You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Wu S, Yu Y, Zheng Z and Cheng Q: High mobility group box-1: A potential therapeutic target for allergic rhinitis. Eur J Med Res. 28:4302023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu ZB, Zhu WY, Fei B and Lv LY: Effects of oral steroids combined with postauricular steroid injection on patients with sudden sensorineural hearing loss with delaying intervention: A retrospective analysis. Niger J Clin Pract. 26:760–764. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jin L, Fan K, Tan S, Liu S, Wang Y and Yu S: Analysis of the characteristics of outpatient and emergency diseases in the department of otolaryngology during the 'COVID-19' pandemic. Sci Prog. 104:3685042110363192021. View Article : Google Scholar | |
|
Zhu Y, Yu J, Zhu X, Yuan J, Dai M, Bao Y and Jiang Y: Experimental observation of the effect of immunotherapy on CD4+ T cells and Th1/Th2 cytokines in mice with allergic rhinitis. Sci Rep. 13:52732023. View Article : Google Scholar : PubMed/NCBI | |
|
Park MK, Chae SW, Kim HB, Cho JG and Song JJ: Middle ear inflammation of rat induced by urban particles. Int J Pediatr Otorhinolaryngol. 78:2193–2197. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Zhang C, Cai W, Bai Y, Callaghan M, Chang N, Chen B, Chen H, Cheng L, Dai H, et al: The 2023 China report of the lancet countdown on health and climate change: Taking stock for a thriving future. Lancet Public Health. 8:e978–e995. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Piao CH, Fan Y, Nguyen TV, Song CH, Kim HT and Chai OH: PM2.5 exposure regulates Th1/Th2/Th17 cytokine production through NF-κB signaling in combined allergic rhinitis and asthma syndrome. Int Immunopharmacol. 119:1102542023. View Article : Google Scholar | |
|
Lamorie-Foote K, Liu Q, Shkirkova K, Ge B, He S, Morgan TE and Mack WJ, Sioutas C, Finch CE and Mack WJ: Particulate matter exposure and chronic cerebral hypoperfusion promote oxidative stress and induce neuronal and oligodendrocyte apoptosis in male mice. J Neurosci Res. 101:384–402. 2023. View Article : Google Scholar : | |
|
Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O'Reilly S, Brauer M, Caravanos J, Chiles T, Cohen A, Corra L, et al: Pollution and health: A progress update. Lancet Planet Health. 6:e535–e547. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Verhoeven JI, Allach Y, Vaartjes ICH, Klijn CJM and de Leeuw FE: Ambient air pollution and the risk of ischaemic and haemorrhagic stroke. Lancet Planet Health. 5:e542–e552. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zhang Y, Li B, Zhao Z, Huang C, Zhang X, Deng Q, Lu C, Qian H, Yang X, et al: Asthma and allergic rhinitis among young parents in China in relation to outdoor air pollution, climate and home environment. Sci Total Environ. 751:1417342021. View Article : Google Scholar | |
|
Yang J, Seo JH, Jeong NN and Sohn JR: Effects of legal regulation on indoor air quality in facilities for sensitive populations-A field study in Seoul, Korea. Environ Manage. 64:344–352. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Kim YK, Kang TS, Jee YK and Kim YY: Importance of indoor dust biological ultrafine particles in the pathogenesis of chronic inflammatory lung diseases. Environ Health Toxicol. 32:e20170212017. View Article : Google Scholar : PubMed/NCBI | |
|
Yun H, Seo JH, Kim YG and Yang J: Impact of scented candle use on indoor air quality and airborne microbiome. Sci Rep. 15:101812025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Kim JS, Jeon HW, Lee J and Seo JH: Integrated culture-based and metagenomic profiling of airborne and surface-deposited bacterial communities in residential environments. Environ Pollut. 382:1267032025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu R, Guo Q, Fan J, Guo C, Wang G, Wu W and Xu J: Association between air pollution and outpatient visits for allergic rhinitis: Effect modification by ambient temperature and relative humidity. Sci Total Environ. 821:1529602022. View Article : Google Scholar : PubMed/NCBI | |
|
Lee HM, Kim MS, Kim DJ, Uhm TW, Yi SB, Han JH and Lee IW: Effects of meteorological factor and air pollution on sudden sensorineural hearing loss using the health claims data in Busan, Republic of Korea. Am J Otolaryngol. 40:393–399. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lu K, Fuchs H, Hofzumahaus A, Tan Z, Wang H, Zhang L, Schmitt SH, Rohrer F, Bohn B, Broch S, et al: Fast photochemistry in wintertime haze: Consequences for pollution mitigation strategies. Environ Sci Technol. 53:10676–10684. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gestro M, Condemi V, Bardi L, Fantino C and Solimene U: Meteorological factors, air pollutants, and emergency department visits for otitis media: a time series study. Int J Biometeorol. 61:1749–1764. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Seo JH, Jeon EJ, Park YS, Kim J, Chang KH and Yeo SW: Meteorological conditions related to the onset of idiopathic sudden sensorineural hearing loss. Yonsei Med J. 55:1678–1682. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ko HY and Kim MH: A nationwide population-based study for audio-vestibular disorders following COVID-19 infection. Audiol Neurootol. 30:245–251. 2025. View Article : Google Scholar | |
|
Janzen-Senn I, Schuon RA, Tavassol F, Lenarz T and Paasche G: Dimensions and position of the eustachian tube in humans. PLoS One. 15:e02326552020. View Article : Google Scholar : PubMed/NCBI | |
|
Juszczak H, Aubin-Pouliot A, Sharon JD and Loftus PA: Sinonasal risk factors for eustachian tube dysfunction: Cross-sectional findings from NHANES 2011-2012. Int Forum Allergy Rhinol. 9:466–472. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liva GA, Karatzanis AD and Prokopakis EP: Review of rhinitis: Classification, types, pathophysiology. J Clin Med. 10:31832021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang XD, Zheng M, Lou HF, Wang CS, Zhang Y, Bo MY, Ge SQ, Zhang N, Zhang L and Bachert C: An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy. 71:1170–1180. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Luo X, Hong H, Lu Y, Deng S, Wu N, Zhou Q, Chen Z, Feng P, Zhou Y, Tao J, et al: Impact of air pollution and meteorological factors on incidence of allergic rhinitis: A low-latitude multi-city study in China. Allergy. 78:1656–1659. 2023. View Article : Google Scholar | |
|
