You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Zhang M and Zhang S: T cells in fibrosis and fibrotic diseases. Front Immunol. 11:11422020. View Article : Google Scholar : PubMed/NCBI | |
|
Wei L, Liu L, Bai M, Ning X and Sun S: CircRNAs: Versatile players and new targets in organ fibrosis. Cell Commun Signal. 21:902023. View Article : Google Scholar : PubMed/NCBI | |
|
Horowitz JC and Thannickal VJ: Mechanisms for the resolution of organ fibrosis. Physiology (Bethesda). 34:43–55. 2019. | |
|
Hohn J, Tan W, Carver A, Barrett H and Carver W: Roles of exosomes in cardiac fibroblast activation and fibrosis. Cells. 10:29332021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Kwan JYY, Yip K, Liu PP and Liu FF: Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov. 19:57–75. 2020. View Article : Google Scholar | |
|
Henderson NC, Rieder F and Wynn TA: Fibrosis: From mechanisms to medicines. Nature. 587:555–566. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hao Y: Chinese medicine as a therapeutic option for pulmonary fibrosis: Clinical efficacies and underlying mechanisms. Journal of Ethnopharmacology. 2024. View Article : Google Scholar | |
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N and Zhang H: Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother. 142:1119792021. View Article : Google Scholar : PubMed/NCBI | |
|
Shen YL, Wang SJ, Rahman K, Zhang LJ and Zhang H: Chinese herbal formulas and renal fibrosis: An overview. Curr Pharm Des. 24:2774–2781. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Lu Y, Nian M, Sheng Q, Zhang C, Han C, Dou X and Ding Y: Therapeutic potential and mechanism of Chinese herbal medicines in treating fibrotic liver disease. Chin J Natl Med. 21:643–657. 2023. | |
|
Li X, Liu Z, Liao J, Chen Q, Lu X and Fan X: Network pharmacology approaches for research of traditional Chinese medicines. Chin J Natl Med. 21:323–332. 2023. | |
|
Xie J, Xiong J, Ding LS, Chen L, Zhou H, Liu L, Zhang ZF, Hu XM, Luo P and Qing LS: A efficient method to identify cardioprotective components of Astragali Radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation. J Chromatogr A. 1576:10–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bi Y, Bao H, Zhang C, Yao R and Li M: Quality control of radix astragali (The Root of Astragalus membranaceus var. mongholicus) along its value chains. Front Pharmacol. 11:5623762020. View Article : Google Scholar : PubMed/NCBI | |
|
Gong F, Qu R, Li Y, Lv Y and Dai J: Astragalus mongholicus: A review of its anti-fibrosis properties. Front Pharmacol. 13:9765612022. View Article : Google Scholar : PubMed/NCBI | |
|
Shan H, Zheng X and Li M: The effects of astragalus membranaceus active extracts on autophagy-related diseases. Int J Mol Sci. 20:19042019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Chai Y, Xiao G, Liu Y, Xie X, Xiao W, Zhou P, Ma W, Zhang C and Li L: Astragalus and its formulas as a therapeutic option for fibrotic diseases: Pharmacology and mechanisms. Front Pharmacol. 13:10403502022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Lan L, Li G and Sun G: Multi-dimensional profiles combined with antioxidant activity and fingerprint-efficacy relationship to analyze the quality of Astragali Radix from different sources. Food Chemi. 461:1408482024. View Article : Google Scholar | |
|
Zhang J, Wu C, Gao L, Du G and Qin X: Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects. Adv Pharmacol. 87:89–112. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Shi X, Zhao M, Ma S and Zhang Y: Pharmacological potential of astragali radix for the treatment of kidney diseases. Phytomedicine. 123:1551962024. View Article : Google Scholar | |
|
Song SS, Wang RY, Li ZH, Yang Y, Wang TT, Qing LS and Luo P: Role of simulated in vitro gastrointestinal digestion on biotransformation and bioactivity of astragalosides from Radix Astragali. J Pharm Biomed Anal. 231:1154142023. View Article : Google Scholar : PubMed/NCBI | |
|
Liang Y, Chen B, Liang D, Quan X, Gu R, Meng Z, Gan H, Wu Z, Sun Y, Liu S and Dou G: Pharmacological effects of astragaloside IV: A review. Molecules. 28:61182023. View Article : Google Scholar : PubMed/NCBI | |
|
Tan YQ, Chen HW and Li J: Astragaloside IV: An effective drug for the treatment of cardiovascular diseases. Drug Des Devel Ther. 14:3731–3746. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ren S, Zhang H, Mu Y, Sun M and Liu P: Pharmacological effects of Astragaloside IV: A literature review. J Tradit Chin Med. 33:413–416. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Hou X, Xu R, Liu C and Tu M: Research review on the pharmacological effects of astragaloside IV. Fundam Clin Pharmacol. 31:17–36. 2017. View Article : Google Scholar | |
|
Li K, Cui LJ, Cao YX, Li SY, Shi LX, Qin XM and Du YG: UHPLC Q-exactive MS-based serum metabolomics to explore the effect mechanisms of immunological activity of astragalus polysaccharides with different molecular weights. Front Pharmacol. 11:5956922020. View Article : Google Scholar | |
|
Li M, Han B, Zhao H, Xu C, Xu D, Sieniawska E, Lin X and Kai G: Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. Phytomedicine. 98:1539182022. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Zhang Y, Luo Y, Meng X, Pan G, Zhang H, Li Y and Zhang B: The molecular basis of the anti-inflammatory property of astragaloside IV for the treatment of diabetes and its complications. Drug Des Devel Ther. 17:771–790. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Hu J, Chen X, Lei X, Feng H, Wan F and Tan L: Traditional Chinese medicine monomers: Novel strategy for endogenous neural stem cells activation after stroke. Front Cell Neurosci. 15:6281152021. View Article : Google Scholar : PubMed/NCBI | |
|
Indu P, Arunagirinathan N, Rameshkumar MR, Sangeetha K, Divyadarshini A and Rajarajan S: Antiviral activity of astragaloside II, astragaloside III and astragaloside IV compounds against dengue virus: Computational docking and in vitro studies. Microb Pathog. 152:1045632021. View Article : Google Scholar | |
|
Kang X, Su S, Hong W, Geng W and Tang H: Research progress on the ability of astragaloside IV to protect the brain against ischemia-reperfusion injury. Front Neurosci. 15:7559022021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Han R, Guo F, Chen H, Wang W, Chen Z, Liu W, Sun X and Gao C: Antagonistic effects of IL-17 and astragaloside IV on cortical neurogenesis and cognitive behavior after stroke in adult mice through Akt/GSK-3β pathway. Cell Death Discov. 6:742020. View Article : Google Scholar | |
