Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2026 Volume 57 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2026 Volume 57 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The GPR124‑Wnt‑PPARγ regulatory axis: Molecular mechanisms and therapeutic implications in chronic inflammatory diseases (Review)

  • Authors:
    • Ming-Wang Cui
    • Si-Yu Tao
    • Tao Wen
    • Zhu-Ling Guo
  • View Affiliations / Copyright

    Affiliations: School of Dentistry, Hainan Medical University, Haikou, Hainan 571199, P.R. China
    Copyright: © Cui et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 53
    |
    Published online on: December 30, 2025
       https://doi.org/10.3892/ijmm.2025.5724
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

G protein‑coupled receptor 124 (GPR124) and peroxisome proliferator‑activated receptor γ (PPARγ) constitute two mechanistically distinct signaling molecules that exhibit functional convergence through their opposing regulation of the canonical Wnt/β‑catenin pathway, thereby establishing a critical regulatory network governing inflammatory homeostasis and tissue repair responses. The present comprehensive review elucidates the molecular architecture and pathophysiological significance of the GPR124‑Wnt‑PPARγ regulatory axis, with particular emphasis on its therapeutic implications in chronic inflammatory diseases. GPR124, originally identified as an adhesion G protein‑coupled receptor essential for central nervous system angiogenesis and blood‑brain barrier integrity, functions as a context‑dependent co‑activator of Wnt7a/Wnt7b signaling. By contrast, PPARγ, a ligand‑activated nuclear receptor and master regulator of metabolism and inflammation, exerts potent antagonistic effects on Wnt/β‑catenin signaling through direct β‑catenin degradation mechanisms. The opposing regulation of Wnt signaling by these two receptors establishes a molecular framework that critically influences disease progression in atherosclerosis, diabetic complications, neuroinflammation and cancer‑associated inflammation, with its function being fine‑tuned by tissue‑specific expression patterns and diverse mechanisms. Understanding the GPR124‑Wnt‑PPARγ axis provides novel therapeutic opportunities for combination targeting strategies in chronic inflammatory conditions, where the balance between pro‑angiogenic Wnt activation and anti‑inflammatory PPARγ signaling determines disease outcomes. The present review examines the molecular architecture of GPR124‑PPARγ crosstalk, analyzes pathophysiological implications across multiple organ systems, and evaluates emerging therapeutic strategies for targeting this regulatory network in chronic inflammatory diseases.
View Figures

Figure 1

Molecular rheostat of the
GPR124-Wnt-PPARγ axis. This diagram illustrates the antagonistic
regulation of the canonical Wnt/β-catenin pathway by GPR124 and
PPARγ. GPR124 functions as a co-activator of Wnt7a/b ligands,
potentiating Wnt signaling. This leads to the inhibition of the
cytoplasmic destruction complex (composed of APC, Axin and GSK-3β),
resulting in the stabilization and nuclear translocation of
β-catenin. In the nucleus, β-catenin activates target genes that
promote angiogenesis and proliferation. By contrast,
ligand-activated PPARγ exerts potent antagonistic effects. It
directly binds to β-catenin, facilitating its interaction with the
destruction complex, and promoting its subsequent phosphorylation
and proteasomal degradation. This action suppresses Wnt target gene
expression, leading to anti-inflammatory responses and metabolic
regulation. APC, adenomatous polyposis coli; GSK-3β, glycogen
synthase kinase-3β; GPR124, G protein-coupled receptor 124; PPARγ,
peroxisome proliferator-activated receptor γ.

Figure 2

Opposing roles of the GPR124-PPARγ
axis in atherosclerosis. The conflicting functions of GPR124 and
PPARγ in the progression of atherosclerosis are presented. The
pro-atherogenic GPR124 pathway shows that enhanced GPR124
expression promotes NLRP3 inflammasome activation, leading to the
secretion of pro-inflammatory cytokines IL-1β and IL-18. This
inflammatory cascade facilitates monocyte recruitment, while
GPR124-mediated Wnt signaling also drives the proliferation and
migration of VSMCs and stimulates intraplaque neovascularization,
all contributing to plaque instability. Conversely, the
anti-atherogenic PPARγ pathway illustrates that PPARγ activation
promotes M2 macrophage polarization, which enhances cholesterol
efflux from foam cells. PPARγ also exerts direct protective effects
on the endothelium, reducing dysfunction, ultimately leading to
plaque stabilization. GPR124, G protein-coupled receptor 124;
NLRP3, NLR family pyrin domain containing 3; PPARγ, peroxisome
proliferator-activated receptor γ; VSMCs, vascular smooth muscle
cells.