Burte E, Leynaert B, Marcon A, Bousquet J, Benmerad M, Bono R, Carsin AE, de Hoogh K, Forsberg B, Gormand F, et al: Long-term air pollution exposure is associated with increased severity of rhinitis in 2 European cohorts. J Allergy Clin Immunol. 145:834–842.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Burte E, Leynaert B, Bono R, Brunekreef B, Bousquet J, Carsin AE, De Hoogh K, Forsberg B, Gormand F, Heinrich J, et al: Association between air pollution and rhinitis incidence in two European cohorts. Environ Int. 115:257–266. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Huang C, Cai J, Fu Q, Zou Z, Sun C and Zhang J: Prenatal and postnatal exposures to ambient air pollutants associated with allergies and airway diseases in childhood: A retrospective observational study. Environ Int. 142:1058532020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Wen HJ, Guo YL, Wei TY, Wang WC, Tsai SF, Tseng VS and Wang SJ: Prenatal exposure to air pollutants and childhood atopic dermatitis and allergic rhinitis adopting machine learning approaches: 14-Year follow-up birth cohort study. Sci Total Environ. 777:1459822021. View Article : Google Scholar : PubMed/NCBI | |
|
Bornehag CG, Sundell J and Sigsgaard T: Dampness in buildings and health (DBH): Report from an ongoing epidemiological investigation on the association between indoor environmental factors and health effects among children in Sweden. Indoor Air. 14(Suppl 7): S59–S66. 2004. View Article : Google Scholar | |
|
Kidon MI, See Y, Goh A, Chay OM and Balakrishnan A: Aeroallergen sensitization in pediatric allergic rhinitis in Singapore: Is air-conditioning a factor in the tropics? Pediatr Allergy Immunol. 15:340–343. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Cao S, Duan X, Zhang Y, Gong J, Xu X, Guo Q, Meng X and Zhang J: Household mold exposure in association with childhood asthma and allergic rhinitis in a northwestern city and a southern city of China. J Thorac Dis. 14:1725–1737. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Thacher JD, Gruzieva O, Pershagen G, Melén E, Lorentzen JC, Kull I and Bergström A: Mold and dampness exposure and allergic outcomes from birth to adolescence: Data from the BAMSE cohort. Allergy. 72:967–974. 2017. View Article : Google Scholar | |
|
Weber A, Fuchs N, Kutzora S, Hendrowarsito L, Nennstiel-Ratzel U, von Mutius E, Herr C and Heinze S; GME Study Group: Exploring the associations between parent-reported biological indoor environment and airway-related symptoms and allergic diseases in children. Int J Hyg Environ Health. 220:1333–1339. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen HI, Lin YT, Jung CR and Hwang BF: Interaction between catalase gene promoter polymorphisms and indoor environmental exposure in childhood allergic rhinitis. Epidemiology. 28(Suppl 1): S126–S132. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pirker AL and Vogl T: Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. Front Allergy. 5:14393032024. View Article : Google Scholar : PubMed/NCBI | |
|
Shargorodsky J, Garcia-Esquinas E, Navas-Acien A and Lin SY: Allergic sensitization, rhinitis, and tobacco smoke exposure in U.S. children and adolescents. Int Forum Allergy Rhinol. 5:471–476. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yang HJ: Impact of perinatal environmental tobacco smoke on the development of childhood allergic diseases. Korean J Pediatr. 59:319–327. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yigit E, Yuksel H, Ulman C and Yilmaz O: Nasal effects of environmental tobacco smoke exposure in children with allergic rhinitis. Respir Med. 236:1078862025. View Article : Google Scholar | |
|
Choi MJ, Park J and Kim SY: Association between secondhand smoke and allergic diseases in Korean adolescents: Cross-sectional analysis of the 2019 KYRBS. Healthcare (Basel). 11:8512023. View Article : Google Scholar : PubMed/NCBI | |
|
Dong GH, Qian ZM, Wang J, Trevathan E, Ma W, Chen W, Xaverius PK, Buckner-Petty S, Ray A, Liu MM, et al: Residential characteristics and household risk factors and respiratory diseases in Chinese women: The seven northeast cities (SNEC) study. Sci Total Environ. 463-464:389–394. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Huang C, Lu R, Wang X, Sun C and Zou Z: Volatile organic compounds in children's bedrooms, Shanghai, China: Sources and influential factors. Atmos Pollut Res. 14:1017512023. View Article : Google Scholar | |
|
Ridolo E, Pederzani A, Barone A, Ottoni M, Crivellaro M and Nicoletta F: Indoor air pollution and atopic diseases: A comprehensive framework. Explor Asthma Allergy. 2:170–185. 2024. View Article : Google Scholar | |
|
Bell ML, Dominici F, Ebisu K, Zeger SL and Samet JM: Spatial and temporal variation in PM(2.5) chemical composition in the United States for health effects studies. Environ Health Perspect. 115:989–995. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Rumelhard M, Ramgolam K, Hamel R, Marano F and Baeza-Squiban A: Expression and role of EGFR ligands induced in airway cells by PM2.5 and its components. Eur Respir J. 30:1064–1073. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Joubert IA, Geppert M, Johnson L, Mills-Goodlet R, Michelini S, Korotchenko E, Duschl A, Weiss R, Horejs-Höck J and Himly M: Mechanisms of particles in sensitization, effector function and therapy of allergic disease. Front Immunol. 11:13342020. View Article : Google Scholar : PubMed/NCBI | |
|
Bowatte G, Lodge C, Lowe AJ, Erbas B, Perret J, Abramson MJ, Matheson M and Dharmage SC: The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: A systematic review and a meta-analysis of birth cohort studies. Allergy. 70:245–256. 2015. View Article : Google Scholar | |
|
Castañeda AR, Bein KJ, Smiley-Jewell S and Pinkerton KE: Fine particulate matter (PM2.5) enhances allergic sensitization in BALB/c mice. J Toxicol Environ Health A. 80:197–207. 2017. View Article : Google Scholar | |
|
Lubitz S, Schober W, Pusch G, Effner R, Klopp N, Behrendt H and Buters JT: Polycyclic aromatic hydrocarbons from diesel emissions exert proallergic effects in birch pollen allergic individuals through enhanced mediator release from basophils. Environ Toxicol. 25:188–197. 2010. View Article : Google Scholar | |
|
Lorenz G, Ernst S and Probst J: Significance of ultrasound study in accident surgery. Aktuelle Traumatol. 15:187–194. 1985.In German. PubMed/NCBI | |
|
Matthews NC, Pfeffer PE, Mann EH, Kelly FJ, Corrigan CJ, Hawrylowicz CM and Lee TH: urban particulate matter-activated human dendritic cells induce the expansion of potent inflammatory Th1, Th2, and Th17 effector cells. Am J Respir Cell Mol Biol. 54:250–262. 2016. View Article : Google Scholar : | |
|
