You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Chen X, Comish PB, Tang D and Kang R: Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol. 9:6371622021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H and Xie Y: Advances in ferroptosis research: A comprehensive review of mechanism exploration, drug development, and disease treatment. Pharmaceuticals (Basel). 18:3342025. View Article : Google Scholar : PubMed/NCBI | |
|
Ma W, Jiang X, Jia R and Li Y: Mechanisms of ferroptosis and targeted therapeutic approaches in urological malignancies. Cell Death Discov. 10:4322024. View Article : Google Scholar : PubMed/NCBI | |
|
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA and Lei P: Ferroptosis: Mechanisms and links with diseases. Signal Transduct Target Ther. 6:492021. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng J and Conrad M: Ferroptosis: When metabolism meets cell death. Physiol Rev. 105:651–706. 2025. View Article : Google Scholar | |
|
Huang X: A concise review on oxidative stress-mediated ferroptosis and cuproptosis in Alzheimer's disease. Cells. 12:13692023. View Article : Google Scholar : PubMed/NCBI | |
|
Naderi S, Khodagholi F, Janahmadi M, Motamedi F, Torabi A, Batool Z, Heydarabadi MF and Pourbadie HG: Ferroptosis and cognitive impairment: Unraveling the link and potential therapeutic targets. Neuropharmacology. 263:1102102025. View Article : Google Scholar | |
|
Zhang Y, Wang Y, Li Y, Pang J, Höhn A, Dong W, Gao R, Liu Y, Wang D, She Y, et al: Methionine restriction alleviates Diabetes-associated cognitive impairment via activation of FGF21. Redox Biol. 77:1033902024. View Article : Google Scholar : PubMed/NCBI | |
|
Ryan SK, Ugalde CL, Rolland AS, Skidmore J, Devos D and Hammond TR: Therapeutic inhibition of ferroptosis in neurodegenerative disease. Trends Pharmacol Sci. 44:674–688. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Khan G, Hussain MS, Khan Y, Fatima R, Ahmad S, Sultana A and Alam P: Ferroptosis and its contribution to cognitive impairment in Alzheimer's disease: Mechanisms and therapeutic potential. Brain Res. 1864:1497762025. View Article : Google Scholar : PubMed/NCBI | |
|
Ma M, Jing G, Tian Y, Yin R and Zhang M: Ferroptosis in cognitive impairment associated with diabetes and Alzheimer's disease: Mechanistic insights and new therapeutic opportunities. Mol Neurobiol. 62:2435–2449. 2025. View Article : Google Scholar | |
|
Jacquemyn J, Ralhan I and Ioannou MS: Driving factors of neuronal ferroptosis. Trends Cell Biol. 34:535–546. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yan N and Zhang JJ: The emerging roles of ferroptosis in vascular cognitive impairment. Front Neurosci. 13:8112019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Li Z, Ran Q and Wang P: Sterols in ferroptosis: From molecular mechanisms to therapeutic strategies. Trends Mol Med. 31:36–49. 2025. View Article : Google Scholar | |
|
Li QS and Jia YJ: Ferroptosis: A critical player and potential therapeutic target in traumatic brain injury and spinal cord injury. Neural Regen Res. 18:506–512. 2023. View Article : Google Scholar | |
|
Shui S, Zhao Z, Wang H, Conrad M and Liu G: Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 45:1020562021. View Article : Google Scholar : PubMed/NCBI | |
|
Chang S, Zhang M, Liu C, Li M, Lou Y and Tan H: Redox mechanism of glycerophospholipids and relevant targeted therapy in ferroptosis. Cell Death Discov. 11:3582025. View Article : Google Scholar : PubMed/NCBI | |
|
Fei W, Chen D, Tang H, Li C, Zheng W, Chen F, Song Q, Zhao Y, Zou Y and Zheng C: Targeted GSH-exhausting and hydroxyl radical self-producing manganese-silica nanomissiles for MRI guided ferroptotic cancer therapy. Nanoscale. 12:16738–16754. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J and Hyun DH: The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases. Antioxidants (Basel). 12:9182023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XD, Liu ZY, Wang MS, Guo YX, Wang XK, Luo K, Huang S and Li RF: Mechanisms and regulations of ferroptosis. Front Immunol. 14:12694512023. View Article : Google Scholar : | |
|
Kakhlon O and Cabantchik ZI: The labile iron pool: Characterization, measurement, and participation in cellular processes(1). Free Radic Biol Med. 33:1037–1046. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Arosio P, Elia L and Poli M: Ferritin, cellular iron storage and regulation. IUBMB Life. 69:414–422. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Mancias JD, Pontano Vaites L, Nissim S, Biancur DE, Kim AJ, Wang X, Liu Y, Goessling W, Kimmelman AC and Harper JW: Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife. 4:e103082015. View Article : Google Scholar : PubMed/NCBI | |
|
Ajoolabady A, Aslkhodapasandhokmabad H, Libby P, Tuomilehto J, Lip GYH, Penninger JM, Richardson DR, Tang D, Zhou H, Wang S, et al: Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol Metab. 32:444–462. 2021. View Article : Google Scholar | |
