic iron levels. Exp Mol Med. 56:2171–2183. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li A, Gong Z, Long Y, Li Y, Liu C, Lu X, Li Q, He X, Lu H, Wu K, et al: Lactylation of LSD1 is an acquired epigenetic vulnerability of BRAFi/MEKi-resistant melanoma. Dev Cell. 60:1974–1990.e11. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang K, Guo L, Li X, Hu Y and Luo N: Cancer-associated fibroblasts promote doxorubicin resistance in triple-negative breast cancer through enhancing ZFP64 histone lactylation to regulate ferroptosis. J Transl Med. 23:2472025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Wang X, Che W, Zhou S and Feng Y: METTL3 silenced inhibited the ferroptosis development via regulating the TFRC levels in the intracerebral hemorrhage progression. Brain Res. 1811:1483732023. View Article : Google Scholar : PubMed/NCBI | |
|
Gong F, Zheng X, Xu W, Xie R, Liu W, Pei L, Zhong M, Shi W, Qu H, Mao E, et al: H3K14la drives endothelial dysfunction in sepsis-induced ARDS by promoting SLC40A1/transferrin-mediated ferroptosis. MedComm. 6:e700492025. View Article : Google Scholar : PubMed/NCBI | |
|
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017. View Article : Google Scholar | |
|
Zheng J and Conrad M: Ferroptosis: When metabolism meets cell death. Physiol Rev. 105:651–706. 2025. View Article : Google Scholar | |
|
de Kivit S, Mensink M, Kostidis S, Derks RJE, Zaal EA, Heijink M, Verleng LJ, de Vries E, Schrama E, Blomberg N, et al: Immune suppression by human thymus-derived effector Tregs relies on glucose/lactate-fueled fatty acid synthesis. Cell Rep. 43:1146812024. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Dong X, Du W, Shi X, Chen K, Zhang W and Gao M: LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. Signal Transduct Target Ther. 5:1872020. View Article : Google Scholar : PubMed/NCBI | |
|
Hardie DG, Ross FA and Hawley SA: AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 13:251–262. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Song X, Liu J, Kuang F, Chen X, Zeh HJ III, Kang R, Kroemer G, Xie Y and Tang D: PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep. 34:1087672021. View Article : Google Scholar : PubMed/NCBI | |
|
Sondermeijer BM, Battjes S, van Dijk TH, Ackermans MT, Serlie MJ, Nieuwdorp M, Groen AK, Dallinga-Thie GM and Stroes ES: Lactate increases hepatic secretion of VLDL-triglycerides in humans. Atherosclerosis. 228:443–450. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Z, Ye M, Liu D, Zhou W, Zeng T, He S and Li Y: Lactate drives the ESM1-SCD1 axis to inhibit the antitumor CD8+ T-cell response by activating the Wnt/β-catenin pathway in ovarian cancer cells and inducing cisplatin resistance. Int Immunopharmacol. 137:1124612024. View Article : Google Scholar | |
|
Wu D, Spencer CB, Ortoga L, Zhang H and Miao C: Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury. Redox Biol. 74:1031942024. View Article : Google Scholar : PubMed/NCBI | |
|
Pope LE and Dixon SJ: Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tilton WM, Seaman C, Carriero D and Piomelli S: Regulation of glycolysis in the erythrocyte: Role of the lactate/pyruvate and NAD/NADH ratios. J Lab Clin Med. 118:146–152. 1991.PubMed/NCBI | |
|
Quinn WJ III, Jiao J, TeSlaa T, Stadanlick J, Wang Z, Wang L, Akimova T, Angelin A, Schäfer PM, Cully MD, et al: Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 33:1085002020. View Article : Google Scholar : PubMed/NCBI | |
|
Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, Lewis CA, et al: Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol Cell. 81:691–707.e6. 2021. View Article : Google Scholar | |
|
Corkey BE and Deeney JT: The redox communication network as a regulator of metabolism. Front Physiol. 11:5677962020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang S and Lian G: ROS and diseases: Role in metabolism and energy supply. Mol Cell Biochem. 467:1–12. 2020. View Article : Google Scholar : | |
|
Young A, Oldford C and Mailloux RJ: Lactate dehydrogenase supports lactate oxidation in mitochondria isolated from different mouse tissues. Redox Biol. 28:1013392020. View Article : Google Scholar | |
|
