You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Wang Y, Liu S, Zhai Y, Liu Y, Wan X, Wang W, Wang F and Sun X: Identification of a novel RPGR mutation associated with X-linked cone-rod dystrophy in a Chinese family. BMC Ophthalmol. 21:4012021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Liu S, Li P and Yao K: Retinitis Pigmentosa: Progress in molecular pathology and biotherapeutical strategies. Int J Mol Sci. 23:48832022. View Article : Google Scholar : PubMed/NCBI | |
|
Benson MD, Mukherjee S, Agather AR, Blain D, Cunningham D, Mays R, Sun X, Li T, Hufnagel RB, Brooks BP, et al: RPGR: Deep phenotyping and genetic characterization with findings specific to the 3'-end of ORF15. Invest Ophthalmol Vis Sci. 64:192023. View Article : Google Scholar : PubMed/NCBI | |
|
Qin H, Zhang W, Zhang S, Feng Y, Xu W, Qi J, Zhang Q, Xu C, Liu S, Zhang J, et al: Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J Exp Med. 220:e202207762023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu YS, Pan JQ, Wan JF, Ren CY, Xu ZH, Pan XB, Gao RN, Liu SQ, Zhang JL, Yao QH, et al: A novel missense mutation of RPGR identified from retinitis pigmentosa affects splicing of the ORF15 region and causes loss of transcript heterogeneity. Biochem Biophys Res Commun. 531:172–179. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Murga-Zamalloa C, Swaroop A and Khanna H: Multiprotein complexes of Retinitis Pigmentosa GTPase regulator (RPGR), a ciliary protein mutated in X-linked Retinitis Pigmentosa (XLRP). Adv Exp Med Biol. 664:105–114. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Moreno-Leon L, West EL, O'Hara-Wright M, Li L, Nair R, He J, Anand M, Sahu B, Chavali VRM, Smith AJ, et al: RPGR isoform imbalance causes ciliary defects due to exon ORF15 mutations in X-linked retinitis pigmentosa (XLRP). Hum Mol Genet. 29:3706–3716. 2021. View Article : Google Scholar : | |
|
Sladen PE, Naeem A, Adefila-Ideozu T, Vermeule T, Busson SL, Michaelides M, Naylor S, Forbes A, Lane A and Georgiadis A: AAV-RPGR gene therapy rescues opsin mislocalisation in a human retinal organoid model of RPGR-Associated X-linked retinitis pigmentosa. Int J Mol Sci. 25:18392024. View Article : Google Scholar : PubMed/NCBI | |
|
Awadh Hashem S, Georgiou M, Ali RR and Michaelides M: RPGR-Related Retinopathy: Clinical features, molecular genetics, and gene replacement therapy. Cold Spring Harb Perspect Med. 13:a0412802023. View Article : Google Scholar : PubMed/NCBI | |
|
Cehajic Kapetanovic J, McClements ME, Martinez-Fernandez de la Camara C and MacLaren RE: Molecular strategies for RPGR gene therapy. Genes (Basel). 10:6742019. View Article : Google Scholar : PubMed/NCBI | |
|
Karuntu JS, Almushattat H, Nguyen XT, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, et al: Syndromic Retinitis Pigmentosa. Prog Retin Eye Res. 107:1013242025. View Article : Google Scholar | |
|
Hartong DT, Berson EL and Dryja TP: Retinitis pigmentosa. Lancet. 368:1795–1809. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Rivas MA and Vecino E: Animal models and different therapies for treatment of retinitis pigmentosa. Histol Histopathol. 24:1295–1322. 2009.PubMed/NCBI | |
|
Liu Y, Zong X, Cao W, Zhang W, Zhang N and Yang N: Gene therapy for retinitis pigmentosa: Current challenges and new progress. Biomolecules. 14:9032024. View Article : Google Scholar : PubMed/NCBI | |
|
Napoli D, Di Marco B, Salamone G, Orsini N, Mazziotti R and Strettoi E: Keeping the lights on: A new role for an old drug to support cone survival in Retinitis Pigmentosa. Prog Retin Eye Res. 109:1014032025. View Article : Google Scholar : PubMed/NCBI | |
|
Ghanawi H and Koch SF: The versatile roles of retinal pigment epithelium in the pathophysiology of retinitis pigmentosa. Prog Retin Eye Res. 108:1013902025. View Article : Google Scholar : PubMed/NCBI | |
|
Thompson DA, Khan NW, Othman MI, Chang B, Jia L, Grahek G, Wu Z, Hiriyanna S, Nellissery J, Li T, et al: Rd9 is a naturally occurring mouse model of a common form of retinitis pigmentosa caused by mutations in RPGR-ORF15. PLoS One. 7:e358652012. View Article : Google Scholar : PubMed/NCBI | |
|
Birch DG, Cheetham JK, Daiger SP, Hoyng C, Kay C, MacDonald IM, Pennesi ME and Sullivan LS: Overcoming the challenges to clinical development of X-Linked retinitis pigmentosa therapies: Proceedings of an expert panel. Transl Vis Sci Technol. 12:52023. View Article : Google Scholar : PubMed/NCBI | |
|
Chivers M, Li N, Pan F, Wieffer H, Slowik R and Leartsakulpanitch J: The Burden of X-Linked retinitis pigmentosa on patients and society: A narrative literature review. Clinicoecon Outcomes Res. 13:565–572. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang J, Wu X, Shen D, Dong L, Jiao X, Hejtmancik JF and Li N: Analysis of RP2 and RPGR mutations in five X-linked Chinese families with retinitis pigmentosa. Sci Rep. 7:444652017. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Khan N, Hurd T, Ghosh AK, Cheng C, Molday R, Heckenlively JR, Swaroop A and Khanna H: Ablation of the X-linked retinitis pigmentosa 2 (Rp2) gene in mice results in opsin mislocalization and photoreceptor degeneration. Invest Ophthalmol Vis Sci. 54:4503–4511. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fischer MD, McClements ME, Martinez-Fernandez de la Cama ra C, Bellingrath JS, Dauletbekov D, Ramsden SC, Hickey DG, Barnard AR and MacLaren RE: Codon-optimized RPGR improves stability and efficacy of AAV8 gene therapy in two mouse models of X-Linked Retinitis pigmentosa. Mol Ther. 25:1854–1865. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ebenezer ND, Michaelides M, Jenkins SA, Audo I, Webster AR, Cheetham ME, Stockman A, Maher ER, Ainsworth JR, Yates JR, et al: Identification of novel RPGR ORF15 mutations in X-linked progressive cone-rod dystrophy (XLCORD) families. Invest Ophthalmol Vis Sci. 46:1891–1898. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Talib M, van Schooneveld MJ, Thiadens AA, Fiocco M, Wijnholds J, Florijn RJ, Schalij-Delfos NE, van Genderen MM, Putter H, Cremers FPM, et al: Clinical and genetic characteristics of male patients with RPGR-associated retinal dystrophies: A Long-term follow-up study. Retina. 39:1186–1199. 2019. View Article : Google Scholar | |
|
MacLaren RE, Duncan JL, Fischer MD, Lam BL, Meunier I, Pennesi ME, Sankila EK, Gow JA, Li J and Tsang SF: XOLARIS: A 24-Month, prospective, natural history study of 201 participants with retinitis pigmentosa GTPase Regulator-associated X-linked retinitis pigmentosa. Ophthalmol Sci. 5:1005952025. View Article : Google Scholar | |
|
Birtel J, Gliem M, Mangold E, Müller PL, Holz FG, Neuhaus C, Lenzner S, Zahnleiter D, Betz C, Eisenberger T, et al: Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa. PLoS One. 13:e02079582018. View Article : Google Scholar : PubMed/NCBI | |
|
