You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L and Duo Y: Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 8:2072023. View Article : Google Scholar : PubMed/NCBI | |
|
Mass E, Ballesteros I, Farlik M, Halbritter F, Günther P, Crozet L, Jacome-Galarza CE, Händler K, Klughammer J, Kobayashi Y, et al: Specification of tissue-resident macrophages during organogenesis. Science. 353:aaf42382016. View Article : Google Scholar : PubMed/NCBI | |
|
Kuznetsova T, Prange KHM, Glass CK and de Winther MPJ: Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol. 17:216–228. 2020. View Article : Google Scholar : | |
|
Ajami B, Bennett JL, Krieger C, Tetzlaff W and Rossi FM: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 10:1538–1543. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bian Z, Gong Y, Huang T, Lee CZW, Bian L, Bai Z, Shi H, Zeng Y, Liu C, He J, et al: Deciphering human macrophage development at single-cell resolution. Nature. 582:571–576. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F and Rodewald HR: Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 518:547–551. 2015. View Article : Google Scholar | |
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H and Cheng Q: Tissue macrophages: Origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther. 10:932025. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, et al: Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 38:792–804. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rosmus DD, Koch J, Hausmann A, Chiot A, Arnhold F, Masuda T, Kierdorf K, Hansen SM, Kuhrt H, Fröba J, et al: Redefining the ontogeny of hyalocytes as yolk sac-derived tissue-resident macrophages of the vitreous body. J Neuroinflammation. 21:1682024. View Article : Google Scholar : PubMed/NCBI | |
|
Masuda T, Amann L, Monaco G, Sankowski R, Staszewski O, Krueger M, Del Gaudio F, He L, Paterson N, Nent E, et al: Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature. 604:740–748. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kazankov K, Jorgensen SMD, Thomsen KL, Møller HJ, Vilstrup H, George J, Schuppan D and Grønbæk H: The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 16:145–159. 2019. View Article : Google Scholar | |
|
Appios A, Davies J, Sirvent S, Henderson S, Trzebanski S, Schroth J, Law ML, Carvalho IB, Pinto MM, Carvalho C, et al: Convergent evolution of monocyte differentiation in adult skin instructs Langerhans cell identity. Sci Immunol. 9:eadp03442024. View Article : Google Scholar : PubMed/NCBI | |
|
Hassnain Waqas SF, Noble A, Hoang AC, Ampem G, Popp M, Strauß S, Guille M and Röszer T: Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. J Leukoc Biol. 102:845–855. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Perdiguero EG and Geissmann F: The development and maintenance of resident macrophages. Nat Immunol. 17:2–8. 2016. View Article : Google Scholar : | |
|
Sakai M, Troutman TD, Seidman JS, Ouyang Z, Spann NJ, Abe Y, Ego KM, Bruni CM, Deng Z, Schlachetzki JCM, et al: Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain kupffer cell identity. Immunity. 51:655–670 e8. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, et al: Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 38:79–91. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Murray PJ and Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 11:723–737. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI | |
|
Mills CD: Anatomy of a discovery: m1 and m2 macrophages. Front Immunol. 6:2122015. View Article : Google Scholar : | |
|
Mills CD, Kincaid K, Alt JM, Heilman MJ and Hill AM: M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 164:6166–6173. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Bosco MC: Macrophage polarization: Reaching across the aisle? J Allergy Clin Immunol. 143:1348–1350. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Locati M, Curtale G and Mantovani A: Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar | |
|
Ivashkiv LB: Epigenetic regulation of macrophage polarization and function. Trends Immunol. 34:216–223. 2013. View Article : Google Scholar : | |
|
Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dong T, Chen X, Xu H, Song Y, Wang H, Gao Y, Wang J, Du R, Lou H and Dong T: Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases. Pharmacol Ther. 239:1082082022. View Article : Google Scholar : PubMed/NCBI | |
|
Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Colin S, Chinetti-Gbaguidi G and Staels B: Macrophage phenotypes in atherosclerosis. Immunol Rev. 262:153–166. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ruytinx P, Proost P, Van Damme J and Struyf S: Chemokine-induced macrophage polarization in inflammatory conditions. Front Immunol. 9:19302018. View Article : Google Scholar : PubMed/NCBI | |
|
Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, et al: Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 40:274–288. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yan L, Wang J, Cai X, Liou YC, Shen HM, Hao J, Huang C, Luo G and He W: Macrophage plasticity: Signaling pathways, tissue repair, and regeneration. MedComm (2020). 5:e6582024. View Article : Google Scholar : PubMed/NCBI | |
|
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Tang J, Shuai W, Meng J, Feng J and Han Z: Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm Res. 69:883–895. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S and Liu C: Macrophages in cardiovascular diseases: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 9:1302024. View Article : Google Scholar : PubMed/NCBI | |
|
Frangogiannis NG: Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 65:70–99. 2019. View Article : Google Scholar | |
|
Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, Bove P, Candi E, Rovella V, Sica G, et al: Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 14:6912023. View Article : Google Scholar : PubMed/NCBI | |
|
Lopez B, Ravassa S, Moreno MU, José GS, Beaumont J, González A and Díez J: Diffuse myocardial fibrosis: Mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol. 18:479–498. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Moore KJ and Tabas I: Macrophages in the pathogenesis of atherosclerosis. Cell. 145:341–355. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Xin W, Hu X, Wang H, Ye X, Xu C, Nan Y, Wu Z, Ju D and Fan J: Inhibition of Hedgehog signaling ameliorates foam cell formation by promoting autophagy in early atherosclerosis. Cell Death Dis. 14:7402023. View Article : Google Scholar : PubMed/NCBI | |
|
Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD and Horng T: The TSC-mTOR pathway regulates macrophage polarization. Nat Commun. 4:28342013. View Article : Google Scholar : PubMed/NCBI | |
|
Castoldi A, Naffah de Souza C, Camara NO and Moraes-Vieira PM: The macrophage switch in obesity development. Front Immunol. 6:6372016. View Article : Google Scholar : PubMed/NCBI | |
|