Bauzá-Thorbrügge M, Peris E, Zamani S, Micallef P, Paul A, Bartesaghi S, Benrick A and Wernstedt Asterholm I: NRF2 is essential for adaptative browning of white adipocytes. Redox Biol. 68:1029512023. View Article : Google Scholar : PubMed/NCBI | |
|
Jia L, Liao M, Mou A, Zheng Q, Yang W, Yu Z, Cui Y, Xia X, Qin Y, Chen M and Xiao B: Rheb-regulated mitochondrial pyruvate metabolism of Schwann cells linked to axon stability. Dev Cell. 56:2980–2994.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rydström J: Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta. 1757:721–726. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lin W, Lu X, Yang H, Huang L, Huang W, Tang Y, Liu S, Wang H and Zhang Y: Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis. Int J Mol Med. 50:1242022. View Article : Google Scholar : PubMed/NCBI | |
|
Ying M, You D, Zhu X, Cai L, Zeng S and Hu X: Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biol. 46:1020652021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Guo C, Jiang K, Ying M and Hu X: Quantification of lactate from various metabolic pathways and quantification issues of lactate isotopologues and isotopmers. Sci Rep. 7:84892017. View Article : Google Scholar : PubMed/NCBI | |
|
Huang YF, Wang G, Ding L, Bai ZR, Leng Y, Tian JW, Zhang JZ, Li YQ, Ahmad, Qin YH, et al: Lactate-upregulated NADPH-dependent NOX4 expression via HCAR1/PI3K pathway contributes to ROS-induced osteoarthritis chondrocyte damage. Redox Biol. 67:1028672023. View Article : Google Scholar : PubMed/NCBI | |
|
Taylor JP and Tse HM: The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol. 48:1021592021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun F, He Y, Yang Z, Xu G, Wang R, Juan Z and Sun X: Propofol pretreatment inhibits ferroptosis and alleviates myocardial ischemia-reperfusion injury through the SLC16A13-AMPK-GPX4 pathway. Biomed Pharmacother. 179:1173452024. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng F, Dou J, Yang Y, Sun S, Chen R, Zhang Z, Wei H, Li J and Wu Z: Drug-induced lactate confers ferroptosis resistance via p38-SGK1-NEDD4L-dependent upregulation of GPX4 in NSCLC cells. Cell Death Discov. 9:1652023. View Article : Google Scholar : PubMed/NCBI | |
|
Tauffenberger A, Fiumelli H, Almustafa S and Magistretti PJ: Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling. Cell Death Dis. 10:6532019. View Article : Google Scholar : PubMed/NCBI | |
|
Zou GP, Wang T, Xiao JX, Wang XY, Jiang LP, Tou FF, Chen ZP, Qu XH and Han XJ: Lactate protects against oxidative stress-induced retinal degeneration by activating autophagy. Free Radic Biol Med. 194:209–219. 2023. View Article : Google Scholar | |
|
Ma M, Zhang Y, Pu K and Tang W: Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev. 54:653–714. 2025. View Article : Google Scholar | |
|
Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Besnier E, Coquerel D, Kouadri G, Clavier T, Favory R, Duburcq T, Lesur O, Bekri S, Richard V, Mulder P and Tamion F: Hypertonic sodium lactate improves microcirculation, cardiac function, and inflammation in a rat model of sepsis. Crit Care. 24:3542020. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng M, Niu Y, Huang J and Deng L: Advances in neutrophil extracellular traps and ferroptosis in sepsis-induced cardiomyopathy. Front Immunol. 16:15903132025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M and Yang K: Lactate's impact on immune cells in sepsis: Unraveling the complex interplay. Front Immunol. 15:14834002024. View Article : Google Scholar : PubMed/NCBI | |
|
Irizarry-Caro RA, McDaniel MM, Overcast GR, Jain VG, Troutman TD and Pasare C: TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci USA. 117:30628–30638. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Y, He Z, Li Z, Wang Y, Wu N, Sun H, Zhou Z, Hu Q and Cong X: Lactylation: The novel histone modification influence on gene expression, protein function, and disease. Clin Epigenetics. 16:722024. View Article : Google Scholar : PubMed/NCBI | |
|
Su F, Xie K, He X, Orbegozo D, Hosokawa K, Post EH, Donadello K, Taccone FS, Creteur J and Vincent JL: The harmful effects of hypertonic sodium lactate administration in hyperdynamic septic shock. Shock. 46:663–671. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X and Shi S: Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 13:1102020. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Y, Liu W, Tang Z, Ji X, Zhou Y, Song S, Tian M, Tao C, Huang R, Zhu G, et al: Monocarboxylate transporter 4 inhibition potentiates hepatocellular carcinoma immunotherapy through enhancing T cell infiltration and immune attack. Hepatology. 77:109–123. 2023. View Article : Google Scholar | |
