Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2026 Volume 57 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2026 Volume 57 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Activating transcription factors: Orchestrators of macrophage biology in pathological settings (Review)

  • Authors:
    • Yue-Chen Liu
    • Jia-Wei Zhao
    • Xiong-Tao Yue
    • Qi-Jie Chen
    • Shan-Jie Rong
    • Shi-Wei Liu
    • Fei Sun
    • Chun-Liang Yang
    • Cong-Yi Wang
  • View Affiliations / Copyright

    Affiliations: Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430100, P.R. China, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430100, P.R. China, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, The Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, Shanxi 030032, P.R. China, Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, The Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, Shanxi 030032, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 49
    |
    Published online on: December 24, 2025
       https://doi.org/10.3892/ijmm.2025.5720
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

Macrophages, an essential component of the innate immune system, exhibit remarkable plasticity and functional heterogeneity governed by the intricate transcriptional regulatory networks. Activating transcription factors (ATFs) have recently been recognized to modulate multiple signaling pathways, including the MAPK cascades, endoplasmic reticulum stress response and NF‑κB signaling, thereby regulating macrophage biological processes such as inflammatory response, glucose‑lipid metabolism, cellular stress adaptation, autophagy‑apoptosis balance and senescence. By integrating stress signals and metabolic cues, ATF family members construct a sophisticated regulatory network implicated in the pathogenesis of infectious and inflammatory diseases, metabolic disorders, malignancies and neurodegenerative diseases. Therefore, targeted modulations of ATFs or their associated pathways are considered to be capable of precisely regulating macrophage anti‑inflammatory function, metabolic activity and tissue repair capacity in disease settings. Recent technological advances, such as specific targeted delivery systems and gene‑editing strategies, offer promising avenues for the spatiotemporal ATF‑targeting interventions in macrophages, which is critical for improving therapeutic efficacy and safety. The present review systematically summarized recent advances in the understanding of ATF‑mediated regulation of macrophage development, survival, migration, phagocytosis, activation/cytokine secretion, along with polarization and metabolic reprogramming. It also elucidated the pathophysiological implications of these regulatory mechanisms and critically evaluated the clinical feasibility of ATF‑targeted therapeutic interventions.
View Figures

Figure 1

ATFs as orchestrators of macrophage
biology in pathological settings. ATFs can be triggered by
infectious stimuli (such as bacteria, viruses, fungi and parasites)
or non-infectious challenges (including ER stress, oxidative
stress, hypoxia, heme and LDL). Upon activation, ATFs orchestrate
macrophage development, survival, migration, phagocytosis,
activation, cytokine production and polarization, thereby linking
macrophage responses to immune, metabolic, cardiovascular,
neurological diseases and cancer with important therapeutic
implications. ATFs, activating transcription factors; ER,
endoplasmic reticulum; LDL, low-density lipoprotein.

Figure 2

ATF family members in macrophage
activation and polarization. Macrophages sense bacterial PGN to
activate ATF1, which drives pro-inflammatory cytokine expression
either in its phosphorylated form or through dimerization with
CREB. ATF5 directly amplifies inflammatory responses by
upregulating the expression of TNF-α, IL-1β and IL-6. ATF2,
activated via the LPS-TLR-p38MAPK pathway or reactive oxygen
species (ROS), also promotes pro-inflammatory cytokine expression.
The ATF2/c-Jun heterodimer synergistically enhances the production
of inflammatory mediators NO and PGE2 by promoting the
transcription of a series of pro-inflammatory genes (such as
Inos and Cox-2) and facilitates Il-23 transcription,
concurrently induces Socs-3 transcription to restrain
TLR4-mediated inflammation, demonstrating its dual regulatory
nature. ATF4 is activated through the PERK-eIF2α pathway and
activated ATF4 persistently induces Chop expression and the
production of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6),
establishing a vicious cycle of inflammation and apoptosis.
Furthermore, ATF4 can form heterodimers with NRF2 to cooperatively
regulate transcription of OSRGs. Activated ATF6 modulates target
genes including Grp78 and Xbp-1, driving cholesterol
accumulation that subsequently elevates cellular inflammation. NRF2
binds to the ARE1 within the Atf3 promoter to initiate
Atf3 transcription. Activated ATF3 recruits HDAC1 onto
pro-inflammatory genes, by which it suppresses NF-κB activity and
reduces pro-inflammatory factor production. Additionally, ATF3
promotes the expression of PD-L1 and GDF15, driving macrophage
polarization towards the M2 phenotype. Under physiological
conditions, ATF7 maintains macrophage quiescence by recruiting the
H3K9 di-methyltransferase G9a to the promoters of
activation-associated genes. ATFs, activating transcription
factors; PGN, peptidoglycan; CREB, cAMP response element-binding
protein; LPS, lipopolysaccharide; TLR, toll-like receptor; NRF2,
nuclear factor erythroid 2-related factor 2; OSRGs, oxidative
stress response genes; ARE, antioxidant response element; HDAC1,
histone deacetylase 1; PD-L1, programmed death-ligand 1; H3K9,
histone H3 lysine 9; GDF15, growth differentiation factor 15.

Figure 3

ATF family members regulate the
function of tissue-adapted macrophages. ATF4 serves as the core
transcription factor for AD-associated microglia to integrate
stress responses and mediate neurodegeneration. ATF6 exacerbates
inflammation by promoting the activation NF-κB pathway. ATF2
accelerates inflammatory pyroptosis following LPS stimulation. In
foam cells, ATF2 upregulates CD36 to accelerate foam cell formation
and atherosclerotic plaque progression. ATF6 promotes cholesterol
synthesis through 3-hydroxy-3-methylglutaryl-coenzyme A reductase
(HMGCR) activation. ATF4 drives the phenotypic transition of VSMCs
into foam cells and reduces plaque stability via CHOP-mediated
apoptosis. Conversely, ATF1 and ATF3 enhance macrophage cholesterol
efflux, thereby inhibiting foam cell formation and promoting plaque
stabilization. In Kupffer cells, ATF3 upregulation exacerbates
alcohol-induced immunosuppression, while ATF6 bolsters
pro-inflammatory TLR4 signaling and cytokine production. In TAMs,
upregulated ATF3 facilitates M2 polarization by enhancing PD-L1
expression, which interacts with PD-1 to reinforce the
immunosuppressive tumor microenvironment. Under physiological
conditions, ATF4 promotes differentiation of Ly6C+
gMacs, thereby maintaining intestinal barrier integrity. In
DSS-induced colitis, activation of the ATF4-CHOP pathway drives
excessive pro-inflammatory cytokine release, exacerbating
intestinal inflammation and epithelial damage. In ATMs, ATF2 and
ATF4 exacerbate adipose inflammation, while ATF4 also suppresses
ATF3 functionality. Notably, ATF3 itself exerts anti-inflammatory
effect on adipose tissue. ATF1, ATF2, ATF3 and ATF4 collectively
promote osteoclast differentiation through distinct molecular
pathways. In BMDMs, ATF1 regulates heme and lipid metabolism, with
its upregulation enhances the efficiency of hematoma clearance.
ISR, integrated stress response; ATF, activating transcription
factor; AD, Alzheimer's disease; LPS, lipopolysaccharide; HMGCR,
3-hydroxy-3-methylglutaryl-coenzyme A reductase; VSMCs, vascular
smooth muscle cells; CHOP, C/EBP homologous protein; TLR, Toll-like
receptor; TAMs, tumor-associated macrophages; Fasn, fatty acid
synthase; HMG CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; PD-L1,
programmed death-ligand 1; PD-1, programmed cell death protein 1;
gMACs, gut macrophages; DSS, dextran sulfate sodium; ATMs, adipose
tissue macrophages; BMDMs, bone marrow-derived macrophages; oxLDL,
oxidized low-density lipoprotein.
View References

1 

Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L and Duo Y: Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 8:2072023. View Article : Google Scholar : PubMed/NCBI

2 

Mass E, Ballesteros I, Farlik M, Halbritter F, Günther P, Crozet L, Jacome-Galarza CE, Händler K, Klughammer J, Kobayashi Y, et al: Specification of tissue-resident macrophages during organogenesis. Science. 353:aaf42382016. View Article : Google Scholar : PubMed/NCBI

3 

Kuznetsova T, Prange KHM, Glass CK and de Winther MPJ: Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol. 17:216–228. 2020. View Article : Google Scholar :

4 

Ajami B, Bennett JL, Krieger C, Tetzlaff W and Rossi FM: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 10:1538–1543. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Bian Z, Gong Y, Huang T, Lee CZW, Bian L, Bai Z, Shi H, Zeng Y, Liu C, He J, et al: Deciphering human macrophage development at single-cell resolution. Nature. 582:571–576. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F and Rodewald HR: Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 518:547–551. 2015. View Article : Google Scholar

7 

Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H and Cheng Q: Tissue macrophages: Origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther. 10:932025. View Article : Google Scholar : PubMed/NCBI

8 

Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, et al: Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 38:792–804. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Rosmus DD, Koch J, Hausmann A, Chiot A, Arnhold F, Masuda T, Kierdorf K, Hansen SM, Kuhrt H, Fröba J, et al: Redefining the ontogeny of hyalocytes as yolk sac-derived tissue-resident macrophages of the vitreous body. J Neuroinflammation. 21:1682024. View Article : Google Scholar : PubMed/NCBI