Chawla A, Nguyen KD and Goh YP: Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 11:738–749. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Duan H, Jing L, Xiang J, Ju C, Wu Z, Liu J, Ma X, Chen X, Liu Z, Feng J and Yan X: CD146 Associates with Gp130 to Control a macrophage pro-inflammatory program that regulates the metabolic response to obesity. Adv Sci (Weinh). 9:e21037192022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang H, Westerterp M, Wang C, Zhu Y and Ai D: Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice. Diabetologia. 57:2393–2404. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lu X, Kong X, Wu H, Hao J, Li S, Gu Z, Zeng X, Shen Y, Wang S, Chen J, et al: UBE2M-mediated neddylation of TRIM21 regulates obesity-induced inflammation and metabolic disorders. Cell Metab. 35:1390–1405 e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lumeng CN, Bodzin JL and Saltiel AR: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 117:175–184. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Lumeng CN, Deyoung SM, Bodzin JL and Saltiel AR: Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 56:16–23. 2007. View Article : Google Scholar | |
|
Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
De Palma M, Biziato D and Petrova TV: Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 17:457–474. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Orecchioni M, Ghosheh Y, Pramod AB and Ley K: Macrophage polarization: Different gene signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 10:10842019. View Article : Google Scholar : PubMed/NCBI | |
|
Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J, Kancheva D, Martens L, De Vlaminck K, Van Hove H, et al: Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci. 24:595–610. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, Daniel D, Hwang ES, Rugo HS and Coussens LM: Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 26:623–637. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Inoue K, Qin Y, Xia Y, Han J, Yuan R, Sun J, Xu R, Jiang JX, Greenblatt MB and Zhao B: Bone marrow Adipoq-lineage progenitors are a major cellular source of M-CSF that dominates bone marrow macrophage development, osteoclastogenesis, and bone mass. Elife. 12:e821182023. View Article : Google Scholar : PubMed/NCBI | |
|
Kulkarni A, Chandrasekar V, Natarajan SK, Ramesh A, Pandey P, Nirgud J, Bhatnagar H, Ashok D, Ajay AK and Sengupta S: A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat Biomed Eng. 2:589–599. 2018. View Article : Google Scholar | |
|
Sathi GA, Farahat M, Hara ES, Taketa H, Nagatsuka H, Kuboki T and Matsumoto T: MCSF orchestrates branching morphogenesis in developing submandibular gland tissue. J Cell Sci. 130:1559–1569. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Deng Y, Wang H, Liu X, Yuan H, Xu J, de Thé H, Zhou J and Zhu J: Zbtb14 regulates monocyte and macrophage development through inhibiting pu.1 expression in zebrafish. Elife. 11:e807602022. View Article : Google Scholar : PubMed/NCBI | |
|
Solomon LA, Podder S, He J, Jackson-Chornenki NL, Gibson K, Ziliotto RG, Rhee J and DeKoter RP: Coordination of myeloid differentiation with reduced cell cycle progression by PU.1 induction of MicroRNAs targeting cell cycle regulators and lipid anabolism. Mol Cell Biol. 37:e00013–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tu J, Chen W, Fang Y, Han D, Chen Y, Jiang H, Tan X, Xu Z, Wu X, Wang H, et al: PU.1 promotes development of rheumatoid arthritis via repressing FLT3 in macrophages and fibroblast-like synoviocytes. Ann Rheum Dis. 82:198–211. 2023. View Article : Google Scholar | |
|
Xiao X, Li JX, Li HH and Teng F: ACE2 alleviates sepsis-induced cardiomyopathy through inhibiting M1 macrophage via NF-ĸB/STAT1 signals. Cell Biol Toxicol. 40:822024. View Article : Google Scholar | |
|
Jin C, Zhang F, Luo H, Li B, Jiang X, Pirozzi CJ, Liang C and Zhang M: The CCL5/CCR5/SHP2 axis sustains Stat1 phosphorylation and activates NF-ĸB signaling promoting M1 macrophage polarization and exacerbating chronic prostatic inflammation. Cell Commun Signal. 22:5842024. View Article : Google Scholar | |
|
Wu Q, Li B, Li J and Sun S, Yuan J and Sun S: Cancer-associated adipocytes as immunomodulators in cancer. Biomark Res. 9:22021. View Article : Google Scholar : PubMed/NCBI | |
|
Gu L, Larson Casey JL, Andrabi SA, Lee JH, Meza-Perez S, Randall TD and Carter AB: Mitochondrial calcium uniporter regulates PGC-1α expression to mediate metabolic reprogramming in pulmonary fibrosis. Redox Biol. 26:1013072019. View Article : Google Scholar | |
|
Yu T, Gan S, Zhu Q, Dai D, Li N, Wang H, Chen X, Hou D, Wang Y, Pan Q, et al: Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat Commun. 10:43532019. View Article : Google Scholar : PubMed/NCBI | |
|
Deng C, Huo M, Chu H, Zhuang X, Deng G, Li W, Wei H, Zeng L, He Y, Liu H, et al: Exosome circATP8A1 induces macrophage M2 polarization by regulating the miR-1-3p/STAT6 axis to promote gastric cancer progression. Mol Cancer. 23:492024. View Article : Google Scholar : PubMed/NCBI | |
|
Choi JY, Seok HJ, Lee DH, Lee E, Kim TJ, Bae S, Shin I and Bae IH: Tumor-derived miR-6794-5p enhances cancer growth by promoting M2 macrophage polarization. Cell Commun Signal. 22:1902024. View Article : Google Scholar : PubMed/NCBI | |
|
Lee KA, Hai TY, SivaRaman L, Thimmappaya B, Hurst HC, Jones NC and Green MR: A cellular protein, activating transcription factor, activates transcription of multiple E1A-inducible adenovirus early promoters. Proc Natl Acad Sci USA. 84:8355–8359. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Hai T and Hartman MG: The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: Activating transcription factor proteins and homeostasis. Gene. 273:1–11. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Vallejo M, Ron D, Miller CP and Habener JF: C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. Proc Natl Acad Sci USA. 90:4679–4683. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Montminy MR and Bilezikjian LM: Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature. 328:175–178. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Moller E, Praz V, Rajendran S, Dong R, Cauderay A, Xing YH, Lee L, Fusco C, Broye LC, Cironi L, et al: EWSR1-ATF1 dependent 3D connectivity regulates oncogenic and differentiation programs in clear cell sarcoma. Nat Commun. 13:22672022. View Article : Google Scholar : PubMed/NCBI | |
|
Hai TW, Liu F, Allegretto EA, Karin M and Green MR: A family of immunologically related transcription factors that includes multiple forms of ATF and AP-1. Genes Dev. 2:1216–1226. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Foulkes NS, Borrelli E and Sassone-Corsi P: CREM gene: Use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell. 64:739–749. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Deng X, Shyu YJ, Li JJ, Taparowsky EJ and Hu CD: Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization. EMBO J. 25:1058–1069. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
