|
1
|
Zhang Y, Zhao L, Gao H, Zhai J and Song Y:
Potential role of irisin in digestive system diseases. Biomed
Pharmacother. 166:1153472023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chakraborty E and Sarkar D: Emerging
therapies for hepatocellular carcinoma (HCC). Cancers (Basel).
14:27982022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Menini S, Iacobini C, Vitale M, Pesce C
and Pugliese G: Diabetes and pancreatic cancer-a dangerous liaison
relying on carbonyl stress. Cancers (Basel). 1:3132021. View Article : Google Scholar
|
|
4
|
Hu JX, Zhao CF, Chen WB, Liu QC, Li QW,
Lin YY and Gao F: Pancreatic cancer: A review of epidemiology,
trend, and risk factors. World J Gastroenterol. 27:4298–321. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Haque PS, Kapur N, Barrett TA and Theiss
AL: Mitochondrial function and gastrointestinal diseases. Nat Rev
Gastroenterol Hepatol. 21:537–555. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
LeFort KR, Rungratanawanich W and Song BJ:
Contributing roles of mitochondrial dysfunction and hepatocyte
apoptosis in liver diseases through oxidative stress,
post-translational modifications, inflammation, and intestinal
barrier dysfunction. Cell Mol Life Sci. 81:342024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhou L, Pinho R, Gu Y and Radak Z: The
role of SIRT3 in exercise and aging. Cells. 11:25962022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Feldman JL, Dittenhafer-Reed KE and Denu
JM: Sirtuin catalysis and regulation. J Biol Chem. 287:42419–42427.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang J, Xiang H, Liu J, Chen Y, He RR and
Liu B: Mitochondrial sirtuin 3: New emerging biological function
and therapeutic target. Theranostics. 10:8315–8342. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Grabowska W, Sikora E and Bielak-Zmijewska
A: Sirtuins, a promising target in slowing down the ageing process.
Biogerontology. 18:447–476. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Verdin E, Hirschey MD, Finley LW and
Haigis MC: Sirtuin regulation of mitochondria: Energy production,
apoptosis, and signaling. Trends Biochem Sci. 35:669–675. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mishra Y and Kaundal RK: Role of SIRT3 in
mitochondrial biology and its therapeutic implications in
neurodegenerative disorders. Drug Discov Today. 28:1035832023.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang Y, Wen P, Luo J, Ding H, Cao H, He
W, Zen K, Zhou Y, Yang J and Jiang L: Sirtuin 3 regulates
mitochondrial protein acetylation and metabolism in tubular
epithelial cells during renal fibrosis. Cell Death Dis. 12:8472021.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hebert AS, Dittenhafer-Reed KE, Yu W,
Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ,
Higbee AJ, et al: Calorie restriction and SIRT3 trigger global
reprogramming of the mitochondrial protein acetylome. Mol Cell.
49:186–199. 2013. View Article : Google Scholar :
|
|
15
|
Iwahara T, Bonasio R, Narendra V and
Reinberg D: SIRT3 functions in the nucleus in the control of
stress-related gene expression. Mol Cell Biol. 32:5022–5034. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Onyango P, Celic I, McCaffery JM, Boeke JD
and Feinberg AP: SIRT3, a human SIR2 homologue, is an NAD-dependent
deacetylase localized to mitochondria. Proc Natl Acad Sci USA.
99:13653–13658. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yang W, Nagasawa K, Münch C, Xu Y,
Satterstrom K, Jeong S, Hayes SD, Jedrychowski MP, Vyas FS,
Zaganjor E, et al: Mitochondrial sirtuin network reveals dynamic
SIRT3-dependent deacetylation in response to membrane
depolarization. Cell. 167:985–1000.e21. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Shen H, Qi X, Hu Y, Wang Y, Zhang J, Liu Z
and Qin Z: Targeting sirtuins for cancer therapy: Epigenetics
modifications and beyond. Theranostics. 14:6726–6767. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Griffiths HBS, Williams C, King SJ and
Allison SJ: Nicotinamide adenine dinucleotide (NAD+): Essential
redox metabolite, co-substrate and an anti-cancer and anti-ageing
therapeutic target. Biochem Soc Trans. 48:733–744. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ouyang S, Zhang Q, Lou L, Zhu K, Li Z, Liu
P and Zhang X: The double-edged sword of SIRT3 in cancer and its
therapeutic applications. Front Pharmacol. 13:8715602022.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen LJ, Guo J, Zhang SX, Xu Y, Zhao Q,
Zhang W, Xiao J and Chen Y: Sirtuin3 rs28365927 functional variant
confers to the high risk of non-alcoholic fatty liver disease in
Chinese Han population. Lipids Health Dis. 20:922021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kane AE and Sinclair DA: Sirtuins and
NAD+ in the development and treatment of metabolic and
cardiovascular diseases. Circ Res. 123:868–885. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Peterson BS, Campbell JE, Ilkayeva O,
Grimsrud PA, Hirschey MD and Newgard CB: Remodeling of the
acetylproteome by SIRT3 manipulation fails to affect insulin
secretion or β cell metabolism in the absence of overnutrition.
