You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Lutsenko S, Roy S and Tsvetkov P: Mammalian copper homeostasis: Physiological roles and molecular mechanisms. Physiol Rev. 105:441–491. 2025. View Article : Google Scholar : | |
|
Locatelli M and Farina C: Role of copper in central nervous system physiology and pathology. Neural Regen Res. 20:1058–1068. 2025. View Article : Google Scholar | |
|
Chen G, Li J, Han H, Du R and Wang X: Physiological and molecular mechanisms of plant responses to copper stress. Int J Mol Sci. 23:129502022. View Article : Google Scholar : PubMed/NCBI | |
|
Verdejo-Torres O, Klein DC, Novoa-Aponte L, Carrazco-Carrillo J, Bonilla-Pinto D, Rivera A, Bakhshian A, Fitisemanu FM, Jiménez-González ML, Flinn L, et al: Cysteine rich intestinal protein 2 is a copper-responsive regulator of skeletal muscle differentiation and metal homeostasis. PLoS Genet. 20:e10114952024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Min J and Wang F: Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 7:3782022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Z, Chen D, Yao L, Sun Y, Li D, Le J, Dian Y, Zeng F, Chen X and Deng G: The molecular mechanism and therapeutic landscape of copper and cuproptosis in cancer. Signal Transduct Target Ther. 10:1492025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Wu J, Wang L, Ji G and Dang Y: Copper homeostasis and cuproptosis in health and disease. MedComm (2020). 5:e7242024. View Article : Google Scholar : PubMed/NCBI | |
|
Myint ZW, Oo TH, Thein KZ, Tun AM and Saeed H: Copper deficiency anemia: Review article. Ann Hematol. 97:1527–1534. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gromadzka G, Tarnacka B, Flaga A and Adamczyk A: Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int J Mol Sci. 21:92592020. View Article : Google Scholar : PubMed/NCBI | |
|
Sailer J, Nagel J, Akdogan B, Jauch AT, Engler J, Knolle PA and Zischka H: Deadly excess copper. Redox Biol. 75:1032562024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Huang Q, Ji T, Li Q and Hu C: Copper homeostasis and copper-induced cell death in tumor immunity: Implications for therapeutic strategies in cancer immunotherapy. Biomark Res. 12:1302024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang XR and Cull B: Apoptosis and autophagy: Current understanding in tick-pathogen interactions. Front Cell Infect Microbiol. 12:7844302022. View Article : Google Scholar : PubMed/NCBI | |
|
Hong Y, He J, Deng D, Liu Q, Zu X and Shen Y: Targeting kinases that regulate programmed cell death: A new therapeutic strategy for breast cancer. J Transl Med. 23:4392025. View Article : Google Scholar : PubMed/NCBI | |
|
Bertheloot D, Latz E and Franklin BS: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao W, Wang X, Zhou Y, Wang X and Yu Y: Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 7:1962022. View Article : Google Scholar : PubMed/NCBI | |
|
Rao Z, Zhu Y, Yang P, Chen Z, Xia Y, Qiao C, Liu W, Deng H, Li J, Ning P and Wang Z: Pyroptosis in inflammatory diseases and cancer. Theranostics. 12:4310–4329. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao G, Sun H, Zhang T and Liu JX: Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun Signal. 18:452020. View Article : Google Scholar : PubMed/NCBI | |
|
Ostrakhovitch EA and Cherian MG: Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells. Apoptosis. 10:111–121. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X and Chen G: Iron and copper: Critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal. 21:3272023. View Article : Google Scholar : PubMed/NCBI | |
|
Vana F, Szabo Z, Masarik M and Kratochvilova M: The interplay of transition metals in ferroptosis and pyroptosis. Cell Div. 19:242024. View Article : Google Scholar : PubMed/NCBI | |
|
Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, Kroemer G, Chen X, Tang D and Liu J: Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 19:1982–1996. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Y, Zeng S, Wang Z, Huang H, Zhao X and Li M: Mechanisms of copper-induced autophagy and links with human diseases. Pharmaceuticals (Basel). 18:992025. View Article : Google Scholar : PubMed/NCBI | |
|
Xue Q, Kang R, Klionsky DJ, Tang D, Liu J and Chen X: Copper metabolism in cell death and autophagy. Autophagy. 19:2175–2195. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Qiao S, Wang P, Li M, Ma X, Wang H and Dong J: Copper's new role in cancer: How cuproptosis-related genes could revolutionize glioma treatment. BMC Cancer. 25:8592025. View Article : Google Scholar : PubMed/NCBI | |