Gill JS, Georgiou M, Kalitzeos A, Moore AT and Michaelides M: Progressive cone and cone-rod dystrophies: Clinical features, molecular genetics and prospects for therapy. Br J Ophthalmol. 103:711–720. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lam BL, Pennesi ME, Kay CN, Panda S, Gow JA, Zhao G and MacLaren RE: Assessment of visual function with cotoretigene toliparvovec in X-linked retinitis pigmentosa in the randomized XIRIUS phase 2/3 study. Ophthalmology. 131:1083–1093. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Nuzbrokh Y, Ragi SD and Tsang SH: Gene therapy for inherited retinal diseases. Ann Transl Med. 9:12782021. View Article : Google Scholar : PubMed/NCBI | |
|
De Silva SR, Chan HW, Agarwal A, Webster AR, Michaelides M and Mahroo OA: Visual acuity by decade in 139 males with RPGR-Associated retinitis pigmentosa. Ophthalmol Sci. 4:1003752024. View Article : Google Scholar | |
|
Seliniotaki AK, Ververi A, Koukoula S, Efstathiou G, Gerou S, Ziakas N and Mataftsi A: Female carrier of RPGR mutation presenting with high myopia. Ophthalmic Genet. 45:159–163. 2024. View Article : Google Scholar | |
|
Zhang Q, Acland GM, Wu WX, Johnson JL, Pearce-Kelling S, Tulloch B, Vervoort R, Wright AF and Aguirre GD: Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration. Hum Mol Genet. 11:993–1003. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Fahim AT, Sullivan LS, Bowne SJ, Jones KD, Wheaton DKH, Khan NW, Heckenlively JR, Jayasundera KT, Branham KH, Andrews CA, et al: X-Chromosome inactivation is a biomarker of clinical severity in female carriers of RPGR-Associated X-Linked retinitis pigmentosa. Ophthalmol Retina. 4:510–520. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tuekprakhon A, Pawestri AR, Suvannaboon R, Thongyou K, Trinavarat A and Atchaneeyasakul LO: Rare Co-occurrence of visual snow in a female carrier with RPGR(ORF15)-Associated retinal disorder. Front Genet. 12:7280852021. View Article : Google Scholar : PubMed/NCBI | |
|
Gocuk SA, Ayton LN, Edwards TL, Jolly JK and Britten-Jones AC: Cone contrast sensitivity testing in X-linked retinal diseases: Insights into genotype, sex and disease severity. Ophthalmic Physiol Opt. 45:2046–2053. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Nassisi M, De Bartolo G, Mohand-Said S, Condroyer C, Antonio A, Lancelot ME, Bujakowska K, Smirnov V, Pugliese T, Neidhardt J, et al: Retrospective natural history study of RPGR-related Cone- and Cone-rod dystrophies while expanding the mutation spectrum of the disease. Int J Mol Sci. 23:71892022. View Article : Google Scholar : PubMed/NCBI | |
|
Tran M, Kolesnikova M, Kim AH, Kowal T, Ning K, Mahajan VB, Tsang SH and Sun Y: Clinical characteristics of high myopia in female carriers of pathogenic RPGR mutations: A case series and review of the literature. Ophthalmic Genet. 44:295–303. 2023. View Article : Google Scholar : | |
|
Liu C, Sheri N and Benson MD: Inherited retinal diseases with high myopia: A review. Genes (Basel). 16:11832025. View Article : Google Scholar : PubMed/NCBI | |
|
Huang L, Lai Y, Sun L, Li S and Ding X: High myopia is common in patients with X-linked retinopathies: Myopic maculopathy analysis. Retina. 44:117–126. 2024. View Article : Google Scholar | |
|
Branham K, Andrews CA, Milentijevic D, Narayanan D and Jayasundera KT: Early symptoms in RPGR-associated retinal degeneration: Can we shorten time to diagnosis in the gene therapy era? Ophthalmic Genet. 46:569–575. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Wongchaisuwat N, Amato A, Lamborn AE, Yang P, Everett L and Pennesi ME: Retinitis pigmentosa GTPase regulator-related retinopathy and gene therapy. Saudi J Ophthalmol. 37:276–286. 2023. View Article : Google Scholar : | |
|
Meindl A, Dry K, Herrmann K, Manson F, Ciccodicola A, Edgar A, Carvalho MR, Achatz H, Hellebrand H, Lennon A, et al: A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet. 13:35–42. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Zou X, Fang S, Wu S, Li H, Sun Z, Zhu T, Wei X and Sui R: Detailed comparison of phenotype between male patients carrying variants in exons 1-14 and ORF15 of RPGR. Exp Eye Res. 198:1081472020. View Article : Google Scholar : PubMed/NCBI | |
|
Vervoort R, Lennon A, Bird AC, Tulloch B, Axton R, Miano MG, Meindl A, Meitinger T, Ciccodicola A and Wright AF: Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet. 25:462–466. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Pusch CM, Broghammer M, Jurklies B, Besch D and Jacobi FK: Ten novel ORF15 mutations confirm mutational hot spot in the RPGR gene in European patients with X-linked retinitis pigmentosa. Hum Mutat. 20:4052002. View Article : Google Scholar : PubMed/NCBI | |
|
Buraczynska M, Wu W, Fujita R, Buraczynska K, Phelps E, Andréasson S, Bennett J, Birch DG, Fishman GA, Hoffman DR, et al: Spectrum of mutations in the RPGR gene that are identified in 20% of families with X-linked retinitis pigmentosa. Am J Hum Genet. 61:1287–1292. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Z, Lei Y, Qin H, Zhang S, Li P and Yao K: Sigma-1 receptor in retina: Neuroprotective effects and potential mechanisms. Int J Mol Sci. 23:75722022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Feng S, Zhang Q, Qin H, Xu C, Fu X, Yan L, Zhao Y and Yao K: Roles of histone acetyltransferases and deacetylases in the retinal development and diseases. Mol Neurobiol. 60:2330–2354. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H and Yao K: YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother. 175:1167032024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Xu W, Liu S, Xu F, Chen X, Qin H and Yao K: Anesthetic effects on electrophysiological responses across the visual pathway. Sci Rep. 14:278252024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Yan L, Zhang W, Qi J, An W and Yao K: Dyschromatopsia: A comprehensive analysis of mechanisms and cutting-edge treatments for color vision deficiency. Front Neurosci. 18:12656302024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Zhang Y, Xu C, Peng A, Qin H and Yao K: Advancements in age-related macular degeneration treatment: From traditional anti-VEGF to emerging therapies in gene, stem cell, and nanotechnology. Biochem Pharmacol. 236:1169022025. View Article : Google Scholar : PubMed/NCBI | |
|
Khanna H: More than meets the eye: Current understanding of RPGR function. Adv Exp Med Biol. 1074:521–538. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yan D, Swain PK, Breuer D, Tucker RM, Wu W, Fujita R, Rehemtulla A, Burke D and Swaroop A: Biochemical characterization and subcellular localization of the mouse retinitis pigmentosa GTPase regulator (mRpgr). J Biol Chem. 273:19656–19663. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Hong DH, Pawlyk BS, Shang J, Sandberg MA, Berson EL and Li T: A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc Natl Acad Sci USA. 97:3649–3654. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Hong DH, Yue G, Adamian M and Li T: Retinitis pigmentosa GTPase regulator (RPGRr)-interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J Biol Chem. 276:12091–12099. 2001. View Article : Google Scholar | |
|
Megaw RD, Soares DC and Wright AF: RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res. 138:32–41. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dias MF, Joo K, Kemp JA, Fialho SL, da Silva Cunha A Jr, Woo SJ and Kwon YJ: Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res. 63:107–131. 2018. View Article : Google Scholar | |
