You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ and Han M: Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 7:1312022. View Article : Google Scholar : PubMed/NCBI | |
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, et al: 2024 Heart disease and stroke statistics: A report of us and global data from the American Heart Association. Circulation. 149:e347–e913. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Oveisgharan S, Yu L, Barnes LL, Agrawal S, Schneider JA, Bennett DA and Buchman AS: Association of statins with cerebral atherosclerosis and incident parkinsonism in older adults. Neurology. 98:e1976–e1984. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng J, Huang H, Chen Y and Wu R: Nanomedicine for diagnosis and treatment of atherosclerosis. Adv Sci (Weinh). 10:e23042942023. View Article : Google Scholar : PubMed/NCBI | |
|
Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP and Hyatt H: Exercise-induced oxidative stress: Friend or foe? J Sport Health Sci. 9:415–425. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Arazi H, Eghbali E and Suzuki K: Creatine supplementation, physical exercise and oxidative stress markers: A review of the mechanisms and effectiveness. Nutrients. 13:8692021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC and Jun HW: Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev. 170:142–199. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Chen W, Hu K, Luo Y, Zeng W, He X, Li T, Ouyang J, Li Y, Xie L, et al: Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. Nat Nanotechnol. 19:1386–1398. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Tang J, Li T, Xiong X, Yang Q, Su Z, Zheng M and Chen Q: Colchicine delivered by a novel nanoparticle platform alleviates atherosclerosis by targeted inhibition of NF-κB/NLRP3 pathways in inflammatory endothelial cells. J Nanobiotechnology. 21:4602023. View Article : Google Scholar | |
|
Zhou L, Tang S, Li F, Wu Y, Li S, Cui L, Luo J, Yang L, Ren Z, Zhang J, et al: Ceria nanoparticles prophylactic used for renal ischemia-reperfusion injury treatment by attenuating oxidative stress and inflammatory response. Biomaterials. 287:1216862022. View Article : Google Scholar : PubMed/NCBI | |
|
Gao M, Tang M, Ho W, Teng Y, Chen Q, Bu L, Xu X and Zhang XQ: Modulating plaque inflammation via targeted mRNA nanoparticles for the treatment of atherosclerosis. ACS Nano. 17:17721–17739. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Qi Y, Wang S, Luo Y, Huang W, Chen L, Zhang Y, Liang X, Tang J, Zhang Y, Zhang L, et al: Exercise-induced Nitric oxide contributes to spatial memory and hippocampal capillaries in rats. Int J Sports Med. 41:951–961. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lima MR, Moreira BJ, Bertuzzi R and Lima-Silva AE: Could nanotechnology improve exercise performance? Evidence from animal studies. Braz J Med Biol Res. 57:e133602024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang-Bishop L, Kimmel BR, Ngwa VM, Madden MZ, Baljon JJ, Florian DC, Hanna A, Pastora LE, Sheehy TL, Kwiatkowski AJ, et al: STING-activating nanoparticles normalize the vascular-immune interface to potentiate cancer immunotherapy. Sci Immunol. 8:eadd11532023. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Zhao Z, Luo Y, Ning T, Liu P, Chen Q, Chu Y, Guo Q, Zhang Y, Zhou W, et al: Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by reducing oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke. Adv Sci (Weinh). 8:e21015262021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Donskyi IS, Tang W, Deng S, Liu D, Zhang S, Zhao Q and Xing B: Biological effects of black phosphorus nanomaterials on mammalian cells and animals. Angew Chem Int Ed Engl. 62:e2022133362023. View Article : Google Scholar : | |
|
Luo L, Zhang H, Zhang S, Luo C, Kan X, Lv J, Zhao P, Tian Z and Li C: Extracellular vesicle-derived silk fibroin nanoparticles loaded with MFGE8 accelerate skin ulcer healing by targeting the vascular endothelial cells. J Nanobiotechnology. 21:4552023. View Article : Google Scholar : PubMed/NCBI | |
|
Germande O, Baudrimont M, Beaufils F, Freund-Michel V, Ducret T, Quignard JF, Errera MH, Lacomme S, Gontier E, Mornet S, et al: NiONPs-induced alteration in calcium signaling and mitochondrial function in pulmonary artery endothelial cells involves oxidative stress and TRPV4 channels disruption. Nanotoxicology. 16:29–51. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Serra MF, Cotias AC, Pimentel AS, Arantes ACS, Pires ALA, Lanzetti M, Hickmann JM, Barreto E, Carvalho VF, Silva PMRE, et al: Gold nanoparticles inhibit steroid-insensitive asthma in mice preserving histone deacetylase 2 and NRF2 pathways. Antioxidants (Basel). 11:16592022. View Article : Google Scholar : PubMed/NCBI | |
|
Arnst J, Jing Z, Cohen C, Ha SW, Viggeswarapu M and Beck GR: Bioactive silica nanoparticles target autophagy, NF-κB, and MAPK pathways to inhibit osteoclastogenesis. Biomaterials. 301:1222382023. View Article : Google Scholar | |
|