|
Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L and Mi D: Copper in cancer: From limiting nutrient to therapeutic target. Front Oncol. 13:12091562023. View Article : Google Scholar : PubMed/NCBI | |
|
Shoda K, Kawaguchi Y, Maruyama S and Ichikawa D: Essential updates 2023/2024: Recent advances of multimodal approach in patients for gastric cancer. Ann Gastroenterol Surg. 9:1119–1127. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Ricci AD, Rizzo A and Brandi G: DNA damage response alterations in gastric cancer: knocking down a new wall. Future Oncol. 17:865–868. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rizzo A and Ricci AD: Challenges and future trends of hepatocellular carcinoma immunotherapy. Int J Mol Sci. 23:113632022. View Article : Google Scholar : PubMed/NCBI | |
|
Vitale E, Rizzo A, Santa K and Jirillo E: Associations between 'Cancer Risk', 'Inflammation' and 'Metabolic Syndrome': A scoping review. Biology (Basel). 13:3522024. | |
|
Brandi G, Ricci AD, Rizzo A, Zanfi C, Tavolari S, Palloni A, De Lorenzo S, Ravaioli M and Cescon M: Is post-transplant chemotherapy feasible in liver transplantation for colorectal cancer liver metastases? Cancer Commun (Lond). 40:461–464. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mason KE: A conspectus of research on copper metabolism and requirements of man. J Nutr. 109:1979–2066. 1979. View Article : Google Scholar : PubMed/NCBI | |
|
Eisses JF and Kaplan JH: The mechanism of copper uptake mediated by human CTR1: A mutational analysis. J Biol Chem. 280:37159–37168. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zischka H and Einer C: Mitochondrial copper homeostasis and its derailment in Wilson disease. Int J Biochem Cell Biol. 102:71–75. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiayi H, Ziyuan T, Tianhua X, Mingyu Z, Yutong M, Jingyu W, Hongli Z and Li S: Copper homeostasis in chronic kidney disease and its crosstalk with ferroptosis. Pharmacol Res. 202:1071392024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Jiang Y, Shi H, Peng Y, Fan X and Li C: The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch. 472:1415–1429. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lutsenko S: Dynamic and cell-specific transport networks for intracellular copper ions. J Cell Sci. 134:jcs2405232021. View Article : Google Scholar : PubMed/NCBI | |
|
McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, et al: An iron-regulated ferric reductase associated with the absorption of dietary iron. Science. 291:1755–1759. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S and Peyssonnaux C: HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J Clin Invest. 119:1159–1166. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kawamata H and Manfredi G: Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space. Antioxid Redox Signal. 13:1375–1384. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Jin D, Zhou S, Dong N, Ji Y, An P, Wang J, Luo Y and Luo J: Regulatory roles of copper metabolism and cuproptosis in human cancers. Front Oncol. 13:11234202023. View Article : Google Scholar : PubMed/NCBI | |
|
Ohrvik H and Thiele DJ: How copper traverses cellular membranes through the mammalian copper transporter 1, Ctr1. Ann N Y Acad Sci. 1314:32–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Q, Xiao Y, Guan M, Zhang X, Yu J, Han M and Li Z: Copper metabolism in osteoarthritis and its relation to oxidative stress and ferroptosis in chondrocytes. Front Mol Biosci. 11:14724922024. View Article : Google Scholar : PubMed/NCBI | |
|
Kim H, Wu X and Lee J: SLC31 (CTR) family of copper transporters in health and disease. Mol Aspects Med. 34:561–570. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cobine PA, Moore SA and Leary SC: Getting out what you put in: Copper in mitochondria and its impacts on human disease. Biochim Biophys Acta Mol Cell Res. 1868:1188672021. View Article : Google Scholar | |
|
Chen Z, Li YY and Liu X: Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging. Biomed Pharmacother. 169:1158392023. View Article : Google Scholar | |
|
Andersson M, Mattle D, Sitsel O, Klymchuk T, Nielsen AM, Moller LB, White SH, Nissen P and Gourdon P: Copper-transporting P-type ATPases use a unique ion-release pathway. Nat Struct Mol Biol. 21:43–48. 2014. View Article : Google Scholar : | |
|
Telianidis J, Hung YH, Materia S and Fontaine SL: Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci. 5:442013. View Article : Google Scholar : PubMed/NCBI | |
|