|
Li R, Shi C, Wei C, Wang C, Du H, Hong Q and Chen X: Fufang shenhua tablet, astragali radix and its active component astragaloside IV: Research progress on anti-inflammatory and immunomodulatory mechanisms in the kidney. Front Pharmacol. 14:11316352023. View Article : Google Scholar : PubMed/NCBI | |
|
Meng P, Yang R, Jiang F, Guo J, Lu X, Yang T and He Q: Molecular mechanism of astragaloside IV in improving endothelial dysfunction of cardiovascular diseases mediated by oxidative stress. Oxid Med Cell Longev. 2021:14812362021. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Zheng S, Brinckmann JA, Fu J, Zeng R, Huang L and Chen S: Chemical and genetic diversity of Astragalus mongholicus grown in different eco-climatic regions. PLoS One. 12:e01847912017. View Article : Google Scholar : PubMed/NCBI | |
|
Yu SY, Ouyang HT, Yang JY, Huang XL, Yang T, Duan JP, Cheng JP, Chen YX, Yang YJ and Qiong P: Subchronic toxicity studies of Radix Astragali extract in rats and dogs. J Ethnopharmacol. 21:352–355. 2007. View Article : Google Scholar | |
|
Zang Y, Wan J, Zhang Z, Huang S, Liu X and Zhang W: An updated role of astragaloside IV in heart failure. Biomed Pharmacother. 126:1100122020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiangbo Z, Xuying W, Yuping Z, Xili M, Yiwen Z and Tianbao Z: Effect of astragaloside IV on the embryo-fetal development of Sprague-Dawley rats and New Zealand White rabbits. J Appl Toxicol. 29:381–385. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Xuying W, Jiangbo Z, Yuping Z, Xili M, Yiwen Z, Tianbao Z and Weidong Z: Effect of astragaloside IV on the general and peripartum reproductive toxicity in sprague-dawley rats. Int J Toxicol. 29:505–516. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Xu M, Yin J, Xie L, Zhang J, Zou C, Zou J, Liu F, Ju W and Li P: Pharmacokinetics and tolerance of toal astragalosides after intravenous infusion of astragalosides injection in healthy Chinese volunteers. Phytomedicine. 20:1105–1111. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Frangogiannis NG: Cardiac fibrosis. Cardiovasc Res. 117:1450–1488. 2021. View Article : Google Scholar : | |
|
Wan Y, Xu L, Wang Y, Tuerdi N, Ye M and Qi R: Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. Eur J Pharmacol. 833:545–554. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wei Y, Wu Y, Feng K, Zhao Y, Tao R, Xu H and Tang Y: Astragaloside IV inhibits cardiac fibrosis via miR-135a-TRPM7-TGF-β/Smads pathway. J Ethnopharmacol. 249:1124042020. View Article : Google Scholar | |
|
Lu J, Wang Q, Zhou Y, Lu XC, Liu YH, Wu Y, Guo Q, Ma YT and Tang YQ: AstragalosideⅣ against cardiac fibrosis by inhibiting TRPM7 channel. Phytomedicine. 30:10–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Qi J, Yin P, Liu Y, You J, Lin L, Zhou M and Wang L: Cardiovascular disease mortality-China, 2019. China CDC Wkly. 3:323–326. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Qu H, Yang T, Kong X and Zhou H: Regulation and functions of NLRP3 inflammasome in cardiac fibrosis: Current knowledge and clinical significance. Biomed Pharmacother. 143:1122192021. View Article : Google Scholar : PubMed/NCBI | |
|
Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, et al: Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 123:594–604. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chai C, Sun Y, Chi R, Yang H, Yang B and Li B: Astragaloside IV alleviates LPS-induced cardiomyocyte hypertrophy and collagen expression associated with CCL2-mediated activation of NF-κB signaling pathway. Biochem Biophys Res Commun. 693:1493672024. View Article : Google Scholar | |
|
Feng Y, Ye D, Wang Z, Pan H, Lu X, Wang M, Xu Y, Yu J, Zhang J, Zhao M, et al: The role of interleukin-6 family members in cardiovascular diseases. Front Cardiovasc Med. 9:8188902022. View Article : Google Scholar : PubMed/NCBI | |
|
Ushakov A, Ivanchenko V and Gagarina A: Regulation of myocardial extracellular matrix dynamic changes in myocardial infarction and postinfarct remodeling. Curr Cardiol Rev. 16:11–24. 2020. View Article : Google Scholar : | |
|
Jia G, Leng B, Wang H and Dai H: Inhibition of cardiotrophin-1 overexpression is involved in the anti-fibrotic effect of Astrogaloside IV. Mol Med Rep. 16:8365–8370. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cui Y, Wu J, Wang Y, Li D, Zhang F, Jin X, Li M, Zhang J and Liu Z: Protective effects of ginsenoside F2 on isoproterenol-induced myocardial infarction by activating the Nrf2/HO-1 and PI3K/Akt signaling pathways. Phytomedicine. 129:1556372024. View Article : Google Scholar | |
|
Zhao T, Kee HJ, Bai L, Kim MK, Kee SJ and Jeong MH: Selective HDAC8 inhibition attenuates isoproterenol-induced cardiac hypertrophy and fibrosis via p38 MAPK pathway. Front Pharmacol. 12:6777572021. View Article : Google Scholar : PubMed/NCBI | |
|
Dai H, Jia G, Lu M, Liang C, Wang Y and Wang H: Astragaloside IV inhibits isoprenaline-induced cardiac fibrosis by targeting the reactive oxygen species/mitogen-activated protein kinase signaling axis. Mol Med Rep. 15:1765–1770. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Zhou F, Fan J, Wu T, Jia S, Li J and Chen N: Swimming alleviates myocardial fibrosis of type II diabetic rats through activating miR-34a-mediated SIRT1/PGC-1α/FNDC5 signal pathway. PLoS One. 19:e03101362024. View Article : Google Scholar | |
|
Cong X, Zhu X, Zhang X and Ning Z: Astragaloside IV inhibits angiotensin II-induced atrial fibrosis and atrial fibrillation by SIRT1/PGC-1α/FNDC5 pathway. Heliyon. 10:e309842024. View Article : Google Scholar | |
|
Nakamura K, Miyoshi T, Yoshida M, Akagi S, Saito Y, Ejiri K, Matsuo N, Ichikawa K, Iwasaki K, Naito T, et al: Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int J Mol Sci. 23:35872022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Zhu Y, Zhang Y, Zhang J, Ji T and Li W and Li W: Protective effects of AS-IV on diabetic cardiomyopathy by improving myocardial lipid metabolism in rat models of T2DM. Biomed Pharmacother. 127:1100812020. View Article : Google Scholar : PubMed/NCBI | |
|