De Cesare D, Vallone D, Caracciolo A, Sassone-Corsi P, Nerlov C and Verde P: Heterodimerization of c-Jun with ATF-2 and c-Fos is required for positive and negative regulation of the human urokinase enhancer. Oncogene. 11:365–376. 1995.PubMed/NCBI | |
|
Sun MH, Jiang WJ, Li XH, Lee SH, Heo G, Zhou D, Choi JS, Kim KS, Lv W and Cui XS: ATF7-dependent epigenetic changes induced by high temperature during early porcine embryonic development. Cell Prolif. 56:e133522023. View Article : Google Scholar | |
|
Liu Y, Maekawa T, Yoshida K, Muratani M, Chatton B and Ishii S: The transcription factor ATF7 controls adipocyte differentiation and thermogenic gene programming. iScience. 13:98–112. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Diring J, Camuzeaux B, Donzeau M, Vigneron M, Rosa-Calatrava M, Kedinger C and Chatton B: A cytoplasmic negative regulator isoform of ATF7 impairs ATF7 and ATF2 phosphorylation and transcriptional activity. PLoS One. 6:e233512011. View Article : Google Scholar : PubMed/NCBI | |
|
Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T and Noguchi K: Activating transcription factor 3 (ATF3) induction by axotomy in sensory and moto-neurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci. 15:170–182. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Rodriguez-Martinez JA, Reinke AW, Bhimsaria D, Keating AE and Ansari AZ: Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. Elife. 6:e192722017. View Article : Google Scholar : PubMed/NCBI | |
|
Tsushima H, Okazaki K, Ishihara K, Ushijima T and Iwamoto Y: CCAAT/enhancer-binding protein β promotes receptor activator of nuclear factor-kappa-B ligand (RANKL) expression and osteoclast formation in the synovium in rheumatoid arthritis. Arthritis Res Ther. 17:312015. View Article : Google Scholar | |
|
Huggins CJ, Mayekar MK, Martin N, Saylor KL, Gonit M, Jailwala P, Kasoji M, Haines DC, Quiñones OA and Johnson PF: C/EBPү is a critical regulator of cellular stress response networks through heterodimerization with ATF4. Mol Cell Biol. 36:693–713. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dias-Teixeira KL, Calegari-Silva TC, Medina JM, Vivarini ÁC, Cavalcanti Á, Teteo N, Santana AKM, Real F, Gomes CM, Pereira RMS, et al: Emerging role for the PERK/eIF2alpha/ATF4 in human cutaneous leishmaniasis. Sci Rep. 7:170742017. View Article : Google Scholar | |
|
Newman JR and Keating AE: Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science. 300:2097–2101. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Glembotski CC, Arrieta A, Blackwood EA and Stauffer WT: ATF6 as a nodal regulator of proteostasis in the heart. Front Physiol. 11:2672020. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M and Mori K: Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol Cell Biol. 21:1239–1248. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A and Mori K: Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 13:365–376. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hao Q, Zhao X, Zhang Y, Dong Z, Hu T and Chen P: Targeting overexpressed activating transcription factor 1 (ATF1) inhibits proliferation and migration and enhances sensitivity to paclitaxel in esophageal cancer cells. Med Sci Monit Basic Res. 23:304–312. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Meijer BJ, Giugliano FP, Baan B, van der Meer JHM, Meisner S, van Roest M, Koelink PJ, de Boer RJ, Jones N, Breitwieser W, et al: ATF2 and ATF7 are critical mediators of intestinal epithelial repair. Cell Mol Gastroenterol Hepatol. 10:23–42. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Maekawa T, Kim S, Nakai D, Takagi T, Ogura H, Yamada K, Chatton B and Ishii S: Social isolation stress induces ATF-7 phosphorylation and impairs silencing of the 5-HT 5B receptor gene. EMBO J. 29:196–208. 2010. View Article : Google Scholar : | |
|
Gozdecka M and Breitwieser W: The roles of ATF2 (activating transcription factor 2) in tumorigenesis. Biochem Soc Trans. 40:230–234. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X and Zhang W: Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis. 9:981–999. 2021. View Article : Google Scholar | |
|
Yan C and Boyd DD: ATF3 regulates the stability of p53: A link to cancer. Cell Cycle. 5:926–929. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Hai T, Wolfgang CD, Marsee DK, Allen AE and Sivaprasad U: ATF3 and stress responses. Gene Expr. 7:321–335. 1999.PubMed/NCBI | |
|
Giannoudis A, Malki MI, Rudraraju B, Mohhamed H, Menon S, Liloglou T, Ali S, Carroll JS and Palmieri C: Activating transcription factor-2 (ATF2) is a key determinant of resistance to endocrine treatment in an in vitro model of breast cancer. Breast Cancer Res. 22:1262020. View Article : Google Scholar : PubMed/NCBI | |
|
Fawcett TW, Martindale JL, Guyton KZ, Hai T and Holbrook NJ: Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J. 339:135–141. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Shahriari-Felordi M, Alikhani HK, Hashemian SR, Hassan M and Vosough M: Mini review ATF4 and GRP78 as novel molecular targets in ER-Stress modulation for critical COVID-19 patients. Mol Biol Rep. 49:1545–1549. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M and Mori K: ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol. 20:6755–6767. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Thuerauf DJ, Morrison LE, Hoover H and Glembotski CC: Coordination of ATF6-mediated transcription and ATF6 degradation by a domain that is shared with the viral transcription factor, VP16. J Biol Chem. 277:20734–20739. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Thuerauf DJ, Arnold ND, Zechner D, Hanford DS, DeMartin KM, McDonough PM, Prywes R and Glembotski CC: p38 Mitogen-activated protein kinase mediates the transcriptional induction of the atrial natriuretic factor gene through a serum response element. A potential role for the transcription factor ATF6. J Biol Chem. 273:20636–20643. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Luo R, Lu JF, Hu Q and Maity SN: CBF/NF-Y controls endoplasmic reticulum stress induced transcription through recruitment of both ATF6(N) and TBP. J Cell Biochem. 104:1708–1723. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kokame K, Kato H and Miyata T: Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem. 276:9199–9205. 2001. View Article : Google Scholar | |
|