Xia M, Harb H, Saffari A, Sioutas C and Chatila TA: A Jagged 1-Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles. J Allergy Clin Immunol. 142:1243–1256.e17. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xia M, Viera-Hutchins L, Garcia-Lloret M, Noval Rivas M, Wise P, McGhee SA, Chatila ZK, Daher N, Sioutas C and Chatila TA: Vehicular exhaust particles promote allergic airway inflammation through an aryl hydrocarbon receptor-notch signaling cascade. J Allergy Clin Immunol. 136:441–453. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Rouadi PW, Idriss SA, Naclerio RM, Peden DB, Ansotegui IJ, Canonica GW, Gonzalez-Diaz SN, Rosario Filho NA, Ivancevich JC, Hellings PW, et al: Immunopathological features of air pollution and its impact on inflammatory airway diseases (IAD). World Allergy Organ J. 13:1004672020. View Article : Google Scholar : PubMed/NCBI | |
|
He X, Zhang L, Xiong A, Ran Q, Wang J, Wu D, Niu B, Liu S and Li G: PM2.5 aggravates NQO1-induced mucus hyper-secretion through release of neutrophil extracellular traps in an asthma model. Ecotoxicol Environ Saf. 218:1122722021. View Article : Google Scholar : PubMed/NCBI | |
|
Fujii T, Hayashi S, Hogg JC, Mukae H, Suwa T, Goto Y, Vincent R and van Eeden SF: Interaction of alveolar macrophages and airway epithelial cells following exposure to particulate matter produces mediators that stimulate the bone marrow. Am J Respir Cell Mol Biol. 27:34–41. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Beeh KM, Kornmann O, Buhl R, Culpitt SV, Giembycz MA and Barnes PJ: Neutrophil chemotactic activity of sputum from patients with COPD: Role of interleukin 8 and leukotriene B4. Chest. 123:1240–1247. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Lavinskiene S, Jeroch J, Malakauskas K, Bajoriuniene I, Jackute J and Sakalauskas R: Peripheral blood neutrophil activity during Dermatophagoides pteronyssinus-induced late-phase airway inflammation in patients with allergic rhinitis and asthma. Inflammation. 35:1600–1609. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wei T and Tang M: Biological effects of airborne fine particulate matter (PM2.5) exposure on pulmonary immune system. Environ Toxicol Pharmacol. 60:195–201. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zawrotniak M, Juszczak M, Mosio-Wójcik J and Rapala-Kozik M: Neutrophil extracellular traps in upper respiratory tract secretions: Insights into infectious and allergic rhinitis. Front Immunol. 14:12959212023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Y, Xu Z, Jiang F, Li S, Liu S, Wu M, Yan C, Tan J, Yu G, Hu Y, et al: Relative impact of meteorological factors and air pollutants on childhood allergic diseases in Shanghai, China. Sci Total Environ. 706:1359752020. View Article : Google Scholar | |
|
Angelon-Gaetz KA, Richardson DB, Marshall SW and Hernandez ML: Exploration of the effects of classroom humidity levels on teachers' respiratory symptoms. Int Arch Occup Environ Health. 89:729–737. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Damialis A, Häring F, Gökkaya M, Rauer D, Reiger M, Bezold S, Bounas-Pyrros N, Eyerich K, Todorova A, Hammel G, et al: Human exposure to airborne pollen and relationships with symptoms and immune responses: Indoors versus outdoors, circadian patterns and meteorological effects in alpine and urban environments. Sci Total Environ. 653:190–199. 2019. View Article : Google Scholar | |
|
Upperman CR, Parker JD, Akinbami LJ, Jiang C, He X, Murtugudde R, Curriero FC, Ziska L and Sapkota A: Exposure to extreme heat events is associated with increased hay fever prevalence among nationally representative sample of US adults: 1997-2013. J Allergy Clin Immunol Pract. 5:435–441.e2. 2017. View Article : Google Scholar | |
|
Konishi S, Ng CF, Stickley A, Nishihata S, Shinsugi C, Ueda K, Takami A and Watanabe C: Particulate matter modifies the association between airborne pollen and daily medical consultations for pollinosis in Tokyo. Sci Total Environ. 499:125–132. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Mendell MJ, Mirer AG, Cheung K, Tong M and Douwes J: Respiratory and allergic health effects of dampness, mold, and dampness-related agents: A review of the epidemiologic evidence. Environ Health Perspect. 119:748–756. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Boita M, Heffler E, Pizzimenti S, Raie A, Saraci E, Omedè P, Bussolino C, Bucca C and Rolla G: Regulation of B-cell-activating factor expression on the basophil membrane of allergic patients. Int Arch Allergy Immunol. 166:208–212. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bella Z, Kiricsi Á, Viharosné ÉD, Dallos A, Perényi Á, Kiss M, Koreck A, Kemény L, Jóri J, Rovó L and Kadocsa E: Rhinophototherapy in persistent allergic rhinitis. Eur Arch Otorhinolaryngol. 274:1543–1550. 2017. View Article : Google Scholar | |
|
Kamimura S, Kitamura Y, Fujii T, Okamoto K, Sanada N, Okajima N, Wakugawa T, Fukui H, Mizuguchi H and Takeda N: Effects of narrow-band UVB on nasal symptom and upregulation of histamine H1 receptor mRNA in allergic rhinitis model rats. Laryngoscope Investig Otolaryngol. 6:34–41. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Yu H, Pan Y and Shao S: Combined treatment with H1 and H4 receptor antagonists improves Th2 inflammatory responses in the nasal mucosa of allergic rhinitis rats. Am J Rhinol Allergy. 35:809–816. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shaha A, Mizuguchi H, Kitamura Y, Fujino H, Yabumoto M, Takeda N and Fukui H: Effect of royal jelly and Brazilian green propolis on the signaling for histamine H1 receptor and interleukin-9 gene expressions responsible for the pathogenesis of the allergic rhinitis. Biol Pharm Bull. 41:1440–1447. 2018. View Article : Google Scholar | |
|
Gilles S, Fekete A, Zhang X, Beck I, Blume C, Ring J, Schmidt-Weber C, Behrendt H, Schmitt-Kopplin P and Traidl-Hoffmann C: Pollen metabolome analysis reveals adenosine as a major regulator of dendritic cell-primed T(H) cell responses. J Allergy Clin Immunol. 127:454–461. e1–e9. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Gueguen C, Bouley J, Moussu H, Luce S, Duchateau M, Chamot-Rooke J, Pallardy M, Lombardi V, Nony E, Baron-Bodo V, et al: Changes in markers associated with dendritic cells driving the differentiation of either TH2 cells or regulatory T cells correlate with clinical benefit during allergen immunotherapy. J Allergy Clin Immunol. 137:545–558. 2016. View Article : Google Scholar | |
|
