Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2026 Volume 57 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2026 Volume 57 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of SIRT3 in digestive system diseases and therapeutic prospects (Review)

  • Authors:
    • Jiajia Li
    • Qian Liu
    • Shun Yao
    • Xin Li
    • Li Zhang
    • Yongfeng Wang
    • Guorong Wen
    • Jiaxing An
    • Hai Jin
    • Biguang Tuo
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 48
    |
    Published online on: December 22, 2025
       https://doi.org/10.3892/ijmm.2025.5719
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

The family of silent information regulators (sirtuins) constitutes a highly conserved protein family that exhibits two primary enzymatic activities in vitro: NAD+‑dependent protein deacetylase activity and adenosine diphosphate‑ribose transferase activity. Sirtuin 3 (SIRT3), a member of the sirtuin family, is widely expressed in mitochondria‑rich tissues such as the brain, heart, liver and kidney, and functions primarily as a deacetylase. The deacetylations regulated by SIRT3 modulate various metabolic substances and processes within the mitochondrial matrix, playing a crucial role in maintaining normal digestive system function. Therefore, this review focuses on the role of SIRT3 in digestive system diseases to elucidate its function in pathogenic signaling pathways and explore the development of drug targets targeting SIRT3 and related disease pathways, offering new directions for improving the treatment of digestive system‑related diseases.
View Figures

Figure 1

Localization and structure of SIRT3.
SIRT3 is transcribed in the chromosome 11p15.5 region in the
nucleus, and the mitochondrial targeting sequence between
N-terminal residues 1-25 is localized for the next step to enter
the mitochondria, and the six serine phosphorylation sites, 101,
103, 105, 114, 117 and 118, prevent the substrate from binding to
the active site of SIRT3 in advance prior to transferring to the
mitochondria, and are localized to enter the mitochondria according
to the mitochondrial localization sequence between residues 1-25 at
its N-terminus and its NH2-terminal 142 residues are
hydrolytically cleaved in the mitochondrial matrix by MPP to become
the active form of the 28 kDa class III histone deacetylase, whose
core region consists of a large Rossmann-folded structural domain
that binds to NAD+, and a small structural domain consisting of a
helix bundle and zinc-binding motifs. SIRT3, sirtuin 3; MPP,
matrix-processing peptidase.

Figure 2

Signaling pathways regulated by SIRT3
in digestive diseases. (A) SIRT3 deacetylates PHD, and activated
PHD hydroxylates the substrate HIF-1a to inhibit activity, leading
to a decrease in LDHA preventing tumors from undergoing aerobic
glycolysis. (B) SIRT3 acts as an oncogenic factor that enhances
enzyme activity as well as cellular bioenergetics by deacetylating
lactate dehydrogenase A, resulting in rapid tumor cell growth. (C)
PROX1 recruits EZH2 to the SIRT3 promoter region in colorectal
cancer cells to inhibit SIRT3 transcription and translation, cell
proliferation in CRC. (D) Profilin-1 and SIRT3 interact to inhibit
HIF1α, and as a result, GLUT1 and LDHA expression is significantly
suppressed, affecting glycolysis in pancreatic cancer progression.
LDHA, lactate dehydrogenase A; SIRT3, sirtuin 3; HIF,
hypoxia-inducible factor; CRC, colorectal cancer; PROX1,
proco-related homeobox 1; EZH2, enhancer of zeste homolog 2; PHD,
prolyl hydroxylase; AC, acetylation; GLUT1, glucose transporter
1.
View References

1 

Zhang Y, Zhao L, Gao H, Zhai J and Song Y: Potential role of irisin in digestive system diseases. Biomed Pharmacother. 166:1153472023. View Article : Google Scholar : PubMed/NCBI

2 

Chakraborty E and Sarkar D: Emerging therapies for hepatocellular carcinoma (HCC). Cancers (Basel). 14:27982022. View Article : Google Scholar : PubMed/NCBI

3 

Menini S, Iacobini C, Vitale M, Pesce C and Pugliese G: Diabetes and pancreatic cancer-a dangerous liaison relying on carbonyl stress. Cancers (Basel). 1:3132021. View Article : Google Scholar

4 

Hu JX, Zhao CF, Chen WB, Liu QC, Li QW, Lin YY and Gao F: Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J Gastroenterol. 27:4298–321. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Haque PS, Kapur N, Barrett TA and Theiss AL: Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 21:537–555. 2024. View Article : Google Scholar : PubMed/NCBI

6 

LeFort KR, Rungratanawanich W and Song BJ: Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci. 81:342024. View Article : Google Scholar : PubMed/NCBI