Haze K, Yoshida H, Yanagi H, Yura T and Mori K: Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 10:3787–3799. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Niwano K, Arai M, Tomaru K, Uchiyama T, Ohyama Y and Kurabayashi M: Transcriptional stimulation of the eNOS gene by the stable prostacyclin analogue beraprost is mediated through cAMP-responsive element in vascular endothelial cells: Close link between PGI2 signal and NO pathways. Circ Res. 93:523–530. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao X, Chen M, Sang Y, Xue J, Jiang K, Chen Y, Zhang L, Yu S, Lv W, Li Y, et al: Methylation-mediated silencing of ATF3 promotes thyroid cancer progression by regulating prognostic genes in the MAPK and PI3K/AKT pathways. Thyroid. 33:1441–1454. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang WC, Du LJ, Zheng XJ, Chen XQ, Shi C, Chen BY, Sun XN, Li C, Zhang YY, Liu Y, et al: Elevated sodium chloride drives type I interferon signaling in macrophages and increases antiviral resistance. J Biol Chem. 293:1030–1039. 2018. View Article : Google Scholar : | |
|
Ranjan K, Hedl M, Sinha S, Zhang X and Abraham C: Ubiquitination of ATF6 by disease-associated RNF186 promotes the innate receptor-induced unfolded protein response. J Clin Invest. 131:e1454722021. View Article : Google Scholar : PubMed/NCBI | |
|
Udompong S, Mankhong S, Jaratjaroonphong J and Srisook K: Involvement of p38 MAPK and ATF-2 signaling pathway in anti-inflammatory effect of a novel compound bis[(5-methyl)2-furyl] (4-nitrophenyl)methane on lipopolysaccharide-stimulated macrophages. Int Immunopharmacol. 50:6–13. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Herrema H, Guan D, Choi JW, Feng X, Salazar Hernandez MA, Faruk F, Auen T, Boudett E, Tao R, Chun H and Ozcan U: FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab. 34:1004–1022 e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S, Zhong Z, Huang P, Xiang B, Li X, Dong H, Zhang G, Wu Y and Li P: IL-6/STAT3 induced neuron apoptosis in hypoxia by downregulating ATF6 expression. Front Physiol. 12:7299252021. View Article : Google Scholar : PubMed/NCBI | |
|
Kwon JW, Kwon HK, Shin HJ, Choi YM, Anwar MA and Choi S: Activating transcription factor 3 represses inflammatory responses by binding to the p65 subunit of NF-ĸB. Sci Rep. 5:144702015. View Article : Google Scholar | |
|
Cui A, Ding D and Li Y: Regulation of hepatic metabolism and cell growth by the ATF/CREB family of transcription factors. Diabetes. 70:653–664. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Takii R, Fujimoto M, Tan K, Takaki E, Hayashida N, Nakato R, Shirahige K and akai A: ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex. Mol Cell Biol. 35:11–25. 2015. View Article : Google Scholar : | |
|
Karanam B, Wang L, Wang D, Liu X, Marmorstein R, Cotter R and Cole PA: Multiple roles for acetylation in the interaction of p300 HAT with ATF-2. Biochemistry. 46:8207–8216. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen HCB, Adlanmerini M, Hauck AK and Lazar MA: Dichotomous engagement of HDAC3 activity governs inflammatory responses. Nature. 584:286–290. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H and Aderem A: Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature. 441:173–178. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Chen BP, Liang G, Whelan J and Hai T: ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem. 269:15819–15826. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Sela D, Chen L, Martin-Brown S, Washburn MP, Florens L, Conaway JW and Conaway RC: Endoplasmic reticulum stress-responsive transcription factor ATF6alpha directs recruitment of the mediator of RNA polymerase II transcription and multiple histone acetyltransferase complexes. J Biol Chem. 287:23035–23045. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hirose N, Maekawa T, Shinagawa T and Ishii S: ATF-2 regulates lipopolysaccharide-induced transcription in macrophage cells. Biochem Biophys Res Commun. 385:72–77. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida K, Maekawa T, Zhu Y, Renard-Guillet C, Chatton B, Inoue K, Uchiyama T, Ishibashi K, Yamada T, Ohno N, et al: The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nat Immunol. 16:1034–1043. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Baumeister P, Luo S, Skarnes WC, Sui G, Seto E, Shi Y and Lee AS: Endoplasmic reticulum stress induction of the Grp78/BiP promoter: Activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol Cell Biol. 25:4529–4540. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Liu Y, Valladolid-Acebes I, Recio-López P, Peng G, Li J, Berggren PO, Juntti-Berggren L and Tong N: ATF5 is a regulator of ER stress and β-cell apoptosis in different mouse models of genetic- and diet-induced obesity and diabetes mellitus. Cell Signal. 102:1105352023. View Article : Google Scholar | |
|
Raines LN, Zhao H, Wang Y, Chen HY, Gallart-Ayala H, Hsueh PC, Cao W, Koh Y, Alamonte-Loya A, Liu PS, et al: PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat Immunol. 23:431–445. 2022. View Article : Google Scholar : PubMed/NCBI Wang Y, Zhang X, Fu Y, Fu D, Zhen D, Xing A, Chen Y, Gong G and Wei C: 1, 8-cineole protects against ISO-induced heart failure by inhibiting oxidative stress and ER stress in vitro and in vivo. Eur J Pharmacol. 910:1744722021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu S, Li R, Gong D, Hu P, Xu J, Ai Y, Zhao X, Hu C, Xu M, Liu C, et al: Atf3-mediated metabolic reprogramming in hepatic macrophage orchestrates metabolic dysfunction-associated steatohepatitis. Sci Adv. 10:eado31412024. View Article : Google Scholar : PubMed/NCBI | |
|
Brocard M, Lu J, Hall B, Borah K, Moller-Levet C, Georgana I, Sorgeloos F, Beste DJV, Goodfellow IG and Locker N: Murine norovirus infection results in anti-inflammatory response downstream of amino acid depletion in macrophages. J Virol. 95:e01134212021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Ge MX, Li YH, Li JL, Yu Q, Xiao FH, Ao HS, Yang LQ, Li J, He Y and Kong QP: Longevity-associated transcription factor ATF7 promotes healthspan by suppressing cellular senescence and systematic inflammation. Aging Dis. 14:1374–1389. 2023.PubMed/NCBI | |
|
Liu H, Kuang X, Zhang Y, Ye Y, Li J, Liang L, Xie Z, Weng L, Guo J, Li H, et al: ADORA1 inhibition promotes tumor immune evasion by regulating the ATF3-PD-L1 axis. Cancer Cell. 37:324–339 e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, Shi J, Jiang L, Feng S, Zhao Y, et al: ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1alpha ubiquitination in sepsis. Clin Immunol. 254:1096982023. View Article : Google Scholar | |
|
