Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2026 Volume 57 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2026 Volume 57 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Nanomaterials and exercise interventions: A synergistic approach for atherosclerosis therapy (Review)

  • Authors:
    • Quanquan Zhou
    • Ge‑Lin Zhang
    • Weitong Sun
    • Jiayi Cai
    • Li-Hua Yu
  • View Affiliations / Copyright

    Affiliations: College of Physical Education, Shandong Sport University, Jinan, Shandong 250000, P.R. China, College of Physical Education, Changsha University of Science and Technology, Changsha, Hunan 410000, P.R. China, College of Physical Education, Yanshan University, Qinhuangdao, Hebei 066000, P.R. China, School of Economics and Management, The University of Sydney, Sydney NSW 2006, Australia
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 44
    |
    Published online on: December 10, 2025
       https://doi.org/10.3892/ijmm.2025.5715
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Atherosclerosis constitutes the fundamental pathological basis for cardiovascular diseases, with its pathogenesis intricately associated with dysfunctions in vascular endothelial and smooth muscle cells. Nanomaterials have emerged as a promising research focus within the biomedical field, attributed to their distinctive physicochemical properties. The present review explores the potential of nanomaterials, in conjunction with exercise interventions, to synergistically enhance vascular cell function, thereby presenting innovative therapeutic strategies against atherosclerosis. The present review systematically evaluates the various types of nanomaterials, elucidates their mechanisms of action, examines the synergistic effects of exercise interventions and discusses the challenges encountered in clinical translation, along with prospective directions for future research in this dynamic field.
View Figures

Figure 1

Application of nanomedicine for
therapeutics of atherosclerosis. Schematic representation of
nanoparticles functionalized with specific physicochemical
properties, including size, surface charge, functional groups,
shape, stiffness and chemical composition, is provided. The
biological responses to these nanoparticles encompass
biodistribution, biosafety and clearance. In the field of
nanomedicine, examples include RAPA-loaded liposomes, Ce6-loaded
liposomes, PAIASePSD nanoparticles, GM3-rHDL and nanoparticles
loaded with ART and PC. These nanomedicines are produced through
industrial-scale production processes, ensuring batch-to-batch
reproducibility and stability of the nanoformulations. When
nanomaterials are administered intravenously, they can exert
various beneficial effects, such as the inhibition of inflammatory
and pro-fibrotic pathways, reduction of lipid accumulation,
decrease in LDL levels, increase in HDL levels, reduction of drug
toxicity, mitigation of adverse cardiovascular events and
improvement of endothelial cell and smooth muscle cell function.
The efficacy of targeted delivery of dual or multiple therapeutics
across different anti-atherogenic pathways is key for synergistic
anti-atherosclerosis therapies. ART, artemisinin; Ce6, Chlorin e6;
GM3-rHDL, GM3-functionalized reconstituted high-density
lipoprotein; HDL, high-density lipoprotein; LDL, low-density
lipoprotein; PA/ASePSD NPs, polylactide/alpha-lactalbumin selective
pH-sensitive delivery nanoparticles; PC, procyanidins. RAPA,
rapamycin.

Figure 2

NP targeting atherosclerotic plaques
in mouse and human models. NP have the capability to bind to ECs,
SMCs and macrophages, facilitating NP-mediated drug delivery to
atherosclerotic plaques within blood vessels in both murine and
human models. Key concepts of NP application in atherosclerosis
include precise targeting, multifunctionality, high local drug
concentration and controlled drug release. These attributes
collectively enhance therapeutic efficacy while minimizing
off-target and systemic side effects. ECs, endothelial cells; NP,
nanoparticles; SMCs, smooth muscle cells.
View References

1 

Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ and Han M: Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 7:1312022. View Article : Google Scholar : PubMed/NCBI

2 

Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, et al: 2024 Heart disease and stroke statistics: A report of us and global data from the American Heart Association. Circulation. 149:e347–e913. 2024. View Article : Google Scholar : PubMed/NCBI

3 

Oveisgharan S, Yu L, Barnes LL, Agrawal S, Schneider JA, Bennett DA and Buchman AS: Association of statins with cerebral atherosclerosis and incident parkinsonism in older adults. Neurology. 98:e1976–e1984. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Cheng J, Huang H, Chen Y and Wu R: Nanomedicine for diagnosis and treatment of atherosclerosis. Adv Sci (Weinh). 10:e23042942023. View Article : Google Scholar : PubMed/NCBI

5 

Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP and Hyatt H: Exercise-induced oxidative stress: Friend or foe? J Sport Health Sci. 9:415–425. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Arazi H, Eghbali E and Suzuki K: Creatine supplementation, physical exercise and oxidative stress markers: A review of the mechanisms and effectiveness. Nutrients. 13:8692021. View Article : Google Scholar : PubMed/NCBI

7 

Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC and Jun HW: Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev. 170:142–199. 2021. View Article : Google Scholar : PubMed/NCBI

8 

He Z, Chen W, Hu K, Luo Y, Zeng W, He X, Li T, Ouyang J, Li Y, Xie L, et al: Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. Nat Nanotechnol. 19:1386–1398. 2024. View Article : Google Scholar : PubMed/NCBI

9 

Tang J, Li T, Xiong X, Yang Q, Su Z, Zheng M and Chen Q: Colchicine delivered by a novel nanoparticle platform alleviates atherosclerosis by targeted inhibition of NF-κB/NLRP3 pathways in inflammatory endothelial cells. J Nanobiotechnology. 21:4602023. View Article : Google Scholar

10 

Zhou L, Tang S, Li F, Wu Y, Li S, Cui L, Luo J, Yang L, Ren Z, Zhang J, et al: Ceria nanoparticles prophylactic used for renal ischemia-reperfusion injury treatment by attenuating oxidative stress and inflammatory response. Biomaterials. 287:1216862022. View Article : Google Scholar : PubMed/NCBI

11 

Gao M, Tang M, Ho W, Teng Y, Chen Q, Bu L, Xu X and Zhang XQ: Modulating plaque inflammation via targeted mRNA nanoparticles for the treatment of atherosclerosis. ACS Nano. 17:17721–17739. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Qi Y, Wang S, Luo Y, Huang W, Chen L, Zhang Y, Liang X, Tang J, Zhang Y, Zhang L, et al: Exercise-induced Nitric oxide contributes to spatial memory and hippocampal capillaries in rats. Int J Sports Med. 41:951–961. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Lima MR, Moreira BJ, Bertuzzi R and Lima-Silva AE: Could nanotechnology improve exercise performance? Evidence from animal studies. Braz J Med Biol Res. 57:e133602024. View Article : Google Scholar : PubMed/NCBI