7 

Zhou L, Pinho R, Gu Y and Radak Z: The role of SIRT3 in exercise and aging. Cells. 11:25962022. View Article : Google Scholar : PubMed/NCBI

8 

Feldman JL, Dittenhafer-Reed KE and Denu JM: Sirtuin catalysis and regulation. J Biol Chem. 287:42419–42427. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Zhang J, Xiang H, Liu J, Chen Y, He RR and Liu B: Mitochondrial sirtuin 3: New emerging biological function and therapeutic target. Theranostics. 10:8315–8342. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Grabowska W, Sikora E and Bielak-Zmijewska A: Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 18:447–476. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Verdin E, Hirschey MD, Finley LW and Haigis MC: Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling. Trends Biochem Sci. 35:669–675. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Mishra Y and Kaundal RK: Role of SIRT3 in mitochondrial biology and its therapeutic implications in neurodegenerative disorders. Drug Discov Today. 28:1035832023. View Article : Google Scholar : PubMed/NCBI

13 

Zhang Y, Wen P, Luo J, Ding H, Cao H, He W, Zen K, Zhou Y, Yang J and Jiang L: Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis. Cell Death Dis. 12:8472021. View Article : Google Scholar : PubMed/NCBI

14 

Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, et al: Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell. 49:186–199. 2013. View Article : Google Scholar :

15 

Iwahara T, Bonasio R, Narendra V and Reinberg D: SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol Cell Biol. 32:5022–5034. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Onyango P, Celic I, McCaffery JM, Boeke JD and Feinberg AP: SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA. 99:13653–13658. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Yang W, Nagasawa K, Münch C, Xu Y, Satterstrom K, Jeong S, Hayes SD, Jedrychowski MP, Vyas FS, Zaganjor E, et al: Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell. 167:985–1000.e21. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Shen H, Qi X, Hu Y, Wang Y, Zhang J, Liu Z and Qin Z: Targeting sirtuins for cancer therapy: Epigenetics modifications and beyond. Theranostics. 14:6726–6767. 2024. View Article : Google Scholar : PubMed/NCBI

19 

Griffiths HBS, Williams C, King SJ and Allison SJ: Nicotinamide adenine dinucleotide (NAD+): Essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target. Biochem Soc Trans. 48:733–744. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Ouyang S, Zhang Q, Lou L, Zhu K, Li Z, Liu P and Zhang X: The double-edged sword of SIRT3 in cancer and its therapeutic applications. Front Pharmacol. 13:8715602022. View Article : Google Scholar : PubMed/NCBI

21 

Chen LJ, Guo J, Zhang SX, Xu Y, Zhao Q, Zhang W, Xiao J and Chen Y: Sirtuin3 rs28365927 functional variant confers to the high risk of non-alcoholic fatty liver disease in Chinese Han population. Lipids Health Dis. 20:922021. View Article : Google Scholar : PubMed/NCBI

22 

Kane AE and Sinclair DA: Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ Res. 123:868–885. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Peterson BS, Campbell JE, Ilkayeva O, Grimsrud PA, Hirschey MD and Newgard CB: Remodeling of the acetylproteome by SIRT3 manipulation fails to affect insulin secretion or β cell metabolism in the absence of overnutrition. Cell Rep. 24:209–223.e6. 2018. View Article : Google Scholar

24 

Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX and Choudhary C: Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. PLoS One. 7:e505452012. View Article : Google Scholar : PubMed/NCBI

25 

Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, Stančáková A, Goetzman E, Lam MM, Schwer B, et al: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 44:177–190. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Liu J, Li D, Zhang T, Tong Q, Ye RD and Lin L: SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity. Cell Death Dis. 8:e31582017. View Article : Google Scholar : PubMed/NCBI

27 

Bell EL, Emerling BM, Ricoult SJ and Guarente L: SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene. 30:2986–2996. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Fukushi A, Kim HD, Chang YC and Kim CH: Revisited metabolic control and reprogramming cancers by means of the warburg effect in tumor cells. Int J Mol Sci. 23:100372022. View Article : Google Scholar : PubMed/NCBI

29 

Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE and Loomba R: AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 77:1797–1835. 2023. View Article : Google Scholar : PubMed/NCBI

30 

Paternostro R and Trauner M: Current treatment of non-alcoholic fatty liver disease. J Intern Med. 292:190–204. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Grander C, Grabherr F and Tilg H: Non-alcoholic fatty liver disease: Pathophysiological concepts and treatment options. Cardiovasc Res. 119:1787–1798. 2023. View Article : Google Scholar : PubMed/NCBI

32 

Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQ and Portincasa P: Nonalcoholic fatty liver disease (NAFLD). Mitochondria as players and targets of therapies? Int J Mol Sci. 22:53752021.

