|
1
|
Xiang J, Li Y, Mei S, Ou Z, Wang L, Ke Y
and Li Z: Novel diagnostic and therapeutic strategies based on
PANoptosis for hepatocellular carcinoma. Cancer Biol Med.
22:928–939. 2025.PubMed/NCBI
|
|
2
|
Li J, Wang QB, Liang YB, Chen XM, Luo WL,
Li YK, Chen X, Lu QY and Ke Y: Tumor-associated lymphatic vessel
density is a reliable biomarker for prognosis of esophageal cancer
after radical resection: A systemic review and meta-analysis. Front
Immunol. 15:14534822024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li J, Liang YB, Wang QB, Li YK, Chen XM,
Luo WL, Lakang Y, Yang ZS, Wang Y, Li ZW and Ke Y: Tumor-associated
lymphatic vessel density is a postoperative prognostic biomarker of
hepatobiliary cancers: A systematic review and meta-analysis. Front
Immunol. 15:15199992025. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Xia F, Yi Q, Xu Z, Zhou Z, Tang H, Zhang K
and Yan Y: Microbial modulation as a game changer: Boosting
immunotherapy efficacy in breast cancer. Semin Cancer Biol.
117:152–167. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Xu Z, Zhou H, Li T, Yi Q, Thakur A, Zhang
K, Ma X, Qin JJ and Yan Y: Application of biomimetic nanovaccines
in cancer immunotherapy: A useful strategy to help combat
immunotherapy resistance. Drug Resist Updat. 75:1010982024.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wang R, Wang C, Lu L, Yuan F and He F:
Baicalin and baicalein in modulating tumor microenvironment for
cancer treatment: A comprehensive review with future perspectives.
Pharmacol Res. 199:1070322024. View Article : Google Scholar
|
|
7
|
Du M, Sun L, Guo J and Lv H: Macrophages
and tumor-associated macrophages in the senescent microenvironment:
From immunosuppressive TME to targeted tumor therapy. Pharmacol
Res. 204:1071982024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Xu M, Li Y, Liu Y, Chang J, Zhou C, Weng
W, Sun H, Tan C, Wang X, Wang X, et al: The development and
implementation of pathological parameters and molecular testing
impact prognosis of colorectal adenocarcinoma. J Natl Cancer Cent.
4:74–85. 2024.PubMed/NCBI
|
|
9
|
Wang Y, Nong J, Lu B, Gao Y, Hu M, Chen C,
Zhang L, Tan J, Yang X, Lin PP, et al: Disseminated tumor cells in
bone marrow as predictive classifiers for small cell lung cancer
patients. J Natl Cancer Cent. 4:335–345. 2024.PubMed/NCBI
|
|
10
|
Li N, Song K, Chen H and Dai M: Advance
and challenge of DNA methylation as cancer biomarkers for risk
stratification, screening and early detection. J Natl Cancer Cent.
5:108–112. 2025.PubMed/NCBI
|
|
11
|
Kim SA, Lee Y, Jung DE, Park KH, Park JY,
Gang J, Jeon SB, Park EC, Kim YG, Lee B, et al: Pancreatic
adenocarcinoma up-regulated factor (PAUF), a novel up-regulated
secretory protein in pancreatic ductal adenocarcinoma. Cancer Sci.
100:828–836. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kanagawa M, Satoh T, Ikeda A, Nakano Y,
Yagi H, Kato K, Kojima-Aikawa K and Yamaguchi Y: Crystal structures
of human secretory proteins ZG16p and ZG16b reveal a
Jacalin-related β-prism fold. Biochem Biophys Res Commun.
404:201–205. 2011. View Article : Google Scholar
|
|
13
|
Song J, Lee J, Kim J, Jo S, Kim YJ, Baek
JE, Kwon ES, Lee KP, Yang S, Kwon KS, et al: Pancreatic
adenocarcinoma up-regulated factor (PAUF) enhances the accumulation
and functional activity of myeloid-derived suppressor cells (MDSCs)
in pancreatic cancer. Oncotarget. 7:51840–51853. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lee M, Ham H, Lee J, Lee ES, Chung CH,
Kong DH, Park JR and Lee DK: TGF-β-induced PAUF plays a pivotal
role in the migration and invasion of human pancreatic ductal
adenocarcinoma cell line panc-1. Int J Mol Sci. 25:114202024.