Vasudevan SO, Behl B and Rathinam VA: Pyroptosis-induced inflammation and tissue damage. Semin Immunol. 69:1017812024. View Article : Google Scholar | |
|
Zhang X, Qu H, Yang T, Liu Q and Zhou H: Astragaloside IV attenuate MI-induced myocardial fibrosis and cardiac remodeling by inhibiting ROS/caspase-1/GSDMD signaling pathway. Cell Cycle. 21:2309–2322. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Birch J and Gil J: Senescence and the SASP: Many therapeutic avenues. Genes Dev. 34:1565–1576. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Campbell RA, Docherty MH, Ferenbach DA and Mylonas KJ: The role of ageing and parenchymal senescence on macrophage function and fibrosis. Front Immunol. 12:7007902021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi L, Deng J, He J, Zhu F, Jin Y, Zhang X, Ren Y and Du X: Integrative transcriptomics and proteomics analysis reveal the protection of Astragaloside IV against myocardial fibrosis by regulating senescence. Eur J Pharmacol. 975:1766322024. View Article : Google Scholar : PubMed/NCBI | |
|
Ok CY, Park S, Jang HO, Takata T, Lee OH, Bae MK and Bae SK: FK866 Protects human dental pulp cells against oxidative stress-induced cellular senescence. Antioxidants (Basel). 10:2712021. View Article : Google Scholar : PubMed/NCBI | |
|
Purnomo Y, Piccart Y, Coenen T, Prihadi JS and Lijnen PJ: Oxidative stress and transforming growth factor-1-induced cardiac fibrosis. Cardiovasc Hematol Disord Drug Targets. 13:165–172. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chen P, Xie Y, Shen E, Li GG, Yu Y, Zhang CB, Yang Y, Zou Y, Ge J, Chen R and Chen H: Astragaloside IV attenuates myocardial fibrosis by inhibiting TGF-β1 signaling in coxsackievirus B3-induced cardiomyopathy. Eur J Pharmacol. 658:168–174. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Yang F and Bao Z: Gut microbiota and myocardial fibrosis. Eur J Pharmacol. 5:1753552023. View Article : Google Scholar | |
|
Czibik G, Mezdari Z, Altintas DM, Bréhat J, Pini M, d'Humières T, Delmont T, Radu C, Breau M, Liang H, et al: Dysregulated phenylalanine catabolism plays a key role in the trajectory of cardiac aging. Circulation. 144:559–574. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Du XQ, Shi LP, Chen ZW, Hu JY, Zuo B, Xiong Y and Cao WF: Astragaloside IV ameliorates isoprenaline-induced cardiac fibrosis in mice via modulating gut microbiota and fecal metabolites. Front Cell Infect Microbiol. 12:8361502022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang WJ and Tang XX: Virus infection induced pulmonary fibrosis. J Transl Med. 19:4962021. View Article : Google Scholar : PubMed/NCBI | |
|
Guan Y, Zhang J, Cai X, Cai Y, Song Z, Huang Y, Qian W, Pan Z and Zhang X: Astragaloside IV inhibits epithelial-mesenchymal transition and pulmonary fibrosis via lncRNA-ATB/miR-200c/ZEB1 signaling pathway. Gene. 897:1480402024. View Article : Google Scholar | |
|
Sgalla G, Iovene B, Calvello M, Ori M, Varone F and Richeldi L: Idiopathic pulmonary fibrosis: Pathogenesis and management. Respir Res. 19:322018. View Article : Google Scholar : PubMed/NCBI | |
|
Li LC and Kan LD: Traditional Chinese medicine for pulmonary fibrosis therapy: Progress and future prospects. J Ethnopharmacol. 198:45–63. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Savin IA, Zenkova MA and Sen'kova AV: Bronchial asthma, airway remodeling and lung fibrosis as successive steps of one process. Int J Mol Sci. 24:160422023. View Article : Google Scholar : PubMed/NCBI | |
|
Wiertz IA, Wuyts WA, van Moorsel CHM, Vorselaars ADM, Van Es HW, Van Oosterhout MFM and Grutters JC: Unfavourable outcome of glucocorticoid treatment in suspected idiopathic pulmonary fibrosis. Respirology. 23:311–317. 2018. View Article : Google Scholar | |
|
Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, Kreuter M, Lynch DA, Maher TM, Martinez FJ, et al: Idiopathic pulmonary fibrosis (an Update) and progressive pulmonary fibrosis in adults: An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 205:e18–e47. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bai X, Zhao G, Chen Q, Li Z, Gao M, Ho W, Xu X and Zhang XQ: Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci Adv. 8:eabn71622022. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Wu K, Feng F, Wang L, Zhou X and Wang W: Astragaloside IV alleviates silica-induced pulmonary fibrosis via inactivation of the TGF-β1/Smad2/3 signaling pathway. Int J Mol Med. 47:162021. View Article : Google Scholar | |
|
Li N, Feng F, Wu K, Zhang H, Zhang W and Wang W: Inhibitory effects of astragaloside IV on silica-induced pulmonary fibrosis via inactivating TGF-β1/Smad3 signaling. Biomed Pharmacother. 119:1093872019. View Article : Google Scholar | |
|
Hou Y, Zhen Y, Xue Q and Wang W: Astragaloside IV attenuates TGF-β-mediated epithelial-mesenchymal transition of pulmonary fibrosis via suppressing NLRP3 expression in vitro. Pharmazie. 76:97–102. 2021.PubMed/NCBI | |
|
Yu WN, Sun LF and Yang H: Inhibitory effects of astragaloside IV on bleomycin-induced pulmonary fibrosis in rats via attenuation of oxidative stress and inflammation. Inflammation. 39:1835–1841. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G, Zhao G, Chao X, Xie L and Wang H: The characteristic of virulence, biofilm and antibiotic resistance of klebsiella pneumoniae. Int J Environ Res Public Health. 17:62782020. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Guan J, Lin R, Wang F, Ma H, Mao C, Guo X, Qu Z and Guan R: Astragaloside IV alleviates lung inflammation in Klebsiella pneumonia rats by suppressing TGF-β1/Smad pathway. Braz J Med Biol Res. 56:e122032023. View Article : Google Scholar | |
|
Gao L, Bai Y, Liang C, Han T, Liu Y, Zhou J, Guo J, Wu J and Hu D: Celastrol-Ligustrazine compound proven to be a novel drug candidate for idiopathic pulmonary fibrosis by intervening in the TGF-β1 mediated pathways-an experimental in vitro and vivo study. Mol Divers. 29:3957–3973. 2024. View Article : Google Scholar | |
|
Qian W, Cai X, Qian Q, Zhang W and Wang D: Astragaloside IV modulates TGF-β1-dependent epithelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. J Cell Mol Med. 22:4354–4365. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng M, Liu K, Li L, Feng C and Wu G: Traditional Chinese medicine inspired dual-drugs loaded inhalable nano-therapeutics alleviated idiopathic pulmonary fibrosis by targeting early inflammation and late fibrosis. J Nanobiotechnol. 22:142024. View Article : Google Scholar | |