33 

Zheng Y, Wang S, Wu J and Wang Y: Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: New insights from pathogenic mechanisms to clinically targeted therapy. J Transl Med. 21:5102023. View Article : Google Scholar : PubMed/NCBI

34 

Pirola CJ, Gianotti TF, Burgueño AL, Rey-Funes M, Loidl CF, Mallardi P, Martino JS, Castaño GO and Sookoian S: Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut. 62:1356–1363. 2013. View Article : Google Scholar

35 

Mazzoccoli G, De Cosmo S and Mazza T: The biological clock: A pivotal hub in non-alcoholic fatty liver disease pathogenesis. Front Physiol. 9:1932018. View Article : Google Scholar : PubMed/NCBI

36 

Polyzos SA, Kountouras J and Mantzoros CS: Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 92:82–97. 2019. View Article : Google Scholar

37 

Ramanathan R, Ali AH and Ibdah JA: Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. Int J Mol Sci. 23:72802022. View Article : Google Scholar : PubMed/NCBI

38 

Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F and Chang Y: Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One. 5:e117072010. View Article : Google Scholar : PubMed/NCBI

39 

Barroso E, Rodríguez-Rodríguez R, Zarei M, Pizarro-Degado J, Planavila A, Palomer X, Villarroya F and Vázquez-Carrera M: SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2. Cell Commun Signal. 18:1472020. View Article : Google Scholar

40 

Chen DD, Shi Q, Liu X, Liang DL, Wu YZ, Fan Q, Xiao K, Chen C and Dong XP: Aberrant SENP1-SUMO-Sirt3 signaling causes the disturbances of mitochondrial deacetylation and oxidative phosphorylation in prion-infected animal and cell models. ACS Chem Neurosci. 14:1610–1621. 2023. View Article : Google Scholar : PubMed/NCBI

41 

Wang Z, Dou X, Li S, Zhang X, Sun X, Zhou Z and Song Z: Nuclear factor (erythroid-derived 2)-like 2 activation-induced hepatic very-low-density lipoprotein receptor overexpression in response to oxidative stress contributes to alcoholic liver disease in mice. Hepatology. 59:1381–1392. 2014. View Article : Google Scholar

42 

Green MF and Hirschey MD: SIRT3 weighs heavily in the metabolic balance: A new role for SIRT3 in metabolic syndrome. J Gerontol A Biol Sci Med Sci. 68:105–107. 2013. View Article : Google Scholar

43 

Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, Van Hove JL, Watson PA, Birdsey N, Bao J, Gius D, et al: Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J. 433:505–514. 2011. View Article : Google Scholar

44 

Lai CS, Tsai ML, Badmaev V, Jimenez M, Ho CT and Pan MH: Xanthigen suppresses preadipocyte differentiation and adipogenesis through down-regulation of PPARγ and C/EBPs and modulation of SIRT-1, AMPK, and FoxO pathways. J Agric Food Chem. 60:1094–1101. 2012. View Article : Google Scholar : PubMed/NCBI

45 

He J, Qian YC, Yin YC, Kang JR and Pan TR: Polydatin: A potential NAFLD therapeutic drug that regulates mitochondrial autophagy through SIRT3-FOXO3-BNIP3 and PINK1-PRKN mechanisms-a network pharmacology and experimental investigation. Chem Biol Interact. 398:1111102024. View Article : Google Scholar

46 

Ren B, Kwah MX, Liu C, Ma Z, Shanmugam MK, Ding L, Xiang X, Ho PC, Wang L, Ong PS and Goh BC: Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett. 515:63–72. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Karami A, Fakhri S, Kooshki L and Khan H: Polydatin: Pharmacological mechanisms, therapeutic targets, biological activities, and health benefits. Molecules. 27:64742022. View Article : Google Scholar : PubMed/NCBI

48 

Imtiyaz K, Shafi M, Fakhri KU, Uroog L, Zeya B, Anwer ST and Rizvi MMA: Polydatin: A natural compound with multifaceted anticancer properties. J Tradit Complement Med. 15:447–466. 2024. View Article : Google Scholar : PubMed/NCBI

49 

Malladi N, Lahamge D, Somwanshi BS, Tiwari V, Deshmukh K, Balani JK, Chakraborty S, Alam MJ and Banerjee SK: Paricalcitol attenuates oxidative stress and inflammatory response in the liver of NAFLD rats by regulating FOXO3a and NFκB acetylation. Cell Signal. 121:1112992024. View Article : Google Scholar