Kabirian F, Baatsen P, Smet M, Shavandi A, Mela P and Heying R: Carbon nanotubes as a nitric oxide nano-reservoir improved the controlled release profile in 3D printed biodegradable vascular grafts. Sci Rep. 13:46622023. View Article : Google Scholar : PubMed/NCBI | |
|
Keyoumu Y, Huo Q, Cheng L, Ma H, Zhang M, Ma Y and Ma X: The detailed biological investigations about combined effects of novel polyphenolic and photo-plasmonic nanoparticles loaded graphene nanosheets on coronary endothelial cells and isolated rat aortic rings. J Photochem Photobiol B. 202:1116662019. View Article : Google Scholar : PubMed/NCBI | |
|
Kang K, Sun C, Li H, Liu X, Deng J, Chen S, Zeng L, Chen J, Liu X, Kuang J, et al: N6-methyladenosine-driven miR-143/145-KLF4 circuit orchestrates the phenotypic switch of pulmonary artery smooth muscle cells. Cell Mol Life Sci. 81:2562024. View Article : Google Scholar : PubMed/NCBI | |
|
Park C, Baek KI and Jo H: Saving KLF2/4 from γ-protocadherin to reduce vascular inflammation and atherosclerosis. Nat Cardiovasc Res. 3:1021–1023. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang K, Li T, Maruf A, Qin X, Luo L, Zhong Y, Qiu J, McGinty S, Pontrelli G, et al: Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics. 11:164–180. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Lu C, Chu F, Bu K, Ma H, Wang Q, Jiao Z, Wang S, Yang X, Gao Y, et al: Fluoride-induced hypertension by regulating RhoA/ROCK pathway and phenotypic transformation of vascular smooth muscle cells: In vitro and in vivo evidence. Ecotoxicol Environ Saf. 281:1166812024. View Article : Google Scholar : PubMed/NCBI | |
|
Hao D, Swindell HS, Ramasubramanian L, Liu R, Lam KS, Farmer DL and Wang A: Extracellular matrix mimicking nanofibrous scaffolds modified with mesenchymal stem cell-derived extracellular vesicles for improved vascularization. Front Bioeng Biotechnol. 8:6332020. View Article : Google Scholar : PubMed/NCBI | |
|
Hatakeyama H, Akita H and Harashima H: A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev. 63:152–160. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kitagawa T, Kosuge H, Uchida M, Iida Y, Dalman RL, Douglas T and McConnell MV: RGD targeting of human ferritin iron oxide nanoparticles enhances in vivo MRI of vascular inflammation and angiogenesis in experimental carotid disease and abdominal aortic aneurysm. J Magn Reson Imaging. 45:1144–1153. 2017. View Article : Google Scholar : | |
|
Liu S, Zhao Y, Shen M, Hao Y, Wu X, Yao Y, Li Y and Yang Q: Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis. J Mater Chem B. 10:562–570. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Li F, Wang Y, Li W, Wu J, Hu X, Tang T and Liu X: Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury: Current strategies and future prospective. Drug Deliv. 31:22985142024. View Article : Google Scholar : | |
|
Walsh D, Kostyunina DS, Blake A, Boylan J and McLoughlin P: Shear stress-induced restoration of pulmonary microvascular endothelial barrier function following ischemia reperfusion injury requires VEGFR2 signaling. Am J Physiol Lung Cell Mol Physiol. 328:L389–L404. 2025. View Article : Google Scholar | |
|
Martelli A, Abate F, Roggia M, Benedetti G, Caradonna E, Calderone V, Tenore GC, Cosconati S, Novellino E and Stornaiuolo M: Trimethylamine N-Oxide (TMAO) acts as inhibitor of endothelial nitric oxide synthase (eNOS) and Hampers NO production and acetylcholine-mediated vasorelaxation in rat aortas. Antioxidants (Basel). 14:5172025. View Article : Google Scholar : PubMed/NCBI | |
|
Min L, Zhong F, Gu L, Lee K and He JC: Krüppel-like factor 2 is an endoprotective transcription factor in diabetic kidney disease. Am J Physiol Cell Physiol. 327:C477–C486. 2024. View Article : Google Scholar | |
|
Yang Q, Chen S, Wang X, Yang X, Chen L, Huang T, Zheng Y, Zheng X, Wu X, Sun Y and Wu J: Exercise mitigates endothelial pyroptosis and atherosclerosis by downregulating NEAT1 through N6-methyladenosine modifications. Arterioscler Thromb Vasc Biol. 43:910–926. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, et al: Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. EMBO J. 43:3175–3191. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Russell-Puleri S, Dela Paz NG, Adams D, Chattopadhyay M, Cancel L, Ebong E, Orr AW, Frangos JA and Tarbell JM: Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. Am J Physiol Heart Circ Physiol. 312:H485–H500. 2017. View Article : Google Scholar : | |
|
Palabiyik AA and Palabiyik E: Pharmacological approaches to enhance mitochondrial biogenesis: Focus on PGC-1Α, AMPK, and SIRT1 in cellular health. Mol Biol Rep. 52:2702025. View Article : Google Scholar | |
|
Zhu C, Zhang Z, Zhu Y, Du Y, Han C, Zhao Q, Li Q, Hou J, Zhang J, He W and Qin Y: Study on the role of Dihuang Yinzi in regulating the AMPK/SIRT1/PGC-1α pathway to promote mitochondrial biogenesis and improve Alzheimer's disease. J Ethnopharmacol. 337:1188592025. View Article : Google Scholar | |
|
Pinto PR, Rocco DDFM, Okuda LS, Machado-Lima A, Castilho G, da Silva KS, Gomes DJ, Pinto Rde S, Iborra RT, Ferreira Gda S, et al: Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta. Lipids Health Dis. 14:1092015. View Article : Google Scholar : PubMed/NCBI | |