|
Fahim AT, Bowne SJ, Sullivan LS, Webb KD, Williams JT, Wheaton DK, Birch DG and Daiger SP: Allelic heterogeneity and genetic modifier loci contribute to clinical variation in males with X-linked retinitis pigmentosa due to RPGR mutations. PLoS One. 6:e230212011. View Article : Google Scholar : PubMed/NCBI | |
|
Rao KN, Zhang W, Li L, Ronquillo C, Baehr W and Khanna H: Ciliopathy-associated protein CEP290 modifies the severity of retinal degeneration due to loss of RPGR. Hum Mol Genet. 25:2005–2012. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Linari M, Ueffing M, Manson F, Wright A, Meitinger T and Becker J: The retinitis pigmentosa GTPase regulator, RPGR, interacts with the delta subunit of rod cyclic GMP phosphodiesterase. Proc Natl Acad Sci USA. 96:1315–1320. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Grayson C, Bartolini F, Chapple JP, Willison KR, Bhamidipati A, Lewis SA, Luthert PJ, Hardcastle AJ, Cowan NJ and Cheetham ME: Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3. Hum Mol Genet. 11:3065–3074. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Wätzlich D, Vetter I, Gotthardt K, Miertzschke M, Chen YX, Wittinghofer A and Ismail S: The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo. EMBO Rep. 14:465–472. 2013. View Article : Google Scholar | |
|
Ying R, Li C, Li H, Zou J, Hu M, Hong Q, Shen Y, Hou L, Cheng H and Zhou R: RPGR is a guanine nucleotide exchange factor for the small GTPase RAB37 required for retinal function via autophagy regulation. Cell Rep. 43:1140102024. View Article : Google Scholar : PubMed/NCBI | |
|
Rao KN, Zhang W, Li L, Anand M and Khanna H: Prenylated retinal ciliopathy protein RPGR interacts with PDE6δ and regulates ciliary localization of Joubert syndrome-associated protein INPP5E. Hum Mol Genet. 25:4533–4545. 2016. | |
|
Liu X, Han S, Liu F, Yu S, Qin Y, Li J, Jia D, Gao P, Chen X, Tang Z, et al: Retinal degeneration in rpgra mutant zebrafish. Front Cell Dev Biol. 11:11699412023. View Article : Google Scholar : PubMed/NCBI | |
|
Murga-Zamalloa CA, Atkins SJ, Peranen J, Swaroop A and Khanna H: Interaction of retinitis pigmentosa GTPase regulator (RPGR) with RAB8A GTPase: Implications for cilia dysfunction and photoreceptor degeneration. Hum Mol Genet. 19:3591–3598. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lyraki R, Megaw R and Hurd T: Disease mechanisms of X-linked retinitis pigmentosa due to RP2 and RPGR mutations. Biochem Soc Trans. 44:1235–1244. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Baz-Redón N, Sánchez-Bellver L, Fernández-Cancio M, Rovira-Amigo S, Burgoyne T, Ranjit R, Aquino V, Toro-Barrios N, Carmona R, Polverino E, et al: Primary ciliary dyskinesia and retinitis pigmentosa: Novel RPGR variant and possible modifier gene. Cells. 13:5242024. View Article : Google Scholar : PubMed/NCBI | |
|
Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, Clément A, Geremek M, Delaisi B, Bridoux AM, et al: RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet. 43:326–333. 2006. View Article : Google Scholar | |
|
Kolkova Z, Durdik P, Holubekova V, Durdikova A, Jesenak M and Banovcin P: Identification of a novel RPGR mutation associated with retinitis pigmentosa and primary ciliary dyskinesia in a Slovak family: A case report. Front Pediatr. 12:13396642024. View Article : Google Scholar : PubMed/NCBI | |
|
Lucas JS, Davis SD, Omran H and Shoemark A: Primary ciliary dyskinesia in the genomics age. Lancet Respir Med. 8:202–216. 2020. View Article : Google Scholar | |
|
Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, Nanda A, Davies A, Wood LJ, Salvetti AP, Fischer MD, Aylward JW, Barnard AR, et al: Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med. 26:354–359. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cehajic-Kapetanovic J, Martinez-Fernandez de la Camara C, Birtel J, Rehman S, McClements ME, Charbel Issa P, Lotery AJ and MacLaren RE: Impaired glutamylation of RPGR(ORF15) underlies the cone-dominated phenotype associated with truncating distal ORF15 variants. Proc Natl Acad Sci USA. 119:e22087071192022. View Article : Google Scholar : PubMed/NCBI | |
|
Pawlyk BS, Bulgakov OV, Sun X, Adamian M, Shu X, Smith AJ, Berson EL, Ali RR, Khani S, Wright AF, et al: Photoreceptor rescue by an abbreviated human RPGR gene in a murine model of X-linked retinitis pigmentosa. Gene Ther. 23:196–204. 2016. View Article : Google Scholar : | |
|
Zhang Q, Giacalone JC, Searby C, Stone EM, Tucker BA and Sheffield VC: Disruption of RPGR protein interaction network is the common feature of RPGR missense variations that cause XLRP. Proc Natl Acad Sci USA. 116:1353–1360. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hakeem A and Yang S: Regulation of INPP5E in ciliogenesis, development, and disease. Int J Biol Sci. 21:579–594. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Vössing C, Atigbire P, Eilers J, Markus F, Stieger K, Song F and Neidhardt J: The major ciliary isoforms of RPGR build different interaction complexes with INPP5E and RPGRIP1L. Int J Mol Sci. 22:35832021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Dai H, Wang L, Tao T, Xu J, Sun X, Yang L and Li G: Novel mutations of RPGR in Chinese families with X-linked retinitis pigmentosa. BMC Ophthalmol. 19:2402019. View Article : Google Scholar : PubMed/NCBI | |
|
Parmeggiani F, Barbaro V, De Nadai K, Lavezzo E, Toppo S, Chizzolini M, Palù G, Parolin C and Di Iorio E: Identification of novel X-linked gain-of-function RPGR-ORF15 mutation in Italian family with retinitis pigmentosa and pathologic myopia. Sci Rep. 6:391792016. View Article : Google Scholar : PubMed/NCBI | |
|
Yokoyama A, Maruiwa F, Hayakawa M, Kanai A, Vervoort R, Wright AF, Yamada K, Niikawa N and Naōi N: Three novel mutations of the RPGR gene exon ORF15 in three Japanese families with X-linked retinitis pigmentosa. Am J Med Genet. 104:232–238. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Andréasson S, Breuer DK, Eksandh L, Ponjavic V, Frennesson C, Hiriyanna S, Filippova E, Yashar BM and Swaroop A: Clinical studies of X-linked retinitis pigmentosa in three Swedish families with newly identified mutations in the RP2 and RPGR-ORF15 genes. Ophthalmic Genet. 24:215–223. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Miano MG, Testa F, Strazzullo M, Trujillo M, De Bernardo C, Grammatico B, Simonelli F, Mangino M, Torrente I, Ruberto G, et al: Mutation analysis of the RPGR gene reveals novel mutations in south European patients with X-linked retinitis pigmentosa. Eur J Hum Genet. 7:687–694. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Hwang S, Jeon S, Yoon JM, Woo SJ, Joo K, Choi YJ, Yoon CK, Kim M, Lee HJ, Byeon SH, et al: RPGR-associated X-linked retinitis pigmentosa: Molecular genetics and clinical characteristics. Am J Ophthalmol. 274:171–183. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Kurata K, Hosono K, Hayashi T, Mizobuchi K, Katagiri S, Miyamichi D, Nishina S, Sato M, Azuma N, Nakano T, et al: X-linked retinitis pigmentosa in Japan: Clinical and genetic findings in male patients and female carriers. Int J Mol Sci. 20:15182019. View Article : Google Scholar : PubMed/NCBI | |