Heinl PV, Graulich E, Weigmann B, Wangorsch A, Ose R, Bellinghausen I, Khatri R, Raker VK, Scheurer S, Vieths S, et al: IL-10-modulated dendritic cells from birch pollen- and hazelnut-allergic patients facilitate Treg-mediated allergen-specific and cross-reactive tolerance. Allergy. 79:2826–2839. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ogulur I, Mitamura Y, Yazici D, Pat Y, Ardicli S, Li M, D'Avino P, Beha C, Babayev H, Zhao B, et al: Type 2 immunity in allergic diseases. Cell Mol Immunol. 22:211–242. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Alnori H, Alassaf FA, Alfahad M, Qazzaz ME, Jasim M and Abed MN: Vitamin D and immunoglobulin E status in allergic rhinitis patients compared to healthy people. J Med Life. 13:463–468. 2020. View Article : Google Scholar | |
|
Kawada K, Sato C, Ishida T, Nagao Y, Yamamoto T, Jobu K, Hamada Y, Izawa Ishizawa Y, Ishizawa K and Abe S: Vitamin D supplementation and allergic rhinitis: A systematic review and meta-analysis. Medicina (Kaunas). 61:3552025. View Article : Google Scholar : PubMed/NCBI | |
|
Lefebvre L, Amazouz H, Rancière F and Momas I: Early exposure to sunlight and allergic morbidity: The PARIS birth cohort. Sci Total Environ. 930:1725432024. View Article : Google Scholar : PubMed/NCBI | |
|
Vergison A, Dagan R, Arguedas A, Bonhoeffer J, Cohen R, Dhooge I, Hoberman A, Liese J, Marchisio P, Palmu AA, et al: Otitis media and its consequences: Beyond the earache. Lancet Infect Dis. 10:195–203. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li FF, Wang JP, Zhang WJ, Zhou PT, Fan M, Cai NN, Cai YF, Han K, Yang YP, Fu ZY, et al: Trends and mechanisms of Alzheimer's disease and hearing impairment: A 20-year perspective. Ageing Res Rev. 110:1027992025. View Article : Google Scholar : PubMed/NCBI | |
|
Monasta L, Ronfani L, Marchetti F, Montico M, Vecchi Brumatti L, Bavcar A, Grasso D, Barbiero C and Tamburlini G: Burden of disease caused by otitis media: Systematic review and global estimates. PLoS One. 7:e362262012. View Article : Google Scholar : PubMed/NCBI | |
|
GBD 2019 Hearing Loss Collaborators: Hearing loss prevalence and years lived with disability, 1990-2019: Findings from the global burden of disease study 2019. Lancet. 397:996–1009. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Belachew AB, Rantala AK, Jaakkola MS, Hugg TT, Sofiev M, Kukkonen J and Jaakkola JJK: Prenatal and early life exposure to air pollution and the risk of severe lower respiratory tract infections during early childhood: The espoo cohort study. Occup Environ Med. 81:209–216. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Deng Q, Lu C, Jiang W, Zhao J, Deng L and Xiang Y: Association of outdoor air pollution and indoor renovation with early childhood ear infection in China. Chemosphere. 169:288–296. 2017. View Article : Google Scholar | |
|
Park M, Han J, Park J, Jang MJ and Park MK: Particular matter influences the incidence of acute otitis media in children. Sci Rep. 11:197302021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu C, Li Q, Qiao Z, Liu Q and Wang F: Effects of pre-natal and post-natal exposures to air pollution on onset and recurrence of childhood otitis media. J Hazard Mater. 459:1322542023. View Article : Google Scholar : PubMed/NCBI | |
|
Veivers D, Williams GM, Toelle BG, Waterman AMC, Guo Y, Denison L, Yang BY, Dong GH, Jalaludin B, Marks GB and Knibbs LD: The indoor environment and otitis media among australian children: A national cross-sectional study. Int J Environ Res Public Health. 19:15512022. View Article : Google Scholar : PubMed/NCBI | |
|
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, et al: Dementia prevention, intervention, and care: 2020 Report of the lancet commission. Lancet. 396:413–446. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Flor LS, Anderson JA, Ahmad N, Aravkin A, Carr S, Dai X, Gil GF, Hay SI, Malloy MJ, McLaughlin SA, et al: Health effects associated with exposure to secondhand smoke: A burden of proof study. Nat Med. 30:149–167. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Adamolekun G, Adedoyin FF and Siganos A: Firm-level pollution and membership of emission trading schemes. J Environ Manage. 351:1199702024. View Article : Google Scholar : PubMed/NCBI | |
|
Kayalar Ö, Rajabi H, Konyalilar N, Mortazavi D, Aksoy GT, Wang J and Bayram H: Impact of particulate air pollution on airway injury and epithelial plasticity; underlying mechanisms. Front Immunol. 15:13245522024. View Article : Google Scholar : PubMed/NCBI | |
|
Kim BG, Choi DY, Kim MG, Jang AS, Suh MW, Lee JH, Oh SH and Park MK: Effect of angiogenesis and lymphangiogenesis in diesel exhaust particles inhalation in mouse model of LPS induced acute otitis media. Front Cell Infect Microbiol. 12:8245752022. View Article : Google Scholar : PubMed/NCBI | |
|
Song JJ, Lee JD, Lee BD, Chae SW and Park MK: Effect of diesel exhaust particles on human middle ear epithelial cells. Int J Pediatr Otorhinolaryngol. 76:334–338. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kwak HH, Park JH, Kim HS, Lee HM, Kim SD, Mun SJ and Cho KS: Inflammatory effects of particulate matter exposure on the nasal and paranasal sinus mucosa in rats. Int J Mol Sci. 26:58852025. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SH, Ha SM, Jeong MJ, Park DJ, Polo CN, Seo YJ and Kim SH: Effects of reactive oxygen species generation induced by Wonju City particulate matter on mitochondrial dysfunction in human middle ear cell. Environ Sci Pollut Res Int. 28:49244–49257. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Nahas G, Chen Y, Ningundi A, Tercyak S and Preciado D: Middle ear microRNAs drive mucin gene response. Laryngoscope. 135:1815–1820. 2025. View Article : Google Scholar | |
|
Nieratschker M, Haas M, Lucic M, Pichler F, Brkic FF, Parzefall T, Riss D and Liu DT: Fluctuations in emergency department visits related to acute otitis media are associated with extreme meteorological conditions. Front Public Health. 11:11531112023. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang YF, Luo WW, Zhang X, Ren DD and Huang YB: Relative humidity affects acute otitis media visits of preschool children to the emergency department. Ear Nose Throat J. 102:467–472. 2023. View Article : Google Scholar | |
|
Montgomery MT, Sajuthi SP, Cho SH, Everman JL, Rios CL, Goldfarbmuren KC, Jackson ND, Saef B, Cromie M, Eng C, et al: Genome-wide analysis reveals mucociliary remodeling of the nasal airway epithelium induced by urban PM2.5. Am J Respir Cell Mol Biol. 63:172–184. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Jiang X, Wei Y, Wang Y, Lao X, Yue Q and Chong KC: Air pollutants, seasonal influenza, and acute otitis media in children: A population-based analysis using 22-year hospitalization data. BMC Public Health. 24:15812024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zheng B, Xiong P, Liu Y, Shu L, Shen Y, Lu T and Yang Y: PM2.5 induced nasal mucosal barrier dysfunction and epithelial-mesenchymal transition to promote chronic rhinosinusitis through IL4I1-AhR signaling pathway. Toxics. 13:4882025. View Article : Google Scholar : PubMed/NCBI | |