14 

Wang-Bishop L, Kimmel BR, Ngwa VM, Madden MZ, Baljon JJ, Florian DC, Hanna A, Pastora LE, Sheehy TL, Kwiatkowski AJ, et al: STING-activating nanoparticles normalize the vascular-immune interface to potentiate cancer immunotherapy. Sci Immunol. 8:eadd11532023. View Article : Google Scholar : PubMed/NCBI

15 

Li C, Zhao Z, Luo Y, Ning T, Liu P, Chen Q, Chu Y, Guo Q, Zhang Y, Zhou W, et al: Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by reducing oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke. Adv Sci (Weinh). 8:e21015262021. View Article : Google Scholar : PubMed/NCBI

16 

Zhang X, Donskyi IS, Tang W, Deng S, Liu D, Zhang S, Zhao Q and Xing B: Biological effects of black phosphorus nanomaterials on mammalian cells and animals. Angew Chem Int Ed Engl. 62:e2022133362023. View Article : Google Scholar :

17 

Luo L, Zhang H, Zhang S, Luo C, Kan X, Lv J, Zhao P, Tian Z and Li C: Extracellular vesicle-derived silk fibroin nanoparticles loaded with MFGE8 accelerate skin ulcer healing by targeting the vascular endothelial cells. J Nanobiotechnology. 21:4552023. View Article : Google Scholar : PubMed/NCBI

18 

Germande O, Baudrimont M, Beaufils F, Freund-Michel V, Ducret T, Quignard JF, Errera MH, Lacomme S, Gontier E, Mornet S, et al: NiONPs-induced alteration in calcium signaling and mitochondrial function in pulmonary artery endothelial cells involves oxidative stress and TRPV4 channels disruption. Nanotoxicology. 16:29–51. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Serra MF, Cotias AC, Pimentel AS, Arantes ACS, Pires ALA, Lanzetti M, Hickmann JM, Barreto E, Carvalho VF, Silva PMRE, et al: Gold nanoparticles inhibit steroid-insensitive asthma in mice preserving histone deacetylase 2 and NRF2 pathways. Antioxidants (Basel). 11:16592022. View Article : Google Scholar : PubMed/NCBI

20 

Arnst J, Jing Z, Cohen C, Ha SW, Viggeswarapu M and Beck GR: Bioactive silica nanoparticles target autophagy, NF-κB, and MAPK pathways to inhibit osteoclastogenesis. Biomaterials. 301:1222382023. View Article : Google Scholar

21 

Kabirian F, Baatsen P, Smet M, Shavandi A, Mela P and Heying R: Carbon nanotubes as a nitric oxide nano-reservoir improved the controlled release profile in 3D printed biodegradable vascular grafts. Sci Rep. 13:46622023. View Article : Google Scholar : PubMed/NCBI

22 

Keyoumu Y, Huo Q, Cheng L, Ma H, Zhang M, Ma Y and Ma X: The detailed biological investigations about combined effects of novel polyphenolic and photo-plasmonic nanoparticles loaded graphene nanosheets on coronary endothelial cells and isolated rat aortic rings. J Photochem Photobiol B. 202:1116662019. View Article : Google Scholar : PubMed/NCBI

23 

Kang K, Sun C, Li H, Liu X, Deng J, Chen S, Zeng L, Chen J, Liu X, Kuang J, et al: N6-methyladenosine-driven miR-143/145-KLF4 circuit orchestrates the phenotypic switch of pulmonary artery smooth muscle cells. Cell Mol Life Sci. 81:2562024. View Article : Google Scholar : PubMed/NCBI

24 

Park C, Baek KI and Jo H: Saving KLF2/4 from γ-protocadherin to reduce vascular inflammation and atherosclerosis. Nat Cardiovasc Res. 3:1021–1023. 2024. View Article : Google Scholar : PubMed/NCBI

25 

Wang Y, Zhang K, Li T, Maruf A, Qin X, Luo L, Zhong Y, Qiu J, McGinty S, Pontrelli G, et al: Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics. 11:164–180. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Yang W, Lu C, Chu F, Bu K, Ma H, Wang Q, Jiao Z, Wang S, Yang X, Gao Y, et al: Fluoride-induced hypertension by regulating RhoA/ROCK pathway and phenotypic transformation of vascular smooth muscle cells: In vitro and in vivo evidence. Ecotoxicol Environ Saf. 281:1166812024. View Article : Google Scholar : PubMed/NCBI

27 

Hao D, Swindell HS, Ramasubramanian L, Liu R, Lam KS, Farmer DL and Wang A: Extracellular matrix mimicking nanofibrous scaffolds modified with mesenchymal stem cell-derived extracellular vesicles for improved vascularization. Front Bioeng Biotechnol. 8:6332020. View Article : Google Scholar : PubMed/NCBI

28 

Hatakeyama H, Akita H and Harashima H: A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev. 63:152–160. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Kitagawa T, Kosuge H, Uchida M, Iida Y, Dalman RL, Douglas T and McConnell MV: RGD targeting of human ferritin iron oxide nanoparticles enhances in vivo MRI of vascular inflammation and angiogenesis in experimental carotid disease and abdominal aortic aneurysm. J Magn Reson Imaging. 45:1144–1153. 2017. View Article : Google Scholar :

30 

Liu S, Zhao Y, Shen M, Hao Y, Wu X, Yao Y, Li Y and Yang Q: Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis. J Mater Chem B. 10:562–570. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Li S, Li F, Wang Y, Li W, Wu J, Hu X, Tang T and Liu X: Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury: Current strategies and future prospective. Drug Deliv. 31:22985142024. View Article : Google Scholar :

32 

Walsh D, Kostyunina DS, Blake A, Boylan J and McLoughlin P: Shear stress-induced restoration of pulmonary microvascular endothelial barrier function following ischemia reperfusion injury requires VEGFR2 signaling. Am J Physiol Lung Cell Mol Physiol. 328:L389–L404. 2025. View Article : Google Scholar

33 

Martelli A, Abate F, Roggia M, Benedetti G, Caradonna E, Calderone V, Tenore GC, Cosconati S, Novellino E and Stornaiuolo M: Trimethylamine N-Oxide (TMAO) acts as inhibitor of endothelial nitric oxide synthase (eNOS) and Hampers NO production and acetylcholine-mediated vasorelaxation in rat aortas. Antioxidants (Basel). 14:5172025. View Article : Google Scholar : PubMed/NCBI