50 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI

51 

Ladd AD, Duarte S, Sahin I and Zarrinpar A: Mechanisms of drug resistance in HCC. Hepatology. 79:926–940. 2024. View Article : Google Scholar

52 

Ahmed O and Pillai A: Hepatocellular carcinoma: A contemporary approach to locoregional therapy. Am J Gastroenterol. 115:1733–1736. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Vogel A, Meyer T, Sapisochin G, Salem R and Saborowski A: Hepatocellular carcinoma. Lancet. 400:1345–1362. 2022. View Article : Google Scholar : PubMed/NCBI

54 

Zhang B, Qin L, Zhou CJ, Liu YL, Qian HX and He SB: SIRT3 expression in hepatocellular carcinoma and its impact on proliferation and invasion of hepatoma cells. Asian Pac J Trop Med. 6:649–652. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Wang JX, Yi Y, Li YW, Cai XY, He HW, Ni XC, Zhou J, Cheng YF, Jin JJ, Fan J and Qiu SJ: Down-regulation of sirtuin 3 is associated with poor prognosis in hepatocellular carcinoma after resection. BMC Cancer. 14:2972014. View Article : Google Scholar : PubMed/NCBI

56 

De Matteis S, Scarpi E, Granato AM, Vespasiani-Gentilucci U, La Barba G, Foschi FG, Bandini E, Ghetti M, Marisi G, Cravero P, et al: Role of SIRT-3, p-mTOR and HIF-1α in hepatocellular carcinoma patients affected by metabolic dysfunctions and in chronic treatment with metformin. Int J Mol Sci. 20:15032019. View Article : Google Scholar

57 

Liu H, Li S, Liu X, Chen Y and Deng H: SIRT3 overexpression inhibits growth of kidney tumor cells and enhances mitochondrial biogenesis. J Proteome Res. 17:3143–3152. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL and Dang CV: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA. 107:2037–2042. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Kwon SM, Lee YK, Min S, Woo HG, Wang HJ and Yoon G: Mitoribosome defect in hepatocellular carcinoma promotes an aggressive phenotype with suppressed immune reaction. iScience. 23:1012472020. View Article : Google Scholar : PubMed/NCBI

60 

Fan J, Shan C, Kang HB, Elf S, Xie J, Tucker M, Gu TL, Aguiar M, Lonning S, Chen H, et al: Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell. 53:534–548. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Che L, Wu JS, Du ZB, He YQ, Yang L, Lin JX, Lei Z, Chen XX, Guo DB, Li WG, et al: Targeting mitochondrial COX-2 enhances chemosensitivity via Drp1-dependent remodeling of mitochondrial dynamics in hepatocellular carcinoma. Cancers (Basel). 14:8212022. View Article : Google Scholar : PubMed/NCBI

62 

Ceballos MP, Quiroga AD and Palma NF: Role of sirtuins in hepatocellular carcinoma progression and multidrug resistance: Mechanistical and pharmacological perspectives. Biochem Pharmacol. 212:1155732023. View Article : Google Scholar : PubMed/NCBI

63 

Lu J, Zhang H, Chen X, Zou Y, Li J, Wang L, Wu M, Zang J, Yu Y, Zhuang W, et al: A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase. Free Radic Biol Med. 112:287–297. 2017. View Article : Google Scholar : PubMed/NCBI

64 

De Matteis S, Granato AM, Napolitano R, Molinari C, Valgiusti M, Santini D, Foschi FG, Ercolani G, Vespasiani Gentilucci U, Faloppi L, et al: Interplay between SIRT-3, metabolism and its tumor suppressor role in hepatocellular carcinoma. Dig Dis Sci. 62:1872–1880. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Kim YI, Ko I, Yi EJ, Kim J, Hong YR, Lee W and Chang SY: NAD+ modulation of intestinal macrophages renders anti-inflammatory functionality and ameliorates gut inflammation. Biomed Pharmacother. 185:1179382025. View Article : Google Scholar

66 

Guan Q: A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res. 2019:72472382019. View Article : Google Scholar : PubMed/NCBI

67 

Chen X, Zhang M, Zhou F, Gu Z, Li Y, Yu T, Peng C, Zhou L, Li X, Zhu D, et al: SIRT3 activator honokiol inhibits Th17 cell differentiation and alleviates colitis. Inflamm Bowel Dis. 29:1929–1940. 2023. View Article : Google Scholar : PubMed/NCBI

68 

Nistala K and Wedderburn LR: Th17 and regulatory T cells: Rebalancing pro- and anti-inflammatory forces in autoimmune arthritis. Rheumatology (Oxford). 48:602–606. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Yu R, Zuo F, Ma H and Chen S: Exopolysaccharide-producing Bifidobacterium adolescentis strains with similar adhesion property induce differential regulation of inflammatory immune response in Treg/Th17 axis of DSS-colitis mice. Nutrients. 11:7822019. View Article : Google Scholar : PubMed/NCBI