Figure 3

Complementary protective mechanisms
of GPR124 and PPARγ in the neurovascular unit. The synergistic
roles of GPR124 and PPARγ in maintaining central nervous system
homeostasis. GPR124, expressed on endothelial cells, is essential
for BBB integrity. Wnt signaling via GPR124 reinforces the BBB by
promoting the expression of tight junction proteins (such as
claudin-5 and occludin) and adherens junction proteins (including
VE-cadherin), thereby inhibiting the infiltration of peripheral
immune cells. Within the brain parenchyma, PPARγ activation is
shown to be neuroprotective. It promotes the polarization of
microglia to an anti-inflammatory M2 phenotype, which enhances the
phagocytosis of debris and increases the production of
neuroprotective factors, thus resolving neuroinflammation. BBB,
blood-brain barrier; GPR124, G protein-coupled receptor 124; PPARγ,
peroxisome proliferator-activated receptor γ.

Figure 4

A combination therapeutic strategy
targeting the GPR124-Wnt-PPARγ axis in cancer. A
dual-targeting strategy for cancer treatment, which is particularly
relevant for diseases such as atherosclerosis or certain types of
cancer characterized by excessive Wnt signaling, is conceptualized.
The strategy involves two simultaneous interventions. First, a
GPR124 inhibitor blocks GPR124 (also known as TEM5) on tumor
endothelial cells, thereby inhibiting Wnt7-driven tumor
angiogenesis. Second, a PPARγ agonist exerts multiple antitumor
effects. It directly acts on cancer cells to induce cell cycle
arrest and apoptosis, and also acts on tumor-associated macrophages
to block their pro-tumorigenic M2 polarization, thus resolving
tumor-promoting inflammation. This combination approach provides a
synergistic attack on the tumor microenvironment.
View References

1 

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X and Zhao L: Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9:7204–7218. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Hotamisligil GS: Inflammation, metaflammation and immunometabolic disorders. Nature. 542:177–185. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Lecarpentier Y, Claes V, Vallée A and Hébert JL: Interactions between PPAR gamma and the canonical Wnt/Beta-catenin pathway in type 2 diabetes and colon cancer. PPAR Res. 2017:58790902017. View Article : Google Scholar : PubMed/NCBI

4 

Vallée A, Lecarpentier Y, Guillevin R and Vallée JN: Opposite interplay between the canonical WNT/β-Catenin pathway and PPAR Gamma: A potential therapeutic target in gliomas. Neurosci Bull. 34:573–588. 2018. View Article : Google Scholar

5 

Anderson KD, Pan L, Yang XM, Hughes VC, Walls JR, Dominguez MG, Simmons MV, Burfeind P, Xue Y, Wei Y, et al: Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc Natl Acad Sci USA. 108:2807–2812. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V, Florek M, Su H, Fruttiger M, Young WL, Heilshorn SC and Kuo CJ: Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science. 330:985–989. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Li Y, Duan Y, Chu Q, Lv H, Li J, Guo X, Gao Y, Liu M, Tang W, Hu H, et al: G-protein coupled receptor GPR124 protects against podocyte senescence and injury in diabetic kidney disease. Kidney Int. 107:652–665. 2025. View Article : Google Scholar : PubMed/NCBI

8 

Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, Taketo MM and Nathans J: Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest. 124:3825–3846. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Posokhova E, Shukla A, Seaman S, Volate S, Hilton MB, Wu B, Morris H, Swing DA, Zhou M, Zudaire E, et al: GPR124 functions as a WNT7-specific coactivator of canonical β-catenin signaling. Cell Rep. 10:123–130. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Mal S, Dwivedi AR and Kumar V, Kumar N, Kumar B and Kumar V: Role of peroxisome Proliferator-activated receptor gamma (PPARγ) in different disease states: Recent updates. Curr Med Chem. 28:3193–3215. 2021. View Article : Google Scholar