Zhang Q, Liu G, Liu R, Liu J, Zeng X, Ren D, Yan X and Yuan X: Dual role of endoplasmic reticulum stress-ATF-6 activation in autophagy and apoptosis induced by cyclic stretch in myoblast. Apoptosis. 28:796–809. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dai W, Hong L, Xiao W, Zhang L, Sha W, Yu Z, Liu X, Liu S, Xiao Y, Yang P, et al: The ATF2/miR-3913-5p/CREB5 axis is involved in the cell proliferation and metastasis of colorectal cancer. Commun Biol. 6:10262023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Zhang J, Liu X, Chai Q, Lu X, Yao X, Yang Z, Sun L, Johnson SF, Schwartz RC and Zheng YH: Protein disulfide isomerases (PDIs) negatively regulate ebolavirus structural glycoprotein expression in the endoplasmic reticulum (ER) via the autophagy-lysosomal pathway. Autophagy. 18:2350–2367. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wen Z, Xiong X, Chen D, Shao L, Tang X, Shen X, Zhang S, Huang S, Zhang L, Chen Y, et al: Activating transcription factor 4 protects mice against sepsis-induced intestinal injury by regulating gut-resident macrophages differentiation. Chin Med J (Engl). 135:2585–2595. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Rajabalee N, Siushansian H, Weerapura M, Berton S, Berbatovci F, Hooks B, Geoffrion M, Yang D, Harper ME, Rayner K, et al: ATF2 orchestrates macrophage differentiation and activation to promote antibacterial responses. J Leukoc Biol. 114:280–298. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Qin W, Yang H, Liu G, Bai R, Bian Y, Yang Z and Xiao C: Activating transcription factor 3 is a potential target and a new biomarker for the prognosis of atherosclerosis. Hum Cell. 34:49–59. 2021. View Article : Google Scholar | |
|
Nilsson R, Bajic VB, Suzuki H, di Bernardo D, Björkegren J, Katayama S, Reid JF, Sweet MJ, Gariboldi M, Carninci P, et al: Transcriptional network dynamics in macrophage activation. Genomics. 88:133–142. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Clement M, Basatemur G, Masters L, Baker L, Bruneval P, Iwawaki T, Kneilling M, Yamasaki S, Goodall J and Mallat Z: Necrotic cell sensor clec4e promotes a proatherogenic macrophage phenotype through activation of the unfolded protein response. Circulation. 134:1039–1051. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Elbarghati L, Murdoch C and Lewis CE: Effects of hypoxia on transcription factor expression in human monocytes and macrophages. Immunobiology. 213:899–908. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Q, Luo YF, Tian M, Xiao YL, Cai HR and Li H: Activating transcription factor 3 involved in Pseudomonas aeruginosa PAO1-induced macrophage senescence. Mol Immunol. 133:122–127. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Lu H, Wang X, Duan C, Zhu X, Zhang Y, Ge X, Ji F, Wang X, Su J and Zhang D: Pyruvate kinase M2 (PKM2) interacts with activating transcription factor 2 (ATF2) to bridge glycolysis and pyroptosis in microglia. Mol Immunol. 140:250–266. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Y, Li CS, Li YQ, Liang Y, Cao L and Chen LA: Perfluorocarbon inhibits lipopolysaccharide-induced macrophage inflammatory protein-2 expression and activation of ATF-2 and c-Jun in A549 pulmonary epithelial cells. Cell Mol Biol (Noisy-le-grand). 62:18–24. 2016.PubMed/NCBI | |
|
Boehlk S, Fessele S, Mojaat A, Miyamoto NG, Werner T, Nelson EL, Schlöndorff D and Nelson PJ: ATF and Jun transcription factors, acting through an Ets/CRE promoter module, mediate lipopolysaccharide inducibility of the chemokine RANTES in monocytic Mono Mac 6 cells. Eur J Immunol. 30:1102–1112. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Sha H, Zhang D, Zhang Y, Wen Y and Wang Y: ATF3 promotes migration and M1/M2 polarization of macrophages by activating tenascin-C via Wnt/β-catenin pathway. Mol Med Rep. 16:3641–3647. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hu C, Meng X, Huang C, Shen C and Li J: Frontline Science: ATF3 is responsible for the inhibition of TNF-α release and the impaired migration of acute ethanol-exposed monocytes and macrophages. J Leukoc Biol. 101:633–642. 2017. View Article : Google Scholar | |
|
Du Y, Ma Z, Zheng J, Huang S, Yang X, Song Y, Dong D, Shi L and Xu D: ATF3 positively regulates antibacterial immunity by modulating macrophage killing and migration functions. Front Immunol. 13:8395022022. View Article : Google Scholar : PubMed/NCBI | |
|
Mylvaganam S, Freeman SA and Grinstein S: The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol. 31:R619–R632. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Taka S, Gazouli M, Politis PK, Pappa KI and Anagnou NP: Transcription factor ATF-3 regulates allele variation phenotypes of the human SLC11A1 gene. Mol Biol Rep. 40:2263–2271. 2013. View Article : Google Scholar | |
|
Middleton JD, Fehlman J, Sivakumar S, Stover DG and Hai T: Stress-inducible gene Atf3 dictates a dichotomous macrophage activity in chemotherapy-enhanced lung colonization. Int J Mol Sci. 22:73562021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Li Y, Jadhav K, Pan X, Zhu Y, Hu S, Chen S, Chen L, Tang Y, Wang HH, et al: Hepatocyte ATF3 protects against atherosclerosis by regulating HDL and bile acid metabolism. Nat Metab. 3:59–74. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Raghavan S, Singh NK, Gali S, Mani AM and Rao GN: Protein Kinase ctheta via activating transcription factor 2-mediated CD36 expression and foam cell formation of Ly6C(hi) cells contributes to atherosclerosis. Circulation. 138:2395–2412. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Seneviratne A, Han Y, Wong E, Walter ERH, Jiang L, Cave L, Long NJ, Carling D, Mason JC, Haskard DO and Boyle JJ: Hematoma resolution in vivo is directed by activating transcription factor 1. Circ Res. 127:928–944. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Illouz M, Leclercq LD, Dessenne C, Hatfull G, Daher W and Kremer L and Guérardel Y: Multiple Mycobacterium abscessus O-acetyltransferases influence glycopeptidolipid structure and colony morphotype. J Biol Chem. 299:1049792023. View Article : Google Scholar : PubMed/NCBI | |
|
Perez-Arques C, Navarro-Mendoza MI, Murcia L, Lax C, Martínez-García P, Heitman J, Nicolás FE and Garre V: Mucor circinelloides Thrives inside the phagosome through an Atf-Mediated germination pathway. mBio. 10:e02765–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta D, Wang Q, Vinson C and Dziarski R: Bacterial peptidoglycan induces CD14-dependent activation of transcription factors CREB/ATF and AP-1. J Biol Chem. 274:14012–14020. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Shi R, Wang J, Zhang Z, Leng Y and Chen AF: ASGR1 promotes liver injury in sepsis by modulating monocyte-to-macrophage differentiation via NF-ĸB/ATF5 pathway. Life Sci. 315:1213392023. View Article : Google Scholar | |
|
Abe JI, Ko KA, Kotla S, Wang Y, Paez-Mayorga J, Shin IJ, Imanishi M, Vu HT, Tao Y, Leiva-Juarez MM, et al: MAGI1 as a link between endothelial activation and ER stress drives atherosclerosis. JCI Insight. 4:e1255702019. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Z, Xu H, Zhao W, Zhang K, Wu S, Shu C, Zhu L, Wang Y, Wang L, Zhang H and Yan B: Macrophage ATF6 accelerates corticotomy-assisted orthodontic tooth movement through promoting Tnfα transcription. Int J Oral Sci. 17:282025. View Article : Google Scholar | |
|
Xu X, Lei T, Li W and Ou H: Enhanced cellular cholesterol efflux by naringenin is mediated through inhibiting endoplasmic reticulum stress - ATF6 activity in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids. 1864:1472–1482. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rao J, Yue S, Fu Y, Zhu J, Wang X, Busuttil RW, Kupiec-Weglinski JW, Lu L and Zhai Y: ATF6 mediates a pro-inflammatory synergy between ER stress and TLR activation in the pathogenesis of liver ischemia-reperfusion injury. Am J Transplant. 14:1552–1561. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Zhu X, Li Z, Feng M and Liu X: ATF6 promotes liver fibrogenesis by regulating macrophage-derived interleukin-1alpha expression. Cell Immunol. 367:1044012021. View Article : Google Scholar | |