70 

Zhang M, Zhou L, Xu Y, Yang M, Xu Y, Komaniecki GP, Kosciuk T, Chen X, Lu X, Zou X, et al: A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis. Nature. 586:434–439. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Cros C, Margier M, Cannelle H, Charmetant J, Hulo N, Laganier L, Grozio A and Canault M: Nicotinamide mononucleotide administration triggers macrophages reprogramming and alleviates inflammation during sepsis induced by experimental peritonitis. Front Mol Biosci. 9:8950282022. View Article : Google Scholar : PubMed/NCBI

72 

Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K and Tsatsanis C: Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 198:1006–1014. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Zhou W, Hu G, He J, Wang T, Zuo Y, Cao Y, Zheng Q, Tu J, Ma J, Cai R, et al: SENP1-Sirt3 signaling promotes α-ketoglutarate production during M2 macrophage polarization. Cell Rep. 39:1106602022. View Article : Google Scholar

74 

Furness JB: The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 9:286–294. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Warnecke T, Schäfer KH, Claus I, Del Tredici K and Jost WH: Gastrointestinal involvement in Parkinson's disease: Pathophysiology, diagnosis, and management. NPJ Parkinsons Dis. 8:312022. View Article : Google Scholar : PubMed/NCBI

76 

Gockel I, Müller M and Schumacher J: Achalasia-a disease of unknown cause that is often diagnosed too late. Dtsch Arztebl Int. 109:209–214. 2012.PubMed/NCBI

77 

Niesler B, Kuerten S, Demir IE and Schäfer KH: Disorders of the enteric nervous system-a holistic view. Nat Rev Gastroenterol Hepatol. 18:393–410. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Wood JD, Liu S, Drossman DA, Ringel Y and Whitehead WE: Anti-enteric neuronal antibodies and the irritable bowel syndrome. J Neurogastroenterol Motil. 18:78–85. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Brown IAM, McClain JL, Watson RE, Patel BA and Gulbransen BD: Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2:77–91. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Shi H, Deng HX, Gius D, Schumacker PT, Surmeier DJ and Ma YC: Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Hum Mol Genet. 26:1915–1926. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Zhang X, Ren X, Zhang Q, Li Z, Ma S, Bao J, Li Z, Bai X, Zheng L, Zhang Z, et al: PGC-1α/ERRα-Sirt3 pathway regulates daergic neuronal death by directly deacetylating SOD2 and ATP synthase β. Antioxid Redox Signal. 24:312–328. 2016. View Article : Google Scholar :

82 

Pillai VB, Samant S, Sundaresan NR, Raghuraman H, Kim G, Bonner MY, Arbiser JL, Walker DI, Jones DP, Gius D and Gupta MP: Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat Commun. 6:66562015. View Article : Google Scholar : PubMed/NCBI

83 

Pillai VB, Kanwal A, Fang YH, Sharp WW, Samant S, Arbiser J and Gupta MP: Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget. 8:34082–34098. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Balasubramaniam A, Li G, Ramanathan A, Mwangi SM, Hart CM, Arbiser JL and Srinivasan S: SIRT3 activation promotes enteric neurons survival and differentiation. Sci Rep. 12:220762022. View Article : Google Scholar : PubMed/NCBI

85 

Sudo N: Biogenic amines: Signals between commensal microbiota and gut physiology. Front Endocrinol (Lausanne). 10:5042019. View Article : Google Scholar : PubMed/NCBI

86 

Munteanu C, Onose G, Poștaru M, Turnea M, Rotariu M and Galaction AI: Hydrogen sulfide and gut microbiota: Their synergistic role in modulating sirtuin activity and potential therapeutic implications for neurodegenerative diseases. Pharmaceuticals (Basel). 17:14802024. View Article : Google Scholar : PubMed/NCBI

87 

Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Sánchez-Aragó M, Chamorro M and Cuezva JM: Selection of cancer cells with repressed mitochondria triggers colon cancer progression. Carcinogenesis. 31:567–576. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS, et al: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4:e10002422008. View Article : Google Scholar : PubMed/NCBI

90 

Gan L, Li Q, Nie W, Zhang Y, Jiang H, Tan C, Zhang L, Zhang J, Li Q, Hou P, et al: PROX1-mediated epigenetic silencing of SIRT3 contributes to proliferation and glucose metabolism in colorectal cancer. Int J Biol Sci. 19:50–65. 2023. View Article : Google Scholar : PubMed/NCBI