|
Catrina SB and Zheng X: Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia. 64:709–716. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xi J, Ma Y, Liu D and Li R: Astragaloside IV restrains pyroptosis and fibrotic development of pulmonary artery smooth muscle cells to ameliorate pulmonary artery hypertension through the PHD2/HIF1α signaling pathway. BMC Pulm Med. 23:3862023. View Article : Google Scholar | |
|
Elamaa H, Kaakinen M, Nätynki M, Szabo Z, Ronkainen VP, Äijälä V, Mäki JM, Kerkelä R, Myllyharju J and Eklund L: PHD2 deletion in endothelial or arterial smooth muscle cells reveals vascular cell type-specific responses in pulmonary hypertension and fibrosis. Angiogenesis. 25:259–274. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Zhang M, Ling C, Sha H, Zou G and Liang H: Molecular characterization and response of prolyl hydroxylase domain (PHD) Genes to hypoxia stress in hypophthalmichthys molitrix. Animals (Basel). 12:1312022. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan S, Zuo B, Zhou SC, Wang M, Tan KY, Chen ZW and Cao WF: Integrating network pharmacology and experimental validation to explore the pharmacological mechanism of astragaloside IV in treating bleomycin-induced pulmonary fibrosis. Drug Des Devel Ther. 17:1289–1302. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Xu Y, Li W, Zhou Y, Wang D, Yang M, Wang B and Chen W: High-mobility group box 1 promotes epithelial-to-mesenchymal transition in crystalline silica induced pulmonary inflammation and fibrosis. Toxicol Lett. 330:134–143. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li LC, Xu L, Hu Y, Cui WJ, Cui WH, Zhou WC and Kan LD: Astragaloside IV improves bleomycin-induced pulmonary fibrosis in rats by attenuating extracellular matrix deposition. Front Pharmacol. 8:5132017. View Article : Google Scholar : PubMed/NCBI | |
|
Jin H, Park SY, Lee JE, Park H, Jeong M, Lee H, Cho J and Lee YS: GTSE1-driven ZEB1 stabilization promotes pulmonary fibrosis through the epithelial-to-mesenchymal transition. Mol Ther. 32:4138–4157. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Bridges MC, Daulagala AC and Kourtidis A: LNCcation: lncRNA localization and function. J Cell Biol. 220:e2020090452021. View Article : Google Scholar : PubMed/NCBI | |
|
Volpe MC, Ciucci G, Zandomenego G, Vuerich R, Ring NAR, Vodret S, Salton F, Marchesan P, Braga L, Marcuzzo T, et al: Flt1 produced by lung endothelial cells impairs ATII cell transdifferentiation and repair in pulmonary fibrosis. Cell Death Dis. 14:4372023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Li Y, Xu Q, Yao W, Wu Q, Yuan J, Yan W, Xu T, Ji X and Ni C: Long non-coding RNA-ATB promotes EMT during silica-induced pulmonary fibrosis by competitively binding miR-200c. Biochim Biophys Acta Mol Basis Dis. 1864:420–431. 2018. View Article : Google Scholar | |
|
Guan Y, Ma J and Song W: Identification of circRNA-miRNA-mRNA regulatory network in gastric cancer by analysis of microarray data. Cancer Cell Int. 19:1832019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu M, Zhao L, Zhang X and Zhao R: Astragaloside IV restrains pulmonary fibrosis progression via the circ_0008898/miR-211-5p/HMGB1 axis. Chem Biol Drug Des. 103:e145082024. View Article : Google Scholar : PubMed/NCBI | |
|
Gan W, Song W, Gao Y, Zheng X, Wang F, Zhang Z, Zen K, Liang H and Yan X: Exosomal circRNAs in the plasma serve as novel biomarkers for IPF diagnosis and progression prediction. J Transl Med. 22:2642024. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Z, Xian W, Ling G, Zihang LI, Jingtian Z, Wenkai W, Liang Z and Mei X: Efficacy of Danggui Buxue decoction on diabetic nephropathy-induced renal fibrosis in rats and possible mechanism. J Tradit Chin Med. 43:507–513. 2023.PubMed/NCBI | |
|
Tong J, Wu Z, Wang Y, Hao Q, Liu H, Cao F and Jiao Y: Astragaloside IV synergizing with ferulic acid ameliorates pulmonary fibrosis by TGF-β1/Smad3 signaling. Evid Based Complement Alternat Med. 2021:1–9. 2021. | |
|
Yue YL, Zhang MY, Liu JY, Fang LJ and Qu YQ: The role of autophagy in idiopathic pulmonary fibrosis: From mechanisms to therapies. Ther Adv Respir Dis. 16:1753466622114092022. View Article : Google Scholar | |
|
Li T, Gao X, Jia R, Sun Y, Ding Y, Wang F and Wang Y: Astragaloside IV inhibits idiopathic pulmonary fibrosis through activation ofautophagy by miR-21-mediated PTEN/PI3K/AKT/mTOR pathway. Cell Mol Biol (Noisy-le-grand). 70:128–136. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mo Y, Zhang Y, Wan R, Jiang M, Xu Y and Zhang Q: miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis. Nanotoxicology. 14:1175–1197. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Deleyto-Seldas N and Efeyan A: The mTOR-autophagy axis and the control of metabolism. Front Cell Dev Biol. 9:6557312021. View Article : Google Scholar : PubMed/NCBI | |
|
Yehia L, Keel E and Eng C: The clinical spectrum of PTEN mutations. Annu Rev Med. 71:103–116. 2020. View Article : Google Scholar | |
|
Dubey S, Dubey PK, Umeshappa CS, Ghebre YT and Krishnamurthy P: Inhibition of RUNX1 blocks the differentiation of lung fibroblasts to myofibroblasts. J Cell Physiol. 237:2169–2182. 2023. View Article : Google Scholar | |
|
Tian H, Zhang Y, Li W, Xie G, Wu J and Liu J: Astragaloside IV inhibits lung injury and fibrosis induced by PM2.5 by targeting RUNX1 through miR-362-3p. Mol Biotechnol. 67:4167–4177. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Tamari HM, Dabral S, Schmall A, Sarvari P, Ruppert C, Paik J, DePinho RA, Grimminger F, Eickelberg O, Guenther A, et al: FoxO3 an important player in fibrogenesis and therapeutic target for idiopathic pulmonary fibrosis. EMBO Mol Med. 10:276–293. 2018. View Article : Google Scholar : | |
|
Kurebayashi Y, Baba Y, Minowa A, Nadya NA, Azuma M, Yoshimura A, Koyasu S and Nagai S: TGF-β-induced phosphorylation of Akt and Foxo transcription factors negatively regulates induced regulatory T cell differentiation. Biochem Biophys Res Commun. 480:114–119. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cui H, Liu X, Zhang J, Zhang K, Yao D, Dong S, Feng S, Yang L, Li Y, Wang H, et al: Rhodiola rosea L. Attenuates cigarette smoke and lipopolysaccharide-induced COPD in rats via inflammation inhibition and antioxidant and antifibrosis pathways. Evid Based Complement Alternat Med. 2:61031582021. | |