11 

Tu CC, Hsieh TH, Chu CY, Lin YC, Lin BJ and Chen CH: Targeting PPARγ via SIAH1/2-mediated ubiquitin-proteasomal degradation as a new therapeutic approach in luminal-type bladder cancer. Cell Death Dis. 15:9082024. View Article : Google Scholar

12 

Jangra A, Babu B, Divakar S, Gowramma B, Rajan S, Jangra S and Malakar V: An in-depth review of PPARγ modulators as anti-diabetes therapeutics. Drug Metab Rev. 57:311–337. 2025. View Article : Google Scholar : PubMed/NCBI

13 

Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z and Wei P: PPAR-γ Modulators as current and potential cancer treatments. Front Oncol. 11:7377762021. View Article : Google Scholar

14 

Jansson EA, Are A, Greicius G, Kuo IC, Kelly D, Arulampalam V and Pettersson S: The Wnt/beta-catenin signaling pathway targets PPARgamma activity in colon cancer cells. Proc Natl Acad Sci USA. 102:1460–1465. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Xue C, Chu Q, Shi Q, Zeng Y, Lu J and Li L: Wnt signaling pathways in biology and disease: Mechanisms and therapeutic advances. Signal Transduct Target Ther. 10:1062025. View Article : Google Scholar : PubMed/NCBI

16 

Bostaille N, Gauquier A, Twyffels L and Vanhollebeke B: Molecular insights into Adgra2/Gpr124 and Reck intracellular trafficking. Biol Open. 5:1874–1881. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Chang J, Mancuso MR, Maier C, Liang X, Yuki K, Yang L, Kwong JW, Wang J, Rao V, Vallon M, et al: Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. Nat Med. 23:450–460. 2017. View Article : Google Scholar :

18 

Gastfriend BD, Nishihara H, Canfield SG, Foreman KL, Engelhardt B, Palecek SP and Shusta EV: Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells. ELife. 10:e709922021. View Article : Google Scholar

19 

Zhou Y and Nathans J: Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell. 31:248–256. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Yu H, Kohno S, Voon DC, Hussein NH, Zhang Y, Nakayama J, Takegami Y and Takahashi C: RECK/GPR124-driven WNT signaling in pancreatic and gastric cancer cells. Cancer Sci. 115:3013–3025. 2024. View Article : Google Scholar : PubMed/NCBI

21 

America M, Bostaille N, Eubelen M, Martin M, Stainier DYR and Vanhollebeke B: An integrated model for Gpr124 function in Wnt7a/b signaling among vertebrates. Cell Rep. 39:1109022022. View Article : Google Scholar : PubMed/NCBI

22 

Wang Y, Cho SG, Wu X, Siwko S and Liu M: G-protein coupled receptor 124 (GPR124) in endothelial cells regulates vascular endothelial growth factor (VEGF)-induced tumor angiogenesis. Curr Mol Med. 14:543–554. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Kroker AJ and Bruning JB: Review of the structural and dynamic mechanisms of PPARγ partial agonism. PPAR Res. 2015:8168562015. View Article : Google Scholar

24 

Lefterova MI, Haakonsson AK, Lazar MA and Mandrup S: PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol Metab. 25:293–302. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Li Z, Luo L, Yu W, Li P, Ou D, Liu J, Ma H, Sun Q, Liang A, Huang C, et al: PPARγ phase separates with RXRα at PPREs to regulate target gene expression. Cell Discov. 8:372022. View Article : Google Scholar

26 

Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M and Evans RM: PPARγ signaling and metabolism: The good, the bad and the future. Nat Med. 19:557–566. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Bougarne N, Paumelle R, Caron S, Hennuyer N, Mansouri R, Gervois P, Staels B, Haegeman G and De Bosscher K: PPARalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NF-kappaB. Proc Natl Acad Sci USA. 106:7397–7402. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Basil MC and Levy BD: Specialized pro-resolving mediators: Endogenous regulators of infection and inflammation. Nat Rev Immunol. 16:51–67. 2016. View Article : Google Scholar

29 

Gao Z, Xu X, Li Y, Sun K, Yang M, Zhang Q, Wang S, Lin Y, Lou L, Wu A, et al: Mechanistic insight into PPARγ and tregs in atherosclerotic immune inflammation. Front Pharmacol. 12:7500782021. View Article : Google Scholar