10 

Masuda T, Amann L, Monaco G, Sankowski R, Staszewski O, Krueger M, Del Gaudio F, He L, Paterson N, Nent E, et al: Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature. 604:740–748. 2022. View Article : Google Scholar : PubMed/NCBI

11 

Kazankov K, Jorgensen SMD, Thomsen KL, Møller HJ, Vilstrup H, George J, Schuppan D and Grønbæk H: The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 16:145–159. 2019. View Article : Google Scholar

12 

Appios A, Davies J, Sirvent S, Henderson S, Trzebanski S, Schroth J, Law ML, Carvalho IB, Pinto MM, Carvalho C, et al: Convergent evolution of monocyte differentiation in adult skin instructs Langerhans cell identity. Sci Immunol. 9:eadp03442024. View Article : Google Scholar : PubMed/NCBI

13 

Hassnain Waqas SF, Noble A, Hoang AC, Ampem G, Popp M, Strauß S, Guille M and Röszer T: Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. J Leukoc Biol. 102:845–855. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Perdiguero EG and Geissmann F: The development and maintenance of resident macrophages. Nat Immunol. 17:2–8. 2016. View Article : Google Scholar :

15 

Sakai M, Troutman TD, Seidman JS, Ouyang Z, Spann NJ, Abe Y, Ego KM, Bruni CM, Deng Z, Schlachetzki JCM, et al: Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain kupffer cell identity. Immunity. 51:655–670 e8. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, et al: Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 38:79–91. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Murray PJ and Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 11:723–737. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI

19 

Mills CD: Anatomy of a discovery: m1 and m2 macrophages. Front Immunol. 6:2122015. View Article : Google Scholar :

20 

Mills CD, Kincaid K, Alt JM, Heilman MJ and Hill AM: M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 164:6166–6173. 2000. View Article : Google Scholar : PubMed/NCBI

21 

Bosco MC: Macrophage polarization: Reaching across the aisle? J Allergy Clin Immunol. 143:1348–1350. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Locati M, Curtale G and Mantovani A: Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar

23 

Ivashkiv LB: Epigenetic regulation of macrophage polarization and function. Trends Immunol. 34:216–223. 2013. View Article : Google Scholar :

24 

Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Dong T, Chen X, Xu H, Song Y, Wang H, Gao Y, Wang J, Du R, Lou H and Dong T: Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases. Pharmacol Ther. 239:1082082022. View Article : Google Scholar : PubMed/NCBI

27 

Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Colin S, Chinetti-Gbaguidi G and Staels B: Macrophage phenotypes in atherosclerosis. Immunol Rev. 262:153–166. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Ruytinx P, Proost P, Van Damme J and Struyf S: Chemokine-induced macrophage polarization in inflammatory conditions. Front Immunol. 9:19302018. View Article : Google Scholar : PubMed/NCBI

30 

Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, et al: Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 40:274–288. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Yan L, Wang J, Cai X, Liou YC, Shen HM, Hao J, Huang C, Luo G and He W: Macrophage plasticity: Signaling pathways, tissue repair, and regeneration. MedComm (2020). 5:e6582024. View Article : Google Scholar : PubMed/NCBI

32 

Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Chen X, Tang J, Shuai W, Meng J, Feng J and Han Z: Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm Res. 69:883–895. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S and Liu C: Macrophages in cardiovascular diseases: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 9:1302024. View Article : Google Scholar : PubMed/NCBI

35 

Frangogiannis NG: Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 65:70–99. 2019. View Article : Google Scholar

36 

Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, Bove P, Candi E, Rovella V, Sica G, et al: Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 14:6912023. View Article : Google Scholar : PubMed/NCBI

37 

Lopez B, Ravassa S, Moreno MU, José GS, Beaumont J, González A and Díez J: Diffuse myocardial fibrosis: Mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol. 18:479–498. 2021. View Article : Google Scholar : PubMed/NCBI

38 

Moore KJ and Tabas I: Macrophages in the pathogenesis of atherosclerosis. Cell. 145:341–355. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Zhang Y, Xin W, Hu X, Wang H, Ye X, Xu C, Nan Y, Wu Z, Ju D and Fan J: Inhibition of Hedgehog signaling ameliorates foam cell formation by promoting autophagy in early atherosclerosis. Cell Death Dis. 14:7402023. View Article : Google Scholar : PubMed/NCBI

40 

Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD and Horng T: The TSC-mTOR pathway regulates macrophage polarization. Nat Commun. 4:28342013. View Article : Google Scholar : PubMed/NCBI

41 

Castoldi A, Naffah de Souza C, Camara NO and Moraes-Vieira PM: The macrophage switch in obesity development. Front Immunol. 6:6372016. View Article : Google Scholar : PubMed/NCBI

42 

Chawla A, Nguyen KD and Goh YP: Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 11:738–749. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Duan H, Jing L, Xiang J, Ju C, Wu Z, Liu J, Ma X, Chen X, Liu Z, Feng J and Yan X: CD146 Associates with Gp130 to Control a macrophage pro-inflammatory program that regulates the metabolic response to obesity. Adv Sci (Weinh). 9:e21037192022. View Article : Google Scholar : PubMed/NCBI

44 

Jiang H, Westerterp M, Wang C, Zhu Y and Ai D: Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice. Diabetologia. 57:2393–2404. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Lu X, Kong X, Wu H, Hao J, Li S, Gu Z, Zeng X, Shen Y, Wang S, Chen J, et al: UBE2M-mediated neddylation of TRIM21 regulates obesity-induced inflammation and metabolic disorders. Cell Metab. 35:1390–1405 e8. 2023. View Article : Google Scholar : PubMed/NCBI

46 

Lumeng CN, Bodzin JL and Saltiel AR: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 117:175–184. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Lumeng CN, Deyoung SM, Bodzin JL and Saltiel AR: Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 56:16–23. 2007. View Article : Google Scholar

48 

Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI

49 

De Palma M, Biziato D and Petrova TV: Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 17:457–474. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Orecchioni M, Ghosheh Y, Pramod AB and Ley K: Macrophage polarization: Different gene signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 10:10842019. View Article : Google Scholar : PubMed/NCBI

51 

Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J, Kancheva D, Martens L, De Vlaminck K, Van Hove H, et al: Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci. 24:595–610. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, Daniel D, Hwang ES, Rugo HS and Coussens LM: Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 26:623–637. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Inoue K, Qin Y, Xia Y, Han J, Yuan R, Sun J, Xu R, Jiang JX, Greenblatt MB and Zhao B: Bone marrow Adipoq-lineage progenitors are a major cellular source of M-CSF that dominates bone marrow macrophage development, osteoclastogenesis, and bone mass. Elife. 12:e821182023. View Article : Google Scholar : PubMed/NCBI

54 

Kulkarni A, Chandrasekar V, Natarajan SK, Ramesh A, Pandey P, Nirgud J, Bhatnagar H, Ashok D, Ajay AK and Sengupta S: A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat Biomed Eng. 2:589–599. 2018. View Article : Google Scholar

55 

Sathi GA, Farahat M, Hara ES, Taketa H, Nagatsuka H, Kuboki T and Matsumoto T: MCSF orchestrates branching morphogenesis in developing submandibular gland tissue. J Cell Sci. 130:1559–1569. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Deng Y, Wang H, Liu X, Yuan H, Xu J, de Thé H, Zhou J and Zhu J: Zbtb14 regulates monocyte and macrophage development through inhibiting pu.1 expression in zebrafish. Elife. 11:e807602022. View Article : Google Scholar : PubMed/NCBI

57 

Solomon LA, Podder S, He J, Jackson-Chornenki NL, Gibson K, Ziliotto RG, Rhee J and DeKoter RP: Coordination of myeloid differentiation with reduced cell cycle progression by PU.1 induction of MicroRNAs targeting cell cycle regulators and lipid anabolism. Mol Cell Biol. 37:e00013–17. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Tu J, Chen W, Fang Y, Han D, Chen Y, Jiang H, Tan X, Xu Z, Wu X, Wang H, et al: PU.1 promotes development of rheumatoid arthritis via repressing FLT3 in macrophages and fibroblast-like synoviocytes. Ann Rheum Dis. 82:198–211. 2023. View Article : Google Scholar

59 

Xiao X, Li JX, Li HH and Teng F: ACE2 alleviates sepsis-induced cardiomyopathy through inhibiting M1 macrophage via NF-ĸB/STAT1 signals. Cell Biol Toxicol. 40:822024. View Article : Google Scholar

60 

Jin C, Zhang F, Luo H, Li B, Jiang X, Pirozzi CJ, Liang C and Zhang M: The CCL5/CCR5/SHP2 axis sustains Stat1 phosphorylation and activates NF-ĸB signaling promoting M1 macrophage polarization and exacerbating chronic prostatic inflammation. Cell Commun Signal. 22:5842024. View Article : Google Scholar