|
Thiadens AA, Soerjoesing GG, Florijn RJ, Tjiam AG, den Hollander AI, van den Born LI, Riemslag FC, Bergen AA and Klaver CC: Clinical course of cone dystrophy caused by mutations in the RPGR gene. Graefes Arch Clin Exp Ophthalmol. 249:1527–1535. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bonetti G, Cozza W, Bernini A, Kaftalli J, Mareso C, Cristofoli F, Medori MC, Colombo L, Martella S, Staurenghi G, et al: Towards a Long-read sequencing approach for the molecular diagnosis of RPGRORF15 genetic variants. Int J Mol Sci. 24:168812023. View Article : Google Scholar : | |
|
Daiger SP, Sullivan LS and Bowne SJ: Genes and mutations causing retinitis pigmentosa. Clin Genet. 84:132–141. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu HL, Gao FG, Wang DD, Hu FY, Xu P, Chang Q, Xu GZ and Wu JH: Mutation analysis of the RPGR gene in a Chinese cohort. Front Genet. 13:8501222022. View Article : Google Scholar : PubMed/NCBI | |
|
Battaglioni S, Benjamin D, Wälchli M, Maier T and Hall MN: mTOR substrate phosphorylation in growth control. Cell. 185:1814–1836. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu GY and Sabatini DM: mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 21:183–203. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Marques-Ramos A and Cervantes R: Expression of mTOR in normal and pathological conditions. Mol Cancer. 22:1122023. View Article : Google Scholar : PubMed/NCBI | |
|
Venkatesh A, Ma S and Punzo C: TSC but not PTEN loss in starving cones of retinitis pigmentosa mice leads to an autophagy defect and mTORC1 dissociation from the lysosome. Cell Death Dis. 7:e22792016. View Article : Google Scholar : PubMed/NCBI | |
|
Song DJ, Bao XL, Fan B and Li GY: Mechanism of cone degeneration in retinitis pigmentosa. Cell Mol Neurobiol. 43:1037–1048. 2023. View Article : Google Scholar | |
|
Brown EE, Lewin AS and Ash JD: AMPK may play an important role in the retinal metabolic ecosystem. Adv Exp Med Biol. 1185:477–481. 2019. View Article : Google Scholar | |
|
Newton F, Halachev M, Nguyen L, McKie L, Mill P and Megaw R: Autophagy disruption and mitochondrial stress precede photoreceptor necroptosis in multiple mouse models of inherited retinal disorders. Nat Commun. 16:40242025. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Kong L, Wang J and Ash JD: Stimulation of AMPK prevents degeneration of photoreceptors and the retinal pigment epithelium. Proc Natl Acad Sci USA. 115:10475–10480. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CL, Chen YH, Liang CM, Tai MC, Lu DW and Chen JT: Glucosamine-Induced autophagy through AMPK-mTOR pathway attenuates Lipofuscin-like autofluorescence in human retinal pigment epithelial cells in vitro. Int J Mol Sci. 19:14162018. View Article : Google Scholar | |
|
Liu J, Zhang Y, Xu X, Dong X, Pan Y, Sun X and Luo Y: Ginsenoside Ro prevents endothelial injury via promoting Epac1/AMPK-mediated mitochondria protection in early diabetic retinopathy. Pharmacol Res. 211:1075622025. View Article : Google Scholar | |
|
Kucharska J, Del Río P, Arango-Gonzalez B, Gorza M, Feuchtinger A, Hauck SM and Ueffing M: Cyr61 activates retinal cells and prolongs photoreceptor survival in rd1 mouse model of retinitis pigmentosa. J Neurochem. 130:227–240. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
German OL, Insua MF, Gentili C, Rotstein NP and Politi LE: Docosahexaenoic acid prevents apoptosis of retina photoreceptors by activating the ERK/MAPK pathway. J Neurochem. 98:1507–1520. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Muraleva NA and Kolosova NG: P38 MAPK signaling in the retina: Effects of aging and Age-related macular degeneration. Int J Mol Sci. 24:115862023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Tian Y, Li L, Cai M, Zhou X, Su W, Hua X and Yuan X: Temporary alleviation of MAPK by arbutin alleviates oxidative damage in the retina and ARPE-19 cells. Heliyon. 10:e328872024. View Article : Google Scholar : PubMed/NCBI | |
|
Maugeri G, Bucolo C, Drago F, Rossi S, Di Rosa M, Imbesi R, D'Agata V and Giunta S: Attenuation of high glucose-induced damage in RPE cells through p38 MAPK signaling pathway inhibition. Front Pharmacol. 12:6846802021. View Article : Google Scholar : PubMed/NCBI | |
|
Ding J, Yang N, Yan Y, Wang Y, Wang X, Lu L and Dong K: Rapamycin inhibited photoreceptor necroptosis and protected the retina by activation of autophagy in experimental retinal detachment. Curr Eye Res. 44:739–745. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Saxton RA and Sabatini DM: mTOR signaling in growth, metabolism, and disease. Cell. 168:960–976. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shen J, Yang X, Dong A, Petters RM, Peng YW, Wong F and Campochiaro PA: Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. J Cell Physiol. 203:457–464. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Campochiaro PA and Mir TA: The mechanism of cone cell death in retinitis pigmentosa. Prog Retin Eye Res. 62:24–37. 2018. View Article : Google Scholar | |
|
Komeima K, Rogers BS, Lu L and Campochiaro PA: Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci USA. 103:11300–11305. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Piano I, D'Antongiovanni V, Testai L, Calderone V and Gargini C: A nutraceutical strategy to slowing down the progression of cone death in an animal model of retinitis pigmentosa. Front Neurosci. 13:4612019. View Article : Google Scholar : PubMed/NCBI | |
|
Venkatesh A, Cheng SY and Punzo C: Loss of the cone-enriched caspase-7 does not affect secondary cone death in retinitis pigmentosa. Mol Vis. 23:944–951. 2017. | |
|
Falasconi A, Biagioni M, Novelli E, Piano I, Gargini C and Strettoi E: Retinal phenotype in the rd9 mutant mouse, a model of X-linked RP. Front Neurosci. 13:9912019. View Article : Google Scholar : PubMed/NCBI | |
|
Gumerson JD, Alsufyani A, Yu W, Lei J, Sun X, Dong L, Wu Z and Li T: Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing. Gene Ther. 29:81–93. 2022. View Article : Google Scholar : | |
|
Napoli D, Biagioni M, Billeri F, Di Marco B, Orsini N, Novelli E and Strettoi E: Retinal pigment epithelium remodeling in mouse models of retinitis pigmentosa. Int J Mol Sci. 22:53812021. View Article : Google Scholar : PubMed/NCBI | |
|
Slijkerman RW, Song F, Astuti GD, Huynen MA, van Wijk E, Stieger K and Collin RW: The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Prog Retin Eye Res. 48:137–159. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Shahani U, Reilly J and Shu X: Disease mechanisms and neuroprotection by tauroursodeoxycholic acid in Rpgr knockout mice. J Cell Physiol. 234:18801–18812. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shu X, Zeng Z, Gautier P, Lennon A, Gakovic M, Patton EE and Wright AF: Zebrafish Rpgr is required for normal retinal development and plays a role in dynein-based retrograde transport processes. Hum Mol Genet. 19:657–670. 2010. View Article : Google Scholar | |
|