30 

O'Neill LA and Pearce EJ: Immunometabolism governs dendritic cell and macrophage function. J Exp Med. 213:15–23. 2016. View Article : Google Scholar :

31 

Kasprzak A: Angiogenesis-related functions of wnt signaling in colorectal carcinogenesis. Cancers (Basel). 12:36012020. View Article : Google Scholar : PubMed/NCBI

32 

Sidrat T, Rehman ZU, Joo MD, Lee KL and Kong IK: Wnt/β-catenin Pathway-mediated PPARδ expression during embryonic development differentiation and disease. Int J Mol Scie. 22:18542021. View Article : Google Scholar

33 

van Kappel EC and Maurice MM: Molecular regulation and pharmacological targeting of the β-catenin destruction complex. Br J Pharmacol. 174:4575–4588. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Lecarpentier Y, Schussler O, Hébert JL and Vallée A: Multiple targets of the canonical WNT/β-Catenin signaling in cancers. Front Oncol. 9:12482019. View Article : Google Scholar

35 

Sabatino L, Pancione M, Votino C, Colangelo T, Lupo A, Novellino E, Lavecchia A and Colantuoni V: Emerging role of the β-catenin-PPARγ axis in the pathogenesis of colorectal cancer. World J Gastroenterol. 20:7137–7151. 2014. View Article : Google Scholar :

36 

Liu J, Wang H, Zuo Y and Farmer SR: Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol Cell Biol. 26:5827–5837. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Vallée A, Lecarpentier Y and Vallée JN: Interplay of opposing effects of the WNT/β-Catenin pathway and PPARγ and implications for SARS-CoV2 treatment. Front Immunol. 12:6666932021. View Article : Google Scholar

38 

Cui H, Wang Y, Huang H, Yu W, Bai M, Zhang L, Bryan BA, Wang Y, Luo J, Li D, et al: GPR126 protein regulates developmental and pathological angiogenesis through modulation of VEGFR2 receptor signaling. J Biol Chem. 289:34871–34885. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Shen Y, Lian Y, Xiao L, Miu Y, Niu J and Cui Q: GPR124 promotes trophoblast proliferation, migration, and invasion and inhibits trophoblast cell apoptosis and inflammation via JNK and P38 MAPK pathways. J Cell Physiol. 239:e312982024. View Article : Google Scholar : PubMed/NCBI

40 

Westerweel PE and Verhaar MC: Protective actions of PPAR-gamma activation in renal endothelium. PPAR Res. 2008:6356802008. View Article : Google Scholar : PubMed/NCBI

41 

Audano M, Pedretti S, Caruso D, Crestani M, De Fabiani E and Mitro N: Regulatory mechanisms of the early phase of white adipocyte differentiation: An overview. Cell Mol Life Sci. 79:1392022. View Article : Google Scholar : PubMed/NCBI

42 

Luan J, Ji X and Liu L: PPARγ in atherosclerotic endothelial dysfunction: Regulatory compounds and PTMs. Int J Mol Sci. 24:144942023. View Article : Google Scholar

43 

Patial S, Sharma A, Raj K and Shukla G: Atherosclerosis: Progression, risk factors, diagnosis, treatment, probiotics and synbiotics as a new prophylactic hope. The Microbe. 5:1002122024. View Article : Google Scholar

44 

Lin WY, Dong YL, Lin Y, Sunchuri D and Guo ZL: Potential role of G protein-coupled receptor 124 in cardiovascular and cerebrovascular disease (review). Exp Ther Med. 29:22025. View Article : Google Scholar

45 

Lu N, Cheng W, Liu D, Liu G, Cui C, Feng C and Wang X: NLRP3-Mediated inflammation in atherosclerosis and associated therapeutics. Front Cell Dev Biol. 10:8233872022. View Article : Google Scholar : PubMed/NCBI

46 

Chai Q, Guo C, Li L, Cao J, Liu H and Lu Z: Association of angiogenesis-associated genes with atherosclerotic plaque progression, intraplaque hemorrhage, and immune infiltration. Heliyon. 10:e326922024. View Article : Google Scholar : PubMed/NCBI