61 

Wu Q, Li B, Li J and Sun S, Yuan J and Sun S: Cancer-associated adipocytes as immunomodulators in cancer. Biomark Res. 9:22021. View Article : Google Scholar : PubMed/NCBI

62 

Gu L, Larson Casey JL, Andrabi SA, Lee JH, Meza-Perez S, Randall TD and Carter AB: Mitochondrial calcium uniporter regulates PGC-1α expression to mediate metabolic reprogramming in pulmonary fibrosis. Redox Biol. 26:1013072019. View Article : Google Scholar

63 

Yu T, Gan S, Zhu Q, Dai D, Li N, Wang H, Chen X, Hou D, Wang Y, Pan Q, et al: Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat Commun. 10:43532019. View Article : Google Scholar : PubMed/NCBI

64 

Deng C, Huo M, Chu H, Zhuang X, Deng G, Li W, Wei H, Zeng L, He Y, Liu H, et al: Exosome circATP8A1 induces macrophage M2 polarization by regulating the miR-1-3p/STAT6 axis to promote gastric cancer progression. Mol Cancer. 23:492024. View Article : Google Scholar : PubMed/NCBI

65 

Choi JY, Seok HJ, Lee DH, Lee E, Kim TJ, Bae S, Shin I and Bae IH: Tumor-derived miR-6794-5p enhances cancer growth by promoting M2 macrophage polarization. Cell Commun Signal. 22:1902024. View Article : Google Scholar : PubMed/NCBI

66 

Lee KA, Hai TY, SivaRaman L, Thimmappaya B, Hurst HC, Jones NC and Green MR: A cellular protein, activating transcription factor, activates transcription of multiple E1A-inducible adenovirus early promoters. Proc Natl Acad Sci USA. 84:8355–8359. 1987. View Article : Google Scholar : PubMed/NCBI

67 

Hai T and Hartman MG: The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: Activating transcription factor proteins and homeostasis. Gene. 273:1–11. 2001. View Article : Google Scholar : PubMed/NCBI

68 

Vallejo M, Ron D, Miller CP and Habener JF: C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. Proc Natl Acad Sci USA. 90:4679–4683. 1993. View Article : Google Scholar : PubMed/NCBI

69 

Montminy MR and Bilezikjian LM: Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature. 328:175–178. 1987. View Article : Google Scholar : PubMed/NCBI

70 

Moller E, Praz V, Rajendran S, Dong R, Cauderay A, Xing YH, Lee L, Fusco C, Broye LC, Cironi L, et al: EWSR1-ATF1 dependent 3D connectivity regulates oncogenic and differentiation programs in clear cell sarcoma. Nat Commun. 13:22672022. View Article : Google Scholar : PubMed/NCBI

71 

Hai TW, Liu F, Allegretto EA, Karin M and Green MR: A family of immunologically related transcription factors that includes multiple forms of ATF and AP-1. Genes Dev. 2:1216–1226. 1988. View Article : Google Scholar : PubMed/NCBI

72 

Foulkes NS, Borrelli E and Sassone-Corsi P: CREM gene: Use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell. 64:739–749. 1991. View Article : Google Scholar : PubMed/NCBI

73 

Liu H, Deng X, Shyu YJ, Li JJ, Taparowsky EJ and Hu CD: Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization. EMBO J. 25:1058–1069. 2006. View Article : Google Scholar : PubMed/NCBI

74 

De Cesare D, Vallone D, Caracciolo A, Sassone-Corsi P, Nerlov C and Verde P: Heterodimerization of c-Jun with ATF-2 and c-Fos is required for positive and negative regulation of the human urokinase enhancer. Oncogene. 11:365–376. 1995.PubMed/NCBI

75 

Sun MH, Jiang WJ, Li XH, Lee SH, Heo G, Zhou D, Choi JS, Kim KS, Lv W and Cui XS: ATF7-dependent epigenetic changes induced by high temperature during early porcine embryonic development. Cell Prolif. 56:e133522023. View Article : Google Scholar

76 

Liu Y, Maekawa T, Yoshida K, Muratani M, Chatton B and Ishii S: The transcription factor ATF7 controls adipocyte differentiation and thermogenic gene programming. iScience. 13:98–112. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Diring J, Camuzeaux B, Donzeau M, Vigneron M, Rosa-Calatrava M, Kedinger C and Chatton B: A cytoplasmic negative regulator isoform of ATF7 impairs ATF7 and ATF2 phosphorylation and transcriptional activity. PLoS One. 6:e233512011. View Article : Google Scholar : PubMed/NCBI

78 

Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T and Noguchi K: Activating transcription factor 3 (ATF3) induction by axotomy in sensory and moto-neurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci. 15:170–182. 2000. View Article : Google Scholar : PubMed/NCBI

79 

Rodriguez-Martinez JA, Reinke AW, Bhimsaria D, Keating AE and Ansari AZ: Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. Elife. 6:e192722017. View Article : Google Scholar : PubMed/NCBI

80 

Tsushima H, Okazaki K, Ishihara K, Ushijima T and Iwamoto Y: CCAAT/enhancer-binding protein β promotes receptor activator of nuclear factor-kappa-B ligand (RANKL) expression and osteoclast formation in the synovium in rheumatoid arthritis. Arthritis Res Ther. 17:312015. View Article : Google Scholar

81 

Huggins CJ, Mayekar MK, Martin N, Saylor KL, Gonit M, Jailwala P, Kasoji M, Haines DC, Quiñones OA and Johnson PF: C/EBPү is a critical regulator of cellular stress response networks through heterodimerization with ATF4. Mol Cell Biol. 36:693–713. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Dias-Teixeira KL, Calegari-Silva TC, Medina JM, Vivarini ÁC, Cavalcanti Á, Teteo N, Santana AKM, Real F, Gomes CM, Pereira RMS, et al: Emerging role for the PERK/eIF2alpha/ATF4 in human cutaneous leishmaniasis. Sci Rep. 7:170742017. View Article : Google Scholar

83 

Newman JR and Keating AE: Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science. 300:2097–2101. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Glembotski CC, Arrieta A, Blackwood EA and Stauffer WT: ATF6 as a nodal regulator of proteostasis in the heart. Front Physiol. 11:2672020. View Article : Google Scholar : PubMed/NCBI

85 

Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M and Mori K: Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol Cell Biol. 21:1239–1248. 2001. View Article : Google Scholar : PubMed/NCBI

86 

Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A and Mori K: Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 13:365–376. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Hao Q, Zhao X, Zhang Y, Dong Z, Hu T and Chen P: Targeting overexpressed activating transcription factor 1 (ATF1) inhibits proliferation and migration and enhances sensitivity to paclitaxel in esophageal cancer cells. Med Sci Monit Basic Res. 23:304–312. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Meijer BJ, Giugliano FP, Baan B, van der Meer JHM, Meisner S, van Roest M, Koelink PJ, de Boer RJ, Jones N, Breitwieser W, et al: ATF2 and ATF7 are critical mediators of intestinal epithelial repair. Cell Mol Gastroenterol Hepatol. 10:23–42. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Maekawa T, Kim S, Nakai D, Takagi T, Ogura H, Yamada K, Chatton B and Ishii S: Social isolation stress induces ATF-7 phosphorylation and impairs silencing of the 5-HT 5B receptor gene. EMBO J. 29:196–208. 2010. View Article : Google Scholar :

90 

Gozdecka M and Breitwieser W: The roles of ATF2 (activating transcription factor 2) in tumorigenesis. Biochem Soc Trans. 40:230–234. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X and Zhang W: Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis. 9:981–999. 2021. View Article : Google Scholar

92 

Yan C and Boyd DD: ATF3 regulates the stability of p53: A link to cancer. Cell Cycle. 5:926–929. 2006. View Article : Google Scholar : PubMed/NCBI

93 

Hai T, Wolfgang CD, Marsee DK, Allen AE and Sivaprasad U: ATF3 and stress responses. Gene Expr. 7:321–335. 1999.PubMed/NCBI

94 

Giannoudis A, Malki MI, Rudraraju B, Mohhamed H, Menon S, Liloglou T, Ali S, Carroll JS and Palmieri C: Activating transcription factor-2 (ATF2) is a key determinant of resistance to endocrine treatment in an in vitro model of breast cancer. Breast Cancer Res. 22:1262020. View Article : Google Scholar : PubMed/NCBI

95 

Fawcett TW, Martindale JL, Guyton KZ, Hai T and Holbrook NJ: Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J. 339:135–141. 1999. View Article : Google Scholar : PubMed/NCBI

96 

Shahriari-Felordi M, Alikhani HK, Hashemian SR, Hassan M and Vosough M: Mini review ATF4 and GRP78 as novel molecular targets in ER-Stress modulation for critical COVID-19 patients. Mol Biol Rep. 49:1545–1549. 2022. View Article : Google Scholar : PubMed/NCBI

97 

Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M and Mori K: ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol. 20:6755–6767. 2000. View Article : Google Scholar : PubMed/NCBI

98 

Thuerauf DJ, Morrison LE, Hoover H and Glembotski CC: Coordination of ATF6-mediated transcription and ATF6 degradation by a domain that is shared with the viral transcription factor, VP16. J Biol Chem. 277:20734–20739. 2002. View Article : Google Scholar : PubMed/NCBI