Cell Rep. 24:209–223.e6. 2018. View Article : Google Scholar
|
|
24
|
Sol EM, Wagner SA, Weinert BT, Kumar A,
Kim HS, Deng CX and Choudhary C: Proteomic investigations of lysine
acetylation identify diverse substrates of mitochondrial
deacetylase sirt3. PLoS One. 7:e505452012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hirschey MD, Shimazu T, Jing E, Grueter
CA, Collins AM, Aouizerat B, Stančáková A, Goetzman E, Lam MM,
Schwer B, et al: SIRT3 deficiency and mitochondrial protein
hyperacetylation accelerate the development of the metabolic
syndrome. Mol Cell. 44:177–190. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu J, Li D, Zhang T, Tong Q, Ye RD and
Lin L: SIRT3 protects hepatocytes from oxidative injury by
enhancing ROS scavenging and mitochondrial integrity. Cell Death
Dis. 8:e31582017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bell EL, Emerling BM, Ricoult SJ and
Guarente L: SirT3 suppresses hypoxia inducible factor 1α and tumor
growth by inhibiting mitochondrial ROS production. Oncogene.
30:2986–2996. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fukushi A, Kim HD, Chang YC and Kim CH:
Revisited metabolic control and reprogramming cancers by means of
the warburg effect in tumor cells. Int J Mol Sci. 23:100372022.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rinella ME, Neuschwander-Tetri BA,
Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE and
Loomba R: AASLD practice guidance on the clinical assessment and
management of nonalcoholic fatty liver disease. Hepatology.
77:1797–1835. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Paternostro R and Trauner M: Current
treatment of non-alcoholic fatty liver disease. J Intern Med.
292:190–204. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Grander C, Grabherr F and Tilg H:
Non-alcoholic fatty liver disease: Pathophysiological concepts and
treatment options. Cardiovasc Res. 119:1787–1798. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Di Ciaula A, Passarella S, Shanmugam H,
Noviello M, Bonfrate L, Wang DQ and Portincasa P: Nonalcoholic
fatty liver disease (NAFLD). Mitochondria as players and targets of
therapies? Int J Mol Sci. 22:53752021.
|
|
33
|
Zheng Y, Wang S, Wu J and Wang Y:
Mitochondrial metabolic dysfunction and non-alcoholic fatty liver
disease: New insights from pathogenic mechanisms to clinically
targeted therapy. J Transl Med. 21:5102023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pirola CJ, Gianotti TF, Burgueño AL,
Rey-Funes M, Loidl CF, Mallardi P, Martino JS, Castaño GO and
Sookoian S: Epigenetic modification of liver mitochondrial DNA is
associated with histological severity of nonalcoholic fatty liver
disease. Gut. 62:1356–1363. 2013. View Article : Google Scholar
|
|
35
|
Mazzoccoli G, De Cosmo S and Mazza T: The
biological clock: A pivotal hub in non-alcoholic fatty liver
disease pathogenesis. Front Physiol. 9:1932018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Polyzos SA, Kountouras J and Mantzoros CS:
Obesity and nonalcoholic fatty liver disease: From pathophysiology
to therapeutics. Metabolism. 92:82–97. 2019. View Article : Google Scholar
|
|
37
|
Ramanathan R, Ali AH and Ibdah JA:
Mitochondrial dysfunction plays central role in nonalcoholic fatty
liver disease. Int J Mol Sci. 23:72802022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kong X, Wang R, Xue Y, Liu X, Zhang H,
Chen Y, Fang F and Chang Y: Sirtuin 3, a new target of PGC-1alpha,