|
Wang J, Cheng W, Wang Z, Xin L and Zhang W: ATF3 inhibits the inflammation induced by Mycoplasma pneumonia in vitro and in vivo. Pediatr Pulmonol. 52:1163–1170. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hoetzenecker W, Echtenacher B, Guenova E, Hoetzenecker K, Woelbing F, Brück J, Teske A, Valtcheva N, Fuchs K, Kneilling M, et al: ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med. 18:128–134. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bae YA and Cheon HG: Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages. Korean J Physiol Pharmacol. 20:415–424. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Saha S, Roy S, Dutta A, Jana K and Ukil A: Leishmania donovani targets host transcription factor NRF2 to activate antioxidant enzyme HO-1 and transcriptional repressor ATF3 for establishing infection. Infect Immun. 89:e00764202021. View Article : Google Scholar : PubMed/NCBI | |
|
Qian L, Zhao Y, Guo L, Li S and Wu X: Activating transcription factor 3 (ATF3) protects against lipopolysaccharide-induced acute lung injury via inhibiting the expression of TL1A. J Cell Physiol. 232:3727–3734. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng CF and Lin H: Acute kidney injury and the potential for ATF3-regulated epigenetic therapy. Toxicol Mech Methods. 21:362–366. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yu T, Moh SH, Kim SB, Yang Y, Kim E, Lee YW, Cho CK, Kim KH, Yoo BC, Cho JY and Yoo HS: HangAmDan-B, an ethnomedicinal herbal mixture, suppresses inflammatory responses by inhibiting Syk/NF-ĸB and JNK/ATF-2 pathways. J Med Food. 16:56–65. 2013. View Article : Google Scholar : | |
|
Zhang C, He H, Wang L, Zhang N, Huang H, Xiong Q, Yan Y, Wu N, Ren H, Han H, et al: Virus-triggered ATP release limits viral replication through facilitating IFN-β Production in a P2X7-Dependent manner. J Immunol. 199:1372–1381. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yu T, Yang Y, Kwak YS, Song GG, Kim MY, Rhee MH and Cho JY: Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J Ginseng Res. 41:127–133. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xu X, Xia J, Zhao S, Wang Q, Ge G, Xu F, Liu X, Zhang W and Yang Y: Qing-Fei-Pai-Du decoction and wogonoside exert anti-inflammatory action through down-regulating USP14 to promote the degradation of activating transcription factor 2. FASEB J. 35:e218702021. View Article : Google Scholar : PubMed/NCBI | |
|
Park JB, Peters R, Pham Q and Wang TTY: Javamide-II Inhibits IL-6 without Significant Impact on TNF-alpha and IL-1beta in macrophage-like cells. Biomedicines. 8:1382020. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SM, Park EJ and Lee HJ: Nuciferine attenuates lipopolysaccharide-stimulated inflammatory responses by inhibiting p38 MAPK/ATF2 signaling pathways. Inflammopharmacology. 30:2373–2383. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Endale M, Kim TH, Kwak YS, Kim NM, Kim SH, Cho JY, Yun BS and Rhee MH: Torilin inhibits inflammation by limiting TAK1-mediated MAP kinase and NF-ĸB activation. Mediators Inflamm. 2017:72509682017. View Article : Google Scholar | |
|
Miyata Y, Fukuhara A, Otsuki M and Shimomura I: Expression of activating transcription factor 2 in inflammatory macrophages in obese adipose tissue. Obesity (Silver Spring). 21:731–736. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Y, Gu J, Wang Y, Lin J, Yu H, Yang F, Wu S, Yin J, Lv H, Ji X and Wang S: Promotion effect of EGCG on the raised expression of IL-23 through the signaling of STAT3-BATF2-c-JUN/ATF2. J Agric Food Chem. 69:7898–7909. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sukhorukov VN, Khotina VA, Bagheri Ekta M, Ivanova EA, Sobenin IA and Orekhov AN: Endoplasmic reticulum stress in macrophages: The vicious circle of lipid accumulation and pro-inflammatory response. Biomedicines. 8:2102020. View Article : Google Scholar : PubMed/NCBI | |
|
Song C, Chen J, Li X, Yang R, Cao X, Zhou L, Zhou Y, Ying H, Zhang Q and Sun Y: Limonin ameliorates dextran sulfate sodium-induced chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and NF-kappaB signaling. Int Immunopharmacol. 90:1071612021. View Article : Google Scholar | |
|
Luo JH, Wang FX, Zhao JW, Yang CL, Rong SJ, Lu WY, Chen QJ, Zhou Q, Xiao J, Wang YN, et al: PDIA3 defines a novel subset of adipose macrophages to exacerbate the development of obesity and metabolic disorders. Cell Metab. 36:2262–2280 e5. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Boyle JJ, Johns M, Kampfer T, Nguyen AT, Game L, Schaer DJ, Mason JC and Haskard DO: Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res. 110:20–33. 2012. View Article : Google Scholar | |
|
Suganami T, Yuan X, Shimoda Y, Uchio-Yamada K, Nakagawa N, Shirakawa I, Usami T, Tsukahara T, Nakayama K, Miyamoto Y, et al: Activating transcription factor 3 constitutes a negative feedback mechanism that attenuates saturated Fatty acid/toll-like receptor 4 signaling and macrophage activation in obese adipose tissue. Circ Res. 105:25–32. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tang Q, Xie J, Wang Y, Dong C and Sun Q: Exosomes secreted by ATF3/Nrf2-mediated ferroptotic renal tubular epithelial cells promote M1/M2 ratio imbalance inducing renal interstitial fibrosis following ischemia and reperfusion injury. Front Immunol. 16:15105002025. View Article : Google Scholar : PubMed/NCBI | |
|
Bartels HC, Hameed S, Young C, Nabhan M, Downey P, Curran KM, McCormack J, Fabre A, Kolch W, Zhernovkov V and Brennan DJ: Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum. Transl Res. 274:67–80. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Iwasaki Y, Suganami T, Hachiya R, Shirakawa I, Kim-Saijo M, Tanaka M, Hamaguchi M, Takai-Igarashi T, Nakai M, Miyamoto Y and Ogawa Y: Activating transcription factor 4 links metabolic stress to interleukin-6 expression in macrophages. Diabetes. 63:152–161. 2014. View Article : Google Scholar | |
|
Xia HF, Zhu JY, Wang JN, Ren JG, Cai Y, Wang FQ, Zhang W, Chen G, Zhao YF and Zhao JH: Association of ATF4 expression with tissue hypoxia and M2 macrophage infiltration in infantile hemangioma. J Histochem Cytochem. 65:285–294. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Zong S, Wang Z, Yang R, Guo Y, Wang Y, Chen X, Li Y and Wang S: FTY720 Attenuates LPS-Induced inflammatory bone loss by inhibiting osteoclastogenesis via the NF-kappaB and HDAC4/ATF pathways. J Immunol Res. 2023:85716492023. View Article : Google Scholar | |
|
Baek K, Park HJ, Baek JH and Kim HR: Isoproterenol increases RANKL expression in a ATF4/NFATc1-dependent manner in mouse osteoblastic cells. Int J Mol Sci. 18:22042017. View Article : Google Scholar : PubMed/NCBI | |