99 

Thuerauf DJ, Arnold ND, Zechner D, Hanford DS, DeMartin KM, McDonough PM, Prywes R and Glembotski CC: p38 Mitogen-activated protein kinase mediates the transcriptional induction of the atrial natriuretic factor gene through a serum response element. A potential role for the transcription factor ATF6. J Biol Chem. 273:20636–20643. 1998. View Article : Google Scholar : PubMed/NCBI

100 

Luo R, Lu JF, Hu Q and Maity SN: CBF/NF-Y controls endoplasmic reticulum stress induced transcription through recruitment of both ATF6(N) and TBP. J Cell Biochem. 104:1708–1723. 2008. View Article : Google Scholar : PubMed/NCBI

101 

Kokame K, Kato H and Miyata T: Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem. 276:9199–9205. 2001. View Article : Google Scholar

102 

Haze K, Yoshida H, Yanagi H, Yura T and Mori K: Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 10:3787–3799. 1999. View Article : Google Scholar : PubMed/NCBI

103 

Niwano K, Arai M, Tomaru K, Uchiyama T, Ohyama Y and Kurabayashi M: Transcriptional stimulation of the eNOS gene by the stable prostacyclin analogue beraprost is mediated through cAMP-responsive element in vascular endothelial cells: Close link between PGI2 signal and NO pathways. Circ Res. 93:523–530. 2003. View Article : Google Scholar : PubMed/NCBI

104 

Xiao X, Chen M, Sang Y, Xue J, Jiang K, Chen Y, Zhang L, Yu S, Lv W, Li Y, et al: Methylation-mediated silencing of ATF3 promotes thyroid cancer progression by regulating prognostic genes in the MAPK and PI3K/AKT pathways. Thyroid. 33:1441–1454. 2023. View Article : Google Scholar : PubMed/NCBI

105 

Zhang WC, Du LJ, Zheng XJ, Chen XQ, Shi C, Chen BY, Sun XN, Li C, Zhang YY, Liu Y, et al: Elevated sodium chloride drives type I interferon signaling in macrophages and increases antiviral resistance. J Biol Chem. 293:1030–1039. 2018. View Article : Google Scholar :

106 

Ranjan K, Hedl M, Sinha S, Zhang X and Abraham C: Ubiquitination of ATF6 by disease-associated RNF186 promotes the innate receptor-induced unfolded protein response. J Clin Invest. 131:e1454722021. View Article : Google Scholar : PubMed/NCBI

107 

Udompong S, Mankhong S, Jaratjaroonphong J and Srisook K: Involvement of p38 MAPK and ATF-2 signaling pathway in anti-inflammatory effect of a novel compound bis[(5-methyl)2-furyl] (4-nitrophenyl)methane on lipopolysaccharide-stimulated macrophages. Int Immunopharmacol. 50:6–13. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Herrema H, Guan D, Choi JW, Feng X, Salazar Hernandez MA, Faruk F, Auen T, Boudett E, Tao R, Chun H and Ozcan U: FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab. 34:1004–1022 e8. 2022. View Article : Google Scholar : PubMed/NCBI

109 

Zhou S, Zhong Z, Huang P, Xiang B, Li X, Dong H, Zhang G, Wu Y and Li P: IL-6/STAT3 induced neuron apoptosis in hypoxia by downregulating ATF6 expression. Front Physiol. 12:7299252021. View Article : Google Scholar : PubMed/NCBI

110 

Kwon JW, Kwon HK, Shin HJ, Choi YM, Anwar MA and Choi S: Activating transcription factor 3 represses inflammatory responses by binding to the p65 subunit of NF-ĸB. Sci Rep. 5:144702015. View Article : Google Scholar

111 

Cui A, Ding D and Li Y: Regulation of hepatic metabolism and cell growth by the ATF/CREB family of transcription factors. Diabetes. 70:653–664. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Takii R, Fujimoto M, Tan K, Takaki E, Hayashida N, Nakato R, Shirahige K and akai A: ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex. Mol Cell Biol. 35:11–25. 2015. View Article : Google Scholar :

113 

Karanam B, Wang L, Wang D, Liu X, Marmorstein R, Cotter R and Cole PA: Multiple roles for acetylation in the interaction of p300 HAT with ATF-2. Biochemistry. 46:8207–8216. 2007. View Article : Google Scholar : PubMed/NCBI

114 

Nguyen HCB, Adlanmerini M, Hauck AK and Lazar MA: Dichotomous engagement of HDAC3 activity governs inflammatory responses. Nature. 584:286–290. 2020. View Article : Google Scholar : PubMed/NCBI

115 

Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H and Aderem A: Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature. 441:173–178. 2006. View Article : Google Scholar : PubMed/NCBI

116 

Chen BP, Liang G, Whelan J and Hai T: ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem. 269:15819–15826. 1994. View Article : Google Scholar : PubMed/NCBI

117 

Sela D, Chen L, Martin-Brown S, Washburn MP, Florens L, Conaway JW and Conaway RC: Endoplasmic reticulum stress-responsive transcription factor ATF6alpha directs recruitment of the mediator of RNA polymerase II transcription and multiple histone acetyltransferase complexes. J Biol Chem. 287:23035–23045. 2012. View Article : Google Scholar : PubMed/NCBI

118 

Hirose N, Maekawa T, Shinagawa T and Ishii S: ATF-2 regulates lipopolysaccharide-induced transcription in macrophage cells. Biochem Biophys Res Commun. 385:72–77. 2009. View Article : Google Scholar : PubMed/NCBI

119 

Yoshida K, Maekawa T, Zhu Y, Renard-Guillet C, Chatton B, Inoue K, Uchiyama T, Ishibashi K, Yamada T, Ohno N, et al: The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nat Immunol. 16:1034–1043. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Baumeister P, Luo S, Skarnes WC, Sui G, Seto E, Shi Y and Lee AS: Endoplasmic reticulum stress induction of the Grp78/BiP promoter: Activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol Cell Biol. 25:4529–4540. 2005. View Article : Google Scholar : PubMed/NCBI

121 

Ma J, Liu Y, Valladolid-Acebes I, Recio-López P, Peng G, Li J, Berggren PO, Juntti-Berggren L and Tong N: ATF5 is a regulator of ER stress and β-cell apoptosis in different mouse models of genetic- and diet-induced obesity and diabetes mellitus. Cell Signal. 102:1105352023. View Article : Google Scholar

122 

Raines LN, Zhao H, Wang Y, Chen HY, Gallart-Ayala H, Hsueh PC, Cao W, Koh Y, Alamonte-Loya A, Liu PS, et al: PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat Immunol. 23:431–445. 2022. View Article : Google Scholar : PubMed/NCBI

Wang Y, Zhang X, Fu Y, Fu D, Zhen D, Xing A, Chen Y, Gong G and Wei C: 1, 8-cineole protects against ISO-induced heart failure by inhibiting oxidative stress and ER stress in vitro and in vivo. Eur J Pharmacol. 910:1744722021. View Article : Google Scholar : PubMed/NCBI

123 

Hu S, Li R, Gong D, Hu P, Xu J, Ai Y, Zhao X, Hu C, Xu M, Liu C, et al: Atf3-mediated metabolic reprogramming in hepatic macrophage orchestrates metabolic dysfunction-associated steatohepatitis. Sci Adv. 10:eado31412024. View Article : Google Scholar : PubMed/NCBI

124 

Brocard M, Lu J, Hall B, Borah K, Moller-Levet C, Georgana I, Sorgeloos F, Beste DJV, Goodfellow IG and Locker N: Murine norovirus infection results in anti-inflammatory response downstream of amino acid depletion in macrophages. J Virol. 95:e01134212021. View Article : Google Scholar : PubMed/NCBI

125 

Huang Y, Ge MX, Li YH, Li JL, Yu Q, Xiao FH, Ao HS, Yang LQ, Li J, He Y and Kong QP: Longevity-associated transcription factor ATF7 promotes healthspan by suppressing cellular senescence and systematic inflammation. Aging Dis. 14:1374–1389. 2023.PubMed/NCBI

126 

Liu H, Kuang X, Zhang Y, Ye Y, Li J, Liang L, Xie Z, Weng L, Guo J, Li H, et al: ADORA1 inhibition promotes tumor immune evasion by regulating the ATF3-PD-L1 axis. Cancer Cell. 37:324–339 e8. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, Shi J, Jiang L, Feng S, Zhao Y, et al: ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1alpha ubiquitination in sepsis. Clin Immunol. 254:1096982023. View Article : Google Scholar

128 

Zhang Q, Liu G, Liu R, Liu J, Zeng X, Ren D, Yan X and Yuan X: Dual role of endoplasmic reticulum stress-ATF-6 activation in autophagy and apoptosis induced by cyclic stretch in myoblast. Apoptosis. 28:796–809. 2023. View Article : Google Scholar : PubMed/NCBI

129 

Dai W, Hong L, Xiao W, Zhang L, Sha W, Yu Z, Liu X, Liu S, Xiao Y, Yang P, et al: The ATF2/miR-3913-5p/CREB5 axis is involved in the cell proliferation and metastasis of colorectal cancer. Commun Biol. 6:10262023. View Article : Google Scholar : PubMed/NCBI