|
da Silva Pereira JA, de Souza GP, Virgilio-da-Silva JV, Prodonoff JS, de Castro G, Pimentel LF, Mousovich-Neto F, Davanzo GG, Aguiar CF, Breda CNS, et al: LXR regulation of adipose tissue inflammation during obesity is associated with dysregulated macrophage function. Obesity (Silver Spring). 33:78–90. 2025. View Article : Google Scholar | |
|
Chiang CF, Wang ZZ, Hsu YH, Miaw SC and Lin WL: Exercise improves the outcome of anticancer treatment with ultrasound-hyperthermia-enhanced nanochemotherapy and autophagy inhibitor. PLoS One. 18:e02883802023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Ying X, Pang X, Lin Y, Shen J, Zhao Y, Shen W, Yang Y, Hong Z, Wu W, et al: Exercise-induced Sesn2 mediates autophagic flux to alleviate neural damage after ischemic stroke in mice. Exp Neurol. 386:1151742025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Hong Z, Lin Y, Shen W, Yang Y, Zuo Z and Hu X: Exercise pretreatment alleviates neuroinflammation and oxidative stress by TFEB-mediated autophagic flux in mice with ischemic stroke. Exp Neurol. 364:1143802023. View Article : Google Scholar : PubMed/NCBI | |
|
Tarumi T, Tomoto T, Sugawara J and Zhang R: Aerobic exercise training for the aging brain: Effective dosing and vascular mechanism. Exerc Sport Sci Rev. 53:31–40. 2025. View Article : Google Scholar | |
|
Herbin O, Regelmann AG, Ramkhelawon B, Weinstein EG, Moore KJ and Alexandropoulos K: Monocyte adhesion and plaque recruitment during atherosclerosis development is regulated by the adapter protein Chat-H/SHEP1. Arterioscler Thromb Vasc Biol. 36:1791–1801. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Raine LB, McDonald K, Shigeta TT, Hsieh SS, Hunt J, Chiarlitti NA, Lim M, Gebhardt K, Collins N, De Lisio M, et al: Sympathetic nervous system and exercise affects cognition in youth (SNEACY): Study protocol for a randomized crossover trial. Trials. 22:1542021. View Article : Google Scholar : PubMed/NCBI | |
|
Dash R, Yadav M, Biswal J, Chandra A, Goel VK, Sharma T, Prusty SK and Mohapatra S: Modeling of chitosan modified PLGA atorvastatin-curcumin conjugate (AT-CU) nanoparticles, overcoming the barriers associated with PLGA: An approach for better management of atherosclerosis. Int J Pharm. 640:1230092023. View Article : Google Scholar : PubMed/NCBI | |
|
Janssen SLJE, van Everdingen WM, Saalmink WBJ, Lamers SK, Vroemen WHM, Denessen EJS, Berge K, Bekers O, Hopman MTE, Brink M, et al: Relationship between exercise-induced cardiac troponin elevations and occult coronary atherosclerosis in Middle-aged athletes. J Am Coll Cardiol. 85:2370–2382. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Yan Q, Yan X, Yang X, Li S and Song J: The use of PET/MRI in radiotherapy. Insights Imaging. 15:632024. View Article : Google Scholar : PubMed/NCBI | |
|
Ficker ES, Maranhão RC, Chacra APM, Neves VC, Negrão CE, Martins VC and Vinagre CG: Exercise training accelerates the removal from plasma of LDL-like nanoemulsion in moderately hypercholesterolemic subjects. Atherosclerosis. 212:230–236. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Shanmugam G, Rakshit S and Sarkar K: HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol. 16:1013122022. View Article : Google Scholar | |
|
Kitahara M, Inoue T, Mani H, Takamatsu Y, Ikegami R, Tohyama H and Maejima H: Exercise and pharmacological inhibition of histone deacetylase improves cognitive function accompanied by an increase of gene expressions crucial for neuronal plasticity in the hippocampus. Neurosci Lett. 749:1357492021. View Article : Google Scholar : PubMed/NCBI | |
|
Lai Z, Liang J, Zhang J, Mao Y, Zheng X, Shen X, Lin W and Xu G: Exosomes as a delivery tool of exercise-induced beneficial factors for the prevention and treatment of cardiovascular disease: A systematic review and meta-analysis. Front Physiol. 14:11900952023. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma AK, Kumar A, Sahu M, Sharma G, Datusalia AK and Rajput SK: Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvasc Res. 120:59–66. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Watkins LE, Goyal A, Gatti AA and Kogan F: Imaging of joint response to exercise with MRI and PET. Skeletal Radiol. 52:2159–2183. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Coelho S, Baek J, Walsh J, Gooding JJ and Gaus K: 3D active stabilization for single-molecule imaging. Nat Protoc. 16:497–515. 2021. View Article : Google Scholar | |
|
Karageorgou MA, Bouziotis P, Stiliaris E and Stamopoulos D: Radiolabeled iron oxide nanoparticles as dual modality contrast agents in SPECT/MRI and PET/MRI. Nanomaterials (Basel). 13:5032023. View Article : Google Scholar : PubMed/NCBI | |
|
Bouziotis P, Psimadas D, Tsotakos T, Stamopoulos D and Tsoukalas C: Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr Top Med Chem. 12:2694–2702. 2012. View Article : Google Scholar | |
|
Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D and Tao Y: Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer. 19:472020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang HN, Xiang JZ, Qi Z and Du M: Plant extracts in prevention of obesity. Crit Rev Food Sci Nutr. 62:2221–2234. 2022. View Article : Google Scholar | |