34 

Min L, Zhong F, Gu L, Lee K and He JC: Krüppel-like factor 2 is an endoprotective transcription factor in diabetic kidney disease. Am J Physiol Cell Physiol. 327:C477–C486. 2024. View Article : Google Scholar

35 

Yang Q, Chen S, Wang X, Yang X, Chen L, Huang T, Zheng Y, Zheng X, Wu X, Sun Y and Wu J: Exercise mitigates endothelial pyroptosis and atherosclerosis by downregulating NEAT1 through N6-methyladenosine modifications. Arterioscler Thromb Vasc Biol. 43:910–926. 2023. View Article : Google Scholar : PubMed/NCBI

36 

Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, et al: Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. EMBO J. 43:3175–3191. 2024. View Article : Google Scholar : PubMed/NCBI

37 

Russell-Puleri S, Dela Paz NG, Adams D, Chattopadhyay M, Cancel L, Ebong E, Orr AW, Frangos JA and Tarbell JM: Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. Am J Physiol Heart Circ Physiol. 312:H485–H500. 2017. View Article : Google Scholar :

38 

Palabiyik AA and Palabiyik E: Pharmacological approaches to enhance mitochondrial biogenesis: Focus on PGC-1Α, AMPK, and SIRT1 in cellular health. Mol Biol Rep. 52:2702025. View Article : Google Scholar

39 

Zhu C, Zhang Z, Zhu Y, Du Y, Han C, Zhao Q, Li Q, Hou J, Zhang J, He W and Qin Y: Study on the role of Dihuang Yinzi in regulating the AMPK/SIRT1/PGC-1α pathway to promote mitochondrial biogenesis and improve Alzheimer's disease. J Ethnopharmacol. 337:1188592025. View Article : Google Scholar

40 

Pinto PR, Rocco DDFM, Okuda LS, Machado-Lima A, Castilho G, da Silva KS, Gomes DJ, Pinto Rde S, Iborra RT, Ferreira Gda S, et al: Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta. Lipids Health Dis. 14:1092015. View Article : Google Scholar : PubMed/NCBI

41 

da Silva Pereira JA, de Souza GP, Virgilio-da-Silva JV, Prodonoff JS, de Castro G, Pimentel LF, Mousovich-Neto F, Davanzo GG, Aguiar CF, Breda CNS, et al: LXR regulation of adipose tissue inflammation during obesity is associated with dysregulated macrophage function. Obesity (Silver Spring). 33:78–90. 2025. View Article : Google Scholar

42 

Chiang CF, Wang ZZ, Hsu YH, Miaw SC and Lin WL: Exercise improves the outcome of anticancer treatment with ultrasound-hyperthermia-enhanced nanochemotherapy and autophagy inhibitor. PLoS One. 18:e02883802023. View Article : Google Scholar : PubMed/NCBI

43 

Zhao Y, Ying X, Pang X, Lin Y, Shen J, Zhao Y, Shen W, Yang Y, Hong Z, Wu W, et al: Exercise-induced Sesn2 mediates autophagic flux to alleviate neural damage after ischemic stroke in mice. Exp Neurol. 386:1151742025. View Article : Google Scholar : PubMed/NCBI

44 

Zhao Y, Hong Z, Lin Y, Shen W, Yang Y, Zuo Z and Hu X: Exercise pretreatment alleviates neuroinflammation and oxidative stress by TFEB-mediated autophagic flux in mice with ischemic stroke. Exp Neurol. 364:1143802023. View Article : Google Scholar : PubMed/NCBI

45 

Tarumi T, Tomoto T, Sugawara J and Zhang R: Aerobic exercise training for the aging brain: Effective dosing and vascular mechanism. Exerc Sport Sci Rev. 53:31–40. 2025. View Article : Google Scholar

46 

Herbin O, Regelmann AG, Ramkhelawon B, Weinstein EG, Moore KJ and Alexandropoulos K: Monocyte adhesion and plaque recruitment during atherosclerosis development is regulated by the adapter protein Chat-H/SHEP1. Arterioscler Thromb Vasc Biol. 36:1791–1801. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Raine LB, McDonald K, Shigeta TT, Hsieh SS, Hunt J, Chiarlitti NA, Lim M, Gebhardt K, Collins N, De Lisio M, et al: Sympathetic nervous system and exercise affects cognition in youth (SNEACY): Study protocol for a randomized crossover trial. Trials. 22:1542021. View Article : Google Scholar : PubMed/NCBI

48 

Dash R, Yadav M, Biswal J, Chandra A, Goel VK, Sharma T, Prusty SK and Mohapatra S: Modeling of chitosan modified PLGA atorvastatin-curcumin conjugate (AT-CU) nanoparticles, overcoming the barriers associated with PLGA: An approach for better management of atherosclerosis. Int J Pharm. 640:1230092023. View Article : Google Scholar : PubMed/NCBI

49 

Janssen SLJE, van Everdingen WM, Saalmink WBJ, Lamers SK, Vroemen WHM, Denessen EJS, Berge K, Bekers O, Hopman MTE, Brink M, et al: Relationship between exercise-induced cardiac troponin elevations and occult coronary atherosclerosis in Middle-aged athletes. J Am Coll Cardiol. 85:2370–2382. 2025. View Article : Google Scholar : PubMed/NCBI

50 

Yan Q, Yan X, Yang X, Li S and Song J: The use of PET/MRI in radiotherapy. Insights Imaging. 15:632024. View Article : Google Scholar : PubMed/NCBI

51 

Ficker ES, Maranhão RC, Chacra APM, Neves VC, Negrão CE, Martins VC and Vinagre CG: Exercise training accelerates the removal from plasma of LDL-like nanoemulsion in moderately hypercholesterolemic subjects. Atherosclerosis. 212:230–236. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Shanmugam G, Rakshit S and Sarkar K: HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol. 16:1013122022. View Article : Google Scholar

53 

Kitahara M, Inoue T, Mani H, Takamatsu Y, Ikegami R, Tohyama H and Maejima H: Exercise and pharmacological inhibition of histone deacetylase improves cognitive function accompanied by an increase of gene expressions crucial for neuronal plasticity in the hippocampus. Neurosci Lett. 749:1357492021. View Article : Google Scholar : PubMed/NCBI

54 

Lai Z, Liang J, Zhang J, Mao Y, Zheng X, Shen X, Lin W and Xu G: Exosomes as a delivery tool of exercise-induced beneficial factors for the prevention and treatment of cardiovascular disease: A systematic review and meta-analysis. Front Physiol. 14:11900952023. View Article : Google Scholar : PubMed/NCBI