Fanni D, Pilloni L, Orru S, Coni P, Liguori C, Serra S, Lai ML, Uccheddu A, Contu L, Van Eyken P and Faa G: Expression of ATP7B in normal human liver. Eur J Histochem. 49:371–378. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kaler SG: ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol. 7:15–29. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yang GM, Xu L, Wang RM, Tao X, Zheng ZW, Chang S, Ma D, Zhao C, Dong Y, Wu S, et al: Structures of the human Wilson disease copper transporter ATP7B. Cell Rep. 42:1124172023. View Article : Google Scholar : PubMed/NCBI | |
|
Fukai T, Ushio-Fukai M and Kaplan JH: Copper transporters and copper chaperones: Roles in cardiovascular physiology and disease. Am J Physiol Cell Physiol. 315:C186–C201. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ugarte M, Osborne NN, Brown LA and Bishop PN: Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol. 58:585–609. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ishida S, Andreux P, Poitry-Yamate C, Auwerx J and Hanahan D: Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci USA. 110:19507–19512. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wooton-Kee CR, Robertson M, Zhou Y, Dong B, Sun Z, Kim KH, Liu H, Xu Y, Putluri N, Saha P, et al: Metabolic dysregulation in the Atp7b(-/-) Wilson's disease mouse model. Proc Natl Acad Sci USA. 117:2076–2083. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang H, Ralle M, Wolfgang MJ, Dhawan N, Burkhead JL, Rodriguez S, Kaplan JH, Wong GW, Haughey N and Lutsenko S: Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biol. 16:e20065192018. View Article : Google Scholar : PubMed/NCBI | |
|
Kim E, Chufan EE, Kamaraj K and Karlin KD: Synthetic models for heme-copper oxidases. Chem Rev. 104:1077–1133. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Anwar S, Sarwar T, Khan AA and Rahmani AH: Therapeutic applications and mechanisms of superoxide dismutase (SOD) in different pathogenesis. Biomolecules. 15:11302025. View Article : Google Scholar : PubMed/NCBI | |
|
Grubman A and White AR: Copper as a key regulator of cell signalling pathways. Expert Rev Mol Med. 16:e112014. View Article : Google Scholar : PubMed/NCBI | |
|
Heffern MC, Park HM, Au-Yeung HY, Van de Bittner GC, Ackerman CM, Stahl A and Chang CJ: In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proc Natl Acad Sci USA. 113:14219–14224. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Herranz N, Dave N, Millanes-Romero A, Morey L, Diaz VM, Lorenz-Fonfria V, Gutierrez-Gallego R, Jerónimo C, Di Croce L, García de Herreros A and Peiró S: Lysyl oxidase-like 2 deaminates lysine 4 in histone H3. Mol Cell. 46:369–376. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Percival SS: Copper and immunity. Am J Clin Nutr. 67(5 Suppl): 1064S–1068S. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
An Y, Li S, Huang X, Chen X, Shan H and Zhang M: The role of copper homeostasis in brain disease. Int J Mol Sci. 23:138502022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng YF, Zhao YJ, Chen C and Zhang F: Heavy metals toxicity: Mechanism, health effects, and therapeutic interventions. MedComm (2020). 6:e702412025. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng P, Zhou C, Lu L, Liu B and Ding Y: Elesclomol: A copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res. 41:2712022. View Article : Google Scholar : PubMed/NCBI | |
|
Kong R and Sun G: Targeting copper metabolism: A promising strategy for cancer treatment. Front Pharmacol. 14:12034472023. View Article : Google Scholar : PubMed/NCBI | |
|
Nan L, Yuan W, Guodong C and Yonghui H: Multitargeting strategy using tetrathiomolybdate and lenvatinib: Maximizing antiangiogenesis activity in a preclinical liver cancer model. Anticancer Agents Med Chem. 23:786–793. 2023. View Article : Google Scholar | |
|
Cohen R, Raeisi M, Chibaudel B, Yothers G, Goldberg RM, Bachet JB, Wolmark N, Yoshino T, Schmoll HJ, Haller DG, et al: Impact of tumor and node stages on the efficacy of adjuvant oxaliplatin-based chemotherapy in stage III colon cancer patients: An ACCENT pooled analysis. ESMO Open. 10:1044812025. View Article : Google Scholar | |
|
Nawar MF and Turler A: New strategies for a sustainable (99m) Tc supply to meet increasing medical demands: Promising solutions for current problems. Front Chem. 10:9262582022. View Article : Google Scholar | |
|
Wang W, Mo W, Hang Z, Huang Y, Yi H, Sun Z and Lei A: Cuproptosis: Harnessing transition metal for cancer therapy. ACS Nano. 17:19581–19599. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, et al: Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat Rev Cancer. 22:102–113. 2022. View Article : Google Scholar : | |