|
Chattopadhyay A, Kwartler CS, Kaw K, Li Y, Kaw A, Chen J, LeMaire SA, Shen YH and Milewicz DM: Cholesterol-induced phenotypic modulation of smooth muscle cells to macrophage/fibroblast-like cells is driven by an unfolded protein response. Arterioscler Thromb Vasc Biol. 41:302–316. 2021. View Article : Google Scholar | |
|
Kim J, Kwak HJ, Cha JY, Jeong YS, Rhee SD, Kim KR and Cheon HG: Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction. J Biol Chem. 289:23246–23255. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Luo M, Zhao F, Cheng H, Su M and Wang Y: Macrophage polarization: An important role in inflammatory diseases. Front Immunol. 15:13529462024. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang M, Li P, Yue X, Liu L, Wang L, Sun N, Wang K, Zhang Y and Wang H: Dysregulated macrophage immunity in Helicobacter pylori infection: unveiling mechanistic insights and therapeutic implications. Front Immunol. 16:16367682025. View Article : Google Scholar : PubMed/NCBI | |
|
Fu YL and Harrison RE: Microbial phagocytic receptors and their potential involvement in cytokine induction in macrophages. Front Immunol. 12:6620632021. View Article : Google Scholar : PubMed/NCBI | |
|
Arango Duque G and Descoteaux A: Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol. 5:4912014. View Article : Google Scholar : PubMed/NCBI | |
|
Lv K and Liang Q: Macrophages in sepsis-induced acute lung injury: exosomal modulation and therapeutic potential. Front Immunol. 15:15180082025. View Article : Google Scholar : PubMed/NCBI | |
|
A-Gonzalez N, Quintana JA, Garcia-Silva S, Mazariegos M, González de la Aleja A, Nicolás-Ávila JA, Walter W, Adrover JM, Crainiciuc G, Kuchroo VK, et al: Phagocytosis imprints heterogeneity in tissue-resident macrophages. J Exp Med. 214:1281–1296. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ochando J, Mulder WJM, Madsen JC, Netea MG and Duivenvoorden R: Trained immunity-basic concepts and contributions to immunopathology. Nat Rev Nephrol. 19:23–37. 2023. View Article : Google Scholar | |
|
Nathan C and Ding A: Nonresolving inflammation. Cell. 140:871–882. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Marion TN, Cao X, Wang W and Cao Y: Park 7: A novel therapeutic target for macrophages in sepsis-induced immunosuppression. Front Immunol. 9:26322018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Cai R, Huang Y, Zhu L, Xiao L, Wang C and Wang L: Macrophages in organ fibrosis: From pathogenesis to therapeutic targets. Cell Death Discov. 10:4872024. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmad S, Zaki A, Manda K, Mohan A and Syed MA: Vitamin-D ameliorates sepsis-induced acute lung injury via augmenting miR-149-5p and downregulating ER stress. J Nutr Biochem. 110:1091302022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Meng P, Liu G, Liu K and Che C: ATF4 involvement in TLR4 and LOX-1-induced host inflammatory response to aspergillus fumigatus keratitis. J Ophthalmol. 2018:58302022018. | |
|
Li R, Ren T, Zeng J and Xu H: ALCAM deficiency alleviates LPS-Induced acute lung injury by inhibiting inflammatory response. Inflammation. 46:688–699. 2023. View Article : Google Scholar | |
|
Al-Salleeh F and Petro TM: Promoter analysis reveals critical roles for SMAD-3 and ATF-2 in expression of IL-23 p19 in macrophages. J Immunol. 181:4523–4533. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ta HM, Le TM, Ishii H, Takarada-Iemata M, Hattori T, Hashida K, Yamamoto Y, Mori K, Takahashi R, Kitao Y and Hori O: Atf6α deficiency suppresses microglial activation and ameliorates pathology of experimental autoimmune encephalomyelitis. J Neurochem. 139:1124–1137. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wellen KE and Hotamisligil GS: Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 112:1785–1788. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Olefsky JM and Glass CK: Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 72:219–246. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Liang W, Qi Y, Yi H, Mao C, Meng Q, Wang H and Zheng C: The roles of adipose tissue macrophages in human disease. Front Immunol. 13:9087492022. View Article : Google Scholar : PubMed/NCBI | |
|
Guria S, Hoory A, Das S, Chattopadhyay D and Mukherjee S: Adipose tissue macrophages and their role in obesity-associated insulin resistance: An overview of the complex dynamics at play. Biosci Rep. 43:BSR202202002023. View Article : Google Scholar : PubMed/NCBI | |
|
Bai Y and Sun Q: Macrophage recruitment in obese adipose tissue. Obes Rev. 16:127–136. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
De Nardo D, Labzin LI, Kono H, Seki R, Schmidt SV, Beyer M, Xu D, Zimmer S, Lahrmann C, Schildberg FA, et al: High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol. 15:152–160. 2014. View Article : Google Scholar | |
|
Xu J, Ding L, Mei J, Hu Y, Kong X, Dai S, Bu T, Xiao Q and Ding K: Dual roles and therapeutic targeting of tumor-associated macrophages in tumor microenvironments. Signal Transduct Target Ther. 10:2682025. View Article : Google Scholar : PubMed/NCBI | |
|
Takayanagi H: Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 7:292–304. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K and Yu T: Macrophage-osteoclast associations: Origin, polarization, and subgroups. Front Immunol. 12:7780782021. View Article : Google Scholar : PubMed/NCBI | |
|
Nakashima T, Hayashi M and Takayanagi H: New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab. 23:582–590. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Perrone M, Chiodoni C, Lecchi M, Botti L, Bassani B, Piva A, Jachetti E, Milani M, Lecis D, Tagliabue E, et al: ATF3 reprograms the bone marrow niche in response to early breast cancer transformation. Cancer Res. 83:117–129. 2023. View Article : Google Scholar : | |
|
Gao C, Jiang J, Tan Y and Chen S: Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct Target Ther. 8:3592023. View Article : Google Scholar : PubMed/NCBI | |
|
Fleiss B, Van Steenwinckel J, Bokobza C, I KS, Ross-Munro E and Gressens P: Microglia-mediated neurodegeneration in perinatal brain injuries. Biomolecules. 11:992021. View Article : Google Scholar : PubMed/NCBI | |
|
Flury A, Aljayousi L, Park HJ, Khakpour M, Mechler J, Aziz S, McGrath JD, Deme P, Sandberg C, González Ibáñez F, et al: A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion. Neuron. 113:554–571 e14. 2025. View Article : Google Scholar : | |
|
Liu LL, Xiao YS, Huang WM, Liu S, Huang LX, Zhong JH, Jia P and Liu WY: ATF1/miR-214-5p/ITGA7 axis promotes osteoclastogenesis to alter OVX-induced bone absorption. Mol Med. 28:562022. View Article : Google Scholar : PubMed/NCBI | |
|
Kim HN, Baek JK, Park SB, Kim JD, Son HJ, Park GH, Eo HJ, Park JH, Jung HS and Jeong JB: Anti-inflammatory effect of Vaccinium oldhamii stems through inhibition of NF-kappaB and MAPK/ATF2 signaling activation in LPS-stimulated RAW264.7 cells. BMC Complement Altern Med. 19:2912019. View Article : Google Scholar | |