View Article : Google Scholar
|
|
15
|
Lee Y, Kim SJ, Park HD, Park EH, Huang SM,
Jeon SB, Kim JM, Lim DS and Koh SS: PAUF functions in the
metastasis of human pancreatic cancer cells and upregulates CXCR4
expression. Oncogene. 29:56–67. 2010. View Article : Google Scholar
|
|
16
|
Youn SE, Jiang F, Won HY, Hong DE, Kang
TH, Park YY and Koh SS: PAUF induces migration of human pancreatic
cancer cells exclusively via the TLR4/MyD88/NF-ĸB signaling
pathway. Int J Mol Sci. 23:114142022. View Article : Google Scholar
|
|
17
|
Kim JH, Na HY, Jung K, Jang D, Youn Y, Kim
DH, Han HD and Hwang JH: Quantitative immunohistochemistry analysis
of pancreatic adenocarcinoma upregulated factor expression in
pancreatic cancer and its prognostic significance. World J
Gastrointest Oncol. 17:1090552025. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Choi CH, Kang TH, Song JS, Kim YS, Chung
EJ, Ylaya K, Kim S, Koh SS, Chung JY, Kim JH, et al: Elevated
expression of pancreatic adenocarcinoma upregulated factor (PAUF)
is associated with poor prognosis and chemoresistance in epithelial
ovarian cancer. Sci Rep. 8:121612018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Barderas R, Mendes M, Torres S, Bartolome
RA, Lopez-Lucendo M, Villar-Vazquez R, Pelaez-Garcia A, Fuente E,
Bonilla F and Casal JI: In-depth characterization of the secretome
of colorectal cancer metastatic cells identifies key proteins in
cell adhesion, migration, and invasion. Mol Cell Proteomics.
12:1602–1620. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kim YH, Moon JY, Kim EO, Lee SJ, Kang SH,
Kim SK, Heo K, Lee Y, Kim H, Kim KT, et al: Efficient targeting and
tumor retardation effect of pancreatic adenocarcinoma up-regulated
factor (PAUF)-specific RNA replacement in pancreatic cancer mouse
model. Cancer Lett. 344:223–231. 2014. View Article : Google Scholar
|
|
21
|
Kim SJ, Chang S, Lee Y, Kim NY, Hwang Y,
Min HJ, Yoo KS, Park EH, Kim S, Chung YH, et al: A
PAUF-neutralizing antibody targets both carcinoma and endothelial
cells to impede pancreatic tumor progression and metastasis.
Biochem Biophys Res Commun. 454:144–150. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kim YH, Sung HJ, Kim S, Kim EO, Lee JW,
Moon JY, Choi K, Jung JE, Lee Y, Koh SS, et al: An RNA aptamer that
specifically binds pancreatic adenocarcinoma up-regulated factor
inhibits migration and growth of pancreatic cancer cells. Cancer
Lett. 313:76–83. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
King D, Tai D, Feliú J, Kim J,
Mandakhalikar KD, Lim ML, Pradhan S and Park YY: First-in-human
phase 1/2a study of PBP1510 (anti-PAUF mAb) in advanced/metastatic
pancreatic adenocarcinoma: Safety results from early combination
cohorts. J Clin Oncol. 43:e163632025. View Article : Google Scholar
|
|
24
|
Feliu J, Ghanem I, King D, Park YY, Kim J,
Pradhan S, Ho J, Loh WQ and Mandakhalikar KD: PBP1510, a novel
monoclonal antibody targeting pancreatic adenocarcinoma upregulated
factor (PAUF): Phase 1/2a monotherapy and combination with
gemcitabine in patients with advanced/metastatic pancreatic cancer.