|
Li Y: Copper homeostasis: Emerging target for cancer treatment. IUBMB Life. 72:1900–1908. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cong Y, Li N, Zhang Z, Shang Y and Zhao H: Cuproptosis: Molecular mechanisms, cancer prognosis, and therapeutic applications. J Transl Med. 23:1042025. View Article : Google Scholar : PubMed/NCBI | |
|
Shim D and Han J: Coordination chemistry of mitochondrial copper metalloenzymes: Exploring implications for copper dyshomeostasis in cell death. BMB Rep. 56:575–583. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M and Chen P: Mechanisms of metal-induced mitochondrial dysfunction in neurological disorders. Toxics. 9:1422021. View Article : Google Scholar : PubMed/NCBI | |
|
Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, et al: Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 15:681–689. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Zhang Y, Yang B, Sun S, Zhang P, Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al: Lactylation of METTL16 promotes cuproptosis via m(6)A-modification on FDX1 mRNA in gastric cancer. Nat Commun. 14:65232023. View Article : Google Scholar : PubMed/NCBI | |
|
Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, Paladino S, Baldantoni D, van IJzendoorn SC, Chan J, et al: Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev Cell. 29:686–700. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Zhang Y, Wang Y, Jiang P, Liu F and Feng N: Ferredoxin 1 is a cuproptosis-key gene responsible for tumor immunity and drug sensitivity: A pan-cancer analysis. Front Pharmacol. 13:9381342022. View Article : Google Scholar : PubMed/NCBI | |
|
Sheftel AD, Stehling O, Pierik AJ, Elsasser HP, Muhlenhoff U, Webert H, Hobler A, Hannemann F, Bernhardt R and Lill R: Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA. 107:11775–11780. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Huang X, Wang T, Ye J, Feng H and Zhang X, Ma X, Wang B, Huang Y and Zhang X: FDX1 expression predicts favourable prognosis in clear cell renal cell carcinoma identified by bioinformatics and tissue microarray analysis. Front Genet. 13:9947412022. View Article : Google Scholar : PubMed/NCBI | |
|
Mayr JA, Zimmermann FA, Fauth C, Bergheim C, Meierhofer D, Radmayr D, Zschocke J, Koch J and Sperl W: Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. Am J Hum Genet. 89:792–797. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Cai Y, He Q, Liu W, Liang Q, Peng B, Li J, Zhang W, Kang F, Hong Q, Yan Y, et al: Comprehensive analysis of the potential cuproptosis-related biomarker LIAS that regulates prognosis and immunotherapy of pan-cancers. Front Oncol. 12:9521292022. View Article : Google Scholar : PubMed/NCBI | |
|
Casteel J, Miernyk JA and Thelen JJ: Mapping the lipoylation site of Arabidopsis thaliana plastidial dihydrolipoamide S-acetyltransferase using mass spectrometry and site-directed mutagenesis. Plant Physiol Biochem. 49:1355–1361. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Rumping L, Tessadori F, Pouwels PJW, Vringer E, Wijnen JP, Bhogal AA, Savelberg SMC, Duran KJ, Bakkers MJG, Ramos RJJ, et al: GLS hyperactivity causes glutamate excess, infantile cataract and profound developmental delay. Hum Mol Genet. 28:96–104. 2019. View Article : Google Scholar | |
|
Rumping L, Buttner B, Maier O, Rehmann H, Lequin M, Schlump JU, Schmitt B, Schiebergen-Bronkhorst B, Prinsen HCMT, Losa M, et al: Identification of a loss-of-function mutation in the context of glutaminase deficiency and neonatal epileptic encephalopathy. JAMA Neurol. 76:342–350. 2019. View Article : Google Scholar : | |
|
Agarwal P, Sandey M, DeInnocentes P and Bird RC: Tumor suppressor gene p16/INK4A/CDKN2A-dependent regulation into and out of the cell cycle in a spontaneous canine model of breast cancer. J Cell Biochem. 114:1355–1363. 2013. View Article : Google Scholar | |
|
Serrano M, Hannon GJ and Beach D: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 366:704–407. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Bian Z, Yu Y, Yang T, Quan C, Sun W and Fu S: Effect of tumor suppressor gene cyclin-dependent kinase inhibitor 2A wild-type and A148T mutant on the cell cycle of human ovarian cancer cells. Oncol Lett. 7:1229–1232. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Samimi G, Safaei R, Katano K, Holzer AK, Rochdi M, Tomioka M, Goodman M and Howell SB: Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res. 10:4661–4669. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Tian Z, Jiang S, Zhou J and Zhang W: Copper homeostasis and cuproptosis in mitochondria. Life Sci. 334:1222232023. View Article : Google Scholar : PubMed/NCBI | |