|
Lu HF, Zhou YC, Yang LT, Zhou Q, Wang XJ, Qiu SQ, Cheng BH and Zeng XH: Involvement and repair of epithelial barrier dysfunction in allergic diseases. Front Immunol. 15:13482722024. View Article : Google Scholar : PubMed/NCBI | |
|
Tian H, Zhang H, Chen Y and Zhong C: A study of the influence of meteorological and environmental factors on otitis media with effusion in Lanzhou. Indian J Otolaryngol Head Neck Surg. 76:5234–5247. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Klimek L, Brough HA, Arasi S, Toppila-Salmi S, Bergmann C, Jutel M, Bousquet J, Hox V, Gevaert P, Tomazic PV, et al: Otitis media with effusion (OME) and eustachian tube dysfunction: The role of allergy and immunity-An EAACI position paper. Allergy. 80:2429–2441. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Liu Y, Yu L and Duan M: Editorial: Sudden deafness. Front Neurol. 15:15200182024. View Article : Google Scholar : PubMed/NCBI | |
|
Chamoun J, Larson P, Altaye M, Tabangin M, Sun DQ and Gordon SA: Contribution of tinnitus burden and hearing loss to geriatric depression. Laryngoscope. Oct 29–2025.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Ranjdoost F, Ghaffari ME, Azimi F, Mohammadi A, Fouladi-Fard R and Fiore M: Association between air pollution and sudden sensorineural hearing loss (SSHL): A systematic review and meta-analysis. Environ Res. 239:1173922023. View Article : Google Scholar : PubMed/NCBI | |
|
Tang SE, Wu SY, Jhou FY, Chung CH, Chien WC and Wang CH: Comparison of the incidence of sudden sensorineural hearing loss in Northern Taiwan and Southern Taiwan (2000-2015). J Med Sci. 42:228–235. 2022. View Article : Google Scholar | |
|
Choi HG, Min C and Kim SY: Air pollution increases the risk of SSNHL: A nested case-control study using meteorological data and national sample cohort data. Sci Rep. 9:82702019. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai SC, Hsu YC, Lai JN, Chou RH, Fan HC, Lin FC, Zhang R, Lin CL and Chang KH: Long-term exposure to air pollution and the risk of developing sudden sensorineural hearing loss. J Transl Med. 19:4242021. View Article : Google Scholar : PubMed/NCBI | |
|
Luo X, Zuo W, Ren Q, Wang L, Wu D, Xiang Y and Zhong S: Correlation of air pollution and risk of sudden sensorineural hearing loss: A Mendelian randomization study. Sci Rep. 15:289212025. View Article : Google Scholar : PubMed/NCBI | |
|
Chang KH, Tsai SC, Lee CY, Chou RH, Fan HC, Lin FC, Lin CL and Hsu YC: Increased risk of sensorineural hearing loss as a result of exposure to air pollution. Int J Environ Res Public Health. 17:19692020. View Article : Google Scholar : PubMed/NCBI | |
|
Umesawa M, Kobashi G, Kitoh R, Nishio SY, Ogawa K, Hato N, Sone M, Fukuda S, Hara A, Ikezono T, et al: Relationships among drinking and smoking habits, history of diseases, body mass index and idiopathic sudden sensorineural hearing loss in Japanese patients. Acta Otolaryngol. 137(Suppl 1): S17–S23. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lalwani AK, Liu YH and Weitzman M: Secondhand smoke and sensorineural hearing loss in adolescents. Arch Otolaryngol Head Neck Surg. 137:655–662. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang DH, Xu H, Zheng YH, Gu DS, Zhu YJ, Ren Y, Wang SC, Yang L and Xu LW: Environmental exposure to lead and cadmium and hearing loss in Chinese adults: A case-control study. PLoS One. 15:e02331652020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang CH, Ko MT, Peng JP and Hwang CF: Zinc in the treatment of idiopathic sudden sensorineural hearing loss. Laryngoscope. 121:617–621. 2011. View Article : Google Scholar | |
|
Harenberg J, Jonas JB and Trecca EMC: A liaison between sudden sensorineural hearing loss and SARS-CoV-2 infection. Thromb Haemost. 120:1237–1239. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Trecca EMC, Gelardi M and Cassano M: COVID-19 and hearing difficulties. Am J Otolaryngol. 41:1024962020. View Article : Google Scholar : PubMed/NCBI | |
|
Sung CYW, Seleme MC, Payne S, Jonjic S, Hirose K and Britt W: Virus-induced cochlear inflammation in newborn mice alters auditory function. JCI Insight. 4:e1288782019. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Chiu YF, Kao CC, Chuang CN, Chen CY, Lai CH and Kuo ML: Fine particulate matter manipulates immune response to exacerbate microbial pathogenesis in the respiratory tract. Eur Respir Rev. 33:2302592024. View Article : Google Scholar : PubMed/NCBI | |
|
Schraff SA, Schleiss MR, Brown DK, Meinzen-Derr J, Choi KY, Greinwald JH and Choo DI: Macrophage inflammatory proteins in cytomegalovirus-related inner ear injury. Otolaryngol Head Neck Surg. 137:612–618. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Xie W, Karpeta N, Tong B, Liu Y, Zhang Z and Duan M: Comorbidities and laboratory changes of sudden sensorineural hearing loss: A review. Front Neurol. 14:11424592023. View Article : Google Scholar : PubMed/NCBI | |
|
Choi D, Lee G, Kim KH and Bae H: Particulate matter exacerbates the death of dopaminergic neurons in parkinson's disease through an inflammatory response. Int J Mol Sci. 23:64872022. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka M, Okuda T, Itoh K, Ishihara N, Oguro A, Fujii-Kuriyama Y, Nabetani Y, Yamamoto M, Vogel CFA and Ishihara Y: Polycyclic aromatic hydrocarbons in urban particle matter exacerbate movement disorder after ischemic stroke via potentiation of neuroinflammation. Part Fibre Toxicol. 20:62023. View Article : Google Scholar : PubMed/NCBI | |
|
Blasits S, Maune S and Santos-Sacchi J: Nitric oxide uncouples gap junctions of supporting Deiters cells from Corti's organ. Pflugers Arch. 440:710–712. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Bauer L, Laksono BM, de Vrij FMS, Kushner SA, Harschnitz O and van Riel D: The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 45:358–368. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JS and Lee H: Inner ear dysfunction due to vertebrobasilar ischemic stroke. Semin Neurol. 29:534–540. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kuntic M, Hahad O, Al-Kindi S, Oelze M, Lelieveld J, Daiber A and Münzel T: Pathomechanistic synergy between particulate matter and traffic noise-induced cardiovascular damage and the classical risk factor hypertension. Antioxid Redox Signal. 42:827–847. 2025. View Article : Google Scholar | |