91 

Torrens-Mas M, Hernández-López R, Pons DG, Roca P, Oliver J and Sastre-Serra J: Sirtuin 3 silencing impairs mitochondrial biogenesis and metabolism in colon cancer cells. Am J Physiol Cell Physiol. 317:C398–C404. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metabol. 23:27–47. 2016. View Article : Google Scholar

93 

Amelio I, Cutruzzolá F, Antonov A, Agostini M and Melino G: Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Lee GY, Haverty PM, Li L, Kljavin NM, Bourgon R, Lee J, Stern H, Modrusan Z, Seshagiri S, Zhang Z, et al: Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res. 74:3114–3126. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Wei Z, Song J, Wang G, Cui X, Zheng J, Tang Y, Chen X, Li J, Cui L, Liu CY and Yu W: Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat Commun. 9:44682018. View Article : Google Scholar : PubMed/NCBI

96 

Colloca A, Balestrieri A, Anastasio C, Balestrieri ML and D'Onofrio N: Mitochondrial sirtuins in chronic degenerative diseases: New metabolic targets in colorectal cancer. Int J Mol Sci. 23:32122022. View Article : Google Scholar : PubMed/NCBI

97 

Abdelmaksoud NM, Abulsoud AI, Abdelghany TM, Elshaer SS, Rizk SM, Senousy MA and Maurice NW: Uncovering SIRT3 and SHMT2-dependent pathways as novel targets for apigenin in modulating colorectal cancer: In vitro and in vivo studies. Exp Cell Res. 441:1141502024. View Article : Google Scholar : PubMed/NCBI

98 

D'Onofrio N, Martino E, Balestrieri A, Mele L, Cautela D, Castaldo D and Balestrieri ML: Diet-derived ergothioneine induces necroptosis in colorectal cancer cells by activating the SIRT3/MLKL pathway. FEBS Lett. 596:1313–1329. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Colloca A, Donisi I, Anastasio C, Balestrieri ML and D'Onofrio N: Metabolic alteration bridging the prediabetic state and colorectal cancer. Cells. 13:6632024. View Article : Google Scholar : PubMed/NCBI

100 

Anastasio C, Donisi I, Del Vecchio V, Colloca A, Mele L, Sardu C, Marfella R, Balestrieri ML and D'Onofrio N: SGLT2 inhibitor promotes mitochondrial dysfunction and ER-phagy in colorectal cancer cells. Cell Mol Biol Lett. 29:802024. View Article : Google Scholar : PubMed/NCBI

101 

Sharma A, Baker S, Duijm M, Oomen-de Hoop E, Cornelissen R, Verhoef C, Hoogeman M and Jan Nuyttens J: Prognostic factors for local control and survival for inoperable pulmonary colorectal oligometastases treated with stereotactic body radiotherapy. Radiother Oncol. 144:23–29. 2020. View Article : Google Scholar

102 

Wei Y, Xiao G, Xu H, Sun X, Shi Y, Wang F, Kang J, Peng J and Zhou F: Radiation resistance of cancer cells caused by mitochondrial dysfunction depends on SIRT3-mediated mitophagy. FEBS J. 290:3629–3645. 2023. View Article : Google Scholar : PubMed/NCBI

103 

Frost F, Kacprowski T, Rühlemann M, Bülow R, Kühn JP, Franke A, Heinsen FA, Pietzner M, Nauck M, Völker U, et al: Impaired exocrine pancreatic function associates with changes in intestinal microbiota composition and diversity. Gastroenterology. 156:1010–1015. 2019. View Article : Google Scholar

104 

Li X, He C, Li N, Ding L, Chen H, Wan J, Yang X, Xia L, He W, Xiong H, et al: The interplay between the gut microbiota and NLRP3 activation affects the severity of acute pancreatitis in mice. Gut Microbes. 11:1774–1789. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Liu LW, Xie Y, Li GQ, Zhang T, Sui YH, Zhao ZJ, Zhang YY, Yang WB, Geng XL, Xue DB, et al: Gut microbiota-derived nicotinamide mononucleotide alleviates acute pancreatitis by activating pancreatic SIRT3 signalling. Br J Pharmacol. 180:647–666. 2023. View Article : Google Scholar