|
Mangala LS, Zuzel V, Schmandt R, Leshane ES, Halder JB, Armaiz-Pena GN, Spannuth WA, Tanaka T, Shahzad MM, Lin YG, et al: Therapeutic targeting of ATP7B in ovarian carcinoma. Clin Cancer Res. 15:3770–3780. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Yun Y, Wang Y, Yang E and Jing X: Cuproptosis-related gene - SLC31A1, FDX1 and ATP7B-polymorphisms are associated with risk of lung cancer. Pharmgenomics Pers Med. 15:733–742. 2022. | |
|
Wang D, Tian Z, Zhang P, Zhen L, Meng Q, Sun B, Xu X, Jia T and Li S: The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother. 163:1148302023. View Article : Google Scholar : PubMed/NCBI | |
|
Halliwell B, Adhikary A, Dingfelder M and Dizdaroglu M: Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem Soc Rev. 50:8355–8360. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chandimali N, Bak SG, Park EH, Lim HJ, Won YS, Kim EK, Park SI and Lee SJ: Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 11:192025. View Article : Google Scholar : PubMed/NCBI | |
|
Wong-Ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP and Monticelli L: Effect of lipid peroxidation on the properties of lipid bilayers: A molecular dynamics study. Biophys J. 93:4225–4236. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kehm R, Baldensperger T, Raupbach J and Höhn A: Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol. 42:1019012021. View Article : Google Scholar : PubMed/NCBI | |
|
Vo TTT, Peng TY, Nguyen TH, Bui TNH, Wang CS, Lee WJ, Chen YL, Wu YC and Lee IT: The crosstalk between copper-induced oxidative stress and cuproptosis: A novel potential anticancer paradigm. Cell Commun Signal. 22:3532024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Jiang T, Wang H, Tao S, Lau A, Fang D and Zhang DD: Does Nrf2 contribute to p53-mediated control of cell survival and death? Antioxid Redox Signal. 17:1670–1675. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Shan D, Song J, Ren Y, Zhang Y, Ba Y, Luo P, Cheng Q, Xu H, Weng S, Zuo A, et al: Copper in cancer: Friend or foe? Metabolism, dysregulation, and therapeutic opportunities. Cancer Commun (Lond). 45:577–607. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Dow JA: The essential roles of metal ions in insect homeostasis and physiology. Curr Opin Insect Sci. 23:43–50. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ding X, Jiang M, Jing H, Sheng W, Wang X, Han J and Wang L: Analysis of serum levels of 15 trace elements in breast cancer patients in Shandong, China. Environ Sci Pollut Res Int. 22:7930–7935. 2015. View Article : Google Scholar | |
|
Kuo HW, Chen SF, Wu CC, Chen DR and Lee JH: Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol Trace Elem Res. 89:1–11. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Pavithra V, Sathisha TG, Kasturi K, Mallika DS, Amos SJ and Ragunatha S: Serum levels of metal ions in female patients with breast cancer. J Clin Diagn Res. 9:BC25–c27. 2015.PubMed/NCBI | |
|
Feng JF, Lu L, Zeng P, Yang YH, Luo J, Yang YW and Wang D: Serum total oxidant/antioxidant status and trace element levels in breast cancer patients. Int J Clin Oncol. 17:575–583. 2012. View Article : Google Scholar | |
|
Zowczak M, Iskra M, Torlinski L and Cofta S: Analysis of serum copper and zinc concentrations in cancer patients. Biol Trace Elem Res. 82:1–8. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Diez M, Cerdan FJ, Arroyo M and Balibrea JL: Use of the copper/zinc ratio in the diagnosis of lung cancer. Cancer. 63:726–730. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Zhang C, Xu H, Xue S, Wang Y, Hou Y, Kong Y and Xu Y: Combined effects of serum trace metals and polymorphisms of CYP1A1 or GSTM1 on non-small cell lung cancer: A hospital based case-control study in China. Cancer Epidemiol. 35:182–187. 2011. View Article : Google Scholar | |
|
Oyama T, Matsuno K, Kawamoto T, Mitsudomi T, Shirakusa T and Kodama Y: Efficiency of serum copper/zinc ratio for differential diagnosis of patients with and without lung cancer. Biol Trace Elem Res. 42:115–127. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Stepien M, Jenab M, Freisling H, Becker NP, Czuban M, Tjonneland A, Olsen A, Overvad K, Boutron-Ruault MC, Mancini FR, et al: Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Carcinogenesis. 38:699–707. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sohrabi M, Gholami A, Azar MH, Yaghoobi M, Shahi MM, Shirmardi S, Nikkhah M, Kohi Z, Salehpour D, Khoonsari MR, et al: Trace element and heavy metal levels in colorectal cancer: Comparison between cancerous and non-cancerous tissues. Biol Trace Elem Res. 183:1–8. 2018. View Article : Google Scholar | |