|
Bongioanni P, Del Carratore R, Corbianco S, Diana A, Cavallini G, Masciandaro SM, Dini M and Buizza R: Climate change and neurodegenerative diseases. Environ Res. 201:1115112021. View Article : Google Scholar : PubMed/NCBI | |
|
Li XB, Han YX, Fu ZY, Zhang YC, Fan M, Sang SJ, Chen XX, Liang BY, Liu YC, Lu PC, et al: Association of sudden sensorineural hearing loss with meteorological factors: A time series study in Hefei, China, and a literature review. Environ Sci Pollut Res Int. 31:42970–42990. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ryu IY, Park SH, Park EB, Kim HJ, Kim SH and Yeo SG: Factors prognostic of season-associated sudden sensorineural hearing loss: A retrospective observational study. J Audiol Otol. 21:44–48. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Danielides V, Nousia CS, Bartzokas A, Lolis CJ, Kateri M and Skevas A: Weather conditions and sudden sensorineural hearing loss. BMC Ear Nose Throat Disord. 2:22002. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SH, Kim SJ, Im H, Kim TH, Song JJ and Chae SW: A trend in sudden sensorineural hearing loss: Data from a population-based study. Audiol Neurootol. 22:311–316. 2017. View Article : Google Scholar | |
|
Wu CS, Lin HC and Chao PZ: Sudden sensorineural hearing loss: Evidence from Taiwan. Audiol Neurootol. 11:151–156. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Jourdy DN, Donatelli LA, Victor JD and Selesnick SH: Assessment of variation throughout the year in the incidence of idiopathic sudden sensorineural hearing loss. Otol Neurotol. 31:53–57. 2010. View Article : Google Scholar | |
|
Kuzmenko NV, Tsyrlin VA, Pliss MG and Galagudza MM: Health effects of atmospheric pressure fluctuations: A review of biometeorological research. Int J Biometeorol. 69:2171–2187. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Martinac B, Nomura T, Chi G, Petrov E, Rohde PR, Battle AR, Foo A, Constantine M, Rothnagel R, Carne S, et al: Bacterial mechanosensitive channels: Models for studying mechanosensory transduction. Antioxid Redox Signal. 20:952–969. 2014. View Article : Google Scholar | |
|
He YS, Cao F, Hu X, Liu YC, Tao SS, Wang P, Hou S and Pan HF: Time trends in the burden of environmental heat and cold exposure among children and adolescents. JAMA Pediatr. 179:55–64. 2025. View Article : Google Scholar | |
|
Wang JP, Xie ZH, Zhou PT, Liang BY, Han K, Fu ZY, Li FF, Liu YH, Pan HF and Liu YC: Epidemiological and experimental evidence of environmental factor-related autoimmune thyroid disease: A systematic review. Ecotoxicol Environ Saf. 305:1192562025. View Article : Google Scholar : PubMed/NCBI | |
|
Cao F, Liu ZR, Ni QY, Zha CK, Zhang SJ, Lu JM, Xu YY, Tao LM, Jiang ZX and Pan HF: Emerging roles of air pollution and meteorological factors in autoimmune eye diseases. Environ Res. 231:1161162023. View Article : Google Scholar : PubMed/NCBI | |
|
Lu YX, Liang JQ, Gu QL, Pang C and Huang CL: Pediatric epistaxis and its correlation between air pollutants in beijing from 2014 to 2017. Ear Nose Throat J. 99:513–517. 2020. View Article : Google Scholar | |
|
Zhang F, Xu J, Zhang Z, Meng H, Wang L, Lu J, Wang W and Krafft T: Ambient air quality and the effects of air pollutants on otolaryngology in Beijing. Environ Monit Assess. 187:4952015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Li J, Li X, Wang D and Fang C: Relationship between ozone and air temperature in future conditions: A case study in sichuan basin, China. Environ Pollut. 343:1232762024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Qiao Z, Li Q, Jia X, Liu Y, Zeng Z, Wang F and Lu C: Early-life ozone exposure and childhood otitis media: Unveiling critical windows of risk. Sci Total Environ. 953:1761242024. View Article : Google Scholar : PubMed/NCBI | |
|
Tian Y, Jia B, Zhao P, Song D, Huang F and Feng Y: Size distribution, meteorological influence and uncertainty for source-specific risks: PM2.5 and PM10-bound PAHs and heavy metals in a Chinese megacity during 2011-2021. Environ Pollut. 312:1200042022. View Article : Google Scholar | |
|
Chuang MT, Lee CT and Hsu HC: Quantifying PM2.5 from long-range transport and local pollution in Taiwan during winter monsoon: An efficient estimation method. J Environ Manage. 227:10–22. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Fry JL, Ooms P, Krol M, Kerckhoffs J, Vermeulen R, Wesseling J and van den Elshout S: Effect of street trees on local air pollutant concentrations (NO2, BC, UFP, PM2.5) in rotterdam, the Netherlands. Environ Sci Atmos. 5:394–404. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Yan J, Sun N, Zheng J, Zhang Y and Yin S: Uneven PM2.5 dispersion pattern across an open-road vegetation barrier: Effects of planting combination and wind condition. Sci Total Environ. 917:1704792024. View Article : Google Scholar | |
|
Bi J, Belle JH, Wang Y, Lyapustin AI, Wildani A and Liu Y: Impacts of snow and cloud covers on satellite-derived PM2.5 levels. Remote Sens Environ. 221:665–674. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang M, Wang Y, Li H, Li T, Nie X, Cao F, Yang F, Wang Z, Wang T, Qie G, et al: Polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5 within boundary layer: Cloud/fog and regional transport. Sci Total Environ. 627:613–621. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hu J, Zhao T, Liu J, Cao L, Xia J, Wang C, Zhao X, Gao Z, Shu Z and Li Y: Nocturnal surface radiation cooling modulated by cloud cover change reinforces PM2.5 accumulation: Observational study of heavy air pollution in the Sichuan Basin, Southwest China. Sci Total Environ. 794:1486242021. View Article : Google Scholar | |
|
Shin YH, Ha EK, Kim JH, Yon DK, Lee SW, Sim HJ, Sung M, Jee HM and Han MY: Serum vitamin D level is associated with smell dysfunction independently of aeroallergen sensitization, nasal obstruction, and the presence of allergic rhinitis in children. Pediatr Allergy Immunol. 32:116–123. 2021. View Article : Google Scholar | |
|
Kalueff AV and Tuohimaa P: Neurosteroid hormone vitamin D and its utility in clinical nutrition. Curr Opin Clin Nutr Metab Care. 10:12–19. 2007. | |
|
Montzka SA, Dlugokencky EJ and Butler JH: Non-CO2 greenhouse gases and climate change. Nature. 476:43–50. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Andersson J, Oudin A, Nordin S, Forsberg B and Nordin M: PM2.5 exposure and olfactory functions. Int J Environ Health Res. 32:2484–2495. 2022. View Article : Google Scholar | |