130 

Wang B, Zhang J, Liu X, Chai Q, Lu X, Yao X, Yang Z, Sun L, Johnson SF, Schwartz RC and Zheng YH: Protein disulfide isomerases (PDIs) negatively regulate ebolavirus structural glycoprotein expression in the endoplasmic reticulum (ER) via the autophagy-lysosomal pathway. Autophagy. 18:2350–2367. 2022. View Article : Google Scholar : PubMed/NCBI

131 

Wen Z, Xiong X, Chen D, Shao L, Tang X, Shen X, Zhang S, Huang S, Zhang L, Chen Y, et al: Activating transcription factor 4 protects mice against sepsis-induced intestinal injury by regulating gut-resident macrophages differentiation. Chin Med J (Engl). 135:2585–2595. 2022. View Article : Google Scholar : PubMed/NCBI

132 

Rajabalee N, Siushansian H, Weerapura M, Berton S, Berbatovci F, Hooks B, Geoffrion M, Yang D, Harper ME, Rayner K, et al: ATF2 orchestrates macrophage differentiation and activation to promote antibacterial responses. J Leukoc Biol. 114:280–298. 2023. View Article : Google Scholar : PubMed/NCBI

133 

Qin W, Yang H, Liu G, Bai R, Bian Y, Yang Z and Xiao C: Activating transcription factor 3 is a potential target and a new biomarker for the prognosis of atherosclerosis. Hum Cell. 34:49–59. 2021. View Article : Google Scholar

134 

Nilsson R, Bajic VB, Suzuki H, di Bernardo D, Björkegren J, Katayama S, Reid JF, Sweet MJ, Gariboldi M, Carninci P, et al: Transcriptional network dynamics in macrophage activation. Genomics. 88:133–142. 2006. View Article : Google Scholar : PubMed/NCBI

135 

Clement M, Basatemur G, Masters L, Baker L, Bruneval P, Iwawaki T, Kneilling M, Yamasaki S, Goodall J and Mallat Z: Necrotic cell sensor clec4e promotes a proatherogenic macrophage phenotype through activation of the unfolded protein response. Circulation. 134:1039–1051. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Elbarghati L, Murdoch C and Lewis CE: Effects of hypoxia on transcription factor expression in human monocytes and macrophages. Immunobiology. 213:899–908. 2008. View Article : Google Scholar : PubMed/NCBI

137 

Zhao Q, Luo YF, Tian M, Xiao YL, Cai HR and Li H: Activating transcription factor 3 involved in Pseudomonas aeruginosa PAO1-induced macrophage senescence. Mol Immunol. 133:122–127. 2021. View Article : Google Scholar : PubMed/NCBI

138 

Li M, Lu H, Wang X, Duan C, Zhu X, Zhang Y, Ge X, Ji F, Wang X, Su J and Zhang D: Pyruvate kinase M2 (PKM2) interacts with activating transcription factor 2 (ATF2) to bridge glycolysis and pyroptosis in microglia. Mol Immunol. 140:250–266. 2021. View Article : Google Scholar : PubMed/NCBI

139 

Hu Y, Li CS, Li YQ, Liang Y, Cao L and Chen LA: Perfluorocarbon inhibits lipopolysaccharide-induced macrophage inflammatory protein-2 expression and activation of ATF-2 and c-Jun in A549 pulmonary epithelial cells. Cell Mol Biol (Noisy-le-grand). 62:18–24. 2016.PubMed/NCBI

140 

Boehlk S, Fessele S, Mojaat A, Miyamoto NG, Werner T, Nelson EL, Schlöndorff D and Nelson PJ: ATF and Jun transcription factors, acting through an Ets/CRE promoter module, mediate lipopolysaccharide inducibility of the chemokine RANTES in monocytic Mono Mac 6 cells. Eur J Immunol. 30:1102–1112. 2000. View Article : Google Scholar : PubMed/NCBI

141 

Sha H, Zhang D, Zhang Y, Wen Y and Wang Y: ATF3 promotes migration and M1/M2 polarization of macrophages by activating tenascin-C via Wnt/β-catenin pathway. Mol Med Rep. 16:3641–3647. 2017. View Article : Google Scholar : PubMed/NCBI

142 

Hu C, Meng X, Huang C, Shen C and Li J: Frontline Science: ATF3 is responsible for the inhibition of TNF-α release and the impaired migration of acute ethanol-exposed monocytes and macrophages. J Leukoc Biol. 101:633–642. 2017. View Article : Google Scholar

143 

Du Y, Ma Z, Zheng J, Huang S, Yang X, Song Y, Dong D, Shi L and Xu D: ATF3 positively regulates antibacterial immunity by modulating macrophage killing and migration functions. Front Immunol. 13:8395022022. View Article : Google Scholar : PubMed/NCBI

144 

Mylvaganam S, Freeman SA and Grinstein S: The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol. 31:R619–R632. 2021. View Article : Google Scholar : PubMed/NCBI

145 

Taka S, Gazouli M, Politis PK, Pappa KI and Anagnou NP: Transcription factor ATF-3 regulates allele variation phenotypes of the human SLC11A1 gene. Mol Biol Rep. 40:2263–2271. 2013. View Article : Google Scholar

146 

Middleton JD, Fehlman J, Sivakumar S, Stover DG and Hai T: Stress-inducible gene Atf3 dictates a dichotomous macrophage activity in chemotherapy-enhanced lung colonization. Int J Mol Sci. 22:73562021. View Article : Google Scholar : PubMed/NCBI

147 

Xu Y, Li Y, Jadhav K, Pan X, Zhu Y, Hu S, Chen S, Chen L, Tang Y, Wang HH, et al: Hepatocyte ATF3 protects against atherosclerosis by regulating HDL and bile acid metabolism. Nat Metab. 3:59–74. 2021. View Article : Google Scholar : PubMed/NCBI

148 

Raghavan S, Singh NK, Gali S, Mani AM and Rao GN: Protein Kinase ctheta via activating transcription factor 2-mediated CD36 expression and foam cell formation of Ly6C(hi) cells contributes to atherosclerosis. Circulation. 138:2395–2412. 2018. View Article : Google Scholar : PubMed/NCBI

149 

Seneviratne A, Han Y, Wong E, Walter ERH, Jiang L, Cave L, Long NJ, Carling D, Mason JC, Haskard DO and Boyle JJ: Hematoma resolution in vivo is directed by activating transcription factor 1. Circ Res. 127:928–944. 2020. View Article : Google Scholar : PubMed/NCBI

150 

Illouz M, Leclercq LD, Dessenne C, Hatfull G, Daher W and Kremer L and Guérardel Y: Multiple Mycobacterium abscessus O-acetyltransferases influence glycopeptidolipid structure and colony morphotype. J Biol Chem. 299:1049792023. View Article : Google Scholar : PubMed/NCBI

151 

Perez-Arques C, Navarro-Mendoza MI, Murcia L, Lax C, Martínez-García P, Heitman J, Nicolás FE and Garre V: Mucor circinelloides Thrives inside the phagosome through an Atf-Mediated germination pathway. mBio. 10:e02765–18. 2019. View Article : Google Scholar : PubMed/NCBI

152 

Gupta D, Wang Q, Vinson C and Dziarski R: Bacterial peptidoglycan induces CD14-dependent activation of transcription factors CREB/ATF and AP-1. J Biol Chem. 274:14012–14020. 1999. View Article : Google Scholar : PubMed/NCBI

153 

Shi R, Wang J, Zhang Z, Leng Y and Chen AF: ASGR1 promotes liver injury in sepsis by modulating monocyte-to-macrophage differentiation via NF-ĸB/ATF5 pathway. Life Sci. 315:1213392023. View Article : Google Scholar

154 

Abe JI, Ko KA, Kotla S, Wang Y, Paez-Mayorga J, Shin IJ, Imanishi M, Vu HT, Tao Y, Leiva-Juarez MM, et al: MAGI1 as a link between endothelial activation and ER stress drives atherosclerosis. JCI Insight. 4:e1255702019. View Article : Google Scholar : PubMed/NCBI

155 

Jin Z, Xu H, Zhao W, Zhang K, Wu S, Shu C, Zhu L, Wang Y, Wang L, Zhang H and Yan B: Macrophage ATF6 accelerates corticotomy-assisted orthodontic tooth movement through promoting Tnfα transcription. Int J Oral Sci. 17:282025. View Article : Google Scholar

156 

Xu X, Lei T, Li W and Ou H: Enhanced cellular cholesterol efflux by naringenin is mediated through inhibiting endoplasmic reticulum stress - ATF6 activity in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids. 1864:1472–1482. 2019. View Article : Google Scholar : PubMed/NCBI

157 

Rao J, Yue S, Fu Y, Zhu J, Wang X, Busuttil RW, Kupiec-Weglinski JW, Lu L and Zhai Y: ATF6 mediates a pro-inflammatory synergy between ER stress and TLR activation in the pathogenesis of liver ischemia-reperfusion injury. Am J Transplant. 14:1552–1561. 2014. View Article : Google Scholar : PubMed/NCBI