|
Raguram A, Banskota S and Liu DR: Therapeutic in vivo delivery of gene editing agents. Cell. 185:2806–2827. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Marini I, Uzun G, Jamal K and Bakchoul T: Treatment of drug-induced immune thrombocytopenias. Haematologica. 107:1264–1277. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Peñaherrera-Pazmiño AB, Criollo M and Gonzalez-Pastor R: Phytochemical nanoencapsulation and microfluidics drive gene and tumor microenvironment modulation. Front Pharmacol. 16:16947522025. View Article : Google Scholar : PubMed/NCBI | |
|
Takedatsu H, Mitsuyama K and Torimura T: Nanomedicine and drug delivery strategies for treatment of inflammatory bowel disease. World J Gastroenterol. 21:11343–11352. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cordeiro RA, Santo D, Farinha D, Serra A, Faneca H and Coelho JFJ: High transfection efficiency promoted by tailor-made cationic tri-block copolymer-based nanoparticles. Acta Biomater. 47:113–123. 2017. View Article : Google Scholar | |
|
Li Z, Li G, Xu J, Li C, Han S, Zhang C, Wu P, Lin Y, Wang C, Zhang J, et al: Hydrogel transformed from nanoparticles for prevention of tissue injury and treatment of inflammatory diseases. Adv Mater. 34:e21091782022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun R, Wang X, Nie Y, Hu A, Liu H, Zhang K, Zhang L, Wu Q, Li K, Liu C, et al: Targeted trapping of endogenous endothelial progenitor cells for myocardial ischemic injury repair through neutrophil-mediated SPIO nanoparticle-conjugated CD34 antibody delivery and imaging. Acta Biomater. 146:421–433. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Malcolm DW and Benoit DSW: Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials. 139:127–138. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jing L, Qu H, Wu D, Zhu C, Yang Y, Jin X, Zheng J, Shi X, Yan X and Wang Y: Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Theranostics. 8:2683–2695. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hou J, Wang L, Wang C, Zhang S, Liu H, Li S and Wang X: Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci (China). 75:40–53. 2019. View Article : Google Scholar | |
|
Haghighat F, Kim Y, Sourinejad I, Yu IJ and Johari SA: Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio). Chemosphere. 262:1278052021. View Article : Google Scholar | |
|
Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, Wilson S, Vesey AT, Fokkens PHB, Boere AJF, et al: Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano. 11:4542–4552. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Czubacka E and Czerczak S: Are platinum nanoparticles safe to human health? Med Pr. 70:487–495. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun D, Chen J, Wang Y, Ji H, Peng R, Jin L and Wu W: Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics. 9:6885–6900. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li P, Wang D, Hu J and Yang X: The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev. 189:1144472022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Schilperoort M, Cao Y, Shi J, Tabas I and Tao W: Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol. 19:228–249. 2022. View Article : Google Scholar | |
|
Patra S, Singh M, Wasnik K, Pareek D, Gupta PS, Mukherjee S and Paik P: Polymeric nanoparticle based diagnosis and nanomedicine for treatment and development of vaccines for cerebral malaria: A review on recent advancement. ACS Appl Bio Mater. 4:7342–7365. 2021. View Article : Google Scholar | |
|
Choi KA, Kim JH, Ryu K and Kaushik N: Current nanomedicine for targeted vascular disease treatment: Trends and perspectives. Int J Mol Sci. 23:123972022. View Article : Google Scholar : PubMed/NCBI | |
|
Aili T, Zong JB, Zhou YF, Liu YX, Yang XL, Hu B and Wu JH: Recent advances of self-assembled nanoparticles in the diagnosis and treatment of atherosclerosis. Theranostics. 14:7505–7533. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hossaini Nasr S, Rashidijahanabad Z, Ramadan S, Kauffman N, Parameswaran N, Zinn KR, Qian C, Arora R, Agnew D and Huang X: Effective atherosclerotic plaque inflammation inhibition with targeted drug delivery by hyaluronan conjugated atorvastatin nanoparticles. Nanoscale. 12:9541–9556. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Lin C, Zhong W, Yuan Z, Yan P and Guan S: Effective attenuation of arteriosclerosis following lymphatic-targeted delivery of hyaluronic acid-decorated rapamycin liposomes. Int J Nanomedicine. 18:4403–4419. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, She P, Ma B, Zhao Z, Li G and Wang Y: ROS responsive nanoparticles loaded with lipid-specific AIEgen for atherosclerosis-targeted diagnosis and bifunctional therapy. Biomaterials. 288:1217342022. View Article : Google Scholar : PubMed/NCBI | |
|
Karami Z, Mehrzad J, Akrami M and Hosseinkhani S: Anti-inflammation-based treatment of atherosclerosis using Gliclazide-loaded biomimetic nanoghosts. Sci Rep. 13:138802023. View Article : Google Scholar : PubMed/NCBI | |