|
Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M and Miyakawa T: Protein lactylation induced by neural excitation. Cell Rep. 37:1098202021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun K, Shi Y, Yan C, Wang S, Han L, Li F, Xu X, Wang Y, Sun J, Kang Z and Shi J: Glycolysis-derived lactate induces ACSL4 expression and lactylation to activate ferroptosis during intervertebral disc degeneration. Adv Sci (Weinh). 12:e24161492025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Huang X, Feng S and Shao H: Lactate-dependent HIF1A transcriptional activation exacerbates severe acute pancreatitis through the ACSL4/LPCAT3/ALOX15 pathway induced ferroptosis. J Cell Biochem. 126:e306872025. View Article : Google Scholar | |
|
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K and Adam V: Hypoxia-inducible factors: Master regulators of hypoxic tumor immune escape. J Hematol Oncol. 15:772022. View Article : Google Scholar : PubMed/NCBI | |
|
Deng J, Li Y, Yin L, Liu S, Li Y, Liao W, Mu L, Luo X and Qin J: Histone lactylation enhances GCLC expression and thus promotes chemoresistance of colorectal cancer stem cells through inhibiting ferroptosis. Cell Death Dis. 16:1932025. View Article : Google Scholar : PubMed/NCBI | |
|
Huang J, Xie H, Li J, Huang X, Cai Y, Yang R, Yang D, Bao W, Zhou Y, Li T and Lu Q: Histone lactylation drives liver cancer metastasis by facilitating NSF1-mediated ferroptosis resistance after microwave ablation. Redox Biol. 81:1035532025. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan J, Yang M, Wu Z, Wu J, Zheng K, Wang J, Zeng Q, Chen M, Lv T, Shi Y, et al: The lactate-primed KAT8-PCK2 axis exacerbates hepatic ferroptosis during ischemia/reperfusion injury by reprogramming OXSM-dependent mitochondrial fatty acid synthesis. Adv Sci (Weinh). 12:e24141412025. View Article : Google Scholar | |
|
An X, He J, Xie P, Li C, Xia M, Guo D, Bi B, Wu G, Xu J, Yu W and Ren Z: The effect of tau K677 lactylation on ferritinophagy and ferroptosis in Alzheimer's disease. Free Radic Biol Med. 224:685–706. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
She H, Hu Y, Zhao G, Du Y, Wu Y, Chen W, Li Y, Wang Y, Tan L, Zhou Y, et al: Dexmedetomidine ameliorates myocardial ischemia-reperfusion injury by inhibiting MDH2 lactylation via regulating metabolic reprogramming. Adv Sci (Weinh). 11:e24094992024. View Article : Google Scholar : PubMed/NCBI | |
|
Niu K, Chen Z, Li M, Ma G, Deng Y, Zhang J, Wei D, Wang J and Zhao Y: NSUN2 lactylation drives cancer cell resistance to ferroptosis through enhancing GCLC-dependent glutathione synthesis. Redox Biol. 79:1034792025. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Huang X, Liang C and Zhang P: Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer. Eur J Pharmacol. 957:1760072023. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong J, Ge X, Pan D, Zhu Y, Zhou Y, Gao Y, Wang H, Wang X, Gu Y, Ye W, et al: Metabolic reprogramming in astrocytes prevents neuronal death through a UCHL1/PFKFB3/H4K8la positive feedback loop. Cell Death Differ. 32:1214–1230. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Deng H, Zhao L, Ge H, Gao Y, Fu Y, Lin Y, Masoodi M, Losmanova T, Medová M, Ott J, et al: Ubiquinol-mediated suppression of mitochondria-associated ferroptosis is a targetable function of lactate dehydrogenase B in cancer. Nat Commun. 16:25972025. View Article : Google Scholar : PubMed/NCBI | |
|
Moreira JD, Hamraz M, Abolhassani M, Bigan E, Pérès S, Paulevé L, Nogueira ML, Steyaert JM and Schwartz L: The redox status of cancer cells supports mechanisms behind the warburg effect. Metabolites. 6:332016. View Article : Google Scholar : PubMed/NCBI | |
|
Halestrap AP and Wilson MC: The monocarboxylate transporter family-role and regulation. IUBMB Life. 64:109–119. 2012. View Article : Google Scholar | |
|