J Clin Oncol. 42:e162962024. View Article : Google Scholar
|
|
25
|
Mandakhalikar KD, Koh SS, Jeong SY,
Moshinsky D, Feyaerts P, Karuna R, Kim J, Jaison L, Pradhan S, Kim
YJ and Park J: First-in-class monoclonal antibody (mAb) PBP1510
targeting pancreatic adenocarcinoma upregulated factor (PAUF) for
pancreatic cancer (PC) treatment: Preclinical perspectives. J Clin
Oncol. 40:e162742022. View Article : Google Scholar
|
|
26
|
Zhang H, Yngvadottir B, Andreou A, Cole Y,
Woodward ER, Whitworth J and Maher ER: Clinical and genetic
features of multiple primary tumours cohorts with a renal cell
carcinoma: Implications for molecular genetic investigations. Int J
Cancer. 157:2532–2543. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Turner JA, Van Gulick RJ, Robinson WA,
Mughal T, Tobin RP, MacBeth ML, Holman B, Classon A, Bagby SM,
Yacob BW, et al: Expanding the landscape of oncogenic drivers and
treatment options in acral and mucosal melanomas by targeted
genomic profiling. Int J Cancer. 155:1792–1807. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mullins JJ, Mullins LJ, Dunbar DR, Brammar
WJ, Gross KW and Morley SD: Identification of a human ortholog of
the mouse Dcpp gene locus, encoding a novel member of the
CSP-1/Dcpp salivary protein family. Physiol Genomics. 28:129–140.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Song H, Song J, Kim YJ, Jeong HH, Min HJ
and Koh SS: DCPP1 is the mouse ortholog of human PAUF that
possesses functional analogy in pancreatic cancer. Biochem Biophys
Res Commun. 493:1498–1503. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang S, He Z, Wang H and Zhai J: Signal
peptides: From molecular mechanisms to applications in protein and
vaccine engineering. Biomolecules. 15:8972025. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Park HD, Lee Y, Oh YK, Jung JG, Park YW,
Myung K, Kim KH, Koh SS and Lim DS: Pancreatic adenocarcinoma
upregulated factor promotes metastasis by regulating TLR/CXCR4
activation. Oncogene. 30:201–211. 2011. View Article : Google Scholar
|
|
32
|
Cheng M, Guan Y, Xin X, Yi X and Liu Y:
Targeting p38 MAPK signaling pathway: Quercetin as a novel therapy
for TMJ synovitis. Int J Mol Med. 57:212026.
|
|
33
|
Waterhouse A, Bertoni M, Bienert S, Studer
G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C,
Bordoli L, et al: SWISS-MODEL: Homology modelling of protein
structures and complexes. Nucleic Acids Res. 46:W296–W303. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kumazawa-Inoue K, Mimura T,
Hosokawa-Tamiya S, Nakano Y, Dohmae N, Kinoshita-Toyoda A, Toyoda H
and Kojima-Aikawa K: ZG16p, an animal homolog of beta-prism fold
plant lectins, interacts with heparan sulfate proteoglycans in
pancreatic zymogen granules. Glycobiology. 22:258–266. 2012.
View Article : Google Scholar
|
|
35
|
Kleene R, Dartsch H and Kern HF: The
secretory lectin ZG16p mediates sorting of enzyme proteins to the
zymogen granule membrane in pancreatic acinar cells. Eur J Cell
Biol. 78:79–90. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kanagawa M, Liu Y, Hanashima S, Ikeda A,
Chai W, Nakano Y, Kojima-Aikawa K, Feizi T and Yamaguchi Y:
Structural basis for multiple sugar recognition of Jacalin-related
human ZG16p lectin. J Biol Chem. 289:16954–16965. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tateno H, Yabe R, Sato T, Shibazaki A,
Shikanai T, Gonoi T, Narimatsu H and Hirabayashi J: Human ZG16p
recognizes pathogenic fungi through non-self polyvalent mannose in
the digestive system. Glycobiology. 22:210–220. 2012. View Article : Google Scholar
|
|
38
|
Hanashima S, Gotze S, Liu Y, Ikeda A,
Kojima-Aikawa K, Taniguchi N, Varon Silva D, Feizi T, Seeberger PH
and Yamaguchi Y: Defining the interaction of human soluble lectin
ZG16p and mycobacterial phosphatidylinositol mannosides.
Chembiochem. 16:1502–1511. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mito A, Nakano Y, Saitoh T, Gouraud SSS,
Yamaguchi Y, Sato T, Sasaki N and Kojima-Aikawa K: Lectin ZG16p
inhibits proliferation of human colorectal cancer cells via its
carbohydrate-binding sites. Glycobiology. 28:21–31. 2018.