|
Su J, Morgani SM, David CJ, Wang Q, Er EE, Huang YH, Basnet H, Zou Y, Shu W, Soni RK, et al: TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature. 577:566–571. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Wang W, Liu K, Jia C, Hou Y and Bai G: Astragaloside IV protects against lung injury and pulmonary fibrosis in COPD by targeting GTP-GDP domain of RAS and downregulating the RAS/RAF/FoxO signaling pathway. Phytomedicine. 120:1550662023. View Article : Google Scholar : PubMed/NCBI | |
|
Mzimela N, Dimba N, Sosibo A and Khathi A: Evaluating the impact of type 2 diabetes mellitus on pulmonary vascular function and the development of pulmonary fibrosis. Front Endocrinol (Lausanne). 10:14314052024. View Article : Google Scholar | |
|
Guo J, Zhang Y, Zhou R, Hao Y, Wu X, Li G and Du Q: Deciphering the molecular mechanism of Bu Yang Huan Wu Decoction in interference with diabetic pulmonary fibrosis via regulating oxidative stress and lipid metabolism disorder. J Pharm Biomed Anal. 243:1160612024. View Article : Google Scholar : PubMed/NCBI | |
|
Kalantar-Zadeh K, Jafar TH, Nitsch D, Neuen BL and Perkovic V: Chronic kidney disease. Lancet. 398:786–802. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson HN and Prasad-Reddy L: Updates in chronic kidney disease. J Pharm Pract. 37:1380–1390. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kovesdy CP: Epidemiology of chronic kidney disease: An update 2022. Kidney Int Suppl (2011). 12:7–11. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Kors L, Butter LM, Stokman G, Claessen N, Zuurbier CJ, Girardin SE, Leemans JC, Florquin S, Tammaro A, et al: NLRX1 prevents M2 macrophage polarization and excessive renal fibrosis in chronic obstructive nephropathy. Cells. 13:232024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Wang X, He S, Zhang F and Li Y: Gypenosides suppress fibrosis of the renal NRK-49F cells by targeting miR-378a-5p through the PI3K/AKT signaling pathway. J Ethnopharmacol. 311:1164662023. View Article : Google Scholar : PubMed/NCBI | |
|
Fogo AB and Harris RC: Crosstalk between glomeruli and tubules. Nat Rev Nephrol. 21:189–199. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Patera F, Gatticchi L, Cellini B, Chiasserini D and Reboldi G: Kidney Fibrosis and oxidative stress: From molecular pathways to new pharmacological opportunities. Biomolecules. 14:1372024. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Liu Y, Zhan Q, Zeng Y, Peng Z, He Q, Tan Q, Cao W, Wang S and Wang J: Astragaloside IV blunts epithelial-mesenchymal transition and G2/M arrest to alleviate renal fibrosis via regulating ALDH2-mediated autophagy. Cells. 12:17772023. View Article : Google Scholar : PubMed/NCBI | |
|
Ruiz-Ortega M, Lamas S and Ortiz A: Antifibrotic agents for the management of CKD: A review. Am J Kidney Dis. 80:251–263. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Su Y, Chen Q, Ma K, Ju Y, Ji T, Wang Z and Li W and Li W: Astragaloside IV inhibits palmitate-mediated oxidative stress and fibrosis in human glomerular mesangial cells via downregulation of CD36 expression. Pharmacol Rep. 71:319–329. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nath A, Li I, Roberts LR and Chan C: Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 5:147522015. View Article : Google Scholar : PubMed/NCBI | |
|
Du N, Xu Z, Gao M, Liu P, Sun B and Cao X: Combination of Ginsenoside Rg1 and Astragaloside IV reduces oxidative stress and inhibits TGF-β1/Smads signaling cascade on renal fibrosis in rats with diabetic nephropathy. Drug Des Devel Ther. 12:3517–3524. 2018. View Article : Google Scholar : | |
|
Zhang Y, Tao C, Xuan C, Jiang J and Cao W: Transcriptomic analysis reveals the protection of astragaloside IV against diabetic nephropathy by modulating inflammation. Oxid Med Cell Longev. 2020:1–17. 2020. | |
|
Wang S, Qin S, Cai B, Zhan J and Chen Q: Promising therapeutic mechanism for Chinese herbal medicine in ameliorating renal fibrosis in diabetic nephropathy. Front Endocrinol (Lausanne). 14:9326492023. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Q, Ji XJ, Zhou YX, Yao XQ, Liu YQ, Zhang F and Yin XX: Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial-mesenchymal transition and renal fibrosis in diabetic nephropathy. Pharmacol Res. 99:237–247. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Yang Y, Liu C, Chen Z and Wang D: Astragaloside IV ameliorates high glucose-induced renal tubular epithelial-mesenchymal transition by blocking mTORC1/p70S6K signaling in HK-2 cells. Int J Mol Med. 43:709–716. 2018. | |
|
Herman-Edelstein M, Thomas MC, Thallas-Bonke V, Saleem M, Cooper ME and Kantharidis P: A model for diabetic podocytopathy. Diabetes. 60:1779–1788. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu Y, Kang N, Wang X, Yao Y, Cui J, Zhang X and Zheng L: Loss of Farnesoid X receptor (FXR) accelerates dysregulated glucose and renal injury in db/db mice. PeerJ. 11:e161552023. View Article : Google Scholar : PubMed/NCBI | |
|
Fujii R, Yamada H, Munetsuna E, Yamazaki M, Ohashi K, Ishikawa H, Maeda K, Hagiwara C, Ando Y, Hashimoto S, et al: Associations of circulating MicroRNAs (miR-17, miR-21, and miR-150) and chronic kidney disease in a Japanese Population. J Epidemiol. 30:177–182. 2020. View Article : Google Scholar : | |
|
Wang X, Gao Y, Tian N, Zou D, Shi Y and Zhang N: Astragaloside IV improves renal function and fibrosis via inhibition of miR-21-induced podocyte dedifferentiation and mesangial cell activation in diabetic mice. Drug Des Devel Ther. 12:2431–2442. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Teh YM, Mualif SA and Lim SK: A comprehensive insight into autophagy and its potential signaling pathways as a therapeutic target in podocyte injury. Int J Biochem Cell Biol. 143:1061532022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Gao Y, Tian N, Wang T, Shi Y, Xu J and Wu B: Astragaloside IV inhibits glucose-induced epithelial-mesenchymal transition of podocytes through autophagy enhancement via the SIRT-NF-κB p65 axis. Sci Rep. 9:3232019. View Article : Google Scholar | |
|