55 

Sharma AK, Kumar A, Sahu M, Sharma G, Datusalia AK and Rajput SK: Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvasc Res. 120:59–66. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Watkins LE, Goyal A, Gatti AA and Kogan F: Imaging of joint response to exercise with MRI and PET. Skeletal Radiol. 52:2159–2183. 2023. View Article : Google Scholar : PubMed/NCBI

57 

Coelho S, Baek J, Walsh J, Gooding JJ and Gaus K: 3D active stabilization for single-molecule imaging. Nat Protoc. 16:497–515. 2021. View Article : Google Scholar

58 

Karageorgou MA, Bouziotis P, Stiliaris E and Stamopoulos D: Radiolabeled iron oxide nanoparticles as dual modality contrast agents in SPECT/MRI and PET/MRI. Nanomaterials (Basel). 13:5032023. View Article : Google Scholar : PubMed/NCBI

59 

Bouziotis P, Psimadas D, Tsotakos T, Stamopoulos D and Tsoukalas C: Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr Top Med Chem. 12:2694–2702. 2012. View Article : Google Scholar

60 

Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D and Tao Y: Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer. 19:472020. View Article : Google Scholar : PubMed/NCBI

61 

Wang HN, Xiang JZ, Qi Z and Du M: Plant extracts in prevention of obesity. Crit Rev Food Sci Nutr. 62:2221–2234. 2022. View Article : Google Scholar

62 

Raguram A, Banskota S and Liu DR: Therapeutic in vivo delivery of gene editing agents. Cell. 185:2806–2827. 2022. View Article : Google Scholar : PubMed/NCBI

63 

Marini I, Uzun G, Jamal K and Bakchoul T: Treatment of drug-induced immune thrombocytopenias. Haematologica. 107:1264–1277. 2022. View Article : Google Scholar : PubMed/NCBI

64 

Peñaherrera-Pazmiño AB, Criollo M and Gonzalez-Pastor R: Phytochemical nanoencapsulation and microfluidics drive gene and tumor microenvironment modulation. Front Pharmacol. 16:16947522025. View Article : Google Scholar : PubMed/NCBI

65 

Takedatsu H, Mitsuyama K and Torimura T: Nanomedicine and drug delivery strategies for treatment of inflammatory bowel disease. World J Gastroenterol. 21:11343–11352. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Cordeiro RA, Santo D, Farinha D, Serra A, Faneca H and Coelho JFJ: High transfection efficiency promoted by tailor-made cationic tri-block copolymer-based nanoparticles. Acta Biomater. 47:113–123. 2017. View Article : Google Scholar

67 

Li Z, Li G, Xu J, Li C, Han S, Zhang C, Wu P, Lin Y, Wang C, Zhang J, et al: Hydrogel transformed from nanoparticles for prevention of tissue injury and treatment of inflammatory diseases. Adv Mater. 34:e21091782022. View Article : Google Scholar : PubMed/NCBI

68 

Sun R, Wang X, Nie Y, Hu A, Liu H, Zhang K, Zhang L, Wu Q, Li K, Liu C, et al: Targeted trapping of endogenous endothelial progenitor cells for myocardial ischemic injury repair through neutrophil-mediated SPIO nanoparticle-conjugated CD34 antibody delivery and imaging. Acta Biomater. 146:421–433. 2022. View Article : Google Scholar : PubMed/NCBI

69 

Wang Y, Malcolm DW and Benoit DSW: Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials. 139:127–138. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Jing L, Qu H, Wu D, Zhu C, Yang Y, Jin X, Zheng J, Shi X, Yan X and Wang Y: Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Theranostics. 8:2683–2695. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Hou J, Wang L, Wang C, Zhang S, Liu H, Li S and Wang X: Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci (China). 75:40–53. 2019. View Article : Google Scholar

72 

Haghighat F, Kim Y, Sourinejad I, Yu IJ and Johari SA: Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio). Chemosphere. 262:1278052021. View Article : Google Scholar

73 

Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, Wilson S, Vesey AT, Fokkens PHB, Boere AJF, et al: Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano. 11:4542–4552. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Czubacka E and Czerczak S: Are platinum nanoparticles safe to human health? Med Pr. 70:487–495. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Sun D, Chen J, Wang Y, Ji H, Peng R, Jin L and Wu W: Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics. 9:6885–6900. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Li P, Wang D, Hu J and Yang X: The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev. 189:1144472022. View Article : Google Scholar : PubMed/NCBI

77 

Chen W, Schilperoort M, Cao Y, Shi J, Tabas I and Tao W: Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol. 19:228–249. 2022. View Article : Google Scholar

78 

Patra S, Singh M, Wasnik K, Pareek D, Gupta PS, Mukherjee S and Paik P: Polymeric nanoparticle based diagnosis and nanomedicine for treatment and development of vaccines for cerebral malaria: A review on recent advancement. ACS Appl Bio Mater. 4:7342–7365. 2021. View Article : Google Scholar

79 

Choi KA, Kim JH, Ryu K and Kaushik N: Current nanomedicine for targeted vascular disease treatment: Trends and perspectives. Int J Mol Sci. 23:123972022. View Article : Google Scholar : PubMed/NCBI

80 

Aili T, Zong JB, Zhou YF, Liu YX, Yang XL, Hu B and Wu JH: Recent advances of self-assembled nanoparticles in the diagnosis and treatment of atherosclerosis. Theranostics. 14:7505–7533. 2024. View Article : Google Scholar : PubMed/NCBI

81 

Hossaini Nasr S, Rashidijahanabad Z, Ramadan S, Kauffman N, Parameswaran N, Zinn KR, Qian C, Arora R, Agnew D and Huang X: Effective atherosclerotic plaque inflammation inhibition with targeted drug delivery by hyaluronan conjugated atorvastatin nanoparticles. Nanoscale. 12:9541–9556. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Liu X, Lin C, Zhong W, Yuan Z, Yan P and Guan S: Effective attenuation of arteriosclerosis following lymphatic-targeted delivery of hyaluronic acid-decorated rapamycin liposomes. Int J Nanomedicine. 18:4403–4419. 2023. View Article : Google Scholar : PubMed/NCBI

83 

Xu H, She P, Ma B, Zhao Z, Li G and Wang Y: ROS responsive nanoparticles loaded with lipid-specific AIEgen for atherosclerosis-targeted diagnosis and bifunctional therapy. Biomaterials. 288:1217342022. View Article : Google Scholar : PubMed/NCBI