View Article : Google Scholar
|
|
40
|
Mito A, Kumazawa-Inoue K and Kojima-Aikawa
K: ZG16p, an animal homologue of plant beta-prism fold lectins:
Purification methods of natural and recombinant ZG16p and
inhibition assay of cancer cell growth using ZG16p. Methods Mol
Biol. 2132:339–347. 2020. View Article : Google Scholar
|
|
41
|
Thevenod F, Braun M, Roussa E and Fuller
CM: Molecular characterisation of pancreatic zymogen granule ion
channel and regulator proteins involved in exocytosis. J Korean Med
Sci. 15(Suppl 1): S51–52. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Braun M and Thevenod F: Photoaffinity
labeling and purification of ZG-16p, a high-affinity
dihydropyridine binding protein of rat pancreatic zymogen granule
membranes that regulates a K(+)-selective conductance. Mol
Pharmacol. 57:308–316. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kalus I, Hodel A, Koch A, Kleene R,
Edwardson JM and Schrader M: Interaction of syncollin with GP-2,
the major membrane protein of pancreatic zymogen granules, and
association with lipid microdomains. Biochem J. 362:433–442. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cronshagen U, Voland P and Kern HF: cDNA
cloning and characterization of a novel 16 kDa protein located in
zymogen granules of rat pancreas and goblet cells of the gut. Eur J
Cell Biol. 65:366–377. 1994.PubMed/NCBI
|
|
45
|
Schmidt K, Schrader M, Kern HF and Kleene
R: Regulated apical secretion of zymogens in rat pancreas.
Involvement of the glycosylphosphatidylinositol-anchored
glycoprotein GP-2, the lectin ZG16p, and
cholesterol-glycosphingolipid-enriched microdomains. J Biol Chem.
276:14315–14323. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Schmidt K, Dartsch H, Linder D, Kern HF
and Kleene R: A submembranous matrix of proteoglycans on zymogen
granule membranes is involved in granule formation in rat
pancreatic acinar cells. J Cell Sci. 113(Pt 12): 2233–2242. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cho IR, Koh SS, Min HJ, Kim SJ, Lee Y,
Park EH, Ratakorn S, Jhun BH, Oh S, Johnston RN and Chung YH:
Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the
expression of β-catenin, leading to a rapid proliferation of
pancreatic cells. Exp Mol Med. 43:82–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lengyel M, Molnar A, Nagy T, Jdeed S,
Garai I, Horvath Z and Uray IP: Zymogen granule protein 16B (ZG16B)
is a druggable epigenetic target to modulate the mammary
extracellular matrix. Cancer Sci. 116:81–94. 2025. View Article : Google Scholar :
|
|
49
|
Kim YJ, Jiang F, Park J, Jeong HH, Baek
JE, Hong SM, Jeong SY and Koh SS: PAUF as a target for treatment of
high PAUF-expressing ovarian cancer. Front Pharmacol.
13:8906142022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liu PF, Wu YY, Hu Y, Wang L, He SB, Zhu YB
and Zhu XG: Silencing of pancreatic adenocarcinoma upregulated
factor by RNA interference inhibits the malignant phenotypes of
human colorectal cancer cells. Oncol Rep. 30:213–220. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sasahira T, Kurihara M, Nishiguchi Y,
Nakashima C, Kirita T and Kuniyasu H: Pancreatic adenocarcinoma
up-regulated factor has oncogenic functions in oral squamous cell
carcinoma. Histopathology. 70:539–548. 2017. View Article : Google Scholar
|
|
52
|
Wang P and Kong G: Comprehensive analysis
of angiogenesis and ferroptosis genes for predicting the survival
outcome and immunotherapy response of hepatocellular carcinoma. J
Hepatocell Carcinoma. 11:1845–1859. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hong X, Hu D, Zhou WJ, Wang XD, Huang LH,
Huang TA, Guan YW, Qian J and Ding WB: ALBI grade analyses of TACE
combined with anti-angiogenesis therapies plus PD-1 inhibitors
versus anti-angiogenesis therapies plus PD-1 inhibitors in advanced
HCC. J Hepatocell Carcinoma. 11:2505–2514. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li YK, Wu S, Wu YS, Zhang WH, Wang Y, Li
YH, Kang Q, Huang SQ, Zheng K, Jiang GM, et al: Portal venous and
hepatic arterial coefficients predict post-hepatectomy overall and
recurrence-free survival in patients with hepatocellular carcinoma:
A retrospective study. J Hepatocell Carcinoma. 11:1389–1402. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang QB, Luo WL, Li YK, Li J, Yang ZS,
Zhao K, Lakang Y, Liang YB, Chen XM, Zuo JX, et al: Tumor
compression of the hepatic or portal vein predicts the presence of
microvascular invasion and satellite nodules in hepatocellular
carcinoma: A retrospective study. J Hepatocell Carcinoma.