|
Forcina GC and Dixon SJ: GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 19:e18003112019. View Article : Google Scholar : PubMed/NCBI | |
|
Bridges RJ, Natale NR and Patel SA: System xc− Cystine/glutamate antiporter: An update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 165:20–34. 2012. View Article : Google Scholar : | |
|
Conrad M and Sato H: The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): Cystine supplier and beyond. Amino Acids. 42:231–246. 2012. View Article : Google Scholar | |
|
Xue Z, Nuerrula Y, Sitiwaerdi Y and Eli M: Nuclear factor erythroid 2-related factor 2 promotes radioresistance by regulating glutamate-cysteine ligase modifier subunit and its unique immunoinvasive pattern. Biomol Biomed. 24:545–559. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB and Brown LM: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Benarroch E: What is the role of ferroptosis in neurodegeneration? Neurology. 101:312–319. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou M, Xu K, Ge J, Luo X, Wu M, Wang N and Zeng J: Targeting ferroptosis in Parkinson's disease: Mechanisms and emerging therapeutic strategies. Int J Mol Sci. 25:130422024. View Article : Google Scholar : PubMed/NCBI | |
|
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA, Birsoy K, et al: Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 16:1351–1360. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Teng D, Swanson KD, Wang R, Zhuang A, Wu H, Niu Z, Cai L, Avritt FR, Gu L, Asara JM, et al: DHODH modulates immune evasion of cancer cells via CDP-choline dependent regulation of phospholipid metabolism and ferroptosis. Nat Commun. 16:38672025. View Article : Google Scholar : PubMed/NCBI | |
|
Cao J, Chen X, Chen L, Lu Y, Wu Y, Deng A, Pan F, Huang H, Liu Y, Li Y, et al: DHODH-mediated mitochondrial redox homeostasis: A novel ferroptosis regulator and promising therapeutic target. Redox Biol. 85:1037882025. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Chen X, Xiang W, Tang T and Gan L: m6A demethylase FTO-mediated upregulation of BAP1 induces neuronal ferroptosis via the p53/SLC7A11 axis in the MPP+/MPTP-induced Parkinson's disease model. ACS Chem Neurosci. 16:405–416. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD and Dixon SJ: p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22:569–575. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang M, Qiao M, Zhao C, Deng J, Li X and Zhou C: Targeting ferroptosis for cancer therapy: Exploring novel strategies from its mechanisms and role in cancers. Transl Lung Cancer Res. 9:1569–1584. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, et al: The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 18:522–555. 2013. View Article : Google Scholar : | |
|
Sun Y, Xiao Y, Tang Q, Chen W and Lin L: Genetic markers associated with ferroptosis in Alzheimer's disease. Front Aging Neurosci. 16:13646052024. View Article : Google Scholar : PubMed/NCBI | |
|
Streit WJ, Phan L and Bechmann I: Ferroptosis and pathogenesis of neuritic plaques in Alzheimer disease. Pharmacol Rev. 77:1000052025. View Article : Google Scholar : PubMed/NCBI | |
|
Proneth B and Conrad M: Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ. 26:14–24. 2019. View Article : Google Scholar | |
|
McIntosh A, Mela V, Harty C, Minogue AM, Costello DA, Kerskens C and Lynch MA: Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol. 29:606–621. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Wang J, Li Z, Wang S, Yu G and Wang L: Identification Ferroptosis-related hub genes and diagnostic model in Alzheimer's disease. Front Mol Neurosci. 16:12806392023. View Article : Google Scholar : PubMed/NCBI | |
|
Tian M, Shen J, Qi Z, Feng Y and Fang P: Bioinformatics analysis and prediction of Alzheimer's disease and alcohol dependence based on Ferroptosis-related genes. Front Aging Neurosci. 15:12011422023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Wang M and Chang W: Iron dyshomeostasis and ferroptosis in Alzheimer's disease: Molecular mechanisms of cell death and novel therapeutic drugs and targets for AD. Front Pharmacol. 13:9836232022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun J, Lin XM, Lu DH, Wang M, Li K, Li SR, Li ZQ, Zhu CJ, Zhang ZM, Yan CY, et al: Midbrain dopamine oxidation links ubiquitination of glutathione peroxidase 4 to ferroptosis of dopaminergic neurons. J Clin Invest. 133:e1731102023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Z, Zhang S, Liu X, Wang X, Xue C, Wu X, Zhang X, Xu X, Liu Z, Yao L and Lu G: LRRK2 regulates ferroptosis through the system xc-GSH-GPX4 pathway in the neuroinflammatory mechanism of Parkinson's disease. J Cell Physiol. 239:e312502024. View Article : Google Scholar : PubMed/NCBI | |
|