106 

Cai J, Chen H, Lu M, Zhang Y, Lu B, You L, Zhang T, Dai M and Zhao Y: Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis. Cancer Lett. 520:1–11. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Zhou Y, Cheng S, Chen S and Zhao Y: Prognostic and clinicopathological value of SIRT3 expression in various cancers: A systematic review and meta-analysis. Onco Targets Ther. 11:2157–2167. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Haigis MC, Deng CX, Finley LW, Kim HS and Gius D: SIRT3 is a mitochondrial tumor suppressor: A scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis. Cancer Res. 72:2468–2472. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Yao W, Cai X, Liu C, Qin Y, Cheng H, Ji S, Xu W, Wu C, Chen T, Xu J, et al: Profilin 1 potentiates apoptosis induced by staurosporine in cancer cells. Curr Mol Med. 13:417–428. 2013.PubMed/NCBI

110 

Yao W, Ji S, Qin Y, Yang J, Xu J, Zhang B, Xu W, Liu J, Shi S, Liu L, et al: Profilin-1 suppresses tumorigenicity in pancreatic cancer through regulation of the SIRT3-HIF1α axis. Mol Cancer. 13:1872014. View Article : Google Scholar

111 

Jeong SM, Lee J, Finley LW, Schmidt PJ, Fleming MD and Haigis MC: SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1. Oncogene. 34:2115–2124. 2015. View Article : Google Scholar

112 

Chouhan S, Kumar A, Muhammad N, Usmani D and Khan TH: Sirtuins as key regulators in pancreatic cancer: Insights into signaling mechanisms and therapeutic implications. Cancers (Basel). 16:40952024. View Article : Google Scholar : PubMed/NCBI

113 

Ma Z, Li Z, Wang S, Zhou Z, Liu C, Zhuang H, Zhou Q, Huang S, Zhang C and Hou B: ZMAT1 acts as a tumor suppressor in pancreatic ductal adenocarcinoma by inducing SIRT3/p53 signaling pathway. J Exp Clin Cancer Res. 41:1302022. View Article : Google Scholar : PubMed/NCBI

114 

Ragab EM, El Gamal DM, Mohamed TM and Khamis AA: Impairment of electron transport chain and induction of apoptosis by chrysin nanoparticles targeting succinate-ubiquinone oxidoreductase in pancreatic and lung cancer cells. Genes Nutr. 18:42023. View Article : Google Scholar : PubMed/NCBI

115 

Shi S, Yao W, Xu J, Long J, Liu C and Yu X: Combinational therapy: New hope for pancreatic cancer? Cancer Lett. 317:127–135. 2012. View Article : Google Scholar

116 

Thrift AP, Wenker TN and El-Serag HB: Global burden of gastric cancer: Epidemiological trends, risk factors, screening and prevention. Nat Rev Clin Oncol. 20:338–349. 2023. View Article : Google Scholar : PubMed/NCBI

117 

Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, et al: SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 17:41–52. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, et al: Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 40:893–904. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Cui Y, Qin L, Wu J, Qu X, Hou C, Sun W, Li S, Vaughan AT, Li JJ and Liu J: SIRT3 enhances glycolysis and proliferation in SIRT3-expressing gastric cancer cells. PLoS One. 10:e01298342015. View Article : Google Scholar : PubMed/NCBI

120 

Arnold M, Park JY, Camargo MC, Lunet N, Forman D and Soerjomataram I: Is gastric cancer becoming a rare disease? A global assessment of predicted incidence trends to 2035. Gut. 69:823–829. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Roa JC, García P, Kapoor VK, Maithel SK, Javle M and Koshiol J: Gallbladder cancer. Nat Rev Dis Primers. 8:692022. View Article : Google Scholar : PubMed/NCBI

122 

Liu L, Li Y, Cao D, Qiu S, Li Y, Jiang C, Bian R, Yang Y, Li L, Li X, et al: SIRT3 inhibits gallbladder cancer by induction of AKT-dependent ferroptosis and blockade of epithelial-mesenchymal transition. Cancer Lett. 510:93–104. 2021. View Article : Google Scholar : PubMed/NCBI

123 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Aiello NM and Kang Y: Context-dependent EMT programs in cancer metastasis. J Exp Med. 216:1016–1026. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Osborne B, Bentley NL, Montgomery MK and Turner N: The role of mitochondrial sirtuins in health and disease. Free Radic Biol Med. 100:164–174. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Rose G, Dato S, Altomare K, Bellizzi D, Garasto S, Greco V, Passarino G, Feraco E, Mari V, Barbi C, et al: Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol. 38:1065–1070. 2003. View Article : Google Scholar : PubMed/NCBI

127 

Sinclair DA and Guarente L: Small-molecule allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol. 54:363–380. 2014. View Article : Google Scholar :

128 

Morigi M, Perico L and Benigni A: Sirtuins in renal health and disease. J Am Soc Nephrol. 29:1799–1809. 2018. View Article : Google Scholar : PubMed/NCBI