47 

Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, et al: Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 349:2316–2325. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Yu L, Gao Y, Aaron N and Qiang L: A glimpse of the connection between PPARγ and macrophage. Front Pharmacol. 14:12543172023. View Article : Google Scholar

49 

Bäck M, Yurdagul A Jr, Tabas I, Öörni K and Kovanen PT: Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat Rev Cardiol. 16:389–406. 2019.PubMed/NCBI

50 

Beyer AM, Baumbach GL, Halabi CM, Modrick ML, Lynch CM, Gerhold TD, Ghoneim SM, de Lange WJ, Keen HL, Tsai YS, et al: Interference with PPARgamma signaling causes cerebral vascular dysfunction, hypertrophy, and remodeling. Hypertension. 51:867–871. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, et al: A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 7:161–171. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Iwasaki H, Yagyu H and Shimano H: A Comprehensive analysis of diabetic complications and advances in management strategies. J Atheroscler Thromb. 32:550–559. 2025. View Article : Google Scholar : PubMed/NCBI

53 

Li X, Zhang Y, Xing X, Li M, Liu Y, Xu A and Zhang J: Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother. 168:1156702023. View Article : Google Scholar : PubMed/NCBI

54 

Li L and Liu Y: Podocyte aging and diabetic kidney disease. Kidney Int. 107:596–598. 2025. View Article : Google Scholar : PubMed/NCBI

55 

Wan J, Hou X, Zhou Z, Geng J, Tian J, Bai X and Nie J: WT1 ameliorates podocyte injury via repression of EZH2/β-catenin pathway in diabetic nephropathy. Free Radic Biol Med. 108:280–299. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Wang Y, Yang M, Wang X, Zou H, Chen X and Yuan R: Role of Gpr124 in the migration and proliferation of retinal microvascular endothelial cells and microangiopathies in diabetic retinopathy. Mol Biotechnol. 67:2467–2480. 2025. View Article : Google Scholar

57 

Al-Latayfeh M, Silva PS, Sun JK and Aiello LP: Antiangiogenic therapy for ischemic retinopathies. Cold Spring Harb Perspect Med. 2:a0064112012. View Article : Google Scholar : PubMed/NCBI

58 

Villacorta L, Schopfer FJ, Zhang J, Freeman BA and Chen YE: PPARgamma and its ligands: Therapeutic implications in cardiovascular disease. Clin Sci (Lond). 116:205–218. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Ding Y, Kang J, Liu S, Xu Y and Shao B: The protective effects of peroxisome proliferator-activated receptor gamma in cerebral Ischemia-Reperfusion injury. Front Neurol. 11:5885162020. View Article : Google Scholar : PubMed/NCBI

60 

Chaudhari N, Talwar P, Parimisetty A, Lefebvre d'Hellencourt C and Ravanan P: A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci. 8:2132014. View Article : Google Scholar : PubMed/NCBI

61 

Dantzer R: Neuroimmune interactions: From the brain to the immune system and vice versa. Physiol Rev. 98:477–504. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Wong CK, McLean BA, Baggio LL, Koehler JA, Hammoud R, Rittig N, Yabut JM, Seeley RJ, Brown TJ and Drucker DJ: Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab. 36:130–143.e5. 2024. View Article : Google Scholar

63 

Ho LT, Fang YW, Hsu PS, Wang JT and Tsai MH: Association between glucagon-like peptide-1 receptor agonist therapy and respiratory illness in patients with type 2 diabetes: A retrospective observational cohort study. Sci Rep. 15:356252025. View Article : Google Scholar : PubMed/NCBI

64 

Thangavel N, Al Bratty M, Akhtar Javed S, Ahsan W and Alhazmi HA: Targeting peroxisome Proliferator-activated receptors using thiazolidinediones: Strategy for design of novel antidiabetic drugs. Int J Med Chem. 2017:10697182017.PubMed/NCBI

65 

Kapadia R, Yi JH and Vemuganti R: Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci. 13:1813–1826. 2008. View Article : Google Scholar

66 

Adamu A, Li S, Gao F and Xue G: The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front Aging Neurosci. 16:13479872024. View Article : Google Scholar : PubMed/NCBI