|
Groner J, Tognazzi M, Walter M, Fleischmann D, Mietzner R, Ziegler CE, Goepferich AM and Breunig M: Encapsulation of pioglitazone into Polymer-nanoparticles for potential treatment of atherosclerotic diseases. ACS Appl Bio Mater. 6:2111–2121. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zou L, Zhang Y, Cheraga N, Abodunrin OD, Qu KY, Qiao L, Ma YQ, Chen LJ and Huang NP: Chlorin e6 (Ce6)-loaded plaque-specific liposome with enhanced photodynamic therapy effect for atherosclerosis treatment. Talanta. 265:1247722023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu L, Li H, Li J, Zhong Y, Wu S, Yan M, Ni S, Zhang K, Wang G, Qu K, et al: Biomimetic nanoparticles to enhance the reverse cholesterol transport for selectively inhibiting development into foam cell in atherosclerosis. J Nanobiotechnology. 21:3072023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Z, Wu Z, Huang S, Ye K, Jiang Y, Liu J, Liu J, Lu X and Li B: A metal-organic framework-based immunomodulatory nanoplatform for anti-atherosclerosis treatment. J Control Release. 354:615–625. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Q, Wu S, Yang L, Wei Y, He C, Wang W, Zhao Y, Wang Z, Yang S, Shi D, et al: Hyaluronic Acid-guided cerasome nano-agents for simultaneous imaging and treatment of advanced atherosclerosis. Adv Sci (Weinh). 10:e22024162022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, She P, Zhao Z, Ma B, Li G and Wang Y: Duplex responsive nanoplatform with cascade targeting for atherosclerosis photoacoustic diagnosis and multichannel combination therapy. Adv Mater. 35:e23004392023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang X, Zhang Y, Zhang W, Qin C, Zhu Y, Fang Y, Wang Y, Tang C and Cao F: Osteopontin-targeted and PPARδ-agonist-loaded nanoparticles efficiently reduce atherosclerosis in apolipoprotein E−/− mice. ACS Omega. 7:28767–28778. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sheng J, Zu Z, Zhang Y, Zhu H, Qi J, Zheng T, Tian Y and Zhang L: Targeted therapy of atherosclerosis by zeolitic imidazolate framework-8 nanoparticles loaded with losartan potassium via simultaneous lipid-scavenging and anti-inflammation. J Mater Chem B. 10:5925–5937. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Boersma B, Möller K, Wehl L, Puddinu V, Huard A, Fauteux-Daniel S, Bourquin C, Palmer G and Bein T: Inhibition of IL-1β release from macrophages targeted with necrosulfonamide-loaded porous nanoparticles. J Control Release. 351:989–1002. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, You P, Liu H, Fan J, Tong C, Yang A, Jiang Y and Liu B: Artemisinin and Procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux. J Control Release. 341:828–843. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mehta S, Bongcaron V, Nguyen TK, Jirwanka Y, Maluenda A, Walsh APG, Palasubramaniam J, Hulett MD, Srivastava R, Bobik A, et al: An Ultrasound-responsive theranostic Cyclodextrin-loaded nanoparticle for multimodal imaging and therapy for atherosclerosis. Small. 18:e22009672022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheraga N, Ye Z, Xu MJ, Zou L, Sun NC, Hang Y, Shan CJ, Yang ZZ, Chen LJ and Huang NP: Targeted therapy of atherosclerosis by pH-sensitive hyaluronic acid nanoparticles co-delivering all-trans retinal and rapamycin. Nanoscale. 14:8709–8726. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Song K, Tang Z, Song Z, Meng S, Yang X, Guo H, Zhu Y and Wang X: Hyaluronic Acid-functionalized mesoporous silica nanoparticles loading simvastatin for targeted therapy of atherosclerosis. Pharmaceutics. 14:12652022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun W, Xu Y, Yao Y, Yue J, Wu Z, Li H, Shen G, Liao Y, Wang H and Zhou W: Self-oxygenation mesoporous MnO2 nanoparticles with ultra-high drug loading capacity for targeted arteriosclerosis therapy. J Nanobiotechnology. 20:882022. View Article : Google Scholar | |
|
De Negri Atanasio G, Ferrari PF, Baião A, Perego P, Sarmento B, Palombo D and Campardelli R: Bevacizumab encapsulation into PLGA nanoparticles functionalized with immunouteroglobin-1 as an innovative delivery system for atherosclerosis. Int J Biol Macromol. 221:1618–1630. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
du Toit LC, Hulisani Demana P and Essop Choonara Y: A nano-enabled biotinylated anti-LDL theranostic system to modulate systemic LDL cholesterol. Int J Pharm. 628:1222582022. View Article : Google Scholar : PubMed/NCBI | |
|
Deuringer B, Härdtner C, Krebs K, Thomann R, Holzer M, Hilgendorf I and Süss R: Everolimus-loaded reconstituted high-density lipoprotein prepared by a novel dual centrifugation approach for Anti-atherosclerotic therapy. Int J Nanomedicine. 17:5081–5097. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wei B, Li Y, Ao M, Shao W, Wang K, Rong T, Zhou Y and Chen Y: Ganglioside GM3-functionalized reconstituted high-density lipoprotein (GM3-rHDL) as a novel nanocarrier enhances antiatherosclerotic efficacy of statins in apoE−/− C57BL/6 mice. Pharmaceutics. 14:25342022. View Article : Google Scholar | |