158 

Wang Q, Zhu X, Li Z, Feng M and Liu X: ATF6 promotes liver fibrogenesis by regulating macrophage-derived interleukin-1alpha expression. Cell Immunol. 367:1044012021. View Article : Google Scholar

159 

Wang J, Cheng W, Wang Z, Xin L and Zhang W: ATF3 inhibits the inflammation induced by Mycoplasma pneumonia in vitro and in vivo. Pediatr Pulmonol. 52:1163–1170. 2017. View Article : Google Scholar : PubMed/NCBI

160 

Hoetzenecker W, Echtenacher B, Guenova E, Hoetzenecker K, Woelbing F, Brück J, Teske A, Valtcheva N, Fuchs K, Kneilling M, et al: ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med. 18:128–134. 2011. View Article : Google Scholar : PubMed/NCBI

161 

Bae YA and Cheon HG: Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages. Korean J Physiol Pharmacol. 20:415–424. 2016. View Article : Google Scholar : PubMed/NCBI

162 

Saha S, Roy S, Dutta A, Jana K and Ukil A: Leishmania donovani targets host transcription factor NRF2 to activate antioxidant enzyme HO-1 and transcriptional repressor ATF3 for establishing infection. Infect Immun. 89:e00764202021. View Article : Google Scholar : PubMed/NCBI

163 

Qian L, Zhao Y, Guo L, Li S and Wu X: Activating transcription factor 3 (ATF3) protects against lipopolysaccharide-induced acute lung injury via inhibiting the expression of TL1A. J Cell Physiol. 232:3727–3734. 2017. View Article : Google Scholar : PubMed/NCBI

164 

Cheng CF and Lin H: Acute kidney injury and the potential for ATF3-regulated epigenetic therapy. Toxicol Mech Methods. 21:362–366. 2011. View Article : Google Scholar : PubMed/NCBI

165 

Yu T, Moh SH, Kim SB, Yang Y, Kim E, Lee YW, Cho CK, Kim KH, Yoo BC, Cho JY and Yoo HS: HangAmDan-B, an ethnomedicinal herbal mixture, suppresses inflammatory responses by inhibiting Syk/NF-ĸB and JNK/ATF-2 pathways. J Med Food. 16:56–65. 2013. View Article : Google Scholar :

166 

Zhang C, He H, Wang L, Zhang N, Huang H, Xiong Q, Yan Y, Wu N, Ren H, Han H, et al: Virus-triggered ATP release limits viral replication through facilitating IFN-β Production in a P2X7-Dependent manner. J Immunol. 199:1372–1381. 2017. View Article : Google Scholar : PubMed/NCBI

167 

Yu T, Yang Y, Kwak YS, Song GG, Kim MY, Rhee MH and Cho JY: Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J Ginseng Res. 41:127–133. 2017. View Article : Google Scholar : PubMed/NCBI

168 

Xu X, Xia J, Zhao S, Wang Q, Ge G, Xu F, Liu X, Zhang W and Yang Y: Qing-Fei-Pai-Du decoction and wogonoside exert anti-inflammatory action through down-regulating USP14 to promote the degradation of activating transcription factor 2. FASEB J. 35:e218702021. View Article : Google Scholar : PubMed/NCBI

169 

Park JB, Peters R, Pham Q and Wang TTY: Javamide-II Inhibits IL-6 without Significant Impact on TNF-alpha and IL-1beta in macrophage-like cells. Biomedicines. 8:1382020. View Article : Google Scholar : PubMed/NCBI

170 

Kim SM, Park EJ and Lee HJ: Nuciferine attenuates lipopolysaccharide-stimulated inflammatory responses by inhibiting p38 MAPK/ATF2 signaling pathways. Inflammopharmacology. 30:2373–2383. 2022. View Article : Google Scholar : PubMed/NCBI

171 

Endale M, Kim TH, Kwak YS, Kim NM, Kim SH, Cho JY, Yun BS and Rhee MH: Torilin inhibits inflammation by limiting TAK1-mediated MAP kinase and NF-ĸB activation. Mediators Inflamm. 2017:72509682017. View Article : Google Scholar

172 

Miyata Y, Fukuhara A, Otsuki M and Shimomura I: Expression of activating transcription factor 2 in inflammatory macrophages in obese adipose tissue. Obesity (Silver Spring). 21:731–736. 2013. View Article : Google Scholar : PubMed/NCBI

173 

Hu Y, Gu J, Wang Y, Lin J, Yu H, Yang F, Wu S, Yin J, Lv H, Ji X and Wang S: Promotion effect of EGCG on the raised expression of IL-23 through the signaling of STAT3-BATF2-c-JUN/ATF2. J Agric Food Chem. 69:7898–7909. 2021. View Article : Google Scholar : PubMed/NCBI

174 

Sukhorukov VN, Khotina VA, Bagheri Ekta M, Ivanova EA, Sobenin IA and Orekhov AN: Endoplasmic reticulum stress in macrophages: The vicious circle of lipid accumulation and pro-inflammatory response. Biomedicines. 8:2102020. View Article : Google Scholar : PubMed/NCBI

175 

Song C, Chen J, Li X, Yang R, Cao X, Zhou L, Zhou Y, Ying H, Zhang Q and Sun Y: Limonin ameliorates dextran sulfate sodium-induced chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and NF-kappaB signaling. Int Immunopharmacol. 90:1071612021. View Article : Google Scholar

176 

Luo JH, Wang FX, Zhao JW, Yang CL, Rong SJ, Lu WY, Chen QJ, Zhou Q, Xiao J, Wang YN, et al: PDIA3 defines a novel subset of adipose macrophages to exacerbate the development of obesity and metabolic disorders. Cell Metab. 36:2262–2280 e5. 2024. View Article : Google Scholar : PubMed/NCBI

177 

Boyle JJ, Johns M, Kampfer T, Nguyen AT, Game L, Schaer DJ, Mason JC and Haskard DO: Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res. 110:20–33. 2012. View Article : Google Scholar

178 

Suganami T, Yuan X, Shimoda Y, Uchio-Yamada K, Nakagawa N, Shirakawa I, Usami T, Tsukahara T, Nakayama K, Miyamoto Y, et al: Activating transcription factor 3 constitutes a negative feedback mechanism that attenuates saturated Fatty acid/toll-like receptor 4 signaling and macrophage activation in obese adipose tissue. Circ Res. 105:25–32. 2009. View Article : Google Scholar : PubMed/NCBI

179 

Tang Q, Xie J, Wang Y, Dong C and Sun Q: Exosomes secreted by ATF3/Nrf2-mediated ferroptotic renal tubular epithelial cells promote M1/M2 ratio imbalance inducing renal interstitial fibrosis following ischemia and reperfusion injury. Front Immunol. 16:15105002025. View Article : Google Scholar : PubMed/NCBI

180 

Bartels HC, Hameed S, Young C, Nabhan M, Downey P, Curran KM, McCormack J, Fabre A, Kolch W, Zhernovkov V and Brennan DJ: Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum. Transl Res. 274:67–80. 2024. View Article : Google Scholar : PubMed/NCBI

181 

Iwasaki Y, Suganami T, Hachiya R, Shirakawa I, Kim-Saijo M, Tanaka M, Hamaguchi M, Takai-Igarashi T, Nakai M, Miyamoto Y and Ogawa Y: Activating transcription factor 4 links metabolic stress to interleukin-6 expression in macrophages. Diabetes. 63:152–161. 2014. View Article : Google Scholar

182 

Xia HF, Zhu JY, Wang JN, Ren JG, Cai Y, Wang FQ, Zhang W, Chen G, Zhao YF and Zhao JH: Association of ATF4 expression with tissue hypoxia and M2 macrophage infiltration in infantile hemangioma. J Histochem Cytochem. 65:285–294. 2017. View Article : Google Scholar : PubMed/NCBI

183 

Chen C, Zong S, Wang Z, Yang R, Guo Y, Wang Y, Chen X, Li Y and Wang S: FTY720 Attenuates LPS-Induced inflammatory bone loss by inhibiting osteoclastogenesis via the NF-kappaB and HDAC4/ATF pathways. J Immunol Res. 2023:85716492023. View Article : Google Scholar

184 

Baek K, Park HJ, Baek JH and Kim HR: Isoproterenol increases RANKL expression in a ATF4/NFATc1-dependent manner in mouse osteoblastic cells. Int J Mol Sci. 18:22042017. View Article : Google Scholar : PubMed/NCBI

185 

Chattopadhyay A, Kwartler CS, Kaw K, Li Y, Kaw A, Chen J, LeMaire SA, Shen YH and Milewicz DM: Cholesterol-induced phenotypic modulation of smooth muscle cells to macrophage/fibroblast-like cells is driven by an unfolded protein response. Arterioscler Thromb Vasc Biol. 41:302–316. 2021. View Article : Google Scholar

186 

Kim J, Kwak HJ, Cha JY, Jeong YS, Rhee SD, Kim KR and Cheon HG: Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction. J Biol Chem. 289:23246–23255. 2014. View Article : Google Scholar : PubMed/NCBI