Singh M, Afonso J, Sharma D, Gupta R and Kumar V, Rani R, Baltazar F and Kumar V: Targeting monocarboxylate transporters (MCTs) in cancer: How close are we to the clinics? Semin Cancer Biol. 90:1–14. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hosonuma M and Yoshimura K: Association between pH regulation of the tumor microenvironment and immunological state. Front Oncol. 13:11755632023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Zhao Y, Hu Y, Fei Y, Zhao Y, Xue C, Cai K, Li M and Luo Z: Activatable biomineralized nanoplatform remodels the intracellular environment of multidrug-resistant tumors for enhanced ferroptosis/apoptosis therapy. Small. 17:e21022692021. View Article : Google Scholar : PubMed/NCBI | |
|
Jackson VN and Halestrap AP: The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem. 271:861–868. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Bozzo L, Puyal J and Chatton JY: Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway. PLoS One. 8:e717212013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Su W, Wei X, Qu S, Zhao D, Zhou J, Wang Y, Guan Q, Qin C, Xiang J, et al: HIF-1α drives resistance to ferroptosis in solid tumors by promoting lactate production and activating SLC1A1. Cell Rep. 42:1129452023. View Article : Google Scholar | |
|
Bae C, Sachs F and Gottlieb PA: Protonation of the human PIEZO1 ion channel stabilizes inactivation. J Biol Chem. 290:5167–5173. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jin C, Zhang DP, Lin Z, Lin YZ, Shi YF, Dong XY, Jin MQ, Song FQ, Du ST, Feng YZ, et al: Piezo1-mediated ferroptosis delays wound healing in aging mice by regulating the transcriptional activity of SLC7A11 through activating transcription factor 3. Research (Wash D C). 8:07182025.PubMed/NCBI | |
|
Koppula P, Zhang Y, Zhuang L and Gan B: Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond). 38:122018.PubMed/NCBI | |
|
Hu K, Li K, Lv J, Feng J, Chen J, Wu H, Cheng F, Jiang W, Wang J, Pei H, et al: Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest. 130:1752–1766. 2020. View Article : Google Scholar : | |
|
Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA, et al: Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 27:211–222. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Hobeika CS, Khabibullin D, Yu D, Filippakis H, Alchoueiry M, Tang Y, Lam HC, Tsvetkov P, Georgiou G, et al: Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc Natl Acad Sci USA. 119:e21228401192022. View Article : Google Scholar : PubMed/NCBI | |
|
Koppula P, Lei G, Zhang Y, Yan Y, Mao C, Kondiparthi L, Shi J, Liu X, Horbath A, Das M, et al: A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat Commun. 13:22062022. View Article : Google Scholar : PubMed/NCBI | |
|
Rojo de la Vega M, Chapman E and Zhang DD: NRF2 and the hallmarks of cancer. Cancer Cell. 34:21–43. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rawat SG, Tiwari RK, Jaiswara PK, Gupta VK, Sonker P, Vishvakarma NK, Kumar S, Pathak C, Gautam V and Kumar A: Phosphodiesterase 5 inhibitor sildenafil potentiates the antitumor activity of cisplatin by ROS-mediated apoptosis: A role of deregulated glucose metabolism. Apoptosis. 27:606–618. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kobayashi M, Narumi K, Furugen A and Iseki K: Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4). Pharmacol Ther. 226:1078622021. View Article : Google Scholar : PubMed/NCBI | |
|
Ding Y, Chen X, Liu C, Ge W, Wang Q, Hao X, Wang M, Chen Y and Zhang Q: Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol. 14:192021. View Article : Google Scholar | |
|
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Mo Y, Zhang H, Zhang M, Xu J and Liang S: Role of AMPK-regulated autophagy in retinal pigment epithelial cell homeostasis: A review. Medicine (Baltimore). 103:e389082024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Yu C, Kang R, Kroemer G and Tang D: Cellular degradation systems in ferroptosis. Cell Death Differ. 28:1135–1148. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao M, Monian P, Pan Q, Zhang W, Xiang J and Jiang X: Ferroptosis is an autophagic cell death process. Cell Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G and Tang D: Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 66:89–100. 2020. View Article : Google Scholar | |
|
Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky DJ, Lotze MT, Zeh HJ, Kang R and Tang D: Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv. 5:eaaw22382019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Zhu Y, Wu C and Shi J: Engineering lactate-modulating nanomedicines for cancer therapy. Chem Soc Rev. 52:973–1000. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Annoni F, Peluso L, Gouvêa Bogossian E, Creteur J, Zanier ER and Taccone FS: Brain protection after anoxic brain injury: Is lactate supplementation helpful? Cells. 10:17142021. View Article : Google Scholar : PubMed/NCBI | |
|
Fei Y and Ding Y: The role of ferroptosis in neurodegenerative diseases. Front Cell Neurosci. 18:14759342024. View Article : Google Scholar : PubMed/NCBI | |
|
Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J, Liao Y, Yan Y, Li Q, Zhou X, et al: Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metab. 34:634–648.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Devos D, Labreuche J, Rascol O, Corvol JC, Duhamel A, Guyon Delannoy P, Poewe W, Compta Y, Pavese N, Růžička E, et al: Trial of deferiprone in Parkinson's disease. N Engl J Med. 387:2045–2055. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N and Xie J: Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther. 10:312025. View Article : Google Scholar : PubMed/NCBI | |
|
Berthet C, Lei H, Thevenet J, Gruetter R, Magistretti PJ and Hirt L: Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab. 29:1780–1789. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Cerina M, Levers M, Keller JM and Frega M: Neuroprotective role of lactate in a human in vitro model of the ischemic penumbra. Sci Rep. 14:79732024. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong XY, Pan XR, Luo XX, Wang YF, Zhang XX, Yang SH, Zhong ZQ, Liu C, Chen Q, Wang PF, et al: Astrocyte-derived lactate aggravates brain injury of ischemic stroke in mice by promoting the formation of protein lactylation. Theranostics. 14:4297–4317. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Cai M, Wang H, Song H, Yang R, Wang L, Xue X, Sun W and Hu J: Lactate Is answerable for brain function and treating brain diseases: Energy substrates and signal molecule. Front Nutr. 9:8009012022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Hu P, Cheng H, Xu F and Ye Y: The impact of glycolysis on ischemic stroke: From molecular mechanisms to clinical applications. Front Neurol. 16:15143942025. View Article : Google Scholar : PubMed/NCBI | |
|
Cler M, Perez-Amodio S, Valls-Lacalle L, Martinez E, Barba I, Ganse GFS, Engel E and Rodriguez-Sinovas A: Abstract 4146509: L-lactic acid reduces infarct size after ischemia in isolated mouse hearts through acidosis, MCT1-mediated uptake, and metabolic reprogramming. Circulation. 150(Suppl1): A41465092024. View Article : Google Scholar | |
|
Berthet C, Castillo X, Magistretti PJ and Hirt L: New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: Extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc Dis. 34:329–335. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Nalos M, Kholodniak E, Smith L, Orde S, Ting I, Slama M, Seppelt I, McLean AS and Huang S: The comparative effects of 3% saline and 0.5M sodium lactate on cardiac function: A randomised, crossover study in volunteers. Crit Care Resusc. 20:124–130. 2018.PubMed/NCBI | |
|
Nalos M, Leverve X, Huang S, Weisbrodt L, Parkin R, Seppelt I, Ting I and Mclean A: Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: A pilot randomised controlled clinical trial. Crit Care. 18:R482014. View Article : Google Scholar : PubMed/NCBI | |
|
Koyama T: Lactated Ringer's solution for preventing myocardial reperfusion injury. Int J Cardiol Heart Vasc. 15:1–8. 2017.PubMed/NCBI | |
|
Nolt B, Tu F, Wang X, Ha T, Winter R, Williams DL and Li C: Lactate and immunosuppression in sepsis. Shock. 49:120–125. 2018. View Article : Google Scholar : | |
|
Doherty JR and Cleveland JL: Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 123:3685–3692. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sonpavde G, Matveev V, Burke JM, Caton JR, Fleming MT, Hutson TE, Galsky MD, Berry WR, Karlov P, Holmlund JT, et al: Randomized phase II trial of docetaxel plus prednisone in combination with placebo or AT-101, an oral small molecule Bcl-2 family antagonist, as first-line therapy for metastatic castration-resistant prostate cancer. Ann Oncol. 23:1803–1808. 2012. View Article : Google Scholar | |