Tee JJ, Smith AJ, Hardcastle AJ and Michaelides M: RPGR-associated retinopathy: Clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 100:1022–1027. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mansouri V: X-Linked retinitis pigmentosa gene therapy: Preclinical aspects. Ophthalmol Ther. 12:7–34. 2023. View Article : Google Scholar | |
|
Raghupathy RK, McCulloch DL, Akhtar S, Al-mubrad TM and Shu X: Zebrafish model for the genetic basis of X-linked retinitis pigmentosa. Zebrafish. 10:62–69. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Chen J, Yu S, Raghupathy RK, Liu X, Qin Y, Li C, Huang M, Liao S, Wang J, et al: Knockout of RP2 decreases GRK1 and rod transducin subunits and leads to photoreceptor degeneration in zebrafish. Hum Mol Genet. 24:4648–4659. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Beltran WA, Cideciyan AV, Lewin AS, Iwabe S, Khanna H, Sumaroka A, Chiodo VA, Fajardo DS, Román AJ, Deng WT, et al: Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci USA. 109:2132–2137. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Song C, Dufour VL, Cideciyan AV, Ye GJ, Swider M, Newmark JA, Timmers AM, Robinson PM, Knop DR, Chulay JD, et al: Dose range finding studies with two RPGR transgenes in a Canine model of X-Linked retinitis pigmentosa treated with subretinal gene therapy. Hum Gene Ther. 31:743–755. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Huckenpahler AL, Carroll J, Salmon AE, Sajdak BS, Mastey RR, Allen KP, Kaplan HJ and McCall MA: Noninvasive imaging and correlative histology of cone photoreceptor structure in the pig retina = Dose range finding studies with two RPGR transgenes in a Canine model of X-Linked retinitis pigmentosa treated with subretinal gene therapy. Transl Vis Sci Technol. 8:382019. View Article : Google Scholar : PubMed/NCBI | |
|
Mussolino C, della Corte M, Rossi S, Viola F, Di Vicino U, Marrocco E, Neglia S, Doria M, Testa F, Giovannoni R, et al: AAV-mediated photoreceptor transduction of the pig cone-enriched retina. Gene Ther. 18:637–645. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD, Masella BD, Wolfe R, Visel M, Stone D, Libby RT, et al: Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci. 52:2775–2783. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dacey DM: Primate retina: Cell types, circuits and color opponency. Prog Retin Eye Res. 18:737–763. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Fujii R, Matsushita M, Itani Y, Hama A, Natsume T and Takamatsu H: Intravitreal administration of avacincaptad pegol in a nonhuman primate model of Dry Age-related macular degeneration. Pharmacol Res Perspect. 13:e700522025. View Article : Google Scholar | |
|
Jia X, Yu Z, Wu J, Hou S, Du Y, Zhu Y, Li Z, Tu S, Zhao L, Su W, et al: Discovery of clinical manifestations in spontaneous glaucoma suspect nonhuman primates. Ophthalmic Res. 66:1406–1416. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ardon M, Nguyen L, Chen R, Rogers J, Stout T, Thomasy S and Moshiri A: Onset and progression of disease in nonhuman primates with PDE6C cone disorder. Invest Ophthalmol Vis Sci. 65:162024. View Article : Google Scholar : PubMed/NCBI | |
|
Bremmer F: Multisensory space: From eye-movements to self-motion. J Physiol. 589:815–823. 2011. View Article : Google Scholar : | |
|
Dominik Fischer M, Zobor D, Keliris GA, Shao Y, Seeliger MW, Haverkamp S, Jägle H, Logothetis NK and Smirnakis SM: Detailed functional and structural characterization of a macular lesion in a rhesus macaque. Doc Ophthalmol. 125:179–194. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mukherjee PK, Marcheselli VL, Serhan CN and Bazan NG: Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA. 101:8491–8496. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bazan NG: Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Jain N, Maguire MG, Flaxel CJ, Kim SJ, Patel S, Smith JR, Weng CY, Kim LA and Yeh S: Dietary supplementation for retinitis pigmentosa: A report by the american academy of ophthalmology. Ophthalmology. 132:354–367. 2025. View Article : Google Scholar | |
|
Mukherjee PK, Marcheselli VL, Barreiro S, Hu J, Bok D and Bazan NG: Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling. Proc Natl Acad Sci USA. 104:13152–13157. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong M, Kawaguchi R, Kassai M and Sun H: Retina, retinol, retinal and the natural history of vitamin A as a light sensor. Nutrients. 4:2069–2096. 2012. View Article : Google Scholar | |
|
Hughbanks-Wheaton DK, Birch DG, Fish GE, Spencer R, Pearson NS, Takacs A and Hoffman DR: Safety assessment of docosahexaenoic acid in X-linked retinitis pigmentosa: The 4-year DHAX trial. Invest Ophthalmol Vis Sci. 55:4958–4966. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hoffman DR, Hughbanks-Wheaton DK, Pearson NS, Fish GE, Spencer R, Takacs A, Klein M, Locke KG and Birch DG: Four-year placebo-controlled trial of docosahexaenoic acid in X-linked retinitis pigmentosa (DHAX trial): A randomized clinical trial. JAMA Ophthalmol. 132:866–873. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lin JB, Murakami Y, Miller JW and Vavvas DG: Neuroprotection for Age-related macular degeneration. Ophthalmol Sci. 2:1001922022. View Article : Google Scholar : PubMed/NCBI | |
|
Fudalej E, Justyniarska M, Kasarełło K, Dziedziak J, Szaflik JP and Cudnoch-Jędrzejewska A: Neuroprotective factors of the retina and their role in promoting survival of retinal ganglion cells: A review. Ophthalmic Res. 64:345–355. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ou K, Li Y, Liu L, Li H, Cox K, Wu J, Liu J and Dick AD: Recent developments of neuroprotective agents for degenerative retinal disorders. Neural Regen Res. 17:1919–1928. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang K, Deng H, Wang S, Zhang F, Huang G, Wang L, Liu J, Zhao X, Ren H, Yang G, et al: Melanin-like nanomedicine functions as a novel RPE ferroptosis inhibitor to ameliorate retinal degeneration and visual impairment in Dry Age-related macular degeneration. Adv Healthc Mater. 13:e24016132024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zhao J, Cui X, Mysona BA, Navneet S, Saul A, Ahuja M, Lambert N, Gazaryan IG, Thomas B, et al: The molecular chaperone sigma 1 receptor mediates rescue of retinal cone photoreceptor cells via modulation of NRF2. Free Radic Biol Med. 134:604–616. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zou M, Ke Q, Nie Q, Qi R, Zhu X, Liu W, Hu X, Sun Q, Fu JL, Tang X, et al: Inhibition of cGAS-STING by JQ1 alleviates oxidative stress-induced retina inflammation and degeneration. Cell Death Differ. 29:1816–1833. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Liu W, Tang X, Chen Y, Ge X, Ke Q, Liang X, Gan Y, Zheng Y, Zou M, et al: The BET PROTAC inhibitor dBET6 protects against retinal degeneration and inhibits the cGAS-STING in response to light damage. J Neuroinflammation. 20:1192023. View Article : Google Scholar : PubMed/NCBI | |
|