67 

Lochhead JJ, Yang J, Ronaldson PT and Davis TP: Structure, function, and regulation of the Blood-brain barrier tight junction in central nervous system disorders. Front Physiol. 11:9142020. View Article : Google Scholar :

68 

Hashimoto Y, Greene C, Munnich A and Campbell M: The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS. 20:222023. View Article : Google Scholar : PubMed/NCBI

69 

Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D and Constantin G: Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol. 135:311–336. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Zhang S, Gao Y, Zhao Y, Huang TY, Zheng Q and Wang X: Peripheral and central neuroimmune mechanisms in Alzheimer's disease pathogenesis. Mol Neurodegener. 20:222025. View Article : Google Scholar : PubMed/NCBI

71 

Chen DY, Sun NH, Lu YP, Hong LJ, Cui TT, Wang CK, Chen XH, Wang SS, Feng LL, Shi WX, et al: GPR124 facilitates pericyte polarization and migration by regulating the formation of filopodia during ischemic injury. Theranostics. 9:5937–5955. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Nicolakakis N and Hamel E: The nuclear receptor PPARgamma as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer's disease. Front Aging Neurosci. 2:212021.

73 

Shao F, Wang X, Wu H, Wu Q and Zhang J: Microglia and neuroinflammation: Crucial pathological mechanisms in traumatic brain Injury-Induced Neurodegeneration. Front Aging Neurosci. 14:8250862022. View Article : Google Scholar : PubMed/NCBI

74 

Corona JC and Duchen MR: PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med. 100:153–163. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Bhatti JS, Bhatti GK and Reddy PH: Mitochondrial dysfunction and oxidative stress in metabolic disorders-A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 1863:1066–1077. 2017. View Article : Google Scholar

76 

Greten FR and Grivennikov SI: Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity. 51:27–41. 2019. View Article : Google Scholar : PubMed/NCBI

77 

de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI

78 

Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB, et al: GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc Natl Acad Sci USA. 108:5759–5764. 2011. View Article : Google Scholar : PubMed/NCBI

79 

Olsen JJ, Pohl S, Deshmukh A, Visweswaran M, Ward NC, Arfuso F, Agostino M and Dharmarajan A: The role of wnt signalling in angiogenesis. Clin Biochem Rev. 38:131–142. 2017.

80 

Cherry AE, Vicente JJ, Xu C, Morrison RS, Ong SE, Wordeman L and Stella N: GPR124 regulates microtubule assembly, mitotic progression, and glioblastoma cell proliferation. Glia. 67:1558–1570. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Hosea R, Hillary S, Naqvi S, Wu S and Kasim V: The two sides of chromosomal instability: Drivers and brakes in cancer. Signal Transduct Target Ther. 9:752024. View Article : Google Scholar : PubMed/NCBI

82 

Hernández-Vásquez MN, Adame-García SR, Hamoud N, Chidiac R, Reyes-Cruz G, Gratton JP, Côté JF and Vázquez-Prado J: Cell adhesion controlled by adhesion G protein-coupled receptor GPR124/ADGRA2 is mediated by a protein complex comprising intersectins and Elmo-Dock. J Biol Chem. 292:12178–12191. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Zhao W, Zhang Z, Xie M, Ding F, Zheng X, Sun S and Du J: Exploring tumor-associated macrophages in glioblastoma: From diversity to therapy. NPJ Precis Oncol. 9:1262025. View Article : Google Scholar : PubMed/NCBI

84 

Peters JJ, Teng C, Peng K and Li X: Deciphering the blood-brain barrier paradox in brain metastasis development and therapy. Cancers (Basel). 17:2982025. View Article : Google Scholar : PubMed/NCBI

85 

Hernandez-Quiles M, Broekema MF and Kalkhoven E: PPARgamma in metabolism, immunity, and cancer: Unified and diverse mechanisms of action. Front Endocrinol (Lausanne). 12:6241122021. View Article : Google Scholar : PubMed/NCBI

86 

Sainis I, Vareli K, Karavasilis V and Briasoulis E: PPARgamma: The portrait of a target ally to cancer chemopreventive agents. PPAR Res. 2008:4364892008. View Article : Google Scholar