84 

Karami Z, Mehrzad J, Akrami M and Hosseinkhani S: Anti-inflammation-based treatment of atherosclerosis using Gliclazide-loaded biomimetic nanoghosts. Sci Rep. 13:138802023. View Article : Google Scholar : PubMed/NCBI

85 

Groner J, Tognazzi M, Walter M, Fleischmann D, Mietzner R, Ziegler CE, Goepferich AM and Breunig M: Encapsulation of pioglitazone into Polymer-nanoparticles for potential treatment of atherosclerotic diseases. ACS Appl Bio Mater. 6:2111–2121. 2023. View Article : Google Scholar : PubMed/NCBI

86 

Zou L, Zhang Y, Cheraga N, Abodunrin OD, Qu KY, Qiao L, Ma YQ, Chen LJ and Huang NP: Chlorin e6 (Ce6)-loaded plaque-specific liposome with enhanced photodynamic therapy effect for atherosclerosis treatment. Talanta. 265:1247722023. View Article : Google Scholar : PubMed/NCBI

87 

Zhu L, Li H, Li J, Zhong Y, Wu S, Yan M, Ni S, Zhang K, Wang G, Qu K, et al: Biomimetic nanoparticles to enhance the reverse cholesterol transport for selectively inhibiting development into foam cell in atherosclerosis. J Nanobiotechnology. 21:3072023. View Article : Google Scholar : PubMed/NCBI

88 

Xu Z, Wu Z, Huang S, Ye K, Jiang Y, Liu J, Liu J, Lu X and Li B: A metal-organic framework-based immunomodulatory nanoplatform for anti-atherosclerosis treatment. J Control Release. 354:615–625. 2023. View Article : Google Scholar : PubMed/NCBI

89 

Ma Q, Wu S, Yang L, Wei Y, He C, Wang W, Zhao Y, Wang Z, Yang S, Shi D, et al: Hyaluronic Acid-guided cerasome nano-agents for simultaneous imaging and treatment of advanced atherosclerosis. Adv Sci (Weinh). 10:e22024162022. View Article : Google Scholar : PubMed/NCBI

90 

Xu H, She P, Zhao Z, Ma B, Li G and Wang Y: Duplex responsive nanoplatform with cascade targeting for atherosclerosis photoacoustic diagnosis and multichannel combination therapy. Adv Mater. 35:e23004392023. View Article : Google Scholar : PubMed/NCBI

91 

Huang X, Zhang Y, Zhang W, Qin C, Zhu Y, Fang Y, Wang Y, Tang C and Cao F: Osteopontin-targeted and PPARδ-agonist-loaded nanoparticles efficiently reduce atherosclerosis in apolipoprotein E−/− mice. ACS Omega. 7:28767–28778. 2022. View Article : Google Scholar : PubMed/NCBI

92 

Sheng J, Zu Z, Zhang Y, Zhu H, Qi J, Zheng T, Tian Y and Zhang L: Targeted therapy of atherosclerosis by zeolitic imidazolate framework-8 nanoparticles loaded with losartan potassium via simultaneous lipid-scavenging and anti-inflammation. J Mater Chem B. 10:5925–5937. 2022. View Article : Google Scholar : PubMed/NCBI

93 

Boersma B, Möller K, Wehl L, Puddinu V, Huard A, Fauteux-Daniel S, Bourquin C, Palmer G and Bein T: Inhibition of IL-1β release from macrophages targeted with necrosulfonamide-loaded porous nanoparticles. J Control Release. 351:989–1002. 2022. View Article : Google Scholar : PubMed/NCBI

94 

Zhou H, You P, Liu H, Fan J, Tong C, Yang A, Jiang Y and Liu B: Artemisinin and Procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux. J Control Release. 341:828–843. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Mehta S, Bongcaron V, Nguyen TK, Jirwanka Y, Maluenda A, Walsh APG, Palasubramaniam J, Hulett MD, Srivastava R, Bobik A, et al: An Ultrasound-responsive theranostic Cyclodextrin-loaded nanoparticle for multimodal imaging and therapy for atherosclerosis. Small. 18:e22009672022. View Article : Google Scholar : PubMed/NCBI

96 

Cheraga N, Ye Z, Xu MJ, Zou L, Sun NC, Hang Y, Shan CJ, Yang ZZ, Chen LJ and Huang NP: Targeted therapy of atherosclerosis by pH-sensitive hyaluronic acid nanoparticles co-delivering all-trans retinal and rapamycin. Nanoscale. 14:8709–8726. 2022. View Article : Google Scholar : PubMed/NCBI

97 

Song K, Tang Z, Song Z, Meng S, Yang X, Guo H, Zhu Y and Wang X: Hyaluronic Acid-functionalized mesoporous silica nanoparticles loading simvastatin for targeted therapy of atherosclerosis. Pharmaceutics. 14:12652022. View Article : Google Scholar : PubMed/NCBI

98 

Sun W, Xu Y, Yao Y, Yue J, Wu Z, Li H, Shen G, Liao Y, Wang H and Zhou W: Self-oxygenation mesoporous MnO2 nanoparticles with ultra-high drug loading capacity for targeted arteriosclerosis therapy. J Nanobiotechnology. 20:882022. View Article : Google Scholar

99 

De Negri Atanasio G, Ferrari PF, Baião A, Perego P, Sarmento B, Palombo D and Campardelli R: Bevacizumab encapsulation into PLGA nanoparticles functionalized with immunouteroglobin-1 as an innovative delivery system for atherosclerosis. Int J Biol Macromol. 221:1618–1630. 2022. View Article : Google Scholar : PubMed/NCBI

100 

du Toit LC, Hulisani Demana P and Essop Choonara Y: A nano-enabled biotinylated anti-LDL theranostic system to modulate systemic LDL cholesterol. Int J Pharm. 628:1222582022. View Article : Google Scholar : PubMed/NCBI

101 

Deuringer B, Härdtner C, Krebs K, Thomann R, Holzer M, Hilgendorf I and Süss R: Everolimus-loaded reconstituted high-density lipoprotein prepared by a novel dual centrifugation approach for Anti-atherosclerotic therapy. Int J Nanomedicine. 17:5081–5097. 2022. View Article : Google Scholar : PubMed/NCBI

102 

Wei B, Li Y, Ao M, Shao W, Wang K, Rong T, Zhou Y and Chen Y: Ganglioside GM3-functionalized reconstituted high-density lipoprotein (GM3-rHDL) as a novel nanocarrier enhances antiatherosclerotic efficacy of statins in apoE−/− C57BL/6 mice. Pharmaceutics. 14:25342022. View Article : Google Scholar