plays an important role in the suppression of ROS and mitochondrial
biogenesis. PLoS One. 5:e117072010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Barroso E, Rodríguez-Rodríguez R, Zarei M,
Pizarro-Degado J, Planavila A, Palomer X, Villarroya F and
Vázquez-Carrera M: SIRT3 deficiency exacerbates fatty liver by
attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through
Nrf2. Cell Commun Signal. 18:1472020. View Article : Google Scholar
|
|
40
|
Chen DD, Shi Q, Liu X, Liang DL, Wu YZ,
Fan Q, Xiao K, Chen C and Dong XP: Aberrant SENP1-SUMO-Sirt3
signaling causes the disturbances of mitochondrial deacetylation
and oxidative phosphorylation in prion-infected animal and cell
models. ACS Chem Neurosci. 14:1610–1621. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang Z, Dou X, Li S, Zhang X, Sun X, Zhou
Z and Song Z: Nuclear factor (erythroid-derived 2)-like 2
activation-induced hepatic very-low-density lipoprotein receptor
overexpression in response to oxidative stress contributes to
alcoholic liver disease in mice. Hepatology. 59:1381–1392. 2014.
View Article : Google Scholar
|
|
42
|
Green MF and Hirschey MD: SIRT3 weighs
heavily in the metabolic balance: A new role for SIRT3 in metabolic
syndrome. J Gerontol A Biol Sci Med Sci. 68:105–107. 2013.
View Article : Google Scholar
|
|
43
|
Kendrick AA, Choudhury M, Rahman SM,
McCurdy CE, Friederich M, Van Hove JL, Watson PA, Birdsey N, Bao J,
Gius D, et al: Fatty liver is associated with reduced SIRT3
activity and mitochondrial protein hyperacetylation. Biochem J.
433:505–514. 2011. View Article : Google Scholar
|
|
44
|
Lai CS, Tsai ML, Badmaev V, Jimenez M, Ho
CT and Pan MH: Xanthigen suppresses preadipocyte differentiation
and adipogenesis through down-regulation of PPARγ and C/EBPs and
modulation of SIRT-1, AMPK, and FoxO pathways. J Agric Food Chem.
60:1094–1101. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
He J, Qian YC, Yin YC, Kang JR and Pan TR:
Polydatin: A potential NAFLD therapeutic drug that regulates
mitochondrial autophagy through SIRT3-FOXO3-BNIP3 and PINK1-PRKN
mechanisms-a network pharmacology and experimental investigation.
Chem Biol Interact. 398:1111102024. View Article : Google Scholar
|
|
46
|
Ren B, Kwah MX, Liu C, Ma Z, Shanmugam MK,
Ding L, Xiang X, Ho PC, Wang L, Ong PS and Goh BC: Resveratrol for
cancer therapy: Challenges and future perspectives. Cancer Lett.
515:63–72. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Karami A, Fakhri S, Kooshki L and Khan H:
Polydatin: Pharmacological mechanisms, therapeutic targets,
biological activities, and health benefits. Molecules. 27:64742022.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Imtiyaz K, Shafi M, Fakhri KU, Uroog L,
Zeya B, Anwer ST and Rizvi MMA: Polydatin: A natural compound with
multifaceted anticancer properties. J Tradit Complement Med.
15:447–466. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Malladi N, Lahamge D, Somwanshi BS, Tiwari
V, Deshmukh K, Balani JK, Chakraborty S, Alam MJ and Banerjee SK:
Paricalcitol attenuates oxidative stress and inflammatory response
in the liver of NAFLD rats by regulating FOXO3a and NFκB
acetylation. Cell Signal. 121:1112992024. View Article : Google Scholar
|
|
50
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI
|
|
51
|
Ladd AD, Duarte S, Sahin I and Zarrinpar
A: Mechanisms of drug resistance in HCC. Hepatology. 79:926–940.