12:2055–2067. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhu Y, Hu Y, Yang C, Huang S, Wen J, Huang
W and Xiao S: Progress of angiogenesis signal pathway and
antiangiogenic drugs in nasopharyngeal carcinoma. Curr Mol
Pharmacol. 17:e187614292909332024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu Y, Liu Y, Sun X, Wang Y, Du C and Bai
J: Morphologically transformable peptide nanocarriers coloaded with
doxorubicin and curcumin inhibit the growth and metastasis of
hepatocellular carcinoma. Mater Today Bio. 24:1009032023.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Luo WL, Wang QB, Li YK, Liang YB, Li J,
Chen XM, Lakang Y, Yang ZS, Zuo JX, Wang W, et al: Impact of middle
hepatic vein resection during hemihepatectomy on surgical outcomes
and long-term prognosis in hepatocellular carcinoma: A
retrospective study. J Hepatocell Carcinoma. 12:2681–2692. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kim SJ, Lee Y, Kim NY, Hwang Y, Hwang B,
Min JK and Koh SS: Pancreatic adenocarcinoma upregulated factor, a
novel endothelial activator, promotes angiogenesis and vascular
permeability. Oncogene. 32:3638–3647. 2013. View Article : Google Scholar
|
|
60
|
Bao S, Darvishi M, H Amin A, Al-Haideri
MT, Patra I, Kashikova K, Ahmad I, Alsaikhan F, Al-Qaim ZH,
Al-Gazally ME, et al: CXC chemokine receptor 4 (CXCR4) blockade in
cancer treatment. J Cancer Res Clin Oncol. 149:7945–7968. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wakasugi R, Suzuki K and Kaneko-Kawano T:
Molecular mechanisms regulating vascular endothelial permeability.
Int J Mol Sci. 25:64152024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang QB, Li J, Zhang ZJ, Li YK, Liang YB,
Chen XM, Luo WL, Lakang Y, Yang ZS, Liu GY, et al: The
effectiveness and safety of therapies for hepatocellular carcinoma
with tumor thrombus in the hepatic vein, inferior vena cave and/or
right atrium: A systematic review and single-arm meta-analysis.
Expert Rev Anticancer Ther. 25:561–570. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Racacho KJ, Shiau YP, Villa R, Mahri S,
Tang M, Lin TY and Li Y: The tumor immune microenvironment:
Implications for cancer immunotherapy, treatment strategies, and
monitoring approaches. Front Immunol. 16:16218122025. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liang X, Guo J, Wang X, Luo B, Fu R, Chen
H, Yang Y, Jin Z, Lin C, Zang A, et al: Overexpression of ornithine
decarboxylase 1 mediates the immune-deserted microenvironment and
poor prognosis in diffuse large B-cell lymphoma. J Natl Cancer
Cent. 5:57–74. 2024.
|
|
65
|
Xu W, Lu J, Zhang H and Ye D: Decoding the
tumor microenvironment: Insights into immunotherapy and beyond. J
Natl Cancer Cent. 5:426–428. 2025.PubMed/NCBI
|
|
66
|
Wang X, Wang C, Liu W, Thakur A, Zhang K,
Xu Z and Li J: The roles of ultrasound-responsive nanomaterials in
enhancing cancer immunotherapy. Pharmacol Res. 221:1079752025.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jiang Q, He J, Zhang H, Chi H, Shi Y and
Xu X: Recent advances in the development of tumor
microenvironment-activatable nanomotors for deep tumor penetration.