103 

Jebari-Benslaiman S, Uribe KB, Benito-Vicente A, Galicia-Garcia U, Larrea-Sebal A, Santin I, Alloza I, Vandenbroeck K, Ostolaza H and Martín C: Boosting cholesterol efflux from foam cells by sequential administration of rHDL to deliver MicroRNA and to remove cholesterol in a triple-cell 2D atherosclerosis model. Small. 18:e21059152022. View Article : Google Scholar : PubMed/NCBI

104 

Zhang Z, Zhuang J, Sun D, Ding Q, Zheng H, Li H, Zhang X, Du Y, Ma T and Meng Q: Netrin-1 monoclonal antibody-functionalized nanoparticle loaded with metformin prevents the progression of abdominal aortic aneurysms. Int J Nanomedicine. 18:627–639. 2023. View Article : Google Scholar : PubMed/NCBI

105 

Chen X, Wu Y, Li R, Li C, Xu L, Qiao W and Dong N: Galactose-modified nanoparticles for delivery of microRNA to mitigate the progress of abdominal aortic aneurysms via regulating macrophage polarization. Nanomedicine. 44:1025642022. View Article : Google Scholar : PubMed/NCBI

106 

Dhital S, Rice CD and Vyavahare NR: Reversal of elastase-induced abdominal aortic aneurysm following the delivery of nanoparticle-based pentagalloyl glucose (PGG) is associated with reduced inflammatory and immune markers. Eur J Pharmacol. 910:1744872021. View Article : Google Scholar : PubMed/NCBI

107 

Fukuhara N, Honda Y, Ukita N, Matsui M, Miura Y and Hoshina K: Efficient suppression of abdominal aortic aneurysm expansion in rats through systemic administration of statin-loaded nanomedicine. Int J Mol Sci. 21:87022020. View Article : Google Scholar : PubMed/NCBI

108 

Cheng J, Zhang R, Li C, Tao H, Dou Y, Wang Y, Hu H and Zhang J: A Targeting nanotherapy for abdominal aortic aneurysms. J Am Coll Cardiol. 72:2591–2605. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Nosoudi N, Chowdhury A, Siclari S, Karamched S, Parasaram V, Parrish J, Gerard P and Vyavahare N: Reversal of vascular calcification and aneurysms in a rat model using dual targeted therapy with EDTA- and PGG-loaded nanoparticles. Theranostics. 6:1975–1987. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Boada C, Zinger A, Tsao C, Zhao P, Martinez JO, Hartman K, Naoi T, Sukhoveshin R, Sushnitha M, Molinaro R, et al: Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res. 126:25–37. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Bhatia SN, Chen X, Dobrovolskaia MA and Lammers T: Cancer nanomedicine. Nat Rev Cancer. 22:550–556. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Luo XM, Yan C and Feng YM: Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Adv Drug Deliv Rev. 172:234–248. 2021. View Article : Google Scholar : PubMed/NCBI

113 

van Tilborg GAF, Vucic E, Strijkers GJ, Cormode DP, Mani V, Skajaa T, Reutelingsperger CP, Fayad ZA, Mulder WJ and Nicolay K: Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques. Bioconjug Chem. 21:1794–1803. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Marrache S and Dhar S: Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc Natl Acad Sci USA. 110:9445–9450. 2013. View Article : Google Scholar : PubMed/NCBI

115 

Zhang H, Gong Y, Wang Z, Jiang L, Chen R, Fan X, Zhu H, Han L, Li X, Xiao J and Kong X: Apelin inhibits the proliferation and migration of rat PASMCs via the activation of PI3K/Akt/mTOR signal and the inhibition of autophagy under hypoxia. J Cell Mol Med. 18:542–553. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Zheng H, Zhai W, Zhong C, Hong Q, Li H, Rui B, Zhu X, Que D, Feng L, Yu B, et al: Nkx2-3 induces autophagy inhibiting proliferation and migration of vascular smooth muscle cells via AMPK/mTOR signaling pathway. J Cell Physiol. 236:7342–7355. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Chan JW, Lewis DR, Petersen LK, Moghe PV and Uhrich KE: Amphiphilic macromolecule nanoassemblies suppress smooth muscle cell proliferation and platelet adhesion. Biomaterials. 84:219–229. 2016. View Article : Google Scholar : PubMed/NCBI

118 

Anghelache M, Voicu G, Deleanu M, Turtoi M, Safciuc F, Anton R, Boteanu D, Fenyo IM, Manduteanu I, Simionescu M and Calin M: Biomimetic nanocarriers of Pro-resolving lipid mediators for resolution of inflammation in atherosclerosis. Adv Healthc Mater. 13:e23022382024. View Article : Google Scholar

119 

Deshpande D, Kethireddy S, Janero DR and Amiji MM: Therapeutic efficacy of an ω-3-fatty acid-containing 17-β estradiol Nano-delivery system against experimental atherosclerosis. PLoS One. 11:e01473372016. View Article : Google Scholar

120 

Sano M, Akagi D, Naito M, Hoshina K, Miyata K, Kataoka K and Ishihara S: Systemic single administration of anti-inflammatory microRNA 146a-5p loaded in polymeric nanomedicines with active targetability attenuates neointimal hyperplasia by controlling inflammation in injured arteries in a rat model. FASEB J. 36:e224862022. View Article : Google Scholar : PubMed/NCBI

121 

Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR and Mallat Z: Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 16:727–744. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Bentzon JF, Otsuka F, Virmani R and Falk E: Mechanisms of plaque formation and rupture. Circ Res. 114:1852–1866. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Halcox JPJ, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR and Quyyumi AA: Prognostic value of coronary vascular endothelial dysfunction. Circulation. 106:653–658. 2002. View Article : Google Scholar : PubMed/NCBI

124 

Hou L, Zhang M, Liu L, Zhong Q, Xie M and Zhao G: Therapeutic applications of nanomedicine in metabolic diseases by targeting the endothelium. QJM. 116:493–501. 2022. View Article : Google Scholar : PubMed/NCBI

125 

Deng Y, Deng X, Li Y, Tian J, Wu M, Tang J, Liang X, Yang X, He X, Liu Y, et al: Size-adjustable nanoparticles co-target macrophages and endothelial cells for enhanced atherosclerosis therapy. Colloids Surf B Biointerfaces. 255:1149522025. View Article : Google Scholar : PubMed/NCBI