Qin H, Xu W and Yao K: CRISPR-based genome editing in disease treatment. Trends Mol Med. 29:673–674. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dasgupta I, Flotte TR and Keeler AM: CRISPR/Cas-dependent and Nuclease-free in vivo therapeutic gene editing. Hum Gene Ther. 32:275–293. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pulman J, Sahel JA and Dalkara D: New editing tools for gene therapy in inherited retinal dystrophies. Crispr J. 5:377–388. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu F, Zheng C, Xu W, Zhang S, Liu S, Chen X and Yao K: Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Front Pharmacol. 15:13641352024. View Article : Google Scholar : PubMed/NCBI | |
|
Fu X, Feng S, Qin H, Yan L, Zheng C and Yao K: Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy. Front Mol Neurosci. 16:11002542023. View Article : Google Scholar : PubMed/NCBI | |
|
Campa C, Gallenga CE, Bolletta E and Perri P: The role of gene therapy in the treatment of retinal diseases: A review. Curr Gene Ther. 17:194–213. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, Zhang S, Qin H and Yao K: From bench to bedside: Cutting-edge applications of base editing and prime editing in precision medicine. J Transl Med. 22:11332024. View Article : Google Scholar : PubMed/NCBI | |
|
Xia X and Guo X: Adeno-associated virus vectors for retinal gene therapy in basic research and clinical studies. Front Med (Lausanne). 10:13100502023. View Article : Google Scholar : PubMed/NCBI | |
|
Lykken EA, Shyng C, Edwards RJ, Rozenberg A and Gray SJ: Recent progress and considerations for AAV gene therapies targeting the central nervous system. J Neurodev Disord. 10:162018. View Article : Google Scholar : PubMed/NCBI | |
|
Wiley LA, Boyce TM, Meyering EE, Ochoa D, Sheehan KM, Stone EM, Mullins RF, Tucker BA and Han IC: The degree of Adeno-Associated Virus-induced retinal inflammation varies based on serotype and route of delivery: Intravitreal, subretinal, or suprachoroidal. Hum Gene Ther. 34:530–539. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Puertas-Neyra K, Usategui-Martín R, Coco RM and Fernandez-Bueno I: Intravitreal stem cell paracrine properties as a potential neuroprotective therapy for retinal photoreceptor neurodegenerative diseases. Neural Regen Res. 15:1631–1638. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Giacalone JC, Andorf JL, Zhang Q, Burnight ER, Ochoa D, Reutzel AJ, Collins MM, Sheffield VC, Mullins RF, Han IC, et al: Development of a molecularly stable gene therapy vector for the treatment of RPGR-Associated X-Linked retinitis pigmentosa. Hum Gene Ther. 30:967–974. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hong DH, Pawlyk BS, Adamian M, Sandberg MA and Li T: A single, abbreviated RPGR-ORF15 variant reconstitutes RPGR function in vivo. Invest Ophthalmol Vis Sci. 46:435–441. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JH, Zhan W, Gallagher TL and Gao G: Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther. 32:4185–4207. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Trapani I, Colella P, Sommella A, Iodice C, Cesi G, de Simone S, Marrocco E, Rossi S, Giunti M, Palfi A, et al: Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med. 6:194–211. 2014. View Article : Google Scholar : | |
|
Ford JL, Karatza E, Mody H, Nagaraja Shastri P, Khajeh Pour S, Yang TY, Swanson M, Chao D and Devineni D: Clinical pharmacology perspective on development of Adeno-associated virus Vector-based retina gene therapy. Clin Pharmacol Ther. 115:1212–1232. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, Boye SL, Boye SE, George LA, Salabarria S, et al: Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 29:464–488. 2021. View Article : Google Scholar | |
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, et al: A Comparative analysis of models for AAV-Mediated gene therapy for inherited retinal diseases. Cells. 13:17062024. View Article : Google Scholar : PubMed/NCBI | |
|
Naldini L: Gene therapy returns to centre stage. Nature. 526:351–360. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fuller-Carter PI, Basiri H, Harvey AR and Carvalho LS: Focused update on AAV-Based gene therapy clinical trials for inherited retinal degeneration. BioDrugs. 34:763–781. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Narfström K, Katz ML, Bragadottir R, Seeliger M, Boulanger A, Redmond TM, Caro L, Lai CM and Rakoczy PE: Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci. 44:1663–1672. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Smith AJ, Schlichtenbrede FC, Tschernutter M, Bainbridge JW, Thrasher AJ and Ali RR: AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther. 8:188–195. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Kansara V, Muya L, Wan CR and Ciulla TA: Suprachoroidal delivery of viral and nonviral gene therapy for retinal diseases. J Ocul Pharmacol Ther. 36:384–392. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Biber J, Gandor C, Becirovic E and Michalakis S: Retina-directed gene therapy: Achievements and remaining challenges. Pharmacol Ther. 271:1088622025. View Article : Google Scholar : PubMed/NCBI | |
|
McDonald A and Wijnholds J: Retinal ciliopathies and potential gene therapies: A focus on human iPSC-derived organoid models. Int J Mol Sci. 25:28872024. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlou M, Schön C, Occelli LM, Rossi A, Meumann N, Boyd RF, Bartoe JT, Siedlecki J, Gerhardt MJ, Babutzka S, et al: Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med. 13:e133922021. View Article : Google Scholar : | |
|
Hu S, Du J, Chen N, Jia R, Zhang J, Liu X and Yang L: In vivo CR ISPR/Cas9-mediated genome editing mitigates photoreceptor degeneration in a mouse model of X-Linked retinitis pigmentosa. Invest Ophthalmol Vis Sci. 61:312020. View Article : Google Scholar | |
|
Fu Y, He X, Ma L, Gao XD, Liu P, Shi H, Chai P, Ge S, Jia R, Liu DR, et al: In vivo prime editing rescues photoreceptor degeneration in nonsense mutant retinitis pigmentosa. Nat Commun. 16:23942025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Z, Hiriyanna S, Qian H, Mookherjee S, Campos MM, Gao C, Fariss R, Sieving PA, Li T, Colosi P, et al: A long-term efficacy study of gene replacement therapy for RPGR-associated retinal degeneration. Hum Mol Genet. 24:3956–3970. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chahine Karam F, Loi TH, Ma A, Nash BM, Grigg JR, Parekh D, Riley LG, Farnsworth E, Bennetts B, Gonzalez-Cordero A, et al: Human iPSC-derived retinal organoids and retinal pigment epithelium for novel intronic RPGR variant assessment for therapy suitability. J Pers Med. 12:5022022. View Article : Google Scholar : PubMed/NCBI | |
|
Deng WL, Gao ML, Lei XL, Lv JN, Zhao H, He KW, Xia XX, Li LY, Chen YC, Li YP, et al: Gene correction reverses ciliopathy and photoreceptor loss in iPSC-Derived retinal organoids from retinitis pigmentosa patients. Stem Cell Reports. 10:1267–1281. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bassuk AG, Zheng A, Li Y, Tsang SH and Mahajan VB: Precision medicine: Genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep. 6:199692016. View Article : Google Scholar : PubMed/NCBI | |
|
Li T, Ma Y, Cheng Y, Zhao Y, Qiu Z, Liu H, Zhang D, Wu J, Li J, Zhang S, et al: Single-cell transcriptomic dataset of RPGR-associated retinitis pigmentosa patient-derived retinal organoids. Sci Data. 11:12852024. View Article : Google Scholar : PubMed/NCBI | |