2024. View Article : Google Scholar
|
|
52
|
Ahmed O and Pillai A: Hepatocellular
carcinoma: A contemporary approach to locoregional therapy. Am J
Gastroenterol. 115:1733–1736. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Vogel A, Meyer T, Sapisochin G, Salem R
and Saborowski A: Hepatocellular carcinoma. Lancet. 400:1345–1362.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang B, Qin L, Zhou CJ, Liu YL, Qian HX
and He SB: SIRT3 expression in hepatocellular carcinoma and its
impact on proliferation and invasion of hepatoma cells. Asian Pac J
Trop Med. 6:649–652. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang JX, Yi Y, Li YW, Cai XY, He HW, Ni
XC, Zhou J, Cheng YF, Jin JJ, Fan J and Qiu SJ: Down-regulation of
sirtuin 3 is associated with poor prognosis in hepatocellular
carcinoma after resection. BMC Cancer. 14:2972014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
De Matteis S, Scarpi E, Granato AM,
Vespasiani-Gentilucci U, La Barba G, Foschi FG, Bandini E, Ghetti
M, Marisi G, Cravero P, et al: Role of SIRT-3, p-mTOR and HIF-1α in
hepatocellular carcinoma patients affected by metabolic
dysfunctions and in chronic treatment with metformin. Int J Mol
Sci. 20:15032019. View Article : Google Scholar
|
|
57
|
Liu H, Li S, Liu X, Chen Y and Deng H:
SIRT3 overexpression inhibits growth of kidney tumor cells and
enhances mitochondrial biogenesis. J Proteome Res. 17:3143–3152.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Le A, Cooper CR, Gouw AM, Dinavahi R,
Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL and Dang
CV: Inhibition of lactate dehydrogenase A induces oxidative stress
and inhibits tumor progression. Proc Natl Acad Sci USA.
107:2037–2042. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kwon SM, Lee YK, Min S, Woo HG, Wang HJ
and Yoon G: Mitoribosome defect in hepatocellular carcinoma
promotes an aggressive phenotype with suppressed immune reaction.
iScience. 23:1012472020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fan J, Shan C, Kang HB, Elf S, Xie J,
Tucker M, Gu TL, Aguiar M, Lonning S, Chen H, et al: Tyr
phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3
to regulate the pyruvate dehydrogenase complex. Mol Cell.
53:534–548. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Che L, Wu JS, Du ZB, He YQ, Yang L, Lin
JX, Lei Z, Chen XX, Guo DB, Li WG, et al: Targeting mitochondrial
COX-2 enhances chemosensitivity via Drp1-dependent remodeling of
mitochondrial dynamics in hepatocellular carcinoma. Cancers
(Basel). 14:8212022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ceballos MP, Quiroga AD and Palma NF: Role
of sirtuins in hepatocellular carcinoma progression and multidrug
resistance: Mechanistical and pharmacological perspectives. Biochem
Pharmacol. 212:1155732023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lu J, Zhang H, Chen X, Zou Y, Li J, Wang
L, Wu M, Zang J, Yu Y, Zhuang W, et al: A small molecule activator
of SIRT3 promotes deacetylation and activation of manganese
superoxide dismutase. Free Radic Biol Med. 112:287–297. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
De Matteis S, Granato AM, Napolitano R,
Molinari C, Valgiusti M, Santini D, Foschi FG, Ercolani G,
Vespasiani Gentilucci U, Faloppi L, et al: Interplay between
SIRT-3, metabolism and its tumor suppressor role in hepatocellular
carcinoma. Dig Dis Sci. 62:1872–1880. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kim YI, Ko I, Yi EJ, Kim J, Hong YR, Lee W
and Chang SY: NAD+ modulation of intestinal macrophages
renders anti-inflammatory functionality and ameliorates gut
inflammation. Biomed Pharmacother. 185:1179382025. View Article : Google Scholar
|
|
66
|
Guan Q: A comprehensive review and update
on the pathogenesis of inflammatory bowel disease. J Immunol Res.
2019:72472382019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chen X, Zhang M, Zhou F, Gu Z, Li Y, Yu T,
Peng C, Zhou L, Li X, Zhu D, et al: SIRT3 activator honokiol
inhibits Th17 cell differentiation and alleviates colitis. Inflamm
Bowel Dis. 29:1929–1940. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Nistala K and Wedderburn LR: Th17 and
regulatory T cells: Rebalancing pro- and anti-inflammatory forces
in autoimmune arthritis. Rheumatology (Oxford). 48:602–606. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yu R, Zuo F, Ma H and Chen S:
Exopolysaccharide-producing Bifidobacterium adolescentis strains
with similar adhesion property induce differential regulation of
inflammatory immune response in Treg/Th17 axis of DSS-colitis mice.