Negida A, Hassan NM, Aboeldahab H, Zain YE, Negida Y, Cadri S, Cadri N, Cloud LJ, Barrett MJ and Berman B: Efficacy of the Iron-chelating agent, deferiprone, in patients with Parkinson's disease: A systematic review and Meta-analysis. CNS Neurosci Ther. 30:e146072024. View Article : Google Scholar : PubMed/NCBI | |
|
Angelova PR, Choi ML, Berezhnov AV, Horrocks MH, Hughes CD, De S, Rodrigues M, Yapom R, Little D, Dolt KS, et al: Alpha synuclein aggregation drives ferroptosis: An Interplay of iron, calcium and lipid peroxidation. Cell Death Differ. 27:2781–2796. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Wu S, Li Q, Sun H and Wang Y: Targeting ferroptosis: Acteoside as a neuroprotective agent in salsolinol-induced Parkinson's disease models. Front Biosci (Landmark Ed). 30:266792025. View Article : Google Scholar : PubMed/NCBI | |
|
Yan J, Bao L, Liang H, Zhao L, Liu M, Kong L, Fan X, Liang C, Liu T, Han X, et al: A druglike ferrostatin-1 analogue as a ferroptosis inhibitor and photoluminescent indicator. Angew Chem Int Ed Engl. 64:e2025021952025. View Article : Google Scholar : PubMed/NCBI | |
|
A A, W C, N N, L M, M D and Zhang DD: α-Syn overexpression, NRF2 suppression, and enhanced ferroptosis create a vicious cycle of neuronal loss in Parkinson's disease. Free Radic Biol Med. 192:130–140. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gong K, Zhou S, Xiao L, Xu M, Zhou Y, Lu K, Yu X, Zhu J, Liu C and Zhu Q: Danggui shaoyao san ameliorates Alzheimer's disease by regulating lipid metabolism and inhibiting neuronal ferroptosis through the AMPK/Sp1/ACSL4 signaling pathway. Front Pharmacol. 16:15883752025. View Article : Google Scholar | |
|
Lv QK, Tao KX, Yao XY, Pang MZ, Cao BE, Liu CF and Wang F: Melatonin MT1 receptors regulate the Sirt1/Nrf2/ho-1/Gpx4 pathway to prevent α-synuclein-induced ferroptosis in Parkinson's disease. J Pineal Res. 76:e129482024. View Article : Google Scholar | |
|
Wang W, Thomas ER, Xiao R, Chen T, Guo Q, Liu K, Yang Y and Li X: Targeting mitochondria-regulated ferroptosis: A new frontier in Parkinson's disease therapy. Neuropharmacology. 274:1104392025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Liu J, Zhang Y, Li Z, Zhao Z, Jiang W, Zhao J, Hou L and Wang Q: Microglial CR3 promotes neuron ferroptosis via NOX2-mediated iron deposition in rotenone-induced experimental models of Parkinson's disease. Redox Biol. 77:1033692024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Mao W, Zhang Y, Feng W, Bai B, Ji B, Chen J, Cheng B and Yan F: NOX1 triggers ferroptosis and ferritinophagy, contributes to Parkinson's disease. Free Radic Biol Med. 222:331–343. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Z, Ying C, Si X, Xue N, Liu Y, Zheng R, Chen Y, Pu J and Zhang B: NOX4 exacerbates Parkinson's disease pathology by promoting neuronal ferroptosis and neuroinflammation. Neural Regen Res. 20:2038–2052. 2025. View Article : Google Scholar | |
|
Xie Z, Wang X, Luo X, Yan J, Zhang J, Sun R, Luo A and Li S: Activated AMPK mitigates Diabetes-related cognitive dysfunction by inhibiting hippocampal ferroptosis. Biochem Pharmacol. 207:1153742023. View Article : Google Scholar | |
|
Wei M, Liu X, Tan Z, Tian X, Li M and Wei J: Ferroptosis: A new strategy for Chinese herbal medicine treatment of diabetic nephropathy. Front Endocrinol (Lausanne). 14:11880032023. View Article : Google Scholar : PubMed/NCBI | |
|
Sha W, Hu F, Xi Y, Chu Y and Bu S: Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res. 2021:99996122021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Hu X, Xue Y, Liu C, Liu D, Shang Y, Shi Y, Cheng L, Zhang J, Chen A and Wang J: Targeting hepcidin improves cognitive impairment and reduces iron deposition in a diabetic rat model. Am J Transl Res. 12:4830–4839. 2020.PubMed/NCBI | |
|
Tang W, Li Y, He S, Jiang T, Wang N, Du M, Cheng B, Gao W, Li Y and Wang Q: Caveolin-1 alleviates diabetes-associated cognitive dysfunction through modulating neuronal ferroptosis-mediated mitochondrial homeostasis. Antioxid Redox Signal. 37:867–886. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo T, Yu Y, Yan W, Zhang M, Yi X, Liu N, Cui X, Wei X, Sun Y, Wang Z, et al: Erythropoietin ameliorates cognitive dysfunction in mice with type 2 diabetes mellitus via inhibiting iron overload and ferroptosis. Exp Neurol. 365:1144142023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Guo H and Li Q, Wang N, Yan C, Zhang S, Dong Y, Liu C, Gao W, Zhu Y and Li Q: TREM1 induces microglial ferroptosis through the PERK pathway in diabetic-associated cognitive impairment. Exp Neurol. 383:1150312025. View Article : Google Scholar | |
|