129 

Akamata K, Wei J, Bhattacharyya M, Cheresh P, Bonner MY, Arbiser JL, Raparia K, Gupta MP, Kamp DW and Varga J: SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget. 7:69321–69336. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Wang J, Wang K, Huang C, Lin D, Zhou Y, Wu Y, Tian N, Fan P, Pan X, Xu D, et al: SIRT3 activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis. Int J Biol Sci. 14:1873–1882. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Zhang H, Chen Y, Pei Z, Gao H, Shi W, Sun M, Xu Q, Zhao J, Meng W and Xiao K: Protective effects of polydatin against sulfur mustard-induced hepatic injury. Toxicol Appl Pharmacol. 367:1–11. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Zhang J, Meruvu S, Bedi YS, Chau J, Arguelles A, Rucker R and Choudhury M: Pyrroloquinoline quinone increases the expression and activity of Sirt1 and -3 genes in HepG2 cells. Nutr Res. 35:844–849. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Peng F, Liao M, Jin W, Liu W, Li Z, Fan Z, Zou L, Chen S, Zhu L, Zhao Q, et al: 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis. Signal Transduct Target Ther. 9:1332024. View Article : Google Scholar : PubMed/NCBI

134 

Schlicker C, Boanca G, Lakshminarasimhan M and Steegborn C: Structure-based development of novel sirtuin inhibitors. Aging (Albany NY). 3:852–872. 2011. View Article : Google Scholar : PubMed/NCBI

135 

Nakamura Y, Suganami A, Fukuda M, Hasan MK, Yokochi T, Takatori A, Satoh S, Hoshino T, Tamura Y and Nakagawara A: Identification of novel candidate compounds targeting TrkB to induce apoptosis in neuroblastoma. Cancer Med. 3:25–35. 2014. View Article : Google Scholar : PubMed/NCBI

136 

Alhazzazi TY, Kamarajan P, Xu Y, Ai T, Chen L, Verdin E and Kapila YL: A novel sirtuin-3 inhibitor, LC-0296, inhibits cell survival and proliferation, and promotes apoptosis of head and neck cancer cells. Anticancer Res. 36:49–60. 2016.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li J, Liu Q, Yao S, Li X, Zhang L, Wang Y, Wen G, An J, Jin H, Tuo B, Tuo B, et al: Role of SIRT3 in digestive system diseases and therapeutic prospects (Review). Int J Mol Med 57: 48, 2026.
APA
Li, J., Liu, Q., Yao, S., Li, X., Zhang, L., Wang, Y. ... Tuo, B. (2026). Role of SIRT3 in digestive system diseases and therapeutic prospects (Review). International Journal of Molecular Medicine, 57, 48. https://doi.org/10.3892/ijmm.2025.5719
MLA
Li, J., Liu, Q., Yao, S., Li, X., Zhang, L., Wang, Y., Wen, G., An, J., Jin, H., Tuo, B."Role of SIRT3 in digestive system diseases and therapeutic prospects (Review)". International Journal of Molecular Medicine 57.2 (2026): 48.
Chicago
Li, J., Liu, Q., Yao, S., Li, X., Zhang, L., Wang, Y., Wen, G., An, J., Jin, H., Tuo, B."Role of SIRT3 in digestive system diseases and therapeutic prospects (Review)". International Journal of Molecular Medicine 57, no. 2 (2026): 48. https://doi.org/10.3892/ijmm.2025.5719
Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Liu Q, Yao S, Li X, Zhang L, Wang Y, Wen G, An J, Jin H, Tuo B, Tuo B, et al: Role of SIRT3 in digestive system diseases and therapeutic prospects (Review). Int J Mol Med 57: 48, 2026.
APA
Li, J., Liu, Q., Yao, S., Li, X., Zhang, L., Wang, Y. ... Tuo, B. (2026). Role of SIRT3 in digestive system diseases and therapeutic prospects (Review). International Journal of Molecular Medicine, 57, 48. https://doi.org/10.3892/ijmm.2025.5719
MLA
Li, J., Liu, Q., Yao, S., Li, X., Zhang, L., Wang, Y., Wen, G., An, J., Jin, H., Tuo, B."Role of SIRT3 in digestive system diseases and therapeutic prospects (Review)". International Journal of Molecular Medicine 57.2 (2026): 48.
Chicago
Li, J., Liu, Q., Yao, S., Li, X., Zhang, L., Wang, Y., Wen, G., An, J., Jin, H., Tuo, B."Role of SIRT3 in digestive system diseases and therapeutic prospects (Review)". International Journal of Molecular Medicine 57, no. 2 (2026): 48. https://doi.org/10.3892/ijmm.2025.5719
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team