Nutrients. 11:7822019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang M, Zhou L, Xu Y, Yang M, Xu Y,
Komaniecki GP, Kosciuk T, Chen X, Lu X, Zou X, et al: A STAT3
palmitoylation cycle promotes TH17 differentiation and
colitis. Nature. 586:434–439. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cros C, Margier M, Cannelle H, Charmetant
J, Hulo N, Laganier L, Grozio A and Canault M: Nicotinamide
mononucleotide administration triggers macrophages reprogramming
and alleviates inflammation during sepsis induced by experimental
peritonitis. Front Mol Biosci. 9:8950282022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Vergadi E, Ieronymaki E, Lyroni K,
Vaporidi K and Tsatsanis C: Akt signaling pathway in macrophage
activation and M1/M2 polarization. J Immunol. 198:1006–1014. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhou W, Hu G, He J, Wang T, Zuo Y, Cao Y,
Zheng Q, Tu J, Ma J, Cai R, et al: SENP1-Sirt3 signaling promotes
α-ketoglutarate production during M2 macrophage polarization. Cell
Rep. 39:1106602022. View Article : Google Scholar
|
|
74
|
Furness JB: The enteric nervous system and
neurogastroenterology. Nat Rev Gastroenterol Hepatol. 9:286–294.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Warnecke T, Schäfer KH, Claus I, Del
Tredici K and Jost WH: Gastrointestinal involvement in Parkinson's
disease: Pathophysiology, diagnosis, and management. NPJ Parkinsons
Dis. 8:312022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Gockel I, Müller M and Schumacher J:
Achalasia-a disease of unknown cause that is often diagnosed too
late. Dtsch Arztebl Int. 109:209–214. 2012.PubMed/NCBI
|
|
77
|
Niesler B, Kuerten S, Demir IE and Schäfer
KH: Disorders of the enteric nervous system-a holistic view. Nat
Rev Gastroenterol Hepatol. 18:393–410. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wood JD, Liu S, Drossman DA, Ringel Y and
Whitehead WE: Anti-enteric neuronal antibodies and the irritable
bowel syndrome. J Neurogastroenterol Motil. 18:78–85. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Brown IAM, McClain JL, Watson RE, Patel BA
and Gulbransen BD: Enteric glia mediate neuron death in colitis
through purinergic pathways that require connexin-43 and nitric
oxide. Cell Mol Gastroenterol Hepatol. 2:77–91. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shi H, Deng HX, Gius D, Schumacker PT,
Surmeier DJ and Ma YC: Sirt3 protects dopaminergic neurons from
mitochondrial oxidative stress. Hum Mol Genet. 26:1915–1926. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang X, Ren X, Zhang Q, Li Z, Ma S, Bao
J, Li Z, Bai X, Zheng L, Zhang Z, et al: PGC-1α/ERRα-Sirt3 pathway
regulates daergic neuronal death by directly deacetylating SOD2 and
ATP synthase β. Antioxid Redox Signal. 24:312–328. 2016. View Article : Google Scholar :
|
|
82
|
Pillai VB, Samant S, Sundaresan NR,
Raghuraman H, Kim G, Bonner MY, Arbiser JL, Walker DI, Jones DP,
Gius D and Gupta MP: Honokiol blocks and reverses cardiac
hypertrophy in mice by activating mitochondrial Sirt3. Nat Commun.
6:66562015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Pillai VB, Kanwal A, Fang YH, Sharp WW,
Samant S, Arbiser J and Gupta MP: Honokiol, an activator of
Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart
from doxorubicin-induced cardiomyopathy in mice. Oncotarget.
8:34082–34098. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Balasubramaniam A, Li G, Ramanathan A,
Mwangi SM, Hart CM, Arbiser JL and Srinivasan S: SIRT3 activation
promotes enteric neurons survival and differentiation. Sci Rep.
12:220762022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sudo N: Biogenic amines: Signals between
commensal microbiota and gut physiology. Front Endocrinol
(Lausanne). 10:5042019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Munteanu C, Onose G, Poștaru M, Turnea M,
Rotariu M and Galaction AI: Hydrogen sulfide and gut microbiota:
Their synergistic role in modulating sirtuin activity and potential
therapeutic implications for neurodegenerative diseases.