126 

Wang Y, Feng Y, Yang X, Wang W and Wang Y: Diagnosis of atherosclerotic plaques using vascular endothelial growth factor receptor-2 targeting antibody Nano-microbubble as ultrasound contrast agent. Comput Math Methods Med. 2022:65245922022.PubMed/NCBI

127 

Bu T, Li Z, Hou Y, Sun W, Zhang R, Zhao L, Wei M, Yang G and Yuan L: Exosome-mediated delivery of inflammation-responsive mRNA for controlled atherosclerosis treatment. Theranostics. 11:9988–10000. 2021. View Article : Google Scholar :

128 

Distasio N, Dierick F, Ebrahimian T, Tabrizian M and Lehoux S: Design and development of branched Poly(β-aminoester) nanoparticles for Interleukin-10 gene delivery in a mouse model of atherosclerosis. Acta Biomater. 143:356–371. 2022. View Article : Google Scholar : PubMed/NCBI

129 

Song C, Wang Y, Cui L, Yan F and Shen S: Triptolide attenuates lipopolysaccharide-induced inflammatory responses in human endothelial cells: Involvement of NF-κB pathway. BMC Complement Altern Med. 19:1982019. View Article : Google Scholar

130 

Lai K, Li Y, Gong Y, Li L, Huang C, Xu F, Zhong X and Jin C: Triptolide-nanoliposome-APRPG, a novel sustained-release drug delivery system targeting vascular endothelial cells, enhances the inhibitory effects of triptolide on laser-induced choroidal neovascularization. Biomed Pharmacother. 131:1107372020. View Article : Google Scholar : PubMed/NCBI

131 

Zhu ML, Wang G, Wang H, Guo YM, Song P, Xu J, Li P, Wang S and Yang L: Amorphous nano-selenium quantum dots improve endothelial dysfunction in rats and prevent atherosclerosis in mice through Na/H exchanger 1 inhibition. Vascul Pharmacol. 115:26–32. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Beconcini D, Fabiano A, Zambito Y, Berni R, Santoni T, Piras AM and Di Stefano R: Chitosan-based nanoparticles containing cherry Extract from Prunus avium L. to improve the resistance of endothelial cells to oxidative stress. Nutrients. 10:15982018. View Article : Google Scholar : PubMed/NCBI

133 

Ke S, Lai Y, Zhou T, Li L, Wang Y, Ren L and Ye S: Molybdenum disulfide nanoparticles resist oxidative Stress-mediated impairment of autophagic flux and mitigate endothelial cell senescence and angiogenic dysfunctions. ACS Biomater Sci Eng. 4:663–674. 2018. View Article : Google Scholar : PubMed/NCBI

134 

Yan H, Hu Y, Lyu Y, Akk A, Hirbe AC, Wickline SA, Pan H, Roberson EDO and Pham CTN: Augmented expression of superoxide dismutase 2 mitigates progression and rupture of experimental abdominal aortic aneurysm. Theranostics. 15:4016–4032. 2025. View Article : Google Scholar : PubMed/NCBI

135 

Lockhart JH, VanWye J, Banerjee R, Wickline SA, Pan H and Totary-Jain H: Self-assembled miRNA-switch nanoparticles target denuded regions and prevent restenosis. Mol Ther. 29:1744–1757. 2021. View Article : Google Scholar : PubMed/NCBI

136 

Pham LM, Kim EC, Ou W, Phung CD, Nguyen TT, Pham TT, Poudel K, Gautam M, Nguyen HT, Jeong JH, et al: Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials. 269:1206772021. View Article : Google Scholar : PubMed/NCBI

137 

Zhang BF, Jiang H, Chen J, Hu Q, Yang S and Liu XP: Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction. J Cell Physiol. 234:18544–18559. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Yu B, Li H, Zhang Z, Chen P, Wang L, Fan X, Ning X, Pan Y, Zhou F, Hu X, et al: Extracellular vesicles engineering by silicates-activated endothelial progenitor cells for myocardial infarction treatment in male mice. Nat Commun. 14:20942023. View Article : Google Scholar : PubMed/NCBI

139 

Yang Z, Yang Y, Xiong K, Li X, Qi P, Tu Q, Jing F, Weng Y, Wang J and Huang N: Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents. Biomaterials. 63:80–92. 2015. View Article : Google Scholar : PubMed/NCBI

140 

Huang SF, Zhao G, Peng XF and Ye WC: The pathogenic role of long Non-coding RNA H19 in atherosclerosis the miR-146a-5p/ANGPTL4 pathway. Front Cardiovasc Med. 8:7701632021. View Article : Google Scholar

141 

Sager HB, Dutta P, Dahlman JE, Hulsmans M, Courties G, Sun Y, Heidt T, Vinegoni C, Borodovsky A, Fitzgerald K, et al: RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci Transl Med. 8:342ra3802016. View Article : Google Scholar

142 

Orecchioni M, Kobiyama K, Winkels H, Ghosheh Y, McArdle S, Mikulski Z, Kiosses WB, Fan Z, Wen L, Jung Y, et al: Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science. 375:214–221. 2022. View Article : Google Scholar : PubMed/NCBI

143 

Seneviratne AN, Edsfeldt A, Cole JE, Kassiteridi C, Swart M, Park I, Green P, Khoyratty T, Saliba D, Goddard ME, et al: Interferon regulatory factor 5 controls necrotic core formation in atherosclerotic lesions by impairing efferocytosis. Circulation. 136:1140–1154. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Stoneman V, Braganza D, Figg N, Mercer J, Lang R, Goddard M and Bennett M: Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res. 100:884–893. 2007. View Article : Google Scholar : PubMed/NCBI

145 

Gao C, Huang Q, Liu C, Kwong CHT, Yue L, Wan JB, Lee SMY and Wang R: Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun. 11:26222020. View Article : Google Scholar : PubMed/NCBI

146 

Boada C, Zinger A, Tsao C, Zhao P, Martinez JO, Hartman K, Naoi T, Sukhoveshin R, Sushnitha M, Molinaro R, et al: Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res. 126:25–37. 2020. View Article : Google Scholar

147 

Zhang X, Misra SK, Moitra P, Zhang X, Jeong SJ, Stitham J, Rodriguez-Velez A, Park A, Yeh YS, Gillanders WE, et al: Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis. Autophagy. 19:886–903. 2023. View Article : Google Scholar :