Mater Today Bio. 27:1011192024. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bao X, Sun M, Meng L, Zhang H, Yi X and
Zhang P: Applications of pyroptosis activators in tumor
immunotherapy. Mater Today Bio. 28:1011912024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang J, Chen Z, Liu W, Xu Z, Liu H, Li Y
and Yan Y: Harnessing plant-derived natural compounds to target
ferroptosis, pyroptosis, immune modulation and renin-angiotensin
system in renal cell carcinoma. J Renin Angiotensin Aldosterone
Syst. 26:147032032513863092025. View Article : Google Scholar
|
|
70
|
Wang D, Zhang Z, Yang L, Zhao L, Liu Z and
Lou C: PD-1 inhibitors combined with tyrosine kinase inhibitors
with or without hepatic artery infusion chemotherapy for the
first-line treatment of HBV-related advanced hepatocellular
carcinoma: A retrospective study. J Hepatocell Carcinoma.
11:1157–1170. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen H, Li J, Cao D and Tang H:
Construction of a prognostic model for hepatocellular carcinoma
based on macrophage polarization-related genes. J Hepatocell
Carcinoma. 11:857–878. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang Z, Ge Q, Mo R, Lu J, Tian X, Anwaier
A, Ye S, Zhou S, Guo W, Cai C, et al: Spatial and maturity
heterogeneity of tertiary lymphoid structures shapes immune
microenvironment and progression in prostate cancer. J Natl Cancer
Cent. 5:501–514. 2025.PubMed/NCBI
|
|
73
|
Li J, Liang YB, Wang QB, Luo WL, Chen XM,
Lakang Y, Yang ZS, Zuo JX, Li YK, Li ZW, et al: Rechallenge with
immune checkpoint inhibitors in patients with hepatocellular
carcinoma: A narrative review. Liver Cancer. Oct 31–2025.Epub ahead
of print. View Article : Google Scholar
|
|
74
|
Kudo M: Fluorine-18 fluorodeoxyglucose
positron emission tomography: A potential imaging biomarker for
predicting response to combination immunotherapy in hepatocellular
carcinoma. Liver Cancer. 14:511–517. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhao Q, Wei T, Ma R, Fu Y, Yang R, Su Y,
Yu Y, Li B and Li Y: Progress on immuno-microenvironment and
immune-related therapies in patients with pseudomyxoma peritonei.
Cancer Biol Med. 21:586–605. 2024.PubMed/NCBI
|
|
76
|
Zhang W, Wang S, Zhang H, Meng Y, Jiao S,
An L and Zhou Z: Modeling human gastric cancers in immunocompetent
mice. Cancer Biol Med. 21:553–570. 2024.PubMed/NCBI
|
|
77
|
Aoki T, Kudo M, Ueshima K, Morita M,
Chishina H, Takita M, Hagiwara S, Ida H, Minami Y, Tsurusaki M and
Nishida N: Incidence of hyper progressive disease in combination
immunotherapy and anti-programmed cell death protein 1/programmed
death-ligand 1 monotherapy for unresectable hepatocellular
carcinoma. Liver Cancer. 13:56–69. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Aoki T, Nishida N, Kurebayashi Y, Sakai K,
Morita M, Chishina H, Takita M, Hagiwara S, Ida H, Ueshima K, et
al: Two distinct characteristics of immune microenvironment in
human hepatocellular carcinoma with Wnt/β-catenin mutations. Liver
Cancer. 13:285–305. 2023. View Article : Google Scholar
|
|
79
|
Lin Y, Ruze R, Zhang R, Tuergan T, Wang M,
Tulahong A, Zhu D, Yuan Z, Jiang T, Aji T and Shao Y:
Immunometabolic targets in CD8(+) T cells within the tumor
microenvironment of hepatocellular carcinoma. Liver Cancer.
14:474–496. 2024. View Article : Google Scholar
|
|
80
|
Luo M, Zhao F, Cheng H, Su M and Wang Y:
Macrophage polarization: An important role in inflammatory
diseases. Front Immunol. 15:13529462024. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yang L, Zhang Y and Yang L: Adenosine
signaling in tumor-associated macrophages and targeting adenosine
signaling for cancer therapy. Cancer Biol Med. 21:995–1011.
2024.PubMed/NCBI
|
|
82
|
Nishida N and Kudo M: Genetic/Epigenetic
alteration and tumor immune microenvironment in intrahepatic
cholangiocarcinoma: Transforming the immune microenvironment with
molecular-targeted agents. Liver Cancer. 13:136–149. 2023.