Ma H, Jiang T, Tang W, Ma Z, Pu K, Xu F, Chang H, Zhao G, Gao W, Li Y and Wang Q: Transplantation of platelet-derived mitochondria alleviates cognitive impairment and mitochondrial dysfunction in db/db mice. Clin Sci (Lond). 134:2161–2175. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Asterholm IW, Mundy DI, Weng J, Anderson RGW and Scherer PE: Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metab. 15:171–185. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Q, Yang Y, Qiao Y, Zheng Y, Yu X, Liu F, Wang H, Zheng B, Pan S, Ren K, et al: Quercetin ameliorates diabetic kidney injury by inhibiting ferroptosis via activating Nrf2/HO-1 signaling pathway. Am J Chin Med. 51:997–1018. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Cao Y, Xu J, Li J, Lv C, Gao Q, Zhang C, Jin C, Wang R, Jiao R and Zhu H: Vitamin D improves cognitive impairment and alleviates ferroptosis via the Nrf2 signaling pathway in aging mice. Int J Mol Sci. 24:153152023. View Article : Google Scholar : PubMed/NCBI | |
|
Wei Z, Yu H, Zhao H, Wei M, Xing H, Pei J, Yang Y and Ren K: Broadening horizons: Ferroptosis as a new target for traumatic brain injury. Burns Trauma. 12:tkad0512024. View Article : Google Scholar : PubMed/NCBI | |
|
Abdukarimov N, Kokabi K and Kunz J: Ferroptosis and iron homeostasis: Molecular mechanisms and neurodegenerative disease implications. Antioxidants (Basel). 14:5272025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Fu C, Wei Y, Xu B, Yang R, Li C, Qiu M, Yin Y and Qin D: Ferroptosis-related biomarkers for alzheimer's disease: Identification by bioinformatic analysis in hippocampus. Front Cell Neurosci. 16:10239472022. View Article : Google Scholar : PubMed/NCBI | |
|
Ficiarà E, Munir Z, Boschi S, Caligiuri ME and Guiot C: Alteration of iron concentration in Alzheimer's disease as a possible diagnostic biomarker unveiling ferroptosis. Int J Mol Sci. 22:44792021. View Article : Google Scholar : PubMed/NCBI | |
|
Ayton S, Faux NG and Bush AI; Alzheimer's disease neuroimaging initiative: Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. Nat Commun. 6:67602015. View Article : Google Scholar : PubMed/NCBI | |
|
Urbano T, Michalke B, Chiari A, Malagoli C, Bedin R, Tondelli M, Vinceti M and Filippini T: Iron species in cerebrospinal fluid and dementia risk in subjects with mild cognitive impairment: A cohort study. Neurotoxicology. 110:1–9. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Urbano T, Vinceti M, Carbone C, Wise LA, Malavolti M, Tondelli M, Bedin R, Vinceti G, Marti A, Chiari A, et al: Exposure to cadmium and other trace elements among individuals with mild cognitive impairment. Toxics. 12:9332024. View Article : Google Scholar : | |
|
Ayton S, Janelidze S, Kalinowski P, Palmqvist S, Belaidi AA, Stomrud E, Roberts A, Roberts B, Hansson O and Bush AI: CSF ferritin in the clinicopathological progression of Alzheimer's disease and associations with APOE and inflammation biomarkers. J Neurol Neurosurg Psychiatry. 94:211–219. 2023. View Article : Google Scholar | |
|
Yu SY, Cao CJ, Zuo LJ, Chen ZJ, Lian TH, Wang F, Hu Y, Piao YS, Li LX, Guo P, et al: Clinical features and dysfunctions of iron metabolism in Parkinson disease patients with hyper echogenicity in Substantia nigra: A Cross-sectional study. BMC Neurol. 18:92018. View Article : Google Scholar : PubMed/NCBI | |
|
Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W and Stefanescu C: Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease. Neurosci Lett. 469:6–10. 2010. View Article : Google Scholar | |
|
Lin Q, Shahid S, Hone-Blanchet A, Huang S, Wu J, Bisht A, Loring D, Goldstein F, Levey A, Crosson B, et al: Magnetic resonance evidence of increased iron content in subcortical brain regions in asymptomatic Alzheimer's disease. Hum Brain Mapp. 44:3072–3083. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dusek P, Hofer T, Alexander J, Roos PM and Aaseth JO: Cerebral iron deposition in neurodegeneration. Biomolecules. 12:7142022. View Article : Google Scholar : PubMed/NCBI | |
|
Majerníková N, Marmolejo-Garza A, Salinas CS, Luu MDA, Zhang Y, Trombetta-Lima M, Tomin T, Birner-Gruenberger R, Lehtonen Š, Koistinaho J, et al: The link between amyloid β and ferroptosis pathway in Alzheimer's disease progression. Cell Death Dis. 15:7822024. View Article : Google Scholar | |
|
Kang JH, Korecka M, Lee EB, Cousins KAQ, Tropea TF, Chen-Plotkin AA, Irwin DJ, Wolk D, Brylska M, Wan Y and Shaw LM: Alzheimer disease biomarkers: Moving from CSF to plasma for reliable detection of amyloid and tau pathology. Clin Chem. 69:1247–1259. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hampel H, O'Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R and Blennow K: Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nat Rev Neurol. 14:639–652. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, et al: Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet. 396:413–446. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Biessels GJ and Despa F: Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat Rev Endocrinol. 14:591–604. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Andrews SJ, Tolosa-Tort P, Jonson C, Fulton-Howard B, Renton AE, Yokoyama JS and Yaffe K; Alzheimer's Disease Neuroimaging Initiative: The role of genomic-informed risk assessments in predicting dementia outcomes. Alzheimers Dement. 21:e708262025. View Article : Google Scholar : PubMed/NCBI | |