Wang X, Gao Y, Tian N, Zhu Z, Wang T, Xu J, Wu B and Zhang N: Astragaloside IV represses high glucose-induced mesangial cells activation by enhancing autophagy via SIRT1 deacetylation of NF-κB P65 subunit. Drug Des Devel Ther. 12:2971–2980. 2018. View Article : Google Scholar : | |
|
Shah R, Matthews GJ, Shah RY, McLaughlin C, Chen J, Wolman M, Master SR, Chai B, Xie D, Rader DJ, et al: Serum fractalkine (CX3CL1) and cardiovascular outcomes and diabetes: Findings from the chronic renal insufficiency cohort (CRIC) study. Am J Kidney Dis. 66:266–273. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Ren C, Hu Q, Shen X, Wang M, Yang Z, Xu E, Wang X, Li Z, Yu H, et al: Histidine-rich calcium binding protein promotes gastric cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition through Raf/MEK/ERK signaling. J Cancer. 13:1073–1085. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Y, Tang W, Liu W, Hu Z and Pan C: Astragaloside IV alleviates renal tubular epithelial-mesenchymal transition via CX3CL1-RAF/MEK/ERK signaling pathway in diabetic kidney disease. Drug Des Devel Ther. 16:1605–1620. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Song M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA and Dong Z: Renoprotective approaches and strategies in acute kidney injury. Pharmacol Ther. 163:58–73. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Sun X, Gong X, Yang Y, Chen C, Shan G and Yao Q: Astragaloside IV from Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting inflammation via TLR4/NF-кB in vivo and in vitro. Int Immunopharmacol. 42:18–24. 2017. View Article : Google Scholar | |
|
Pang J, Peng H, Wang S, Xu X, Xu F, Wang Q, Chen Y, Barton LA, Chen Y, Zhang Y and Ren J: Mitochondrial ALDH2 protects against lipopolysaccharide-induced myocardial contractile dysfunction by suppression of ER stress and autophagy. Biochim Biophys Acta Mol Basis Dis. 1865:1627–1641. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F: Transforming growth factor-beta1 in diabetic kidney disease. Front Cell Dev Biol. 8:1872020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Chi YF, Yuan ZT, Zhou WC, Yin PH, Zhang XM, Peng W and Cai H: Astragaloside IV inhibits renal tubulointerstitial fibrosis by blocking TGF-β/Smad signaling pathway in vivo and in vitro. Exp Biol Med (Maywood). 239:1310–1324. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lian Y, Li C, Li J, Xie Y, Liu Q, Wu M, Shi W and Meng L: Astragaloside IV attenuated TGF-β1-induced epithelial-mesenchymal transition of renal tubular epithelial cells via connexin43 and Akt/mTOR signaling pathway. Tissue Cell. 77:1018312021. View Article : Google Scholar | |
|
Sun X, Huang K, Haiming X, Lin Z, Yang Y, Zhang M, Liu P and Huang H: Connexin 43 prevents the progression of diabetic renal tubulointerstitial fibrosis by regulating the SIRT1-HIF-1α signaling pathway. Clin Sci (Lond). 134:1573–1592. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan R, Fan Q, Liang X, Han S, He J, Wang QQ, Gao H, Feng Y and Yang S: Cucurbitacin B inhibits TGF-β1-induced epithelial-mesenchymal transition (EMT) in NSCLC through regulating ROS and PI3K/Akt/mTOR pathways. Chin Med. 17:242022. View Article : Google Scholar | |
|
Yu X, Xiao Q, Yu X, Cheng Y, Lin H and Xiang Z: A network pharmacology-based study on the mechanism of astragaloside IV alleviating renal fibrosis through the AKT1/GSK-3β pathway. J Ethnopharmacol. 297:1155352022. View Article : Google Scholar | |
|
Wang L, Chi YF, Yuan ZT, Zhou WC, Yin PH, Zhang XM and Peng W: Astragaloside IV inhibits the up-regulation of Wnt/β-catenin signaling in rats with unilateral ureteral obstruction. Cell Physiol Biochem. 33:1316–1328. 2014. View Article : Google Scholar | |
|
Che X, Wang Q, Xie Y, Xu W, Shao X, Mou S and Ni Z: Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways. Biochem Biophys Res Commun. 464:1260–1266. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ma T, Li H, Liu H, Peng Y, Lin T, Deng Z, Jia N, Chen Z and Wang P: Neat1 promotes acute kidney injury to chronic kidney disease by facilitating tubular epithelial cells apoptosis via sequestering miR-129-5p. Mol Ther. 30:3313–3332. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Warner GM, Yin P, Knudsen BE, Cheng J, Butters KA, Lien KR, Gray CE, Garovic VD, Lerman LO, et al: Inhibition of p38 MAPK attenuates renal atrophy and fibrosis in a murine renal artery stenosis model. Am J Physiol Renal Physiol. 304:F938–F947. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, Shao X, Tian L, Gu L, Zhang M, Wang Q, Wu B, Wang L, Yao J, Xu X, et al: Astragaloside IV ameliorates renal fibrosis via the inhibition of mitogen-activated protein kinases and antiapoptosis in vivo and in vitro. J Pharmacol Exp Ther. 350:552–562. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Meng L, Tang J, Wang Y, Zhao JR, Shang MY, Zhang M, Liu SY, Qu L, Cai SQ and Li XM: Astragaloside IV synergizes with ferulic acid to inhibit renal tubulointerstitial fibrosis in rats with obstructive nephropathy. Br J Pharmacol. 162:1805–1818. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Huang A, Palmer LS, Hom D, Valderrama E and Trachtman H: The role of nitric oxide in obstructive nephropathy. J Urol. 163:1276–1281. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Deb DK, Bao R and Li YC: Critical role of the cAMP-PKA pathway in hyperglycemia-induced epigenetic activation of fibrogenic program in the kidney. Faseb J. 31:2065–2075. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pan H, Lin Y, Dou J, Fu Z, Yao Y, Ye S, Zhang S, Wang N, Liu A, Li X, et al: Wedelolactone facilitates Ser/Thr phosphorylation of NLRP3 dependent on PKA signalling to block inflammasome activation and pyroptosis. Cell Prolif. 53:e128682020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Liu W, Li S, Wang J, Sun D, Li H, Zhang Z, Hu Y and Fang J: Astragaloside IV alleviates renal fibrosis by inhibiting renal tubular epithelial cell pyroptosis induced by urotensin II through regulating the cAMP/PKA signaling pathway. PLoS One. 19:e03043652024. View Article : Google Scholar : PubMed/NCBI | |
|
Keyhanmanesh R, Hamidian G, Lotfi H, Zavari Z, Seyfollahzadeh M, Ghadiri A, Ahmadi M, Bahari F and Bavil FM: Troxerutin affects nephropathy signaling events in the kidney of type-1 diabetic male rats. Avicenna J Phytomed. 12:109–115. 2022.PubMed/NCBI | |