|
Jebari-Benslaiman S, Uribe KB, Benito-Vicente A, Galicia-Garcia U, Larrea-Sebal A, Santin I, Alloza I, Vandenbroeck K, Ostolaza H and Martín C: Boosting cholesterol efflux from foam cells by sequential administration of rHDL to deliver MicroRNA and to remove cholesterol in a triple-cell 2D atherosclerosis model. Small. 18:e21059152022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Zhuang J, Sun D, Ding Q, Zheng H, Li H, Zhang X, Du Y, Ma T and Meng Q: Netrin-1 monoclonal antibody-functionalized nanoparticle loaded with metformin prevents the progression of abdominal aortic aneurysms. Int J Nanomedicine. 18:627–639. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Wu Y, Li R, Li C, Xu L, Qiao W and Dong N: Galactose-modified nanoparticles for delivery of microRNA to mitigate the progress of abdominal aortic aneurysms via regulating macrophage polarization. Nanomedicine. 44:1025642022. View Article : Google Scholar : PubMed/NCBI | |
|
Dhital S, Rice CD and Vyavahare NR: Reversal of elastase-induced abdominal aortic aneurysm following the delivery of nanoparticle-based pentagalloyl glucose (PGG) is associated with reduced inflammatory and immune markers. Eur J Pharmacol. 910:1744872021. View Article : Google Scholar : PubMed/NCBI | |
|
Fukuhara N, Honda Y, Ukita N, Matsui M, Miura Y and Hoshina K: Efficient suppression of abdominal aortic aneurysm expansion in rats through systemic administration of statin-loaded nanomedicine. Int J Mol Sci. 21:87022020. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng J, Zhang R, Li C, Tao H, Dou Y, Wang Y, Hu H and Zhang J: A Targeting nanotherapy for abdominal aortic aneurysms. J Am Coll Cardiol. 72:2591–2605. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nosoudi N, Chowdhury A, Siclari S, Karamched S, Parasaram V, Parrish J, Gerard P and Vyavahare N: Reversal of vascular calcification and aneurysms in a rat model using dual targeted therapy with EDTA- and PGG-loaded nanoparticles. Theranostics. 6:1975–1987. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Boada C, Zinger A, Tsao C, Zhao P, Martinez JO, Hartman K, Naoi T, Sukhoveshin R, Sushnitha M, Molinaro R, et al: Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res. 126:25–37. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bhatia SN, Chen X, Dobrovolskaia MA and Lammers T: Cancer nanomedicine. Nat Rev Cancer. 22:550–556. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Luo XM, Yan C and Feng YM: Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Adv Drug Deliv Rev. 172:234–248. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
van Tilborg GAF, Vucic E, Strijkers GJ, Cormode DP, Mani V, Skajaa T, Reutelingsperger CP, Fayad ZA, Mulder WJ and Nicolay K: Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques. Bioconjug Chem. 21:1794–1803. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Marrache S and Dhar S: Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc Natl Acad Sci USA. 110:9445–9450. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Gong Y, Wang Z, Jiang L, Chen R, Fan X, Zhu H, Han L, Li X, Xiao J and Kong X: Apelin inhibits the proliferation and migration of rat PASMCs via the activation of PI3K/Akt/mTOR signal and the inhibition of autophagy under hypoxia. J Cell Mol Med. 18:542–553. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng H, Zhai W, Zhong C, Hong Q, Li H, Rui B, Zhu X, Que D, Feng L, Yu B, et al: Nkx2-3 induces autophagy inhibiting proliferation and migration of vascular smooth muscle cells via AMPK/mTOR signaling pathway. J Cell Physiol. 236:7342–7355. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chan JW, Lewis DR, Petersen LK, Moghe PV and Uhrich KE: Amphiphilic macromolecule nanoassemblies suppress smooth muscle cell proliferation and platelet adhesion. Biomaterials. 84:219–229. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Anghelache M, Voicu G, Deleanu M, Turtoi M, Safciuc F, Anton R, Boteanu D, Fenyo IM, Manduteanu I, Simionescu M and Calin M: Biomimetic nanocarriers of Pro-resolving lipid mediators for resolution of inflammation in atherosclerosis. Adv Healthc Mater. 13:e23022382024. View Article : Google Scholar | |
|
Deshpande D, Kethireddy S, Janero DR and Amiji MM: Therapeutic efficacy of an ω-3-fatty acid-containing 17-β estradiol Nano-delivery system against experimental atherosclerosis. PLoS One. 11:e01473372016. View Article : Google Scholar | |
|
Sano M, Akagi D, Naito M, Hoshina K, Miyata K, Kataoka K and Ishihara S: Systemic single administration of anti-inflammatory microRNA 146a-5p loaded in polymeric nanomedicines with active targetability attenuates neointimal hyperplasia by controlling inflammation in injured arteries in a rat model. FASEB J. 36:e224862022. View Article : Google Scholar : PubMed/NCBI | |
|
Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR and Mallat Z: Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 16:727–744. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bentzon JF, Otsuka F, Virmani R and Falk E: Mechanisms of plaque formation and rupture. Circ Res. 114:1852–1866. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Halcox JPJ, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR and Quyyumi AA: Prognostic value of coronary vascular endothelial dysfunction. Circulation. 106:653–658. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Hou L, Zhang M, Liu L, Zhong Q, Xie M and Zhao G: Therapeutic applications of nanomedicine in metabolic diseases by targeting the endothelium. QJM. 116:493–501. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Deng Y, Deng X, Li Y, Tian J, Wu M, Tang J, Liang X, Yang X, He X, Liu Y, et al: Size-adjustable nanoparticles co-target macrophages and endothelial cells for enhanced atherosclerosis therapy. Colloids Surf B Biointerfaces. 255:1149522025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Feng Y, Yang X, Wang W and Wang Y: Diagnosis of atherosclerotic plaques using vascular endothelial growth factor receptor-2 targeting antibody Nano-microbubble as ultrasound contrast agent. Comput Math Methods Med. 2022:65245922022.PubMed/NCBI | |
|
Bu T, Li Z, Hou Y, Sun W, Zhang R, Zhao L, Wei M, Yang G and Yuan L: Exosome-mediated delivery of inflammation-responsive mRNA for controlled atherosclerosis treatment. Theranostics. 11:9988–10000. 2021. View Article : Google Scholar : | |
|
Distasio N, Dierick F, Ebrahimian T, Tabrizian M and Lehoux S: Design and development of branched Poly(β-aminoester) nanoparticles for Interleukin-10 gene delivery in a mouse model of atherosclerosis. Acta Biomater. 143:356–371. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Song C, Wang Y, Cui L, Yan F and Shen S: Triptolide attenuates lipopolysaccharide-induced inflammatory responses in human endothelial cells: Involvement of NF-κB pathway. BMC Complement Altern Med. 19:1982019. View Article : Google Scholar | |
|
Lai K, Li Y, Gong Y, Li L, Huang C, Xu F, Zhong X and Jin C: Triptolide-nanoliposome-APRPG, a novel sustained-release drug delivery system targeting vascular endothelial cells, enhances the inhibitory effects of triptolide on laser-induced choroidal neovascularization. Biomed Pharmacother. 131:1107372020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu ML, Wang G, Wang H, Guo YM, Song P, Xu J, Li P, Wang S and Yang L: Amorphous nano-selenium quantum dots improve endothelial dysfunction in rats and prevent atherosclerosis in mice through Na/H exchanger 1 inhibition. Vascul Pharmacol. 115:26–32. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Beconcini D, Fabiano A, Zambito Y, Berni R, Santoni T, Piras AM and Di Stefano R: Chitosan-based nanoparticles containing cherry Extract from Prunus avium L. to improve the resistance of endothelial cells to oxidative stress. Nutrients. 10:15982018. View Article : Google Scholar : PubMed/NCBI | |
|
Ke S, Lai Y, Zhou T, Li L, Wang Y, Ren L and Ye S: Molybdenum disulfide nanoparticles resist oxidative Stress-mediated impairment of autophagic flux and mitigate endothelial cell senescence and angiogenic dysfunctions. ACS Biomater Sci Eng. 4:663–674. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yan H, Hu Y, Lyu Y, Akk A, Hirbe AC, Wickline SA, Pan H, Roberson EDO and Pham CTN: Augmented expression of superoxide dismutase 2 mitigates progression and rupture of experimental abdominal aortic aneurysm. Theranostics. 15:4016–4032. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Lockhart JH, VanWye J, Banerjee R, Wickline SA, Pan H and Totary-Jain H: Self-assembled miRNA-switch nanoparticles target denuded regions and prevent restenosis. Mol Ther. 29:1744–1757. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pham LM, Kim EC, Ou W, Phung CD, Nguyen TT, Pham TT, Poudel K, Gautam M, Nguyen HT, Jeong JH, et al: Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials. 269:1206772021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang BF, Jiang H, Chen J, Hu Q, Yang S and Liu XP: Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction. J Cell Physiol. 234:18544–18559. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yu B, Li H, Zhang Z, Chen P, Wang L, Fan X, Ning X, Pan Y, Zhou F, Hu X, et al: Extracellular vesicles engineering by silicates-activated endothelial progenitor cells for myocardial infarction treatment in male mice. Nat Commun. 14:20942023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Yang Y, Xiong K, Li X, Qi P, Tu Q, Jing F, Weng Y, Wang J and Huang N: Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents. Biomaterials. 63:80–92. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Huang SF, Zhao G, Peng XF and Ye WC: The pathogenic role of long Non-coding RNA H19 in atherosclerosis the miR-146a-5p/ANGPTL4 pathway. Front Cardiovasc Med. 8:7701632021. View Article : Google Scholar | |
|
Sager HB, Dutta P, Dahlman JE, Hulsmans M, Courties G, Sun Y, Heidt T, Vinegoni C, Borodovsky A, Fitzgerald K, et al: RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci Transl Med. 8:342ra3802016. View Article : Google Scholar | |
|