|
Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL and Chertkow H: The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 53:695–699. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Folstein MF, Folstein SE and McHugh PR: 'Mini-mental state'. A practical method for grading the cognitive state of patients for the clinician J Psychiatr Res. 12:189–198. 1975. | |
|
Cullis JO, Fitzsimons EJ, Griffiths WJ, Tsochatzis E and Thomas DW; British Society for Haematology: Investigation and management of a raised serum ferritin. Br J Haematol. 181:331–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y and Liu T: Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 73:82–101. 2015. View Article : Google Scholar : | |
|
Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, et al: NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement. 14:535–562. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen HJ, Dong X, Wang Y, Wang K, Feng G, Bai T, Zhang M, Gan K, Peng JJ, Huang W, et al: Polygenic risk for Alzheimer's disease in healthy aging: Age-related and APOE-driven effects on brain structures and cognition. Genome Med. 17:1262025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Chen M, Chen P, Lin X, Chen S, Liu C, Wang D, Deng H, Li Q and Wu Y: Machine learning-based stratification of mild cognitive impairment in Parkinson's disease: A multicenter cross-sectional analysis. BMC Med Inform Decis Mak. 25:3842025. View Article : Google Scholar : PubMed/NCBI | |
|
Ren Q, Niu S, Zhi L and Liu H: Risk factor analysis of cognitive frailty in older adults with type 2 diabetes mellitus: A cross-sectional study. Front Aging Neurosci. 17:16674052025. View Article : Google Scholar : PubMed/NCBI | |
|
Hambright WS, Fonseca RS, Chen L, Na R and Ran Q: Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 12:8–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Masaldan S, Bush AI, Devos D, Rolland AS and Moreau C: Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 133:221–233. 2019. View Article : Google Scholar | |
|
Thorwald MA, Godoy-Lugo JA, Kerstiens E, Garcia G, Kim M, Shemtov SJ, Silva J, Durra S, O'Day PA, Mack WJ, et al: Down syndrome with Alzheimer's disease brains have increased iron and associated lipid peroxidation consistent with ferroptosis. Alzheimers Dement. 21:e703222025. View Article : Google Scholar : PubMed/NCBI | |
|
Ra F and K H: Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 23:795–807. 2002. View Article : Google Scholar | |
|
Ji Y, Zheng K, Li S, Ren C, Shen Y, Tian L, Zhu H, Zhou Z and Jiang Y: Insight into the potential role of ferroptosis in neurodegenerative diseases. Front Cell Neurosci. 16:10051822022. View Article : Google Scholar : PubMed/NCBI | |
|
Tian Y, Tian Y, Yuan Z, Zeng Y, Wang S, Fan X, Yang D and Yang M: Iron metabolism in aging and age-related diseases. Int J Mol Sci. 23:36122022. View Article : Google Scholar : PubMed/NCBI | |
|
Baier MP, Sharum SI, Wilson JL, Narasimhan S, Salim C and Logan S: Enhancing mitochondrial matrix antioxidant SOD2 in astrocytes mitigates cellular senescence and cognitive impairment in aging. Aging Dis. Oct 9–2025.Epub ahead of print. PubMed/NCBI | |
|
Lu Q, Shao N, Fang Z, Ouyang Z, Shen Y, Yang R, Liu H, Cai B and Wei T: The anti-Alzheimer's disease effects of ganoderic acid a by inhibiting Ferroptosis-lipid peroxidation via activation of the NRF2/SLC7A11/GPX4 signaling pathway. Chem Biol Interact. 412:1114592025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Li M, Jiang Y, Wang S, Yang X, Naseem A, Algradi AM, Hao Z, Guan W, Chen Q, et al: Saponins from Astragalus membranaceus(Fisch.) Bge alleviated neuronal ferroptosis in Alzheimer's disease by regulating the NOX4/Nrf2 signaling pathway. J Agric Food Chem. 73:7725–7740. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Meng X, Zhao W, Yang R, Xu SQ, Wang SY, Li MM, Jiang YK, Hao ZC, Guan W, Kuang HX, et al: Lignans from Schisandra chinensis(Turcz.) Baill ameliorates cognitive impairment in Alzheimer's disease and alleviates ferroptosis by activating the Nrf2/FPN1 signaling pathway and regulating iron levels. J Ethnopharmacol. 341:1193352025. View Article : Google Scholar | |
|
Li Z, Lu Y, Zhen Y, Jin W, Ma X, Yuan Z, Liu B, Zhou XL and Zhang L: Avicularin inhibits ferroptosis and improves cognitive impairments in Alzheimer's disease by modulating the NOX4/Nrf2 axis. Phytomedicine. 135:1562092024. View Article : Google Scholar : PubMed/NCBI | |
|
Deng PX, Silva M, Yang N, Wang Q, Meng X, Ye KQ, Gao HC and Zheng WH: Artemisinin inhibits neuronal ferroptosis in Alzheimer's disease models by targeting KEAP1. Acta Pharmacol Sin. 46:326–337. 2025. View Article : Google Scholar | |
|