|
Cao Y, Zhang L, Wang Y, Fan Q and Cong Y: Astragaloside IV attenuates renal fibrosis through repressing epithelial-to-mesenchymal transition by inhibiting microRNA-192 expression: In vivo and in vitro studies. Am J Transl Res. 11:5029–5038. 2019.PubMed/NCBI | |
|
Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ and Natarajan R: MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA. 104:3432–3437. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Csak T and Bernstein D: Hepatorenal syndrome. Clin Liver Dis. 26:165–179. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Xu J, Li M, Chen Y, Xu Y, Li L, Gong Y and Yang Y: Nrf2 knockout attenuates the astragaloside IV therapeutic effect on kidney fibrosis from liver cancer by regulating pSmad3C/3L pathways. Naunyn Schmiedebergs Arch Pharmacol. 397:1687–1700. 2024. View Article : Google Scholar | |
|
Gong Y, Li D, Li L, Yang J, Ding H, Zhang C, Wen G, Wu C, Fang Z, Hou S and Yang Y: Smad3 C-terminal phosphorylation site mutation attenuates the hepatoprotective effect of salvianolic acid B against hepatocarcinogenesis. Food Chem Toxicol. 147:1119122021. View Article : Google Scholar | |
|
Zhang C, Li L, Hou S, Shi Z, Xu W, Wang Q, He Y, Gong Y, Fang Z and Yang Y: Astragaloside IV inhibits hepatocellular carcinoma by continually suppressing the development of fibrosis and regulating pSmad3C/3L and Nrf2/HO-1 pathways. J Ethnopharmacol. 279:1143502021. View Article : Google Scholar : PubMed/NCBI | |
|
Liang R, Yan D, Zhang X, Chen X, Zhang W and Jia H: Kidney Mesenchymal stem cells alleviate cisplatin-induced kidney injury and apoptosis in rats. Tissue Cell. 80:1019982023. View Article : Google Scholar | |
|
Wang Y, Luo P and Wuren T: Narrative review of mesenchymal stem cell therapy in renal diseases: Mechanisms, clinical applications, and future directions. Stem Cells Int. 2024:86582462024. View Article : Google Scholar : PubMed/NCBI | |
|
Raming R, Cordasic N, Kirchner P, Ekici AB, Fahlbusch FB, Woelfle J, Hilgers KF, Hartner A and Menendez-Castro C: Neonatal nephron loss during active nephrogenesis results in altered expression of renal developmental genes and markers of kidney injury. Physiol Genomics. 53:509–517. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Berumen J, Baglieri J, Kisseleva T and Mekeel K: Liver fibrosis: Pathophysiology and clinical implications. WIREs Mech Dis. 13:e14992021. View Article : Google Scholar | |
|
Altamirano-Barrera A, Barranco-Fragoso B and Méndez-Sánchez N: Management strategies for liver fibrosis. Ann Hepatol. 16:48–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cinar R, Iyer MR, Liu Z, Cao Z, Jourdan T, Erdelyi K, Godlewski G, Szanda G, Liu J, Park JK, et al: Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis. JCI Insight. 1:e873362016. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YA, Wallace MC and Friedman SL: Pathobiology of liver fibrosis: A translational success story. Gut. 64:830–841. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Zhang M, Xia S, Han P, Zhao K, Peng K, Zhou W, Tian D, Liao J and Liu J: Hepatic HRC induces hepatocyte pyroptosis and HSCs activation via NLRP3/caspase-1 pathway. J Mol Med (Berl). 100:1787–1799. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
El-Ashmawy NE, Al-Ashmawy GM, Fakher HE and Khedr NF: The role of WNT/β-catenin signaling pathway and glutamine metabolism in the pathogenesis of CCl4-induced liver fibrosis: Repositioning of niclosamide and concerns about lithium. Cytokine. 136:1552502020. View Article : Google Scholar | |
|
Xu XY, Geng Y, Xu HX, Ren Y, Liu DY and Mao Y: Antrodia camphorata-derived antrodin C inhibits liver fibrosis by blocking TGF-beta and PDGF signaling pathways. Front Mol Biosci. 9:8355082022. View Article : Google Scholar : PubMed/NCBI | |
|
Caligiuri A, Gentilini A, Pastore M, Gitto S and Marra F: Cellular and molecular mechanisms underlying liver fibrosis regression. Cells. 10:27592021. View Article : Google Scholar : PubMed/NCBI | |
|
Schuppan D: Liver fibrosis: Common mechanisms and antifibrotic therapies. Clin Res Hepatol Gastroenterol. 39:S51–S59. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mohs A, Otto T, Schneider KM, Peltzer M, Boekschoten M, Holland CH, Hudert CA, Kalveram L, Wiegand S, Saez-Rodriguez J, et al: Hepatocyte-specific NRF2 activation controls fibrogenesis and carcinogenesis in steatohepatitis. J Hepatol. 74:638–648. 2021. View Article : Google Scholar | |
|
Boye A, Wu C, Jiang Y, Wang J, Wu J, Yang X and Yang Y: Compound Astragalus and Salvia miltiorrhiza extracts modulate MAPK-regulated TGF-β/Smad signaling in hepatocellular carcinoma by multi-target mechanism. J Ethnopharmacol. 169:219–228. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Li Q, Xiang M, Zhang F, Wei D, Wen Z and Zhou Y: Astragaloside alleviates hepatic fibrosis function via par2 signaling pathway in diabetic rats. Cell Physiol Biochem. 41:1156–1166. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Matkowski A, Jamiołkowska-Kozlowska W and Nawrot I: Chinese medicinal herbs as source of antioxidant compounds-where tradition meets the future. Curr Med Chem. 20:984–1004. 2013. | |
|
Zhao XM, Zhang J, Liang YN and Niu YC: Astragaloside IV synergizes with ferulic acid to alleviate hepatic fibrosis in bile duct-ligated cirrhotic rats. Dig Dis Sci. 65:2925–2936. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dong H, Guo H, Liang Y, Wang X and Niu Y: Astragaloside IV synergizes with ferulic acid to suppress hepatic stellate cells activation in vitro. Free Radic Res. 51:167–178. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bleser PJD, Xu G, Rombouts K, Rogiers V and Geerts A: Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells. J Biol Chem. 26:33881–33887. 1999. View Article : Google Scholar | |
|