|
Comarita IK, Vilcu A, Constantin A, Procopciuc A, Safciuc F, Alexandru N, Dragan E, Nemecz M, Filippi A, Chiţoiu L, et al: Therapeutic potential of stem cell-derived extracellular vesicles on atherosclerosis-induced vascular dysfunction and its key molecular players. Front Cell Dev Biol. 10:8171802022. View Article : Google Scholar : PubMed/NCBI | |
|
Ho HH, Antoniv TT, Ji JD and Ivashkiv LB: Lipopolysaccharide-induced expression of matrix metalloproteinases in human monocytes is suppressed by IFN-gamma via superinduction of ATF-3 and suppression of AP-1. J Immunol. 181:5089–5097. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ishida M, Ueki M, Morishita J, Ueno M, Shiozawa S and Maekawa N: T-5224, a selective inhibitor of c-Fos/activator protein-1, improves survival by inhibiting serum high mobility group box-1 in lethal lipopolysaccharide-induced acute kidney injury model. J Intensive Care. 3:492015. View Article : Google Scholar : PubMed/NCBI | |
|
Kubryn N, Fijalkowski L, Nowaczyk J, Jamil A and Nowaczyk A: PROTAC technology as a new tool for modern pharmacotherapy. Molecules. 30:21232025. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Z and Crews CM: Recent developments in PROTAC-mediated protein degradation: From bench to clinic. Chembiochem. 23:e2021002702022. View Article : Google Scholar : | |
|
Bekes M, Langley DR and Crews CM: PROTAC targeted protein degraders: The past is prologue. Nat Rev Drug Discov. 21:181–200. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ai M, Ma H, He J, Xu F, Ming Y, Ye Z, Zheng Q, Luo D, Yang K, Li J, et al: Targeting oncogenic transcriptional factor c-myc by oligonucleotide PROTAC for the treatment of hepatocellular carcinoma. Eur J Med Chem. 280:1169782024. View Article : Google Scholar : PubMed/NCBI | |
|
Simpson LM, Glennie L, Brewer A, Zhao JF, Crooks J, Shpiro N and Sapkota GP: Target protein localization and its impact on PROTAC-mediated degradation. Cell Chem Biol. 29:1482–1504 e7. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Hu M, Yang Y, Du C, Zhou H, Liu C, Chen Y, Fan L, Ma H, Gong Y and Xie Y: An overview of PROTACs: A promising drug discovery paradigm. Mol Biomed. 3:462022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Chen H, Kaniskan HU, Xie L, Chen X, Jin J and Wei W: TF-PROTACs enable targeted degradation of transcription factors. J Am Chem Soc. 143:8902–8910. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ji J, Ma S, Zhu Y, Zhao J, Tong Y, You Q and Jiang Z: ARE-PROTACs enable co-degradation of an Nrf2-MafG heterodimer. J Med Chem. 66:6070–6081. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Liu Y, Chen Y, Dai C, Hu W, Han J, Li Z, Yin F, Zhang Y and Shi C: EGFR targeted liposomal PROTAC assisted with epigenetic regulation as an efficient strategy for osimertinib-resistant lung cancer therapy. Adv Sci (Weinh). 12:e101972025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Chen E, Su J, Gong Y, Tang S, Qin A, Shen A, Tang S and Zhang L: Magnetically navigated nano-PROTAC ameliorates acute lung injury. J Nanobiotechnology. 23:6222025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Zhao J, Zhong K, Tong A and Jia D: Targeted protein degradation: Mechanisms, strategies and application. Signal Transduct Target Ther. 7:1132022. View Article : Google Scholar : PubMed/NCBI | |
|
Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, et al: Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 343:301–305. 2014. View Article : Google Scholar : | |
|
Greene LA, Zhou Q, Siegelin MD and Angelastro JM: Targeting transcription factors ATF5, CEBPB and CEBPD with cell-penetrating peptides to treat brain and other cancers. Cells. 12:5812023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Angelastro JM, Merino D, Zhou Q, Siegelin MD and Greene LA: Dominant-negative ATF5 rapidly depletes survivin in tumor cells. Cell Death Dis. 10:7092019. View Article : Google Scholar : PubMed/NCBI | |
|
Rui Y, Eppler HB, Yanes AA and Jewell CM: Tissue-targeted drug delivery strategies to promote antigen-specific immune tolerance. Adv Healthc Mater. 12:e22022382023. View Article : Google Scholar | |
|
Chen W, Schilperoort M, Cao Y, Shi J, Tabas I and Tao W: Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol. 19:228–249. 2022. View Article : Google Scholar | |
|
Zhao G, Xue L, Geisler HC, Xu J, Li X, Mitchell MJ and Vaughan AE: Precision treatment of viral pneumonia through macrophage-targeted lipid nanoparticle delivery. Proc Natl Acad Sci USA. 121:e23147471212024. View Article : Google Scholar : PubMed/NCBI | |
|
Hai T, Wolford CC and Chang YS: ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: Is modulation of inflammation a unifying component? Gene Expr. 15:1–11. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen CT, Kim EH, Luong TT, Pyo S and Rhee DK: ATF3 confers resistance to pneumococcal infection through positive regulation of cytokine production. J Infect Dis. 210:1745–1754. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bekeredjian-Ding I, Stein C and Uebele J: The innate immune response against staphylococcus aureus. Curr Top Microbiol Immunol. 409:385–418. 2017. | |
|
Nguyen CT, Kim EH, Luong TT, Pyo S and Rhee DK: TLR4 mediates pneumolysin-induced ATF3 expression through the JNK/p38 pathway in Streptococcus pneumoniae-infected RAW 264.7 cells. Mol Cells. 38:58–64. 2015. View Article : Google Scholar : | |
|
Guo B, Stein JL, van Wijnen AJ and Stein GS: ATF1 and CREB trans-activate a cell cycle regulated histone H4 gene at a distal nuclear matrix associated promoter element. Biochemistry. 36:14447–14455. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Watson G, Ronai ZA and Lau E: ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res. 119:347–357. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lau E and Ronai ZA: ATF2 - at the crossroad of nuclear and cytosolic functions. J Cell Sci. 125:2815–2824. 2012.PubMed/NCBI | |
|
Claps G, Cheli Y, Zhang T, Scortegagna M, Lau E, Kim H, Qi J, Li JL, James B, Dzung A, et al: A transcriptionally inactive ATF2 variant drives melanomagenesis. Cell Rep. 15:1884–1892. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto Y, Zhang C, Kawauchi J, Imoto I, Adachi MT, Inazawa J, Amagasa T, Hai T and Kitajima S: An alternatively spliced isoform of transcriptional repressor ATF3 and its induction by stress stimuli. Nucleic Acids Res. 0:2398–2406. 2002. View Article : Google Scholar | |
|
Chan JYW, Tsui JCC, Law PTW, So WKW, Leung DYP, Sham MMK, Tsui SKW and Chan CWH: RNA-Seq revealed ATF3-regulated inflammation induced by silica. Toxicology. 393:34–41. 2018. View Article : Google Scholar | |
|
Jeong BC, Kim JH, Kim K, Kim I, Seong S and Kim N: ATF3 modulates calcium signaling in osteoclast differentiation and activity by associating with c-Fos and NFATc1 proteins. Bone. 95:33–40. 2017. View Article : Google Scholar |