Yong Y, Yan L, Wei J, Feng C, Yu L, Wu J, Guo M, Fan D, Yu C, Qin D, et al: A novel ferroptosis inhibitor, thonningianin a, improves Alzheimer's disease by activating GPX4. Theranostics. 14:6161–6184. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Wei M, Wang M, Guo M, Yu H, Chen Y, Xu T and Zhou Y: Schisandra total lignans ameliorate neuronal ferroptosis in 3xTg-AD mice via regulating NADK/NADPH/GSH pathway. Phytomedicine. 140:1566122025. View Article : Google Scholar : PubMed/NCBI | |
|
Ding T, Song M, Wu Y, Li Z, Zhang S and Fan X: Schisandrin B ameliorates Alzheimer's disease by suppressing neuronal ferroptosis and ensuing microglia M1 polarization. Phytomedicine. 142:1567802025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang ZH, Chen C, Jia SZ, Cao XC, Liu M, Tian J, Hoffmann PR, Xu HX, Ni JZ and Song GL: Selenium restores synaptic deficits by modulating NMDA receptors and selenoprotein K in an Alzheimer's disease model. Antioxid Redox Signal. 35:863–884. 2021. View Article : Google Scholar | |
|
Zeng H and Jin Z: The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (review). Mol Med Rep. 32:1922025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Wang Z, Li Y, Hou Y, Yin C, Yang E, Liao Z, Fan C, Martin LL and Sun D: Blood brain Barrier-targeted delivery of double selenium nanospheres ameliorates neural ferroptosis in Alzheimer's disease. Biomaterials. 302:1223592023. View Article : Google Scholar | |
|
Sun C, Gao X, Sha S, Wang S, Shan Y, Li L, Xing C, Guan H and Du H: Berberine alleviates Alzheimer's disease by activating autophagy and inhibiting ferroptosis through the JNK-p38MAPK signaling pathway. Int Immunopharmacol. 155:1145502025. View Article : Google Scholar : PubMed/NCBI | |
|
Song D, Gui F, Li G, Zhuang S, Sun J, Tan X, Hong C and Huang J: Neuritin improves cognitive impairments in APP/PS1 Alzheimer's disease mice model by mitigating neuronal ferroptosis via PI3K/Akt activation. Int J Biol Macromol. 303:1406622025. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Zhao J, Liu X, Lu P, Liang F, Wang X, Wu J and Hai Y: Ghrelin induces ferroptosis resistance and M2 polarization of microglia to alleviate neuroinflammation and cognitive impairment in Alzheimer's disease. J Neuroimmune Pharmacol. 20:62025. View Article : Google Scholar : PubMed/NCBI | |
|
Tan L, Xie J, Liao C, Li X, Zhang W, Cai C, Cheng L and Wang X: Tetrahedral framework nucleic acids inhibit aβ-mediated ferroptosis and ameliorate cognitive and synaptic impairments in Alzheimer's disease. J Nanobiotechnology. 22:6822024. View Article : Google Scholar | |
|
Lei L, Yuan J, Dai Z, Xiang S, Tu Q, Cui X, Zhai S, Chen X, He Z, Fang B, et al: Targeting the labile iron pool with engineered DFO nanosheets to inhibit ferroptosis for Parkinson's disease therapy. Adv Mater. 36:e24093292024. View Article : Google Scholar : PubMed/NCBI | |
|
Ko CJ, Gao SL, Lin TK, Chu PY and Lin HY: Ferroptosis as a major factor and therapeutic target for neuroinflammation in Parkinson's disease. Biomedicines. 9:16792021. View Article : Google Scholar : PubMed/NCBI | |
|
Han Z, Wang B, Wen YQ, Li YN, Feng CX, Ding XS, Shen Y, Yang Q and Gao L: Acteoside alleviates lipid peroxidation by enhancing Nrf2-mediated mitophagy to inhibit ferroptosis for neuroprotection in Parkinson's disease. Free Radic Biol Med. 223:493–505. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kong L, Wang Y, Tong Z, Dai R, Yusuf A, Du L, Liu B, Huang Z and Hu L: Granulathiazole a protects 6-OHDA-induced Parkinson's disease from ferroptosis via activating Nrf2/HO-1 pathway. Bioorg Chem. 147:1073992024. View Article : Google Scholar : PubMed/NCBI | |
|
Pandey SK, Nanda A, Gautam AS and Singh RK: Betulinic acid protects against lipopolysaccharide and ferrous sulfate-induced oxidative stress, ferroptosis, apoptosis, and neuroinflammation signaling relevant to Parkinson's disease. Free Radic Biol Med. 233:340–354. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Fu G, Li T, Zhao Y, Zhang S, Xue X, Yang Y, Li T, Luo S, Yue G and Lei T: Dingzhen pills inhibit neuronal ferroptosis and neuroinflammation by inhibiting the cGAS-STING pathway for Parkinson's disease mice. Chin Med. 20:872025. View Article : Google Scholar : PubMed/NCBI | |
|
Dong X, Yang T and Jin Z: Lactobacillus Reuteri-derived γ-amino butyric acid alleviates MPTP-induced Parkinson's disease through inhibiting Ferroptosis via the AKT-GSK3β-GPX4 axis. NPJ Parkinsons Dis. 11:1492025. View Article : Google Scholar | |
|
Yusun A, Wan HM, Chen HX, Sun M, Zhang CN and Ding XD: Emodin ameliorates dopaminergic neuron loss in the MPP+ induced Parkinson's disease model: Significant inhibition of Ferroptosis by activating UQCRC1 protein. Nat Prod Res. 1–12. 2025. View Article : Google Scholar | |
|