|
Molot J, Sears M, Marshall LM and Bray RI: Neurological susceptibility to environmental exposures: Pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. Rev Environ Health. 37:509–530. 2022. View Article : Google Scholar | |
|
Jahedi F, Goudarzi G, Ahmadi M and Safdari F: A bibliometric and systematic review of the global impact of air pollution on Alzheimer's disease: Insights from cohort studies. J Alzheimers Dis Rep. 9:254248232513688832025. View Article : Google Scholar : PubMed/NCBI | |
|
Lotsch J and Hummel T: A data science-based analysis of seasonal patterns in outpatient presentations due to olfactory dysfunction. Rhinology. 58:151–157. 2020. View Article : Google Scholar | |
|
Potter MR, Chen JH, Lobban NS and Doty RL: Olfactory dysfunction from acute upper respiratory infections: Relationship to season of onset. Int Forum Allergy Rhinol. 10:706–712. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Cheng Y, Du H, Zhang C, Zhou Y, Zhao Z, Li Y, Friedemann T, Mei J, Schröder S and Chen M: Shufeng Jiedu capsule ameliorates olfactory dysfunction via the AMPK/mTOR autophagy pathway in a mouse model of allergic rhinitis. Phytomedicine. 107:1544262022. View Article : Google Scholar : PubMed/NCBI | |
|
Stuck BA and Hummel T: Olfaction in allergic rhinitis: A systematic review. J Allergy Clin Immunol. 136:1460–1470. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Urry Z, Chambers ES, Xystrakis E, Dimeloe S, Richards DF, Gabryšová L, Christensen J, Gupta A, Saglani S, Bush A, et al: The role of 1α,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur J Immunol. 42:2697–2708. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Joshi S, Pantalena LC, Liu XK, Gaffen SL, Liu H, Rohowsky-Kochan C, Ichiyama K, Yoshimura A, Steinman L, Christakos S and Youssef S: 1,25-Dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol. 31:3653–3669. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Holick MF: Resurrection of vitamin D deficiency and rickets. J Clin Invest. 116:2062–2072. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Z, Xi L, Wang Y and Zhao X: Chronic exposure to environmental pollutant ammonia causes damage to the olfactory system and behavioral abnormalities in mice. Environ Sci Technol. 57:15412–15421. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Choi YS, Jeong BS, Lee YK and Kim YD: Effects of air pollution on chemosensory dysfunction in COVID-19 patients. J Korean Med Sci. 37:e2902022. View Article : Google Scholar : PubMed/NCBI | |
|
Bernal-Meléndez E, Lacroix MC, Bouillaud P, Callebert J, Olivier B, Persuy MA, Durieux D, Rousseau-Ralliard D, Aioun J, Cassee F, et al: Repeated gestational exposure to diesel engine exhaust affects the fetal olfactory system and alters olfactory-based behavior in rabbit offspring. Part Fibre Toxicol. 16:52019. View Article : Google Scholar : PubMed/NCBI | |
|
Calderón-Garcidueñas L, Franco-Lira M, Torres-Jardón R, Henriquez-Roldán C, Barragán-Mejía G, Valencia-Salazar G, González-Maciel A, Reynoso-Robles R, Villarreal-Calderón R and Reed W: Pediatric respiratory and systemic effects of chronic air pollution exposure: Nose, lung, heart, and brain pathology. Toxicol Pathol. 35:154–162. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wei S, Xu T, Jiang T and Yin D: Chemosensory dysfunction induced by environmental pollutants and its potential as a novel neurotoxicological indicator: A review. Environ Sci Technol. 55:10911–10922. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Paital B and Agrawal PK: Air pollution by NO2 and PM2.5 explains COVID-19 infection severity by overexpression of angiotensin-converting enzyme 2 in respiratory cells: A review. Environ Chem Lett. 19:25–42. 2021. View Article : Google Scholar | |
|
Miyashita L, Foley G, Semple S, Gibbons JM, Pade C, McKnight Á and Grigg J: Curbside particulate matter and susceptibility to SARS-CoV-2 infection. J Allergy Clin Immunol Glob. 2:1001412023. View Article : Google Scholar : PubMed/NCBI | |
|
Alarfaj AA, Aldrweesh AK, Aldoughan AF, Alarfaj SM, Alabdulqader FK and Alyahya KA: Olfactory dysfunction following COVID-19 and the potential benefits of olfactory training. J Clin Med. 12:47612023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Z, Ekström S, Bellander T, Ljungman P, Pershagen G, Eneroth K, Kull I, Bergström A, Georgelis A, Stafoggia M, et al: Ambient air pollution exposure linked to long COVID among young adults: A nested survey in a population-based cohort in Sweden. Lancet Reg Health Eur. 28:1006082023. View Article : Google Scholar | |
|
McWilliams MP, Coelho DH, Reiter ER and Costanzo RM: Recovery from Covid-19 smell loss: Two-years of follow up. Am J Otolaryngol. 43:1036072022. View Article : Google Scholar : PubMed/NCBI | |
|
Hu B, Gong M, Xiang Y, Qu S, Zhu H and Ye D: Mechanism and treatment of olfactory dysfunction caused by coronavirus disease 2019. J Transl Med. 21:8292023. View Article : Google Scholar : PubMed/NCBI | |
|
Raghuvamsi PV, Tulsian NK, Samsudin F, Qian X, Purushotorman K, Yue G, Kozma MM, Hwa WY, Lescar J, Bond PJ, et al: SARS-CoV-2 S protein: ACE2 interaction reveals novel allosteric targets. Elife. 10:e636462021. View Article : Google Scholar | |
|
Antony P and Vijayan R: Role of SARS-CoV-2 and ACE2 variations in COVID-19. Biomed J. 44:235–244. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li HH, Liu CC, Hsu TW, Lin JH, Hsu JW, Li AF, Yeh YC, Hung SC and Hsu HS: Upregulation of ACE2 and TMPRSS2 by particulate matter and idiopathic pulmonary fibrosis: A potential role in severe COVID-19. Part Fibre Toxicol. 18:112021. View Article : Google Scholar : PubMed/NCBI | |
|
Yadav R, Chaudhary JK, Jain N, Chaudhary PK, Khanra S, Dhamija P, Sharma A, Kumar A and Handu S: Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells. 10:8212021. View Article : Google Scholar : PubMed/NCBI | |
|
Botto L, Bulbarelli A, Lonati E, Cazzaniga E and Palestini P: Correlation between exposure to UFP and ACE/ACE2 pathway: Looking for possible involvement in COVID-19 pandemic. Toxics. 12:5602024. View Article : Google Scholar : PubMed/NCBI | |
|
Wieczfinska J, Kleniewska P and Pawliczak R: Oxidative stress-related mechanisms in SARS-CoV-2 infections. Oxid Med Cell Longev. 2022:55890892022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang CY, Han K, Yang F, Yin SY, Zhang L, Liang BY, Wang TB, Jiang T, Chen YR, Shi TY, et al: Global, regional, and national prevalence of hearing loss from 1990 to 2019: A trend and health inequality analyses based on the global burden of disease study 2019. Ageing Res Rev. 92:1021242023. View Article : Google Scholar : PubMed/NCBI | |