Li X, Wang X, Han C, Wang X, Xing G, Zhou L, Li G and Niu Y: Astragaloside IV suppresses collagen production of activated hepatic stellate cells via oxidative stress-mediated p38 MAPK pathway. Free Radic Biol Med. 60:168–176. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Dhar D, Baglieri J, Kisseleva T and Brenner DA: Mechanisms of liver fibrosis and its role in liver cancer. Exp Biol Med (Maywood). 245:96–108. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Baba Y, Saeki K, Onodera T and Doi K: Serological and immunohistochemical studies on porcine-serum-induced hepatic fibrosis in rats. Exp Mol Pathol. 79:229–235. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Wei W, Sun W and Li X: Protective effects of astragaloside IV on porcine-serum-induced hepatic fibrosis in rats and in vitro effects on hepatic stellate cells. J Ethnopharmacol. 122:502–508. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Xie M, Xia B, Xiao L, Yang D, Li Z, Wang H, Wang X, Zhang X and Peng Q: Astragaloside IV ameliorates peritoneal fibrosis by promoting PGC-1α to reduce apoptosis in vitro and in vivo. J Cell Mol Med. 27:2945–2955. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shan Y, Yu M, Dai H, Zhu X, Wang F, You Y, Cao H, Sheng L, Zhao J, Tang L, et al: The role of macrophage-derived exosomes in reversing peritoneal fibrosis: Insights from Astragaloside IV. Phytomedicine. 129:1556832024. View Article : Google Scholar : PubMed/NCBI | |
|
Davies SJ, Bryan J, Phillips L and Russell GI: Longitudinal changes in peritoneal kinetics: The effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant. 11:498–506. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Ditsawanon P and Aramwit P: Preserving the peritoneal membrane in long-term peritoneal dialysis patients. J Clin Pharm Ther. 40:508–516. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ghafouri-Fard S, Shoorei H, Dong P, Poornajaf Y, Hussen BM, Taheri M and Dilmaghani NA: Emerging functions and clinical applications of exosomal microRNAs in diseases. Noncoding RNA Res. 8:350–362. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tkach M and Théry C: Communication by extracellular vesicles: Where we are and where we need to go. Cell. 164:1226–1232. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Wang Y, Zhang H, Gao W, Lu M, Liu W, Li Y and Yin Z: Forkhead box C1 promotes the pathology of osteoarthritis by upregulating β-catenin in synovial fibroblasts. FEBS J. 287:3065–3087. 2020. View Article : Google Scholar | |
|
Qi Q, Mao Y, Yi J, Li D, Zhu K and Cha X: Anti-Fibrotic effects of astragaloside IV in systemic sclerosis. Cell Physiol Biochem. 34:2105–2116. 2014. View Article : Google Scholar | |
|
Chen X, Peng LH, Li N, Li QM, Li P, Fung KP, Leung PC and Gao JQ: The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo. J Ethnopharmacol. 139:721–727. 2012. View Article : Google Scholar | |
|
Chen X, Peng LH, Shan YH, Li N, Wei W, Yu L, Li QM, Liang WQ and Gao JQ: Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery. Int J Pharm. 447:171–181. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Peng LH, Chen X, Chen L, Li N, Liang WQ and Gao JQ: Topical astragaloside IV-releasing hydrogel improves healing of skin wounds in vivo. Biol Pharm Bull. 35:881–888. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Shan YH, Peng LH, Liu X, Chen X, Xiong J and Gao JQ: Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Int J Pharm. 479:291–301. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kasetti RB, Maddineni P, Kodati B, Nagarajan B and Yacoub S: Astragaloside IV attenuates ocular hypertension in a mouse model of TGFβ2 induced primary open angle glaucoma. Int J Mol Sci. 22:125082021. View Article : Google Scholar | |
|
Ashok A, Chaudhary S, Kritikos AE, Kang MH, McDonald D, Rhee DJ and Singh N: TGFβ2-hepcidin feed-forward loop in the trabecular meshwork implicates iron in glaucomatous pathology. Invest Ophthalmol Vis Sci. 61:242020. View Article : Google Scholar | |
|
Zhou XT, Zou JJ, Ao C, Gong DY, Chen X and Ma YR: Renal protective effects of astragaloside IV, in diabetes mellitus kidney damage animal models: A systematic review, meta-analysis. Pharmacol Res. 160:1051922020. View Article : Google Scholar : PubMed/NCBI | |
|
Ren Y, Liang H, Xie M and Zhang M: Natural plant medications for the treatment of retinal diseases: The blood-retinal barrier as a clue. Phytomedicine. 130:1555682024. View Article : Google Scholar : PubMed/NCBI | |
|
Zaman Q, Zhang D, Reddy OS, Wong WT and Lai WF: Roles and mechanisms of astragaloside IV in combating neuronal aging. Aging Dis. 13:18452022. View Article : Google Scholar : PubMed/NCBI | |
|
Gu Y, Wang G, Pan G, Fawcett JP, Jiye A and Sun J: Transport and bioavailability studies of astragaloside IV, an active ingredient in radix astragali. Basic Clin Pharmacol Toxicol. 95:295–298. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Huang CR, Wang GJ, Wu XL, Li H, Xie HT, Lv H and Sun JG: Absorption enhancement study of astragaloside IV based on its transport mechanism in Caco-2 cells. Eur J Drug Metab Pharmacokinet. 31:5–10. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Jiang H, Wu C, Lin Y, Tan G, Zhan J, Han L, Zhu Y, Shang P, Liu L and Liu H: Copper silicate nanoparticle-mediated delivery of astragaloside-IV for osteoarthritis treatment by remodeling the articular cartilage microenvironment. J Control Release. 381:1135832025. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Zhang X, Qi Y, Jin W, Wen Z, Zhao Y, Li X, Yao X, Shen Z, Zhang F, et al: Conductive bioadhesive hydrogel with controlled astragaloside IV release for ferroptosis-mediated cardiac repair. J Control Release. 384:1138742025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Zhou M, Zhou H, Han L and Liu H: Astragaloside IV-loaded biomimetic nanoparticles target IκBα to regulate neutrophil extracellular trap formation for sepsis therapy. J Nanobiotechnol. 23:1552025. View Article : Google Scholar | |
|
Wei L, Wang H, Ye X, Yue J, Guo H, Mao D, Li X, Sun Y, Liu C, Liu Y and Chen Y: Oxymatrine and astragaloside IV co-loaded liposomes: Scale-up purposes and their enhancement of anti-PD-1 efficacy against breast cancer. Mater Today Bio. 32:1016342025. View Article : Google Scholar : PubMed/NCBI | |
|
Yu S, Peng W, Qiu F and Zhang G: Research progress of astragaloside IV in the treatment of atopic diseases. Biomed Pharmacother. 156:1139892022. View Article : Google Scholar : PubMed/NCBI | |
|
Qing LS, Chen TB, Sun WX, Chen L, Luo P, Zhang ZF and Ding LS: Pharmacokinetics comparison, intestinal absorption and acute toxicity assessment of a novel water-soluble astragaloside IV derivative (Astragalosidic Acid, LS-102). Eur J Drug Metab Pharmacokinet. 44:251–259. 2019. View Article : Google Scholar |