148 

Stachyra K, Wiśniewska A, Kiepura A, Kuś K, Rolski F, Czepiel K, Chmura Ł, Majka G, Surmiak M, Polaczek J, et al: Inhaled silica nanoparticles exacerbate atherosclerosis through skewing macrophage polarization towards M1 phenotype. Ecotoxicol Environ Saf. 230:1131122021. View Article : Google Scholar : PubMed/NCBI

149 

Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, Aubertin-Leheudre M, Bernabei R, Cadore EL, Cesari M, et al: International exercise recommendations in older adults (ICFSR): Expert elines. J Nutr Health Aging. 25:824–853. 2021. View Article : Google Scholar

150 

Bierer BE, Zarin DA and Gelinas L: Deprioritization of ongoing clinical trials. Ethics Hum Res. 45:27–33. 2023. View Article : Google Scholar : PubMed/NCBI

151 

Wang J, Ding Y, Chong K, Cui M, Cao Z, Tang C, Tian Z, Hu Y, Zhao Y and Jiang S: Recent advances in lipid nanoparticles and their safety concerns for mRNA delivery. Vaccines (Basel). 12:11482024. View Article : Google Scholar : PubMed/NCBI

152 

Jiang Y, Zhou Y, Li Z and Guo L: Nanomedicine in cardiovascular and cerebrovascular diseases: Targeted nanozyme therapies and their clinical potential and current challenges. J Nanobiotechnology. 23:5432025. View Article : Google Scholar : PubMed/NCBI

153 

Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y and Zhang Y: A Journey of challenges and victories: A bibliometric worldview of nanomedicine since the 21st Century. Adv Mater. 36:e23089152024. View Article : Google Scholar : PubMed/NCBI

154 

Macário-Soares A, Sousa-Oliveira I, Correia M, Pires PC, Sharma A, Kumar Jha N, Zare EN, Veiga F, Gowda BHJ, Borzacchiello A, et al: Cell membrane and extracellular vesicle membrane-coated nanoparticles: An envisaged approach for the management of skin conditions. View. 5:202400432024. View Article : Google Scholar

155 

Ghosh A, Gupta A, Jena S, Kirti A, Choudhury A, Saha U, Sinha A, Kumari S, Kujawska M, Kaushik A and Verma SK: Advances in posterity of visualization in paradigm of nano-level ultra-structures for nano-bio interaction studies. View. 6:202400422025. View Article : Google Scholar

156 

Li Y, Liang D, Wang R, Yang S, Liu W, Sang Q, Pu J, Wang Y and Qian K: Interfacial Self-assembly nanostructures: Constructions and applications. Small. 20:e24053182024. View Article : Google Scholar : PubMed/NCBI

157 

Zhang Z, Li Y, Wang R, Yang S, Li P, Zhao K, Gu Y, Meng K, Li J, Pu J, et al: Plasmonic alloys enhance metabolic fingerprints for rapid diagnosis and classification of myocardial infarction. Nano Today. 62:1027022025. View Article : Google Scholar

158 

Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V and Thompson M: Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 8:543–557. 2009. View Article : Google Scholar : PubMed/NCBI

159 

Zhang Q, Zhang J, Song J, Liu Y, Ren X and Zhao Y: Protein-based nanomedicine for therapeutic benefits of cancer. ACS Nano. 15:8001–8038. 2021. View Article : Google Scholar : PubMed/NCBI

160 

Luo B, Xiang D, Ji X, Chen X, Li R, Zhang S, Meng Y, Nieman DC and Chen P: The anti-inflammatory effects of exercise on autoimmune diseases: A 20-year systematic review. J Sport Health Sci. 13:353–367. 2024. View Article : Google Scholar : PubMed/NCBI

161 

Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D and Zhang HG: A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 18:1606–1614. 2010. View Article : Google Scholar : PubMed/NCBI

162 

Cui C, Du M, Zhao Y, Tang J, Liu M, Min G, Chen R, Zhang Q, Sun Z and Weng H: Functional Ginger-derived extracellular vesicles-coated ZIF-8 containing TNF-α siRNA for ulcerative colitis therapy by modulating gut microbiota. ACS Appl Mater Interfaces. 16:53460–53473. 2024. View Article : Google Scholar : PubMed/NCBI

163 

Wang E, Rossman MJ, Groot HJ, Garten RS, Jarrett CL, Helgerud J, Hoff J and Richardson RS: Leg vascular function with advancing age in men: The impact of physical activity and endurance exercise training. J Appl Physiol (1985). 139:473–481. 2025. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou Q, Zhang GL, Sun W, Cai J and Yu L: Nanomaterials and exercise interventions: A synergistic approach for atherosclerosis therapy (Review). Int J Mol Med 57: 44, 2026.
APA
Zhou, Q., Zhang, G., Sun, W., Cai, J., & Yu, L. (2026). Nanomaterials and exercise interventions: A synergistic approach for atherosclerosis therapy (Review). International Journal of Molecular Medicine, 57, 44. https://doi.org/10.3892/ijmm.2025.5715
MLA
Zhou, Q., Zhang, G., Sun, W., Cai, J., Yu, L."Nanomaterials and exercise interventions: A synergistic approach for atherosclerosis therapy (Review)". International Journal of Molecular Medicine 57.2 (2026): 44.
Chicago
Zhou, Q., Zhang, G., Sun, W., Cai, J., Yu, L."Nanomaterials and exercise interventions: A synergistic approach for atherosclerosis therapy (Review)". International Journal of Molecular Medicine 57, no. 2 (2026): 44. https://doi.org/10.3892/ijmm.2025.5715
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou Q, Zhang GL, Sun W, Cai J and Yu L: Nanomaterials and exercise interventions: A synergistic approach for atherosclerosis therapy (Review). Int J Mol Med 57: 44, 2026.
APA
Zhou, Q., Zhang, G., Sun, W., Cai, J., & Yu, L. (2026). Nanomaterials and exercise interventions: A synergistic approach for atherosclerosis therapy (Review). International Journal of Molecular Medicine, 57, 44. https://doi.org/10.3892/ijmm.2025.5715
MLA
Zhou, Q., Zhang, G., Sun, W., Cai, J., Yu, L."Nanomaterials and exercise interventions: A synergistic approach for atherosclerosis therapy (Review)". International Journal of Molecular Medicine 57.2 (2026): 44.
Chicago
Zhou, Q., Zhang, G., Sun, W., Cai, J., Yu, L."Nanomaterials and exercise interventions: A synergistic approach for atherosclerosis therapy (Review)". International Journal of Molecular Medicine 57, no. 2 (2026): 44. https://doi.org/10.3892/ijmm.2025.5715
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team