|
Li FF, Fu ZY, Han K, Liang BY, Han YX, Liu YH, Tong BS and Liu YC: Trends and driving factors of age-related hearing loss and severity over 30 years: A cross-sectional study. BMC Geriatr. 25:3872025. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Zhang H, Wang N, Zhang S, Luo Z, Xuan X, Liu M, Chen X, Li X, Xue L and Wu J: Effects of air pollution and noise exposure on occupational hearing loss in oil workers: A prospective cohort study. BMC Public Health. 25:25272025. View Article : Google Scholar : PubMed/NCBI | |
|
Ju MJ, Park SK, Kim SY and Choi YH: Long-term exposure to ambient air pollutants and hearing loss in Korean adults. Sci Total Environ. 820:1531242022. View Article : Google Scholar : PubMed/NCBI | |
|
Manukyan AL: Noise as a cause of neurodegenerative disorders: Molecular and cellular mechanisms. Neurol Sci. 43:2983–2993. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Cao L, Lv P and Bai S: Associations between household solid fuel use and hearing loss in a Chinese population: A population-based prospective cohort study. Ecotoxicol Environ Saf. 236:1135062022. View Article : Google Scholar : PubMed/NCBI | |
|
Poindexter AN III, Thompson DJ, Gibbons WE, Findley WE, Dodson MG and Young RL: Residual embryos in failed embryo transfer. Fertil Steril. 46:262–267. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Kim HY: Eustachian tube dysfunction in hearing loss: Mechanistic pathways to targeted interventions. Biomedicines. 13:26862025. View Article : Google Scholar : PubMed/NCBI | |
|
Fechter LD, Gearhart C, Fulton S, Campbell J, Fisher J, Na K, Cocker D, Nelson-Miller A, Moon P and Pouyatos B: Promotion of noise-induced cochlear injury by toluene and ethylbenzene in the rat. Toxicol Sci. 98:542–551. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Stoica BA, Boulares AH, Rosenthal DS, Iyer S, Hamilton ID and Smulson ME: Mechanisms of JP-8 jet fuel toxicity. I. Induction of apoptosis in rat lung epithelial cells. Toxicol Appl Pharmacol. 171:94–106. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Guthrie OW, Xu H, Wong BA, McInturf SM, Reboulet JE, Ortiz PA and Mattie DR: Exposure to low levels of jet-propulsion fuel impairs brainstem encoding of stimulus intensity. J Toxicol Environ Health A. 77:261–280. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Guthrie OW, Wong BA, McInturf SM, Reboulet JE, Ortiz PA and Mattie DR: Inhalation of hydrocarbon jet fuel suppress central auditory nervous system function. J Toxicol Environ Health A. 78:1154–1169. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fechter LD, Fisher JW, Chapman GD, Mokashi VP, Ortiz PA, Reboulet JE, Stubbs JE, Lear AM, McInturf SM, Prues SL, et al: Subchronic JP-8 jet fuel exposure enhances vulnerability to noise-induced hearing loss in rats. J Toxicol Environ Health A. 75:299–317. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Grobe N, Narayanan L, Brown DN, Law ST, Sibomana I, Shiyanov P, Reo NV, Hack CE, Sterner TR and Mattie DR: Lipid, water, and protein composition to facilitate kinetic modeling of the auditory pathway. Toxicol Mech Methods. 29:53–59. 2019. View Article : Google Scholar | |
|
Kilic O, Kalcioglu MT, Cag Y, Tuysuz O, Pektas E, Caskurlu H and Cetın F: Could sudden sensorineural hearing loss be the sole manifestation of COVID-19? An investigation into SARS-COV-2 in the etiology of sudden sensorineural hearing loss. Int J Infect Dis. 97:208–211. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yamada S, Kita J, Shinmura D, Nakamura Y, Sahara S, Misawa K and Nakanishi H: Update on findings about sudden sensorineural hearing loss and insight into its pathogenesis. J Clin Med. 11:63872022. View Article : Google Scholar : PubMed/NCBI | |
|
Hatim KS, Narayankar S and Mulla T: Patterns and prevalence of benign breast disease in Western India. Int J Res Med Sci. 5:6842017. View Article : Google Scholar | |
|
Zhai Z, Li C, Chen Y, Gerotziafas G, Zhang Z, Wan J, Liu P, Elalamy I and Wang C; Prevention Treatment of VTE Associated with COVID-19 Infection Consensus Statement Group: Prevention and treatment of venous thromboembolism associated with coronavirus disease 2019 infection: A consensus statement before guidelines. Thromb Haemost. 120:937–948. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Spiezia L, Boscolo A, Poletto F, Cerruti L, Tiberio I, Campello E, Navalesi P and Simioni P: COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost. 120:998–1000. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wan D, Du T, Hong W, Chen L, Que H, Lu S and Peng X: Neurological complications and infection mechanism of SARS-COV-2. Signal Transduct Target Ther. 6:4062021. View Article : Google Scholar : PubMed/NCBI | |
|
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, et al: Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77:683–690. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chandrasekhar SS, Tsai Do BS, Schwartz SR, Bontempo LJ, Faucett EA, Finestone SA, Hollingsworth DB, Kelley DM, Kmucha ST, Moonis G, et al: Clinical practice guideline: sudden hearing loss (update) executive summary. Otolaryngol Head Neck Surg. 161:195–210. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W and Tian DS: Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 71:762–768. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F and Moch H: Endothelial cell infection and endotheliitis in COVID-19. Lancet. 395:1417–1418. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Degen C, Lenarz T and Willenborg K: Acute profound sensorineural hearing loss after COVID-19 pneumonia. Mayo Clin Proc. 95:1801–1803. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
de Beer EL, Gründeman RL, Wilhelm AJ, Caljouw CJ, Klepper D and Schiereck P: Caffeine suppresses length dependency of Ca2+ sensitivity of skinned striated muscle. Am J Physiol. 254:C491–C497. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Nicolini H: Depression and anxiety during COVID-19 pandemic. Cir Cir. 88:542–547. 2020.PubMed/NCBI | |
|
Yu Z, Bellander T, Bergström A, Dillner J, Eneroth K, Engardt M, Georgelis A, Kull I, Ljungman P, Pershagen G, et al: Association of short-term air pollution exposure with SARS-CoV-2 infection among young adults in Sweden. JAMA Netw Open. 5:e2281092022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Tao B, Hu Z, Yi Y and Wang J: Effects of short-term ambient particulate matter exposure on the risk of severe COVID-19. J Infect. 84:684–691. 2022. View Article : Google Scholar : PubMed/NCBI |