87 

Yang XY, Wang LH and Farrar WL: A role for PPARgamma in the regulation of cytokines in immune cells and cancer. PPAR Res. 2008:9617532008. View Article : Google Scholar : PubMed/NCBI

88 

Li H, Weiser-Evans MC and Nemenoff R: Anti- and protumorigenic effects of PPARγ in lung cancer progression: A Double-edged sword. PPAR Res. 2012:3620852012. View Article : Google Scholar

89 

Sun J, Yu L, Qu X and Huang T: The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol. 14:11847942023. View Article : Google Scholar : PubMed/NCBI

90 

Liu X, Kang X, Kang H and Yan H: The immunosuppressive role of MDSCs in HCC: Mechanisms and therapeutic opportunities. Cell Commun Signal. 23:1552025. View Article : Google Scholar : PubMed/NCBI

91 

Post Y, Lu C, Fletcher RB, Yeh WC, Nguyen H, Lee SJ and Li Y: Design principles and therapeutic applications of novel synthetic WNT signaling agonists. iScience. 27:1099382024. View Article : Google Scholar : PubMed/NCBI

92 

Cho C, Smallwood PM and Nathans J: Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-Specific signaling in mammalian CNS angiogenesis and Blood-brain barrier regulation. Neuron. 95:1056–1073.e5. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Nguyen H, Lee SJ and Li Y: Selective activation of the Wnt-Signaling pathway as a novel therapy for the treatment of diabetic retinopathy and other retinal vascular diseases. Pharmaceutics. 14:24762022. View Article : Google Scholar : PubMed/NCBI

94 

Liu GH, Chen T, Zhang X, Ma XL and Shi HS: Small molecule inhibitors targeting the cancers. MedComm (2020). 3:e1812022. View Article : Google Scholar : PubMed/NCBI

95 

Wei W and Wan Y: Thiazolidinediones on PPARγ: The roles in bone remodeling. PPAR Res. 2011:8671802011. View Article : Google Scholar

96 

Blackburn GL: From bench to bedside: Novel mechanisms and therapeutic advances through the development of selective peroxisome proliferator-activated receptor gamma modulators. PPAR Res. 91(Suppl): 251S–253S. 2010.

97 

Xie X, Chen W, Zhang N, Yuan M, Xu C, Zheng Z, Li H and Wang L: Selective tissue distribution mediates Tissue-Dependent PPARγ activation and insulin sensitization by INT131, a selective PPARγ modulator. Front Pharmacol. 8:3172017. View Article : Google Scholar

98 

Hirschfield GM, Shiffman ML, Gulamhusein A, Kowdley KV, Vierling JM, Levy C, Kremer AE, Zigmond E, Andreone P, Gordon SC, et al: Seladelpar efficacy and safety at 3 months in patients with primary biliary cholangitis: ENHANCE, a phase 3, randomized, Placebo-controlled study. Hepatology. 78:397–415. 2023. View Article : Google Scholar : PubMed/NCBI

99 

Landreth G, Jiang Q, Mandrekar S and Heneka M: PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease. Neurotherapeutics. 5:481–489. 2008. View Article : Google Scholar : PubMed/NCBI

100 

Spite M, Clària J and Serhan CN: Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab. 19:21–36. 2014. View Article : Google Scholar

101 

Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W and He G: Recent advances in targeting the 'undruggable' proteins: From drug discovery to clinical trials. Signal Transduct Target Ther. 8:3352023. View Article : Google Scholar

102 

Wang R, Hu B, Pan Z, Mo C, Zhao X, Liu G, Hou P, Cui Q, Xu Z, Wang W, et al: Antibody-drug conjugates (ADCs): Current and future biopharmaceuticals. J Hematol Oncol. 18:512025. View Article : Google Scholar : PubMed/NCBI

103 

Gregor S, Saumur TM, Crosby LD, Powers J and Patterson KK: Study paradigms and principles investigated in motor learning research after stroke: A scoping review. Arch Rehabil Res Clin Transl. 3:1001112021.PubMed/NCBI