Pharmaceuticals (Basel). 17:14802024. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM
and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sánchez-Aragó M, Chamorro M and Cuezva JM:
Selection of cancer cells with repressed mitochondria triggers
colon cancer progression. Carcinogenesis. 31:567–576. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ku M, Koche RP, Rheinbay E, Mendenhall EM,
Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS, et al:
Genomewide analysis of PRC1 and PRC2 occupancy identifies two
classes of bivalent domains. PLoS Genet. 4:e10002422008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gan L, Li Q, Nie W, Zhang Y, Jiang H, Tan
C, Zhang L, Zhang J, Li Q, Hou P, et al: PROX1-mediated epigenetic
silencing of SIRT3 contributes to proliferation and glucose
metabolism in colorectal cancer. Int J Biol Sci. 19:50–65. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Torrens-Mas M, Hernández-López R, Pons DG,
Roca P, Oliver J and Sastre-Serra J: Sirtuin 3 silencing impairs
mitochondrial biogenesis and metabolism in colon cancer cells. Am J
Physiol Cell Physiol. 317:C398–C404. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metabol. 23:27–47. 2016.
View Article : Google Scholar
|
|
93
|
Amelio I, Cutruzzolá F, Antonov A,
Agostini M and Melino G: Serine and glycine metabolism in cancer.
Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lee GY, Haverty PM, Li L, Kljavin NM,
Bourgon R, Lee J, Stern H, Modrusan Z, Seshagiri S, Zhang Z, et al:
Comparative oncogenomics identifies PSMB4 and SHMT2 as potential
cancer driver genes. Cancer Res. 74:3114–3126. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wei Z, Song J, Wang G, Cui X, Zheng J,
Tang Y, Chen X, Li J, Cui L, Liu CY and Yu W: Deacetylation of
serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal
carcinogenesis. Nat Commun. 9:44682018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Colloca A, Balestrieri A, Anastasio C,
Balestrieri ML and D'Onofrio N: Mitochondrial sirtuins in chronic
degenerative diseases: New metabolic targets in colorectal cancer.
Int J Mol Sci. 23:32122022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Abdelmaksoud NM, Abulsoud AI, Abdelghany
TM, Elshaer SS, Rizk SM, Senousy MA and Maurice NW: Uncovering
SIRT3 and SHMT2-dependent pathways as novel targets for apigenin in
modulating colorectal cancer: In vitro and in vivo studies. Exp
Cell Res. 441:1141502024. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
D'Onofrio N, Martino E, Balestrieri A,
Mele L, Cautela D, Castaldo D and Balestrieri ML: Diet-derived
ergothioneine induces necroptosis in colorectal cancer cells by
activating the SIRT3/MLKL pathway. FEBS Lett. 596:1313–1329. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Colloca A, Donisi I, Anastasio C,
Balestrieri ML and D'Onofrio N: Metabolic alteration bridging the
prediabetic state and colorectal cancer. Cells. 13:6632024.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Anastasio C, Donisi I, Del Vecchio V,
Colloca A, Mele L, Sardu C, Marfella R, Balestrieri ML and
D'Onofrio N: SGLT2 inhibitor promotes mitochondrial dysfunction and
ER-phagy in colorectal cancer cells. Cell Mol Biol Lett. 29:802024.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Sharma A, Baker S, Duijm M, Oomen-de Hoop
E, Cornelissen R, Verhoef C, Hoogeman M and Jan Nuyttens J:
Prognostic factors for local control and survival for inoperable
pulmonary colorectal oligometastases treated with stereotactic body
radiotherapy. Radiother Oncol. 144:23–29. 2020. View Article : Google Scholar
|
|
102
|
Wei Y, Xiao G, Xu H, Sun X, Shi Y, Wang F,
Kang J, Peng J and Zhou F: Radiation resistance of cancer cells
caused by mitochondrial dysfunction depends on SIRT3-mediated
mitophagy. FEBS J. 290:3629–3645. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Frost F, Kacprowski T, Rühlemann M, Bülow
R, Kühn JP, Franke A, Heinsen FA, Pietzner M, Nauck M, Völker U, et
al: Impaired exocrine pancreatic function associates with changes
in intestinal microbiota composition and diversity.