|
Lin B, McLelland BT, Aramant RB, Thomas BB, Nistor G, Keirstead HS and Seiler MJ: Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Invest Ophthalmol Vis Sci. 61:342020. View Article : Google Scholar : PubMed/NCBI | |
|
West EL, Majumder P, Naeem A, Fernando M, O'Hara-Wright M, Lanning E, Kloc M, Ribeiro J, Ovando-Roche P, Shum IO, et al: Antioxidant and lipid supplementation improve the development of photoreceptor outer segments in pluripotent stem cell-derived retinal organoids. Stem Cell Reports. 17:775–788. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Scherbakova I, Ragi SD and Sharma T: Ocular injection techniques for retinitis pigmentosa: Intravitreal, subretinal, and suprachoroidal. Methods Mol Biol. 2560:375–392. 2023. View Article : Google Scholar | |
|
Kovacs KD, Ciulla TA and Kiss S: Advancements in ocular gene therapy delivery: Vectors and subretinal, intravitreal, and suprachoroidal techniques. Expert Opin Biol Ther. 22:1193–1208. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Mackenbrock LHB, Auffarth GU, Albrecht M, Naujokaitis T, Kessler LJ, Mayer CS and Khoramnia R: Anterior segment complications following intravitreal injection. Klin Monbl Augenheilkd. 241:917–922. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao CS, Chwialkowski K, Wai KM, Mruthyunjaya P, Rahimy E and Koo EB: Risk of cataract surgery complications in patients with prior intravitreal injection therapy. Am J Ophthalmol. 272:106–116. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Prado DA, Acosta-Acero M and Maldonado RS: Gene therapy beyond luxturna: A new horizon of the treatment for inherited retinal disease. Curr Opin Ophthalmol. 31:147–154. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Takahashi K, Morizane Y, Hisatomi T, Tachibana T, Kimura S, Hosokawa MM, Shiode Y, Hirano M, Doi S, Toshima S, et al: The influence of subretinal injection pressure on the microstructure of the monkey retina. PLoS One. 13:e02099962018. View Article : Google Scholar | |
|
Dufour VL, Cideciyan AV, Ye GJ, Song C, Timmers A, Habecker PL, Pan W, Weinstein NM, Swider M, Durham AC, et al: Toxicity and efficacy evaluation of an Adeno-associated virus vector expressing Codon-optimized RPGR delivered by subretinal injection in a Canine model of X-linked retinitis pigmentosa. Hum Gene Ther. 31:253–267. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Qi Y, Dai X, Zhang H, He Y, Zhang Y, Han J, Zhu P, Zhang Y, Zheng Q, Li X, et al: Trans-corneal subretinal injection in mice and its effect on the function and morphology of the retina. PLoS One. 10:e01365232015. View Article : Google Scholar : PubMed/NCBI | |
|
Peng Y, Tang L and Zhou Y: Subretinal injection: A review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res. 58:217–226. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tripepi D, Jalil A, Ally N, Buzzi M, Moussa G, Rothschild PR, Rossi T, Ferrara M and Romano MR: The role of subretinal injection in ophthalmic surgery: Therapeutic agent delivery and other indications. Int J Mol Sci. 24:105352023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu KY, Fujioka JK, Gholamian T, Zaharia M and Tran SD: Suprachoroidal injection: A novel approach for targeted drug delivery. Pharmaceuticals (Basel). 16:12412023. View Article : Google Scholar : PubMed/NCBI | |
|
Rahman S, Tayyab H and Siddiqui MAR: Suprachoroidal triamcinolone acetonide injection to treat macular edema: A Review. J Vitreoretin Dis. 8:699–708. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Han IC, Cheng JL, Burnight ER, Ralston CL, Fick JL, Thomsen GJ, Tovar EF, Russell SR, Sohn EH, Mullins RF, et al: Retinal tropism and transduction of Adeno-Associated virus varies by serotype and route of delivery (Intravitreal, Subretinal, or Suprachoroidal) in rats. Hum Gene Ther. 31:1288–1299. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu KY, Gao A, Giunta M and Tran SD: What's new in ocular drug delivery: Advances in suprachoroidal injection since 2023. Pharmaceuticals (Basel). 17:10072024. View Article : Google Scholar : PubMed/NCBI | |
|
Jung JH, Chiang B, Grossniklaus HE and Prausnitz MR: Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J Control Release. 277:14–22. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gagnon NA, Hartley C and Gilger BC: Efficacy and safety of suprachoroidal triamcinolone injection in horses with poorly responsive equine recurrent uveitis. Vet Ophthalmol. 24:308–312. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lee H and Lotery A: Gene therapy for RPE65-mediated inherited retinal dystrophy completes phase 3. Lancet. 390:823–824. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zu H and Gao D: Non-viral vectors in gene therapy: Recent development, challenges, and prospects. AAPS J. 23:782021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Pan C, Yong H, Wang F, Bo T, Zhao Y, Ma B, He W and Li M: Emerging non-viral vectors for gene delivery. J Nanobiotechnology. 21:2722023. View Article : Google Scholar : PubMed/NCBI | |
|
Ren S, Wang M, Wang C, Wang Y, Sun C, Zeng Z, Cui H and Zhao X: Application of Non-viral vectors in drug delivery and gene therapy. Polymers (Basel). 13:33072021. View Article : Google Scholar : PubMed/NCBI | |
|
Chapa González C, Martínez Saráoz JV, Roacho Pérez JA and Olivas Armendáriz I: Lipid nanoparticles for gene therapy in ocular diseases. Daru. 31:75–82. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Carvalho C, Lemos L, Antas P and Seabra MC: Gene therapy for inherited retinal diseases: Exploiting new tools in genome editing and nanotechnology. Front Ophthalmol (Lausanne). 3:12705612023. View Article : Google Scholar | |
|
Schnichels S, Simmang D, Löscher M, Herrmann A, de Vries JW, Spitzer MS and Hurst J: Lipid-DNA nanoparticles as Drug-delivery vehicles for the treatment of retinal diseases. Pharmaceutics. 15:5322023. View Article : Google Scholar : PubMed/NCBI | |
|
Baig MS, Karade SK, Ahmad A, Khan MA, Haque A, Webster TJ, Faiyazuddin M and Al-Qahtani NH: Lipid-based nanoparticles: Innovations in ocular drug delivery. Front Mol Biosci. 11:14219592024. View Article : Google Scholar : PubMed/NCBI | |
|
Gugleva V and Andonova V: Recent progress of solid lipid nanoparticles and nanostructured lipid carriers as ocular drug delivery platforms. Pharmaceuticals (Basel). 16:4742023. View Article : Google Scholar : PubMed/NCBI | |
|
Lam BL, Scholl HPN, Doub D, Sperling M, Hashim M and Li N: A systematic literature review of disease progression reported in RPGR-associated X-linked retinitis pigmentosa. Retina. 44:1–9. 2024. View Article : Google Scholar | |
|
Zada M, Cornish EE, Fraser CL, Jamieson RV and Grigg JR: Natural history and clinical biomarkers of progression in X-linked retinitis pigmentosa: A systematic review. Acta Ophthalmol. 99:499–510. 2021. View Article : Google Scholar | |
|
Christou EE, Josan AS, Cehajic-Kapetanovic J and MacLaren RE: Establishing clinical trial endpoints in selecting patients for RPGR retinal gene therapy. Transl Vis Sci Technol. 13:182024. View Article : Google Scholar : PubMed/NCBI | |