187 

Luo M, Zhao F, Cheng H, Su M and Wang Y: Macrophage polarization: An important role in inflammatory diseases. Front Immunol. 15:13529462024. View Article : Google Scholar : PubMed/NCBI

188 

Xiang M, Li P, Yue X, Liu L, Wang L, Sun N, Wang K, Zhang Y and Wang H: Dysregulated macrophage immunity in Helicobacter pylori infection: unveiling mechanistic insights and therapeutic implications. Front Immunol. 16:16367682025. View Article : Google Scholar : PubMed/NCBI

189 

Fu YL and Harrison RE: Microbial phagocytic receptors and their potential involvement in cytokine induction in macrophages. Front Immunol. 12:6620632021. View Article : Google Scholar : PubMed/NCBI

190 

Arango Duque G and Descoteaux A: Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol. 5:4912014. View Article : Google Scholar : PubMed/NCBI

191 

Lv K and Liang Q: Macrophages in sepsis-induced acute lung injury: exosomal modulation and therapeutic potential. Front Immunol. 15:15180082025. View Article : Google Scholar : PubMed/NCBI

192 

A-Gonzalez N, Quintana JA, Garcia-Silva S, Mazariegos M, González de la Aleja A, Nicolás-Ávila JA, Walter W, Adrover JM, Crainiciuc G, Kuchroo VK, et al: Phagocytosis imprints heterogeneity in tissue-resident macrophages. J Exp Med. 214:1281–1296. 2017. View Article : Google Scholar : PubMed/NCBI

193 

Ochando J, Mulder WJM, Madsen JC, Netea MG and Duivenvoorden R: Trained immunity-basic concepts and contributions to immunopathology. Nat Rev Nephrol. 19:23–37. 2023. View Article : Google Scholar

194 

Nathan C and Ding A: Nonresolving inflammation. Cell. 140:871–882. 2010. View Article : Google Scholar : PubMed/NCBI

195 

Cheng Y, Marion TN, Cao X, Wang W and Cao Y: Park 7: A novel therapeutic target for macrophages in sepsis-induced immunosuppression. Front Immunol. 9:26322018. View Article : Google Scholar : PubMed/NCBI

196 

Jiang Y, Cai R, Huang Y, Zhu L, Xiao L, Wang C and Wang L: Macrophages in organ fibrosis: From pathogenesis to therapeutic targets. Cell Death Discov. 10:4872024. View Article : Google Scholar : PubMed/NCBI

197 

Ahmad S, Zaki A, Manda K, Mohan A and Syed MA: Vitamin-D ameliorates sepsis-induced acute lung injury via augmenting miR-149-5p and downregulating ER stress. J Nutr Biochem. 110:1091302022. View Article : Google Scholar : PubMed/NCBI

198 

Zhang S, Meng P, Liu G, Liu K and Che C: ATF4 involvement in TLR4 and LOX-1-induced host inflammatory response to aspergillus fumigatus keratitis. J Ophthalmol. 2018:58302022018.

199 

Li R, Ren T, Zeng J and Xu H: ALCAM deficiency alleviates LPS-Induced acute lung injury by inhibiting inflammatory response. Inflammation. 46:688–699. 2023. View Article : Google Scholar

200 

Al-Salleeh F and Petro TM: Promoter analysis reveals critical roles for SMAD-3 and ATF-2 in expression of IL-23 p19 in macrophages. J Immunol. 181:4523–4533. 2008. View Article : Google Scholar : PubMed/NCBI

201 

Ta HM, Le TM, Ishii H, Takarada-Iemata M, Hattori T, Hashida K, Yamamoto Y, Mori K, Takahashi R, Kitao Y and Hori O: Atf6α deficiency suppresses microglial activation and ameliorates pathology of experimental autoimmune encephalomyelitis. J Neurochem. 139:1124–1137. 2016. View Article : Google Scholar : PubMed/NCBI

202 

Wellen KE and Hotamisligil GS: Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 112:1785–1788. 2003. View Article : Google Scholar : PubMed/NCBI

203 

Olefsky JM and Glass CK: Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 72:219–246. 2010. View Article : Google Scholar : PubMed/NCBI

204 

Liang W, Qi Y, Yi H, Mao C, Meng Q, Wang H and Zheng C: The roles of adipose tissue macrophages in human disease. Front Immunol. 13:9087492022. View Article : Google Scholar : PubMed/NCBI

205 

Guria S, Hoory A, Das S, Chattopadhyay D and Mukherjee S: Adipose tissue macrophages and their role in obesity-associated insulin resistance: An overview of the complex dynamics at play. Biosci Rep. 43:BSR202202002023. View Article : Google Scholar : PubMed/NCBI

206 

Bai Y and Sun Q: Macrophage recruitment in obese adipose tissue. Obes Rev. 16:127–136. 2015. View Article : Google Scholar : PubMed/NCBI

207 

De Nardo D, Labzin LI, Kono H, Seki R, Schmidt SV, Beyer M, Xu D, Zimmer S, Lahrmann C, Schildberg FA, et al: High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol. 15:152–160. 2014. View Article : Google Scholar

208 

Xu J, Ding L, Mei J, Hu Y, Kong X, Dai S, Bu T, Xiao Q and Ding K: Dual roles and therapeutic targeting of tumor-associated macrophages in tumor microenvironments. Signal Transduct Target Ther. 10:2682025. View Article : Google Scholar : PubMed/NCBI

209 

Takayanagi H: Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 7:292–304. 2007. View Article : Google Scholar : PubMed/NCBI

210 

Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K and Yu T: Macrophage-osteoclast associations: Origin, polarization, and subgroups. Front Immunol. 12:7780782021. View Article : Google Scholar : PubMed/NCBI

211 

Nakashima T, Hayashi M and Takayanagi H: New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab. 23:582–590. 2012. View Article : Google Scholar : PubMed/NCBI

212 

Perrone M, Chiodoni C, Lecchi M, Botti L, Bassani B, Piva A, Jachetti E, Milani M, Lecis D, Tagliabue E, et al: ATF3 reprograms the bone marrow niche in response to early breast cancer transformation. Cancer Res. 83:117–129. 2023. View Article : Google Scholar :

213 

Gao C, Jiang J, Tan Y and Chen S: Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct Target Ther. 8:3592023. View Article : Google Scholar : PubMed/NCBI

214 

Fleiss B, Van Steenwinckel J, Bokobza C, I KS, Ross-Munro E and Gressens P: Microglia-mediated neurodegeneration in perinatal brain injuries. Biomolecules. 11:992021. View Article : Google Scholar : PubMed/NCBI

215 

Flury A, Aljayousi L, Park HJ, Khakpour M, Mechler J, Aziz S, McGrath JD, Deme P, Sandberg C, González Ibáñez F, et al: A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion. Neuron. 113:554–571 e14. 2025. View Article : Google Scholar :

216 

Liu LL, Xiao YS, Huang WM, Liu S, Huang LX, Zhong JH, Jia P and Liu WY: ATF1/miR-214-5p/ITGA7 axis promotes osteoclastogenesis to alter OVX-induced bone absorption. Mol Med. 28:562022. View Article : Google Scholar : PubMed/NCBI

217 

Kim HN, Baek JK, Park SB, Kim JD, Son HJ, Park GH, Eo HJ, Park JH, Jung HS and Jeong JB: Anti-inflammatory effect of Vaccinium oldhamii stems through inhibition of NF-kappaB and MAPK/ATF2 signaling activation in LPS-stimulated RAW264.7 cells. BMC Complement Altern Med. 19:2912019. View Article : Google Scholar

218 

Comarita IK, Vilcu A, Constantin A, Procopciuc A, Safciuc F, Alexandru N, Dragan E, Nemecz M, Filippi A, Chiţoiu L, et al: Therapeutic potential of stem cell-derived extracellular vesicles on atherosclerosis-induced vascular dysfunction and its key molecular players. Front Cell Dev Biol. 10:8171802022. View Article : Google Scholar : PubMed/NCBI

219 

Ho HH, Antoniv TT, Ji JD and Ivashkiv LB: Lipopolysaccharide-induced expression of matrix metalloproteinases in human monocytes is suppressed by IFN-gamma via superinduction of ATF-3 and suppression of AP-1. J Immunol. 181:5089–5097. 2008. View Article : Google Scholar : PubMed/NCBI

220 

Ishida M, Ueki M, Morishita J, Ueno M, Shiozawa S and Maekawa N: T-5224, a selective inhibitor of c-Fos/activator protein-1, improves survival by inhibiting serum high mobility group box-1 in lethal lipopolysaccharide-induced acute kidney injury model. J Intensive Care. 3:492015. View Article : Google Scholar : PubMed/NCBI

221 

Kubryn N, Fijalkowski L, Nowaczyk J, Jamil A and Nowaczyk A: PROTAC technology as a new tool for modern pharmacotherapy. Molecules. 30:21232025. View Article : Google Scholar : PubMed/NCBI

222 

Hu Z and Crews CM: Recent developments in PROTAC-mediated protein degradation: From bench to clinic. Chembiochem. 23:e2021002702022. View Article : Google Scholar :