Gastroenterology. 156:1010–1015. 2019. View Article : Google Scholar
|
|
104
|
Li X, He C, Li N, Ding L, Chen H, Wan J,
Yang X, Xia L, He W, Xiong H, et al: The interplay between the gut
microbiota and NLRP3 activation affects the severity of acute
pancreatitis in mice. Gut Microbes. 11:1774–1789. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liu LW, Xie Y, Li GQ, Zhang T, Sui YH,
Zhao ZJ, Zhang YY, Yang WB, Geng XL, Xue DB, et al: Gut
microbiota-derived nicotinamide mononucleotide alleviates acute
pancreatitis by activating pancreatic SIRT3 signalling. Br J
Pharmacol. 180:647–666. 2023. View Article : Google Scholar
|
|
106
|
Cai J, Chen H, Lu M, Zhang Y, Lu B, You L,
Zhang T, Dai M and Zhao Y: Advances in the epidemiology of
pancreatic cancer: Trends, risk factors, screening, and prognosis.
Cancer Lett. 520:1–11. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhou Y, Cheng S, Chen S and Zhao Y:
Prognostic and clinicopathological value of SIRT3 expression in
various cancers: A systematic review and meta-analysis. Onco
Targets Ther. 11:2157–2167. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Haigis MC, Deng CX, Finley LW, Kim HS and
Gius D: SIRT3 is a mitochondrial tumor suppressor: A scientific
tale that connects aberrant cellular ROS, the Warburg effect, and
carcinogenesis. Cancer Res. 72:2468–2472. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Yao W, Cai X, Liu C, Qin Y, Cheng H, Ji S,
Xu W, Wu C, Chen T, Xu J, et al: Profilin 1 potentiates apoptosis
induced by staurosporine in cancer cells. Curr Mol Med. 13:417–428.
2013.PubMed/NCBI
|
|
110
|
Yao W, Ji S, Qin Y, Yang J, Xu J, Zhang B,
Xu W, Liu J, Shi S, Liu L, et al: Profilin-1 suppresses
tumorigenicity in pancreatic cancer through regulation of the
SIRT3-HIF1α axis. Mol Cancer. 13:1872014. View Article : Google Scholar
|
|
111
|
Jeong SM, Lee J, Finley LW, Schmidt PJ,
Fleming MD and Haigis MC: SIRT3 regulates cellular iron metabolism
and cancer growth by repressing iron regulatory protein 1.
Oncogene. 34:2115–2124. 2015. View Article : Google Scholar
|
|
112
|
Chouhan S, Kumar A, Muhammad N, Usmani D
and Khan TH: Sirtuins as key regulators in pancreatic cancer:
Insights into signaling mechanisms and therapeutic implications.
Cancers (Basel). 16:40952024. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ma Z, Li Z, Wang S, Zhou Z, Liu C, Zhuang
H, Zhou Q, Huang S, Zhang C and Hou B: ZMAT1 acts as a tumor
suppressor in pancreatic ductal adenocarcinoma by inducing
SIRT3/p53 signaling pathway. J Exp Clin Cancer Res. 41:1302022.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ragab EM, El Gamal DM, Mohamed TM and
Khamis AA: Impairment of electron transport chain and induction of
apoptosis by chrysin nanoparticles targeting succinate-ubiquinone
oxidoreductase in pancreatic and lung cancer cells. Genes Nutr.
18:42023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Shi S, Yao W, Xu J, Long J, Liu C and Yu
X: Combinational therapy: New hope for pancreatic cancer? Cancer
Lett. 317:127–135. 2012. View Article : Google Scholar
|
|
116
|
Thrift AP, Wenker TN and El-Serag HB:
Global burden of gastric cancer: Epidemiological trends, risk
factors, screening and prevention. Nat Rev Clin Oncol. 20:338–349.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kim HS, Patel K, Muldoon-Jacobs K, Bisht
KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage
J, Owens KM, et al: SIRT3 is a mitochondria-localized tumor
suppressor required for maintenance of mitochondrial integrity and
metabolism during stress. Cancer Cell. 17:41–52. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Tao R, Coleman MC, Pennington JD, Ozden O,
Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, et
al: Sirt3-mediated deacetylation of evolutionarily conserved lysine
122 regulates MnSOD activity in response to stress. Mol Cell.