Lei Y, Zhou J, Xu D, Chai S and Xiong N: Corilagin attenuates neuronal apoptosis and ferroptosis of Parkinson's disease through regulating the TLR4/src/NOX2 signaling pathway. ACS Chem Neurosci. 16:968–980. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Zheng Z, Xue C, Wang X, Li J, Liu Z, Xin W, Xu X, Zhou D, Yao L and Lu G: LRRK2 mediates α-synuclein-induced neuroinflammation and ferroptosis through the p62-Keap1-Nrf2 pathway in Parkinson's disease. Inflammation. 48:3666–3691. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Huang L, Pi J, Gu L, Liao Z and Wang W: Teneligliptin, a DPP4 inhibitor protects dopaminergic neurons in PD models via inhibiting of oxidative stress and ferroptosis. Eur J Pharmacol. 1002:1777822025. View Article : Google Scholar : PubMed/NCBI | |
|
An JR, Su JN, Sun GY, Wang QF, Fan YD, Jiang N, Yang YF and Shi Y: Liraglutide alleviates cognitive deficit in db/db mice: Involvement in oxidative stress, iron overload, and ferroptosis. Neurochem Res. 47:279–294. 2022. View Article : Google Scholar | |
|
Chen J, Guo P, Han M, Chen K, Qin J and Yang F: Cognitive protection of sinomenine in type 2 diabetes mellitus through regulating the EGF/Nrf2/HO-1 signaling, the microbiota-gut-brain axis, and hippocampal neuron ferroptosis. Phytother Res. 37:3323–3341. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Zhu S, Guo M, Ma RD, Tang YL, Nie YX and Gu HF: Artemisinin ameliorates cognitive decline by inhibiting hippocampal neuronal ferroptosis via Nrf2 activation in T2DM mice. Mol Med. 30:352024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Feng S, Li Q, Song Z, He J, Yang S, Yan C and Ling H: Dihydromyricetin alleviates hippocampal ferroptosis in type 2 diabetic cognitive impairment rats via inhibiting the JNK-inflammatory factor pathway. Neurosci Lett. 812:1374042023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Y, Xu J, Wang J, Wang J, Li Y, Chen W and Zhang Q: Resveratrol alleviates diabetic adipose Tissue-derived extracellular vesicles-induced hippocampal ferroptosis and cognitive dysfunction via inhibiting miR-9-3p/SLC7A11 axis. Mol Neurobiol. 62:12307–12330. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Pang X, Yeo AJ, Xie S, Xiang M, Shi B, Yu G and Li C: The molecular mechanisms of ferroptosis and its role in blood-brain barrier dysfunction. Front Cell Neurosci. 16:8897652022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Cao Y, Lu Y, Zhu H, Zhang J, Che J, Zhuang R and Shao J: Recent progress and applications of small molecule inhibitors of Keap1-Nrf2 axis for neurodegenerative diseases. Eur J Med Chem. 264:1159982024. View Article : Google Scholar | |
|
Liu Q, Zhao Y, Zhou H and Chen C: Ferroptosis: Challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater. 10:rbad0042023. View Article : Google Scholar : PubMed/NCBI | |
|
Delila L, Nebie O, Le NTN, Timmerman K, Lee DY, Wu YW, Chou ML, Buée L, Chou SY, Blum D, et al: Neuroprotective effects of intranasal extracellular vesicles from human platelet concentrates supernatants in traumatic brain injury and Parkinson's disease models. J Biomed Sci. 31:872024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Huang J, Zhang Z, Zhang R, Sun Q, Zhang Z, Liu Y and Ma B: Mesenchymal stem cell-derived exosomes ameliorate delayed neurocognitive recovery in aged mice by inhibiting hippocampus ferroptosis via activating SIRT1/Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev. 2022:35932942022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Jia B, Li J, Li Q and Luo C: The interplay between ferroptosis and neuroinflammation in central neurological disorders. Antioxidants (Basel). 13:3952024. View Article : Google Scholar : PubMed/NCBI | |
|
Cai Z, Wang S, Cao S, Chen Y, Penati S, Peng V, Yuede CM, Beatty WL, Lin K, Zhu Y, et al: Loss of ATG7 in microglia impairs UPR, triggers ferroptosis, and weakens amyloid pathology control. J Exp Med. 222:e202301732025. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Sun M, Cao F, Chen Y, Zhang L, Li H, Cao J, Song J, Ma Y, Mi W and Zhang X: The ferroptosis inhibitor liproxstatin-1 ameliorates LPS-induced cognitive impairment in mice. Nutrients. 14:45992022. View Article : Google Scholar : PubMed/NCBI | |
|
Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD and Gao LC: The key roles of organelles and ferroptosis in alzheimer's disease. J Neurosci Res. 100:1257–1280. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Conrad M and Proneth B: Selenium: Tracing another essential element of ferroptotic cell death. Cell Chem Biol. 27:409–419. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kalyanaraman B: NAC, NAC, Knockin' on Heaven's door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol. 57:1024972022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Shen R, Qian M, Zhou Z, Xie B, Jiang Y, Yu Y and Dong W: Ferroptosis in Alzheimer's disease: The regulatory role of glial cells. J Integr Neurosci. 24:258452025. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zhang E, Yang H, Chen Y, Tao L, Xu Y, Chen T and Shen X: Gastrodin ameliorates cognitive dysfunction in vascular dementia rats by suppressing ferroptosis via the regulation of the Nrf2/Keap1-GPx4 signaling pathway. Molecules. 27:63112022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L and Nao J: Ferroptosis: A potential therapeutic target for Alzheimer's disease. Rev Neurosci. 34:573–598. 2023. View Article : Google Scholar | |