104 

Soccio RE, Chen ER, Rajapurkar SR, Safabakhsh P, Marinis JM, Dispirito JR, Emmett MJ, Briggs ER, Fang B, Everett LJ, et al: Genetic variation determines PPARγ function and Anti-diabetic drug response in vivo. Cell. 162:33–44. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Priya SS, Sankaran R, Ramalingam S, Sairam T and Somasundaram LS: Genotype phenotype correlation of genetic polymorphism of PPAR gamma gene and therapeutic response to pioglitazone in type 2 diabetes Mellitus-A pilot study. J Clin Diagn Res. 10:FC11–FC14. 2016.PubMed/NCBI

106 

Konig S, Jayarajan V, Wray S, Kamm R and Moeendarbary E: Mechanobiology of the blood-brain barrier during development, disease and ageing. Nat Commun. 16:72332025. View Article : Google Scholar : PubMed/NCBI

107 

Suchý T, Zieschang C, Popkova Y, Kaczmarek I, Weiner J, Liebing AD, Çakir MV, Landgraf K, Gericke M, Pospisilik JA, et al: The repertoire of Adhesion G protein-coupled receptors in adipocytes and their functional relevance. Int J Obes (Lond). 44:2124–2136. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y, Maquet E, Gauquier A, Cabochette P, Fukuhara S, Mochizuki N, et al: Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. ELife. 4:e064892015. View Article : Google Scholar

109 

Amato AA and de Assis Rocha Neves F: Idealized PPARγ-Based therapies: Lessons from bench and bedside. PPAR Res. 2012:9786872012. View Article : Google Scholar

110 

St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B and Kinzler KW: Genes expressed in human tumor endothelium. Science. 289:1197–1202. 2000. View Article : Google Scholar : PubMed/NCBI

111 

Wang M, Zhang S, Li R and Zhao Q: Unraveling the specialized metabolic pathways in medicinal plant genomes: A review. Front Plant Sci. 15:14595332024. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cui M, Tao S, Wen T and Guo Z: The GPR124‑Wnt‑PPARγ regulatory axis: Molecular mechanisms and therapeutic implications in chronic inflammatory diseases (Review). Int J Mol Med 57: 53, 2026.
APA
Cui, M., Tao, S., Wen, T., & Guo, Z. (2026). The GPR124‑Wnt‑PPARγ regulatory axis: Molecular mechanisms and therapeutic implications in chronic inflammatory diseases (Review). International Journal of Molecular Medicine, 57, 53. https://doi.org/10.3892/ijmm.2025.5724
MLA
Cui, M., Tao, S., Wen, T., Guo, Z."The GPR124‑Wnt‑PPARγ regulatory axis: Molecular mechanisms and therapeutic implications in chronic inflammatory diseases (Review)". International Journal of Molecular Medicine 57.3 (2026): 53.
Chicago
Cui, M., Tao, S., Wen, T., Guo, Z."The GPR124‑Wnt‑PPARγ regulatory axis: Molecular mechanisms and therapeutic implications in chronic inflammatory diseases (Review)". International Journal of Molecular Medicine 57, no. 3 (2026): 53. https://doi.org/10.3892/ijmm.2025.5724
Copy and paste a formatted citation
x
Spandidos Publications style
Cui M, Tao S, Wen T and Guo Z: The GPR124‑Wnt‑PPARγ regulatory axis: Molecular mechanisms and therapeutic implications in chronic inflammatory diseases (Review). Int J Mol Med 57: 53, 2026.
APA
Cui, M., Tao, S., Wen, T., & Guo, Z. (2026). The GPR124‑Wnt‑PPARγ regulatory axis: Molecular mechanisms and therapeutic implications in chronic inflammatory diseases (Review). International Journal of Molecular Medicine, 57, 53. https://doi.org/10.3892/ijmm.2025.5724
MLA
Cui, M., Tao, S., Wen, T., Guo, Z."The GPR124‑Wnt‑PPARγ regulatory axis: Molecular mechanisms and therapeutic implications in chronic inflammatory diseases (Review)". International Journal of Molecular Medicine 57.3 (2026): 53.
Chicago
Cui, M., Tao, S., Wen, T., Guo, Z."The GPR124‑Wnt‑PPARγ regulatory axis: Molecular mechanisms and therapeutic implications in chronic inflammatory diseases (Review)". International Journal of Molecular Medicine 57, no. 3 (2026): 53. https://doi.org/10.3892/ijmm.2025.5724
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team