40:893–904. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Cui Y, Qin L, Wu J, Qu X, Hou C, Sun W, Li
S, Vaughan AT, Li JJ and Liu J: SIRT3 enhances glycolysis and
proliferation in SIRT3-expressing gastric cancer cells. PLoS One.
10:e01298342015. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Arnold M, Park JY, Camargo MC, Lunet N,
Forman D and Soerjomataram I: Is gastric cancer becoming a rare
disease? A global assessment of predicted incidence trends to 2035.
Gut. 69:823–829. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Roa JC, García P, Kapoor VK, Maithel SK,
Javle M and Koshiol J: Gallbladder cancer. Nat Rev Dis Primers.
8:692022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Liu L, Li Y, Cao D, Qiu S, Li Y, Jiang C,
Bian R, Yang Y, Li L, Li X, et al: SIRT3 inhibits gallbladder
cancer by induction of AKT-dependent ferroptosis and blockade of
epithelial-mesenchymal transition. Cancer Lett. 510:93–104. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Aiello NM and Kang Y: Context-dependent
EMT programs in cancer metastasis. J Exp Med. 216:1016–1026. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Osborne B, Bentley NL, Montgomery MK and
Turner N: The role of mitochondrial sirtuins in health and disease.
Free Radic Biol Med. 100:164–174. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Rose G, Dato S, Altomare K, Bellizzi D,
Garasto S, Greco V, Passarino G, Feraco E, Mari V, Barbi C, et al:
Variability of the SIRT3 gene, human silent information regulator
Sir2 homologue, and survivorship in the elderly. Exp Gerontol.
38:1065–1070. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Sinclair DA and Guarente L: Small-molecule
allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol.
54:363–380. 2014. View Article : Google Scholar :
|
|
128
|
Morigi M, Perico L and Benigni A: Sirtuins
in renal health and disease. J Am Soc Nephrol. 29:1799–1809. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Akamata K, Wei J, Bhattacharyya M, Cheresh
P, Bonner MY, Arbiser JL, Raparia K, Gupta MP, Kamp DW and Varga J:
SIRT3 is attenuated in systemic sclerosis skin and lungs, and its
pharmacologic activation mitigates organ fibrosis. Oncotarget.
7:69321–69336. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Wang J, Wang K, Huang C, Lin D, Zhou Y, Wu
Y, Tian N, Fan P, Pan X, Xu D, et al: SIRT3 activation by
dihydromyricetin suppresses chondrocytes degeneration via
maintaining mitochondrial homeostasis. Int J Biol Sci.
14:1873–1882. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Zhang H, Chen Y, Pei Z, Gao H, Shi W, Sun
M, Xu Q, Zhao J, Meng W and Xiao K: Protective effects of polydatin
against sulfur mustard-induced hepatic injury. Toxicol Appl
Pharmacol. 367:1–11. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Zhang J, Meruvu S, Bedi YS, Chau J,
Arguelles A, Rucker R and Choudhury M: Pyrroloquinoline quinone
increases the expression and activity of Sirt1 and -3 genes in
HepG2 cells. Nutr Res. 35:844–849. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Peng F, Liao M, Jin W, Liu W, Li Z, Fan Z,
Zou L, Chen S, Zhu L, Zhao Q, et al: 2-APQC, a small-molecule
activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy
and fibrosis by regulating mitochondrial homeostasis. Signal
Transduct Target Ther. 9:1332024. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Schlicker C, Boanca G, Lakshminarasimhan M
and Steegborn C: Structure-based development of novel sirtuin
inhibitors. Aging (Albany NY). 3:852–872. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Nakamura Y, Suganami A, Fukuda M, Hasan
MK, Yokochi T, Takatori A, Satoh S, Hoshino T, Tamura Y and
Nakagawara A: Identification of novel candidate compounds targeting
TrkB to induce apoptosis in neuroblastoma. Cancer Med. 3:25–35.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Alhazzazi TY, Kamarajan P, Xu Y, Ai T,
Chen L, Verdin E and Kapila YL: A novel sirtuin-3 inhibitor,
LC-0296, inhibits cell survival and proliferation, and promotes
apoptosis of head and neck cancer cells. Anticancer Res. 36:49–60.
2016.PubMed/NCBI
|