|
Birch DG, Locke KG, Felius J, Klein M, Wheaton DK, Hoffman DR and Hood DC: Rates of decline in regions of the visual field defined by frequency-domain optical coherence tomography in patients with RPGR-mediated X-linked retinitis pigmentosa. Ophthalmology. 122:833–839. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Stephenson KAJ, Tse T, Hwang J, Kavetskyi A, Dhanji SR, Kolawole OU, Gregory-Evans CY, Pakzad-Vaezi K, Mammo ZN, Gregory-Evans K, et al: Quantitative choroidal analysis of molecularly characterized retinitis pigmentosa. Invest Ophthalmol Vis Sci. 66:112025. View Article : Google Scholar : PubMed/NCBI | |
|
Iftikhar M, Lemus M, Usmani B, Campochiaro PA, Sahel JA, Scholl HPN and Shah SMA: Classification of disease severity in retinitis pigmentosa. Br J Ophthalmol. 103:1595–1599. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
De Silva SR, Arno G, Robson AG, Fakin A, Pontikos N, Mohamed MD, Bird AC, Moore AT, Michaelides M, Webster AR, et al: The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog Retin Eye Res. 82:1008982021. View Article : Google Scholar | |
|
Ghoraba HH, Akhavanrezayat A, Karaca I, Yavari N, Lajevardi S, Hwang J, Regenold J, Matsumiya W, Pham B, Zaidi M, et al: Ocular gene therapy: A Literature review with special focus on immune and inflammatory responses. Clin Ophthalmol. 16:1753–1771. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hugi F, Vollmer J, Renaud L and Machacek M: A Semimechanistic ocular pharmacokinetic model for ADVM-022 gene therapy describing the Dose-exposure relationship in monkeys and the scaling to human. Mol Pharm. 22:4612–4623. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Martinez-Fernandez de la Camara C, Cehajic-Kapetanovic J and MacLaren RE: Emerging gene therapy products for RPGR-associated X-linked retinitis pigmentosa. Expert Opin Emerg Drugs. 27:431–443. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang P, Birch D, Lauer A, Sisk R, Anand R, Pennesi ME, Iannaccone A, Yaghy A, Scaria A, Jung JA, et al: Subretinal gene therapy drug AGTC-501 for XLRP Phase 1/2 multicenter study (HORIZON): 24-month safety and efficacy results. Am J Ophthalmol. 271:268–285. 2025. View Article : Google Scholar | |
|
Michaelides M, Besirli CG, Yang Y, DE Guimaraes TAC, Wong SC, Huckfeldt RM, Comander JI, Sahel JA, Shah SM, Tee JJL, et al: Phase 1/2 AAV5-hRKp.RPGR (Botaretigene Sparoparvovec) gene therapy: Safety and efficacy in RPGR-associated X-linked retinitis pigmentosa. Am J Ophthalmol. 267:122–134. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ren D, Fisson S, Dalkara D and Ail D: Immune responses to gene editing by viral and Non-viral delivery vectors used in retinal gene therapy. Pharmaceutics. 14:19732022. View Article : Google Scholar : PubMed/NCBI | |
|
Casey GA, Papp KM and MacDonald IM: Ocular gene therapy with Adeno-associated virus vectors: Current outlook for patients and researchers. J Ophthalmic Vis Res. 15:396–399. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Butterfield GL, Reisman SJ, Iglesias N and Gersbach CA: Gene regulation technologies for gene and cell therapy. Mol Ther. 33:2104–2122. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Beltran WA, Cideciyan AV, Iwabe S, Swider M, Kosyk MS, McDaid K, Martynyuk I, Ying GS, Shaffer J, Deng WT, et al: Successful arrest of photoreceptor and vision loss expands the therapeutic window of retinal gene therapy to later stages of disease. Proc Natl Acad Sci USA. 112:E5844–E5853. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Beltran WA, Cideciyan AV, Boye SE, Ye GJ, Iwabe S, Dufour VL, Marinho LF, Swider M, Kosyk MS, Sha J, et al: Optimization of retinal gene therapy for X-Linked retinitis pigmentosa due to RPGR mutations. Mol Ther. 25:1866–1880. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ren M, Chen X, Gao P, Huang Y, Yu S, Reilly J, Sun K, Han Y, Hu H, Li P, et al: RPGRORF15 mutations disrupt lysosomal lipid metabolism in retinal pigment epithelium cells and cause retinitis pigmentosa. Invest Ophthalmol Vis Sci. 66:612025. View Article : Google Scholar : PubMed/NCBI | |
|
Far BF, Akbari M, Habibi MA, Katavand M and Nasseri S: CRISPR technology in disease management: An updated review of clinical translation and therapeutic potential. Cell Prolif. 58:e700992025. View Article : Google Scholar : PubMed/NCBI | |
|
von Krusenstiern L, Liu J, Liao E, Gow JA, Chen G, Ong T, Lotery AJ, Jalil A, Lam BL and MacLaren RE; XIRIUS Part 1 Study GroupXOLARIS Study Group: Changes in retinal sensitivity associated with cotoretigene toliparvovec in X-Linked retinitis pigmentosa with RPGR gene variations. JAMA Ophthalmol. 141:275–283. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ling S, Zhang X, Dai Y, Jiang Z, Zhou X, Lu S, Qian X, Liu J, Selfjord N, Satir TM, et al: Customizable virus-like particles deliver CRISPR-Cas9 ribonucleoprotein for effective ocular neovascular and Huntington's disease gene therapy. Nat Nanotechnol. 20:543–553. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Banou L, Sarrafpour S, Teng CC and Liu J: Ocular gene therapy: An overview of viral vectors, immune responses, and future directions. Yale J Biol Med. 97:491–503. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Jony MJ, Joshi A, Dash A and Shukla S: Non-Viral delivery systems to transport nucleic acids for inherited retinal disorders. Pharmaceuticals (Basel). 18:872025. View Article : Google Scholar : PubMed/NCBI | |
|
Lim Y, Campochiaro PA and Green JJ: Suprachoroidal delivery of viral and nonviral vectors for treatment of retinal and choroidal vascular diseases. Am J Ophthalmol. 277:518–533. 2025. View Article : Google Scholar | |
|
Wu H, Dong L, Jin S, Zhao Y and Zhu L: Innovative gene delivery systems for retinal disease therapy. Neural Regen Res. 21:542–552. 2026. View Article : Google Scholar | |
|
Sultana S, Yusuf M and Sharma V: Nanovesicular drug delivery systems for rare ocular diseases: Advances, challenges, and future directions. AAPS PharmSciTech. 26:1972025. View Article : Google Scholar : PubMed/NCBI | |
|
Adewale OB, Davids H, Cairncross L and Roux S: Toxicological behavior of gold nanoparticles on various models: Influence of physicochemical properties and other factors. Int J Toxicol. 38:357–384. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG and Arseniu AM: Dendrimers as Non-viral vectors in gene-directed enzyme prodrug therapy. Molecules. 26:59762021. View Article : Google Scholar : PubMed/NCBI | |
|
Galluzzi F, Francia S, Cupini S, Gianiorio T, Mantero G, DiFrancesco ML, Ravasenga T, Jasnoor, Attanasio M, Maya-Vetencourt JF, et al: Graphene oxide increases the phototransduction efficiency of copolymeric nanoimplants and rescues visual functions in rat and pig models of Retinitis pigmentosa. Nat Commun. 16:87212025. View Article : Google Scholar : PubMed/NCBI | |
|
Szabó V, Varsányi B, Barboni M, Takács Á, Knézy K, Molnár MJ, Nagy ZZ, György B and Rivolta C: Insights into eye genetics and recent advances in ocular gene therapy. Mol Cell Probes. 79:1020082025. View Article : Google Scholar : PubMed/NCBI |