View Article : Google Scholar
|
|
83
|
Xu Z, Zhou Z, Yang X, Thakur A, Han N, Li
HT, Li LG, Hu J, Li TF and Yan Y: Determining M2 macrophages
content for the anti-tumor effects of metal-organic
framework-encapsulated pazopanib nanoparticles in breast cancer. J
Nanobiotechnology. 22:4292024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang J, Wang L, Guo H, Kong S, Li W, He
Q, Ding L and Yang B: The role of Tim-3 blockade in the tumor
immune microenvironment beyond T cells. Pharmacol Res.
209:1074582024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lv Q, Zhang Y, Gao W, Wang J, Hu Y, Yang
H, Xie Y, Lv Y, Zhang H, Wu D, et al: CSF1R inhibition reprograms
tumor-associated macrophages to potentiate anti-PD-1 therapy
efficacy against colorectal cancer. Pharmacol Res. 202:1071262024.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang X, Chen J and Jia G: From dichotomy
to diversity: Deciphering the multifaceted roles of
tumor-associated macrophages in cancer progression and therapy.
Cancer Biol Med. 21:132–138. 2023.PubMed/NCBI
|
|
87
|
Chen J, Li H, Zhuo J, Lin Z, Hu Z, He C,
Wu X, Jin Y, Lin Z, Su R, et al: Impact of immunosuppressants on
tumor pulmonary metastasis: New insight into transplantation for
hepatocellular carcinoma. Cancer Biol Med. 21:1033–1049. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dong Y, Khan L and Yao Y: Immunological
features of EGFR-mutant non-small cell lung cancer and clinical
practice: A narrative review. J Natl Cancer Cent. 4:289–298.
2024.PubMed/NCBI
|
|
89
|
Kim YJ, Nanda SS, Jiang F, Pyo SY, Han JY,
Koh SS and Kang TH: Pancreatic adenocarcinoma up-regulated factor
(PAUF) transforms human monocytes into alternative M2 macrophages
with immunosuppressive action. Int J Mol Sci. 25:115452024.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhang Y, Ji S, Miao G, Du S, Wang H, Yang
X, Li A, Lu Y, Wang X and Zhao X: The current role of dendritic
cells in the progression and treatment of colorectal cancer. Cancer
Biol Med. 21:769–783. 2024.PubMed/NCBI
|
|
91
|
Kudo M: Challenges in adjuvant
immunotherapy after resection or ablation for hepatocellular
carcinoma at high-risk of recurrence. Liver Cancer. 13:573–578.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tang X, Zhang J, Sui D, Xu Z, Yang Q, Wang
T, Li X, Liu X, Deng Y and Song Y: Durable protective efficiency
provide by mRNA vaccines require robust immune memory to antigens
and weak immune memory to lipid nanoparticles. Mater Today Bio.
25:1009882024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chen X, Yang Z and Li M: Molecular
regulatory mechanisms and diagnostic potential of dendritic
cell-derived exosomes in liver transplantation: From immune
tolerance induction to translational challenges. Front Immunol.
16:16579562025. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kang TH, Kim YS, Kim S, Yang B, Lee JJ,
Lee HJ, Lee J, Jung ID, Han HD, Lee SH, et al: Pancreatic
adenocarcinoma upregulated factor serves as adjuvant by activating
dendritic cells through stimulation of TLR4. Oncotarget.
6:27751–27762. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Liao Y and Yang H: Metabolic regulation of
innate immunity in cancer immunotherapy. Cancer Biol Med.
20:898–902. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xi W, Wu W, Zhou L, Zhang Q, Yang S, Huang
L, Lu Y, Wang J, Chi X and Kang Y: Multifunctional nanoparticles
confers both multiple inflammatory mediators scavenging and
macrophage polarization for sepsis therapy. Mater Today Bio.
30:1014212025. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Qu Z, Guo Z, Yang C, Guan X, Cheng M, Wang
P and Xu D: Role of toll-like receptors in pulmonary immunity:
Mechanisms and therapeutic implications. Front Immunol.
16:16826492025. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yang Y, Cui H, Li D, Chen L, Liu Y, Zhou
C, Li L, Feng M, Chen X, Cao Y and Gao Y: S100A8 promotes tumor
progression by inducing phenotypic polarization of microglia
through the TLR4/IL-10 signaling pathway in glioma. J Natl Cancer
Cent. 4:369–381. 2024.PubMed/NCBI
|
|
99
|
Wang T, Liu C, Hu X, Yang N and Qiu C:
Senescent macrophages in cancer: Roles in tumor progression and
treatment opportunities. Cancer Biol Med. 22:439–459.