223 

Bekes M, Langley DR and Crews CM: PROTAC targeted protein degraders: The past is prologue. Nat Rev Drug Discov. 21:181–200. 2022. View Article : Google Scholar : PubMed/NCBI

224 

Ai M, Ma H, He J, Xu F, Ming Y, Ye Z, Zheng Q, Luo D, Yang K, Li J, et al: Targeting oncogenic transcriptional factor c-myc by oligonucleotide PROTAC for the treatment of hepatocellular carcinoma. Eur J Med Chem. 280:1169782024. View Article : Google Scholar : PubMed/NCBI

225 

Simpson LM, Glennie L, Brewer A, Zhao JF, Crooks J, Shpiro N and Sapkota GP: Target protein localization and its impact on PROTAC-mediated degradation. Cell Chem Biol. 29:1482–1504 e7. 2022. View Article : Google Scholar : PubMed/NCBI

226 

Liu Z, Hu M, Yang Y, Du C, Zhou H, Liu C, Chen Y, Fan L, Ma H, Gong Y and Xie Y: An overview of PROTACs: A promising drug discovery paradigm. Mol Biomed. 3:462022. View Article : Google Scholar : PubMed/NCBI

227 

Liu J, Chen H, Kaniskan HU, Xie L, Chen X, Jin J and Wei W: TF-PROTACs enable targeted degradation of transcription factors. J Am Chem Soc. 143:8902–8910. 2021. View Article : Google Scholar : PubMed/NCBI

228 

Ji J, Ma S, Zhu Y, Zhao J, Tong Y, You Q and Jiang Z: ARE-PROTACs enable co-degradation of an Nrf2-MafG heterodimer. J Med Chem. 66:6070–6081. 2023. View Article : Google Scholar : PubMed/NCBI

229 

Wang D, Liu Y, Chen Y, Dai C, Hu W, Han J, Li Z, Yin F, Zhang Y and Shi C: EGFR targeted liposomal PROTAC assisted with epigenetic regulation as an efficient strategy for osimertinib-resistant lung cancer therapy. Adv Sci (Weinh). 12:e101972025. View Article : Google Scholar : PubMed/NCBI

230 

Chen S, Chen E, Su J, Gong Y, Tang S, Qin A, Shen A, Tang S and Zhang L: Magnetically navigated nano-PROTAC ameliorates acute lung injury. J Nanobiotechnology. 23:6222025. View Article : Google Scholar : PubMed/NCBI

231 

Zhao L, Zhao J, Zhong K, Tong A and Jia D: Targeted protein degradation: Mechanisms, strategies and application. Signal Transduct Target Ther. 7:1132022. View Article : Google Scholar : PubMed/NCBI

232 

Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, et al: Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 343:301–305. 2014. View Article : Google Scholar :

233 

Greene LA, Zhou Q, Siegelin MD and Angelastro JM: Targeting transcription factors ATF5, CEBPB and CEBPD with cell-penetrating peptides to treat brain and other cancers. Cells. 12:5812023. View Article : Google Scholar : PubMed/NCBI

234 

Sun X, Angelastro JM, Merino D, Zhou Q, Siegelin MD and Greene LA: Dominant-negative ATF5 rapidly depletes survivin in tumor cells. Cell Death Dis. 10:7092019. View Article : Google Scholar : PubMed/NCBI

235 

Rui Y, Eppler HB, Yanes AA and Jewell CM: Tissue-targeted drug delivery strategies to promote antigen-specific immune tolerance. Adv Healthc Mater. 12:e22022382023. View Article : Google Scholar

236 

Chen W, Schilperoort M, Cao Y, Shi J, Tabas I and Tao W: Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol. 19:228–249. 2022. View Article : Google Scholar

237 

Zhao G, Xue L, Geisler HC, Xu J, Li X, Mitchell MJ and Vaughan AE: Precision treatment of viral pneumonia through macrophage-targeted lipid nanoparticle delivery. Proc Natl Acad Sci USA. 121:e23147471212024. View Article : Google Scholar : PubMed/NCBI

238 

Hai T, Wolford CC and Chang YS: ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: Is modulation of inflammation a unifying component? Gene Expr. 15:1–11. 2010. View Article : Google Scholar : PubMed/NCBI

239 

Nguyen CT, Kim EH, Luong TT, Pyo S and Rhee DK: ATF3 confers resistance to pneumococcal infection through positive regulation of cytokine production. J Infect Dis. 210:1745–1754. 2014. View Article : Google Scholar : PubMed/NCBI

240 

Bekeredjian-Ding I, Stein C and Uebele J: The innate immune response against staphylococcus aureus. Curr Top Microbiol Immunol. 409:385–418. 2017.

241 

Nguyen CT, Kim EH, Luong TT, Pyo S and Rhee DK: TLR4 mediates pneumolysin-induced ATF3 expression through the JNK/p38 pathway in Streptococcus pneumoniae-infected RAW 264.7 cells. Mol Cells. 38:58–64. 2015. View Article : Google Scholar :

242 

Guo B, Stein JL, van Wijnen AJ and Stein GS: ATF1 and CREB trans-activate a cell cycle regulated histone H4 gene at a distal nuclear matrix associated promoter element. Biochemistry. 36:14447–14455. 1997. View Article : Google Scholar : PubMed/NCBI

243 

Watson G, Ronai ZA and Lau E: ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res. 119:347–357. 2017. View Article : Google Scholar : PubMed/NCBI

244 

Lau E and Ronai ZA: ATF2 - at the crossroad of nuclear and cytosolic functions. J Cell Sci. 125:2815–2824. 2012.PubMed/NCBI

245 

Claps G, Cheli Y, Zhang T, Scortegagna M, Lau E, Kim H, Qi J, Li JL, James B, Dzung A, et al: A transcriptionally inactive ATF2 variant drives melanomagenesis. Cell Rep. 15:1884–1892. 2016. View Article : Google Scholar : PubMed/NCBI

246 

Hashimoto Y, Zhang C, Kawauchi J, Imoto I, Adachi MT, Inazawa J, Amagasa T, Hai T and Kitajima S: An alternatively spliced isoform of transcriptional repressor ATF3 and its induction by stress stimuli. Nucleic Acids Res. 0:2398–2406. 2002. View Article : Google Scholar

247 

Chan JYW, Tsui JCC, Law PTW, So WKW, Leung DYP, Sham MMK, Tsui SKW and Chan CWH: RNA-Seq revealed ATF3-regulated inflammation induced by silica. Toxicology. 393:34–41. 2018. View Article : Google Scholar

248 

Jeong BC, Kim JH, Kim K, Kim I, Seong S and Kim N: ATF3 modulates calcium signaling in osteoclast differentiation and activity by associating with c-Fos and NFATc1 proteins. Bone. 95:33–40. 2017. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Y, Zhao J, Yue X, Chen Q, Rong S, Liu S, Sun F, Yang C and Wang C: Activating transcription factors: Orchestrators of macrophage biology in pathological settings (Review). Int J Mol Med 57: 49, 2026.
APA
Liu, Y., Zhao, J., Yue, X., Chen, Q., Rong, S., Liu, S. ... Wang, C. (2026). Activating transcription factors: Orchestrators of macrophage biology in pathological settings (Review). International Journal of Molecular Medicine, 57, 49. https://doi.org/10.3892/ijmm.2025.5720
MLA
Liu, Y., Zhao, J., Yue, X., Chen, Q., Rong, S., Liu, S., Sun, F., Yang, C., Wang, C."Activating transcription factors: Orchestrators of macrophage biology in pathological settings (Review)". International Journal of Molecular Medicine 57.2 (2026): 49.
Chicago
Liu, Y., Zhao, J., Yue, X., Chen, Q., Rong, S., Liu, S., Sun, F., Yang, C., Wang, C."Activating transcription factors: Orchestrators of macrophage biology in pathological settings (Review)". International Journal of Molecular Medicine 57, no. 2 (2026): 49. https://doi.org/10.3892/ijmm.2025.5720
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Y, Zhao J, Yue X, Chen Q, Rong S, Liu S, Sun F, Yang C and Wang C: Activating transcription factors: Orchestrators of macrophage biology in pathological settings (Review). Int J Mol Med 57: 49, 2026.
APA
Liu, Y., Zhao, J., Yue, X., Chen, Q., Rong, S., Liu, S. ... Wang, C. (2026). Activating transcription factors: Orchestrators of macrophage biology in pathological settings (Review). International Journal of Molecular Medicine, 57, 49. https://doi.org/10.3892/ijmm.2025.5720
MLA
Liu, Y., Zhao, J., Yue, X., Chen, Q., Rong, S., Liu, S., Sun, F., Yang, C., Wang, C."Activating transcription factors: Orchestrators of macrophage biology in pathological settings (Review)". International Journal of Molecular Medicine 57.2 (2026): 49.
Chicago
Liu, Y., Zhao, J., Yue, X., Chen, Q., Rong, S., Liu, S., Sun, F., Yang, C., Wang, C."Activating transcription factors: Orchestrators of macrophage biology in pathological settings (Review)". International Journal of Molecular Medicine 57, no. 2 (2026): 49. https://doi.org/10.3892/ijmm.2025.5720
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team