|
Margalioth EJ, Schenker JG and Chevion M: Copper and zinc levels in normal and malignant tissues. Cancer. 52:868–872. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Yaman M, Kaya G and Yekeler H: Distribution of trace metal concentrations in paired cancerous and non-cancerous human stomach tissues. World J Gastroenterol. 13:612–618. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Khanna SS and Karjodkar FR: Circulating immune complexes and trace elements (Copper, Iron and Selenium) as markers in oral precancer and cancer: A randomised, controlled clinical trial. Head Face Med. 2:332006. View Article : Google Scholar | |
|
Baltaci AK, Dundar TK, Aksoy F and Mogulkoc R: Changes in the serum levels of trace elements before and after the operation in thyroid cancer patients. Biol Trace Elem Res. 175:57–64. 2017. View Article : Google Scholar | |
|
Basu S, Singh MK, Singh TB, Bhartiya SK, Singh SP and Shukla VK: Heavy and trace metals in carcinoma of the gallbladder. World J Surg. 37:2641–2646. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Saleh SAK, Adly HM, Abdelkhaliq AA and Nassir AM: Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Curr Urol. 14:44–49. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Blockhuys S, Celauro E, Hildesjo C, Feizi A, Stal O, Fierro-Gonzalez JC and Wittung-Stafshede P: Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics. 9:112–123. 2017. View Article : Google Scholar | |
|
Wang W, Lu K, Jiang X, Wei Q, Zhu L, Wang X, Jin H and Feng L: Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J Exp Clin Cancer Res. 42:1422023. View Article : Google Scholar : PubMed/NCBI | |
|
Harris ED: A Requirement for Copper in Angiogenesis. Nutr Rev. 62:60–64. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
De Luca A, Barile A, Arciello M and Rossi L: Copper homeostasis as target of both consolidated and innovative strategies of anti-tumor therapy. J Trace Elem Med Biol. 55:204–213. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Barker HE, Cox TR and Erler JT: The rationale for targeting the LOX family in cancer. Nat Rev Cancer. 12:540–552. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Groleau J, Dussault S, Haddad P, Turgeon J, Menard C, Chan JS and Rivard A: Essential role of copper-zinc superoxide dismutase for ischemia-induced neovascularization via modulation of bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 30:2173–2181. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lowndes SA and Harris AL: Copper chelation as an antiangiogenic therapy. Oncol Res. 14:529–539. 2004. View Article : Google Scholar | |
|
Pannecoeck R, Serruys D, Benmeridja L, Delanghe JR, van Geel N, Speeckaert R and Speeckaert MM: Vascular adhesion protein-1: Role in human pathology and application as a biomarker. Crit Rev Clin Lab Sci. 52:284–300. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wong CC, Tse AP, Huang YP, Zhu YT, Chiu DK, Lai RK, Au SL, Kai AK, Lee JM, Wei LL, et al: Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma. Hepatology. 60:1645–1658. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Salvador F, Martin A, Lopez-Menendez C, Moreno-Bueno G, Santos V, Vazquez-Naharro A, Santamaria PG, Morales S, Dubus PR, Muinelo-Romay L, et al: Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Res. 77:5846–5859. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng F, Peng G, Lu Y, Wang K, Ju Q, Ju Y and Ouyang M: Relationship between copper and immunity: The potential role of copper in tumor immunity. Front Oncol. 12:10191532022. View Article : Google Scholar : PubMed/NCBI | |
|
Kang J, Lin C, Chen J and Liu Q: Copper induces histone hypoacetylation through directly inhibiting histone acetyltransferase activity. Chem Biol Interact. 148:115–123. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
International Agency for Research on Cancer: Oesophageal cancer. GLOBOCAN. 2022, https://www.iarc.who.int/cancer-type/oesophageal-cancer/. Accessed Dec 2, 2025 | |
|
Zhang Y, Liu S, Zhou S, Yu D, Gu J, Qin Q, Cheng Y and Sun X: Focal adhesion kinase: Insight into its roles and therapeutic potential in oesophageal cancer. Cancer Lett. 496:93–103. 2021. View Article : Google Scholar | |
|