|
Wu J, Gu X, Zhang J, Mi Z, He Z, Dong Y, Ge W, Ghimire K, Rong P, Wang W and Ma X: 4-OI protects MIN6 cells from oxidative stress injury by reducing LDHA-mediated ROS generation. Biomolecules. 12:12362022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Z, Han F, Yang S, Wu J and Zhan W: Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: Involvement of the Akt-mTOR signaling pathway. Cancer Lett. 358:17–26. 2015. View Article : Google Scholar | |
|
Farabegoli F, Vettraino M, Manerba M, Fiume L, Roberti M and Di Stefano G: Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways. Eur J Pharm Sci. 47:729–738. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Granchi C, Roy S, Giacomelli C, Macchia M, Tuccinardi T, Martinelli A, Lanza M, Betti L, Giannaccini G, Lucacchini A, et al: Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A (LDH-A) as starvation agents against cancer cells. J Med Chem. 54:1599–1612. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Laganá G, Barreca D, Calderaro A and Bellocco E: Lactate dehydrogenase inhibition: Biochemical relevance and therapeutical potential. Curr Med Chem. 26:3242–3252. 2019. View Article : Google Scholar | |
|
Ippolito L, Morandi A, Giannoni E and Chiarugi P: Lactate: A metabolic driver in the tumour landscape. Trends Biochem Sci. 44:153–166. 2019. View Article : Google Scholar | |
|
Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN, Rocha Lima CM, Schlesselman JJ, Tolba K, Langmuir VK, et al: A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol. 71:523–530. 2013. View Article : Google Scholar | |
|
Sutendra G and Michelakis ED: Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front Oncol. 3:382013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Du X, He Z, Gao S, Ye L, Ji J, Yang X and Zhai G: A vanadium-based nanoplatform synergizing ferroptotic-like therapy with glucose metabolism intervention for enhanced cancer cell death and antitumor immunity. ACS Nano. 17:11537–11556. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Zhu P, Zheng B, Lu Z, Fang C, Fu Y and Li X: A customized biohybrid presenting cascade responses to tumor microenvironment. Adv Mater. 36:e24049012024. View Article : Google Scholar : PubMed/NCBI | |
|
Deng X, Zhu Y, Dai Z, Liu Q, Song Z, Liu T, Huang Y and Chen H: A bimetallic nanomodulator to reverse immunosuppression via sonodynamic-ferroptosis and lactate metabolism modulation. Small. 20:e24045802024. View Article : Google Scholar : PubMed/NCBI | |
|
Nancolas B, Guo L, Zhou R, Nath K, Nelson DS, Leeper DB, Blair IA, Glickson JD and Halestrap AP: The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Biochem J. 473:929–936. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Halford S, Veal GJ, Wedge SR, Payne GS, Bacon CM, Sloan P, Dragoni I, Heinzmann K, Potter S, Salisbury BM, et al: A phase I dose-escalation study of AZD3965, an oral monocarboxylate transporter 1 inhibitor, in patients with advanced cancer. Clin Cancer Res. 29:1429–1439. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Puri S and Juvale K: Monocarboxylate transporter 1 and 4 inhibitors as potential therapeutics for treating solid tumours: A review with structure-activity relationship insights. Eur J Med Chem. 199:1123932020. View Article : Google Scholar : PubMed/NCBI | |
|
Khan A, Valli E, Lam H, Scott DA, Murray J, Hanssen KM, Eden G, Gamble LD, Pandher R, Flemming CL, et al: Targeting metabolic activity in high-risk neuroblastoma through Monocarboxylate transporter 1 (MCT1) inhibition. Oncogene. 39:3555–3570. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN and Halestrap AP: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 19:3896–3904. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Cai H, Xu C, Wang W, Song X, Li B, Shen Y and Dong X: Acidity-responsive nanoreactors destructed 'Warburg effect' for toxic-acidosis and starvation synergistic therapy. Small. 19:e23040582023. View Article : Google Scholar | |
|