|
Mesa-Herrera F, Marín R, Torrealba E and Díaz M: Multivariate assessment of lipoxidative metabolites, trace biometals, and antioxidant and detoxifying activities in the cerebrospinal fluid define a fingerprint of preclinical stages of Alzheimer's disease. J Alzheimers Dis. 86:387–402. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Mayr E, Rotter J, Kuhrt H, Winter K, Stassart RM, Streit WJ and Bechmann I: Detection of molecular markers of ferroptosis in human Alzheimer's disease brains. J Alzheimers Dis. 102:1133–1154. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ayton S, Wang Y, Diouf I, Schneider JA, Brockman J, Morris MC and Bush AI: Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol Psychiatry. 25:2932–2941. 2020. View Article : Google Scholar | |
|
Shi YS, Chen JC, Lin L, Cheng YZ, Zhao Y, Zhang Y and Pan XD: Dendrobine rescues cognitive dysfunction in diabetic encephalopathy by inhibiting ferroptosis via activating Nrf2/GPX4 axis. Phytomedicine. 119:1549932023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Q, Zhou L, Liu C, Liu D, Zhang Y, Li C, Shang Y, Wei X, Li C and Wang J: Brain iron deposition in type 2 diabetes mellitus with and without mild cognitive impairment-an in vivo susceptibility mapping study. Brain Imaging Behav. 12:1479–1487. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hao L, Mi J, Song L, Guo Y, Li Y, Yin Y and Zhang C: SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 diabetes. Neuroscience. 463:216–226. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Clarke NC, McCabe E, Jensen LD, Creaven BS and Costello DA: Salicylaldehyde benzoylhydrazone protects against ferroptosis in models of neurotoxicity and behavioural dysfunction, in vitro and in vivo. J Mol Neurosci. 75:772025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Li P, Liang Y and Wang D: ANO6 targets TMEM30A to regulate endoplasmic reticulum Stress-induced lipid peroxidation and ferroptosis in Alzheimer's cells. Cell Biochem Biophys. 83:3707–3715. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Z, Jiang Z, Huang X, Chen Y, Feng L, Mai J, Lao L, Li L, Chen WH and Hu J: Anti-Alzheimer effects of an HDAC6 inhibitor, WY118, alone and in combination of lithium chloride: Synergistic suppression of ferroptosis via the modulation of tau phosphorylation and MAPK signaling. Eur J Pharmacol. 997:1776052025. View Article : Google Scholar : PubMed/NCBI | |
|
Ramesh M and Govindaraju T: MiR-7a-Klf4 axis as a regulator and therapeutic target of neuroinflammation and ferroptosis in Alzheimer's disease. bioRxiv. Mar 25–2025.Epub ahead of print. View Article : Google Scholar | |
|
Zheng N, Zhang Z, Liu H, Zong S, Zhang L, Cui X, Liu Y, Wang C, Chen R and Lu Z: MK886 ameliorates Alzheimer's disease by activating the PRKCI/AKT signaling pathway. Eur J Pharmacol. 993:1773592025. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Y, Wang H, Hu Y, Zhang X, Miao X, Li Z and Jia J: Hederagenin ameliorates ferroptosis-induced damage by regulating PPARα/Nrf2/GPX4 signaling pathway in HT22 cells: An in vitro and in silico study. Bioorg Chem. 155:1081192025. View Article : Google Scholar | |
|
Tian L, Li H, Xiong W, Li X, Duan S, Yang C and Shi C: Proteomic alteration in catalpol treatment of Alzheimer's disease by regulating HSPA5/GPX4. Eur J Pharmacol. 987:1770752025. View Article : Google Scholar | |
|
Gugliandolo A, Bramanti P and Mazzon E: Role of vitamin E in the treatment of Alzheimer's disease: Evidence from animal models. Int J Mol Sci. 18:25042017. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao S, Liu L, Qin X, Xu L, Chai Z and Li Z: Astragenol alleviates neuroinflammation and improves Parkinson's symptoms through amino acid metabolism pathway and inhibition of ferroptosis. J Ethnopharmacol. 348:1198962025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Geng T, Yao X and Liu Y: GDF15 attenuates Parkinson's disease progression via suppressing the activation of cGAS-STING pathway. Mol Cell Biochem. 480:4449–4466. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Kang Z, Han R, Wang M, Wang Y, Sun X, Wang C, Zhou J, Cao L and Lu M: JWA binding to NCOA4 alleviates degeneration in dopaminergic neurons through suppression of ferritinophagy in Parkinson's disease. Redox Biol. 73:1031902024. View Article : Google Scholar : PubMed/NCBI | |
|
Fu X, Qu L, Xu H and Xie J: Ndfip1 protected dopaminergic neurons via regulating mitochondrial function and ferroptosis in Parkinson's disease. Exp Neurol. 375:1147242024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T, Sobue A, Watanabe S, Komine O, Saido TC, Saito T and Yamanaka K: Dimethyl fumarate improves cognitive impairment and neuroinflammation in mice with Alzheimer's disease. J Neuroinflammation. 21:552024. View Article : Google Scholar : PubMed/NCBI |