Liu XS, Yuan LL, Gao Y, Zhou LM, Yang JW and Pei ZJ: Overexpression of METTL3 associated with the metabolic status on (18)F-FDG PET/CT in patients with esophageal carcinoma. J Cancer. 11:4851–4860. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu XS, Zhang Y, Liu ZY, Gao Y, Yuan LL, Zeng DB, Tan F, Wan HB and Pei ZJ: METTL3 as a novel diagnosis and treatment biomarker and its association with glycolysis, cuproptosis and ceRNA in oesophageal carcinoma. J Cell Mol Med. 28:e181952024. View Article : Google Scholar : PubMed/NCBI | |
|
Lin K, Hu K, Chen Q and Wu J: The function and immune role of cuproptosis associated hub gene in Barrett's esophagus and esophageal adenocarcinoma. Biosci Trends. 17:381–392. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bas O, Sahin TK, Karahan L, Rizzo A and Guven DC: Prognostic significance of the cachexia index (CXI) in patients with cancer: A systematic review and meta-analysis. Clin Nutr ESPEN. 68:240–247. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
International Agency for Research on Cancer: Stomach cancer. GLOBOCAN. 2022, https://www.iarc.who.int/cancer-type/stomach-cancer/. Accessed Dec 2, 2025 | |
|
Wang H, Liu M, Zeng X, Zheng Y, Wang Y and Zhou Y: Cell death affecting the progression of gastric cancer. Cell Death Discov. 8:3772022. View Article : Google Scholar : PubMed/NCBI | |
|
Song Q, Liu S, Wu D and Cai A: Multiple programmed cell death patterns predict the prognosis and drug sensitivity in gastric cancer. Front Immunol. 16:15114532025. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Sun W, Yuan S, Liu X, Zhang Z, Gu R, Li P and Gu X: The role of cuproptosis in gastric cancer. Front Immunol. 15:14356512024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Dong C, Shen X, Wang P, Chen T, Li W, Sun X, Li P, Xu C, Duan K, et al: Targeting PTBP3-Mediated alternative splicing of COX11 induces cuproptosis for inhibiting gastric cancer peritoneal metastasis. Adv Sci (Weinh). 12:e24159832025. View Article : Google Scholar : PubMed/NCBI | |
|
Zuo X, Lei Y, Ou S, Yuan X, Shi P, Li Q and Xu Y: Integration of cuproptosis-related gene signatures in stomach adenocarcinoma: Implications for prognostic prediction and therapeutic strategies in cancer drug resistance. Discov Oncol. 16:8852025. View Article : Google Scholar : PubMed/NCBI | |
|
Xie XZ, Zuo L, Huang W, Fan QM, Weng YY, Yao WD, Jiang JL and Jin JQ: FDX1 as a novel biomarker and treatment target for stomach adenocarcinoma. World J Gastrointest Surg. 16:1803–1824. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lu L, Yang W, Gu Y, Jin L and Liang Z: The role of cuproptosis in the occurrence and development of gastric cancer. Front Pharmacol. 16:16642002025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Liao Y, Huang L and Luo Z: Exploring copper metabolism-induced cell death in gastric cancer: A single-cell RNA sequencing study and prognostic model development. Discov Oncol. 15:4822024. View Article : Google Scholar : PubMed/NCBI | |
|
International Agency for Research on Cancer: Liver cancer. GLOBOCAN. 2022, https://www.iarc.who.int/cancer-type/liver-cancer/. Accessed Dec 2, 2025 | |
|
Yu M, Chen Z, Zhou Q, Zhang B, Huang J, Jin L, Zhou B, Liu S, Yan J, Li X, et al: PARG inhibition limits HCC progression and potentiates the efficacy of immune checkpoint therapy. J Hepatol. 77:140–151. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang H, Tsui YM and Ng IO: Fueling HCC dynamics: Interplay between tumor microenvironment and tumor initiating cells. Cell Mol Gastroenterol Hepatol. 15:1105–1116. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fang AP, Chen PY, Wang XY, Liu ZY, Zhang DM, Luo Y, Liao GC, Long JA, Zhong RH, Zhou ZG, et al: Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong liver cancer cohort. Int J Cancer. 144:2823–2832. 2019. View Article : Google Scholar | |
|
Gunjan D, Shalimar, Nadda N, Kedia S, Nayak B, Paul SB, Gamanagatti SR and Acharya SK: Hepatocellular carcinoma: An unusual complication of longstanding wilson disease. J Clin Exp Hepatol. 7:152–154. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Haratake J, Horie A and Takeda S: Histochemical and ultrastructural study of copper-binding protein in hepatocellular carcinoma. Cancer. 60:1269–1274. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Lefkowitch JH, Muschel R, Price JB, Marboe C and Braunhut S: Copper and copper-binding protein in fibrolamellar liver cell carcinoma. Cancer. 51:97–100. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Davis CI, Gu X, Kiefer RM, Ralle M, Gade TP and Brady DC: Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation. Metallomics. 12:1995–2008. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Poznanski J, Soldacki D, Czarkowska-Paczek B, Bonna A, Kornasiewicz O, Krawczyk M, Bal W and Pączek L: Cirrhotic liver of liver transplant recipients accumulate silver and co-accumulate copper. Int J Mol Sci. 22:17822021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Zhou H, Zhai X, Gao L, Yang M, An B, Xia T, Du G, Li X, Wang W and Jin B: MELK promotes HCC carcinogenesis through modulating cuproptosis-related gene DLAT-mediated mitochondrial function. Cell Death Dis. 14:7332023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, Hu C, Wu X, Jiang Q, Wu D, et al: Copper promotes tumorigenesis by activating the PDK1-AKT oncogenic pathway in a copper transporter 1 dependent manner. Adv Sci (Weinh). 8:e20043032021. View Article : Google Scholar : PubMed/NCBI | |