Kobayashi M, Otsuka Y, Itagaki S, Hirano T and Iseki K: Inhibitory effects of statins on human monocarboxylate transporter 4. Int J Pharm. 317:19–25. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Chen ZX, Liu MD, Guo DK, Zou MZ, Wang SB, Cheng H, Zhong Z and Zhang XZ: A MSN-based tumor-targeted nanoplatform to interfere with lactate metabolism to induce tumor cell acidosis for tumor suppression and anti-metastasis. Nanoscale. 12:2966–2972. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Minhas PS, Jones JR, Latif-Hernandez A, Sugiura Y, Durairaj AS, Wang Q, Mhatre SD, Uenaka T, Crapser J, Conley T, et al: Restoring hippocampal glucose metabolism rescues cognition across Alzheimer's disease pathologies. Science. 385:eabm61312024. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Z, Huang Q, Mao L, Wu J, An S, Chen Z and Zhang W: The pyruvate dehydrogenase complex in sepsis: Metabolic regulation and targeted therapy. Front Nutr. 8:7831642021. View Article : Google Scholar : | |
|
Ryoo SM and Kim WY: Clinical applications of lactate testing in patients with sepsis and septic shock. J Emerg Crit Care Med. 2:142018. View Article : Google Scholar | |
|
Wei Y, Zhuang J, Li J, Wang Z, Wang J, Zhang X and Leng J: Lactate trajectories and outcomes in patients with sepsis in the intensive care unit: Group-based trajectory modeling. Front Public Health. 13:16102202025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Yang T, Jiang Q, Zhang L, Shi X, Liu X and Li X: Lactate and lactylation in sepsis: A comprehensive review. J Inflamm Res. 17:4405–4417. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Visker JR, Cluntun AA, Velasco-Silva JN, Eberhardt DR, Cedeño-Rosario L, Shankar TS, Hamouche R, Ling J, Kwak H, Hillas JY, et al: Enhancing mitochondrial pyruvate metabolism ameliorates ischemic reperfusion injury in the heart. JCI Insight. 9:e1809062024. View Article : Google Scholar : PubMed/NCBI | |
|
Fei M, Zhang H, Meng F, An G, Tang J, Tong J, Xiong L, Liu Q and Li C: Enhanced lactate accumulation upregulates PD-L1 expression to delay neutrophil apoptosis in sepsis. VIEW. 5:202300532024. View Article : Google Scholar | |
|
Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ and Alberini CM: Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 144:810–823. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lottes RG, Newton DA, Spyropoulos DD and Baatz JE: Lactate as substrate for mitochondrial respiration in alveolar epithelial type II cells. Am J Physiol Lung Cell Mol Physiol. 308:L953–L961. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Brown CW, Amante JJ, Goel HL and Mercurio AM: The α6β4 integrin promotes resistance to ferroptosis. J Cell Biol. 216:4287–4297. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, Haas R, Smith J, Headland SE, Blighe K, et al: Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 30:1055–1074.e8. 2019. View Article : Google Scholar | |
|
Lei P, Walker T and Ayton S: Neuroferroptosis in health and diseases. Nat Rev Neurosci. 26:497–511. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L, Ma L, Hamm M, Gage FH and Hunter T: Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife. 5:e133742016. View Article : Google Scholar : PubMed/NCBI | |
|
Bittar PG, Charnay Y, Pellerin L, Bouras C and Magistretti PJ: Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab. 16:1079–1089. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Wu N, Wei X, Yu S, Yang L and Zhang X: Lactate in ferroptosis regulation: A new perspective on tumor progression and therapy. Pharmacol Res. 218:1078412025. View Article : Google Scholar : PubMed/NCBI | |
|
Kennedy L, Glesaaen ER, Palibrk V, Pannone M, Wang W, Al-Jabri A, Suganthan R, Meyer N, Austbø ML, Lin X, et al: Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia. Elife. 11:e764512022. View Article : Google Scholar : PubMed/NCBI | |
|
Hu L, Huang S, Chen G, Li B, Li T, Lin M, Huang Y, Xiao Z, Shuai X and Su Z: Nanodrugs incorporating LDHA siRNA inhibit M2-like polarization of TAMs and amplify autophagy to assist oxaliplatin chemotherapy against colorectal cancer. ACS Appl Mater Interfaces. 14:31625–31633. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lu H, Liang B, Hu A, Zhou H, Jia C, Aji A, Chen Q, Ma Y, Cui W, Jiang L and Dong J: Engineered biomimetic cancer cell membrane nanosystems trigger gas-immunometabolic therapy for spinal-metastasized tumors. Adv Mater. 37:e24126552025. View Article : Google Scholar |