Orecchioni M, Kobiyama K, Winkels H, Ghosheh Y, McArdle S, Mikulski Z, Kiosses WB, Fan Z, Wen L, Jung Y, et al: Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science. 375:214–221. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Seneviratne AN, Edsfeldt A, Cole JE, Kassiteridi C, Swart M, Park I, Green P, Khoyratty T, Saliba D, Goddard ME, et al: Interferon regulatory factor 5 controls necrotic core formation in atherosclerotic lesions by impairing efferocytosis. Circulation. 136:1140–1154. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Stoneman V, Braganza D, Figg N, Mercer J, Lang R, Goddard M and Bennett M: Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res. 100:884–893. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gao C, Huang Q, Liu C, Kwong CHT, Yue L, Wan JB, Lee SMY and Wang R: Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun. 11:26222020. View Article : Google Scholar : PubMed/NCBI | |
|
Boada C, Zinger A, Tsao C, Zhao P, Martinez JO, Hartman K, Naoi T, Sukhoveshin R, Sushnitha M, Molinaro R, et al: Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res. 126:25–37. 2020. View Article : Google Scholar | |
|
Zhang X, Misra SK, Moitra P, Zhang X, Jeong SJ, Stitham J, Rodriguez-Velez A, Park A, Yeh YS, Gillanders WE, et al: Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis. Autophagy. 19:886–903. 2023. View Article : Google Scholar : | |
|
Stachyra K, Wiśniewska A, Kiepura A, Kuś K, Rolski F, Czepiel K, Chmura Ł, Majka G, Surmiak M, Polaczek J, et al: Inhaled silica nanoparticles exacerbate atherosclerosis through skewing macrophage polarization towards M1 phenotype. Ecotoxicol Environ Saf. 230:1131122021. View Article : Google Scholar : PubMed/NCBI | |
|
Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, Aubertin-Leheudre M, Bernabei R, Cadore EL, Cesari M, et al: International exercise recommendations in older adults (ICFSR): Expert elines. J Nutr Health Aging. 25:824–853. 2021. View Article : Google Scholar | |
|
Bierer BE, Zarin DA and Gelinas L: Deprioritization of ongoing clinical trials. Ethics Hum Res. 45:27–33. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Ding Y, Chong K, Cui M, Cao Z, Tang C, Tian Z, Hu Y, Zhao Y and Jiang S: Recent advances in lipid nanoparticles and their safety concerns for mRNA delivery. Vaccines (Basel). 12:11482024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Zhou Y, Li Z and Guo L: Nanomedicine in cardiovascular and cerebrovascular diseases: Targeted nanozyme therapies and their clinical potential and current challenges. J Nanobiotechnology. 23:5432025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y and Zhang Y: A Journey of challenges and victories: A bibliometric worldview of nanomedicine since the 21st Century. Adv Mater. 36:e23089152024. View Article : Google Scholar : PubMed/NCBI | |
|
Macário-Soares A, Sousa-Oliveira I, Correia M, Pires PC, Sharma A, Kumar Jha N, Zare EN, Veiga F, Gowda BHJ, Borzacchiello A, et al: Cell membrane and extracellular vesicle membrane-coated nanoparticles: An envisaged approach for the management of skin conditions. View. 5:202400432024. View Article : Google Scholar | |
|
Ghosh A, Gupta A, Jena S, Kirti A, Choudhury A, Saha U, Sinha A, Kumari S, Kujawska M, Kaushik A and Verma SK: Advances in posterity of visualization in paradigm of nano-level ultra-structures for nano-bio interaction studies. View. 6:202400422025. View Article : Google Scholar | |
|
Li Y, Liang D, Wang R, Yang S, Liu W, Sang Q, Pu J, Wang Y and Qian K: Interfacial Self-assembly nanostructures: Constructions and applications. Small. 20:e24053182024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Li Y, Wang R, Yang S, Li P, Zhao K, Gu Y, Meng K, Li J, Pu J, et al: Plasmonic alloys enhance metabolic fingerprints for rapid diagnosis and classification of myocardial infarction. Nano Today. 62:1027022025. View Article : Google Scholar | |
|
Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V and Thompson M: Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 8:543–557. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Zhang J, Song J, Liu Y, Ren X and Zhao Y: Protein-based nanomedicine for therapeutic benefits of cancer. ACS Nano. 15:8001–8038. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Luo B, Xiang D, Ji X, Chen X, Li R, Zhang S, Meng Y, Nieman DC and Chen P: The anti-inflammatory effects of exercise on autoimmune diseases: A 20-year systematic review. J Sport Health Sci. 13:353–367. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D and Zhang HG: A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 18:1606–1614. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cui C, Du M, Zhao Y, Tang J, Liu M, Min G, Chen R, Zhang Q, Sun Z and Weng H: Functional Ginger-derived extracellular vesicles-coated ZIF-8 containing TNF-α siRNA for ulcerative colitis therapy by modulating gut microbiota. ACS Appl Mater Interfaces. 16:53460–53473. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang E, Rossman MJ, Groot HJ, Garten RS, Jarrett CL, Helgerud J, Hoff J and Richardson RS: Leg vascular function with advancing age in men: The impact of physical activity and endurance exercise training. J Appl Physiol (1985). 139:473–481. 2025. View Article : Google Scholar : PubMed/NCBI |