|
Quan B, Liu W, Yao F, Li M, Tang B, Li J, Ren Z and Yin X: LINC02362/hsa-miR-18a-5p/FDX1 axis suppresses proliferation and drives cuproptosis and oxaliplatin sensitivity of hepatocellular carcinoma. Am J Cancer Res. 13:5590–5609. 2023.PubMed/NCBI | |
|
Oliveri V: Selective targeting of cancer cells by copper ionophores: An overview. Front Mol Biosci. 9:8418142022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou C, Yang J, Liu T, Jia R, Yang L, Sun P and Zhao W: Copper metabolism and hepatocellular carcinoma: Current insights. Front Oncol. 13:11866592023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Chen J, Yin S, Shi J, Zheng M, He C, Meng H, Han Y, Han J, Guo J, et al: The expression of cuproptosis-related genes in hepatocellular carcinoma and their relationships with prognosis. Front Oncol. 12:9924682022. View Article : Google Scholar : PubMed/NCBI | |
|
International Agency for Research on Cancer: Pancreatic cancer. GLOBOCAN. 2022, https://www.iarc.who.int/cancer-type/pancreatic-cancer/. Accessed Dec 2, 2025 | |
|
Leiphrakpam PD, Chowdhury S, Zhang M, Bajaj V, Dhir M and Are C: Trends in the global incidence of pancreatic cancer and a brief review of its histologic and molecular subtypes. J Gastrointest Cancer. 56:712025. View Article : Google Scholar : PubMed/NCBI | |
|
Lener MR, Scott RJ, Wiechowska-Kozlowska A, Serrano-Fernandez P, Baszuk P, Jaworska-Bieniek K, Sukiennicki G, Marciniak W, Muszyńska M, Kładny J, et al: Serum concentrations of selenium and copper in patients diagnosed with pancreatic cancer. Cancer Res Treat. 48:1056–1064. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gao S, Ge H, Gao L, Gao Y, Tang S, Li Y, Yuan Z and Chen W: Silk fibroin nanoparticles for enhanced cuproptosis and immunotherapy in pancreatic cancer treatment. Adv Sci (Weinh). 12:e24176762025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou C, Yi C, Yi Y, Qin W, Yan Y, Dong X, Zhang X, Huang Y, Zhang R, Wei J, et al: LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer. 19:1182020. View Article : Google Scholar | |
|
Sun Y, Yao L, Man C, Gao Z, He R and Fan Y: Development and validation of cuproptosis-related lncRNAs associated with pancreatic cancer immune microenvironment based on single-cell. Front Immunol. 14:12207602023. View Article : Google Scholar : PubMed/NCBI | |
|
International Agency for Research on Cancer: Colorectal cancer. GLOBOCAN. 2022, https://www.iarc.who.int/cancer-type/colorectal-cancer/. Accessed Dec 2, 2025 | |
|
Yang W, Wang Y, Huang Y, Yu J, Wang T, Li C, Yang L, Zhang P, Shi L, Yin Y, et al: 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer. Biomed Pharmacother. 159:1143012023. View Article : Google Scholar : PubMed/NCBI | |
|
Gu Y, Li C, Yan Y, Ming J, Li Y, Chao X and Wang T: Comprehensive analysis and verification of the prognostic significance of cuproptosis-related genes in colon adenocarcinoma. Int J Mol Sci. 25:118302024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Lin H, Wang Y, Zhang Y, Zhou C, Tang D, Kagawa Y, Hou D and Jiang G: The unique role of cuproptosis in the prognosis and treatment of rectum adenocarcinoma. J Gastrointest Oncol. 16:367–385. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Pei P, Yang K, Guo L and Li Y: Copper in colorectal cancer: From copper-related mechanisms to clinical cancer therapies. Clin Transl Med. 14:e17242024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Chen F, Chen J, Chan S, He Y, Liu W and Zhang G: Disulfiram/Copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways. Cancers (Basel). 12:1382020. View Article : Google Scholar : PubMed/NCBI | |
|
Chan N, Willis A, Kornhauser N, Ward MM, Lee SB, Nackos E, Seo BR, Chuang E, Cigler T, Moore A, et al: Correction: Influencing the tumor microenvironment: A phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clin Cancer Res. 26:50512020. View Article : Google Scholar : PubMed/NCBI |