2025.PubMed/NCBI
|
|
100
|
Fang Z, Ding X, Huang H, Jiang H, Jiang J
and Zheng X: Revolutionizing tumor immunotherapy: Unleashing the
power of progenitor exhausted T cells. Cancer Biol Med. 21:499–512.
2024.PubMed/NCBI
|
|
101
|
Bauckneht M and Filippi L: Pentixather:
Paving the way for radioligand therapy in oncohematology. Expert
Rev Anticancer Ther. 24:205–209. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gupta T, Mani S, Chatterjee A, Dasgupta A,
Epari S and Chinnaswamy G: Risk-stratification for treatment
de-intensification in WNT-pathway medulloblastoma: Finding the
optimal balance between survival and quality of survivorship.
Expert Rev Anticancer Ther. 24:589–598. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li SR, Wu ZZ, Yu HJ and Sun ZJ: Targeting
erythroid progenitor cells for cancer immunotherapy. Int J Cancer.
155:1928–1938. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liang Y, Xie Y, Dang Z, Li M, Yu L, Wang
X, Wang P and Yang Z: Yiqi Liangxue Jiedu prescription inhibited
the canonical wnt pathway to prevent hepatocellular precancerous
lesions. J Hepatocell Carcinoma. 11:2293–2308. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang J, Gao W, Yu H, Xu Y, Bai C, Cong Q
and Zhu Y: Research progress on the role of epigenetic methylation
modification in hepatocellular carcinoma. J Hepatocell Carcinoma.
11:1143–1156. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tyraskis A, Zen Y, Strautnieks S, Cook R,
Foskett P, De Vito C, Deheragoda M, Quaglia A, Heaton N, Davenport
M and Thompson RJ: High frequency of CTNNB1 variants associated
with benign and malignant liver tumors in patients with congenital
porto-systemic shunts. Liver Cancer. 14:408–419. 2024. View Article : Google Scholar
|
|
107
|
Higuchi Y, Nguyen C, Chimge NO, Ouyang C,
Teo JL and Kahn M: E7386 is not a specific CBP/β-catenin
antagonist. Curr Mol Pharmacol. 17:e2905232174092024.
|
|
108
|
Xue W, Zhu B, Zhao K, Huang Q, Luo H, Shou
Y, Huang Z and Guo H: Targeting LRP6: A new strategy for cancer
therapy. Pharmacol Res. 204:1072002024. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Zhu X, Trehan R and Xie C: Primary liver
cancer organoids and their application to research and therapy. J
Natl Cancer Cent. 4:195–202. 2024.PubMed/NCBI
|
|
110
|
Cho IR, Koh SS, Malilas W, Srisuttee R,
Moon J, Choi YW, Horio Y, Oh S and Chung YH: SIRT1 inhibits
proliferation of pancreatic cancer cells expressing pancreatic
adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by
suppression of β-catenin. Biochem Biophys Res Commun. 423:270–275.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Du F, Xie Y, Wu S, Ji M, Dong B and Zhu C:
Expression and targeted application of claudins family in
hepatobiliary and pancreatic diseases. J Hepatocell Carcinoma.
11:1801–1821. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Xia J, Zhang Z, Huang Y, Wang Y and Liu G:
Regulation of neutrophil extracellular traps in cancer. Int J
Cancer. 154:773–785. 2024. View Article : Google Scholar
|
|
113
|
Toshida K, Itoh S, Iseda N, Tanaka S,
Nakazono K, Tomiyama T, Yoshiya S, Toshima T, Harada N, Kohashi K,
et al: The impact of TP53-induced glycolysis and apoptosis
regulator on prognosis in hepatocellular carcinoma: Association
with tumor microenvironment and ferroptosis. Liver Cancer.
14:36–57. 2024.
|
|
114
|
Lee YS, Kim SJ, Min HJ, Jo JY, Park EH and
Koh SS: PAUF promotes adhesiveness of pancreatic cancer cells by
modulating focal adhesion kinase. Exp Mol Med. 43:291–297. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wang Y, Cheng S, Fleishman JS, Chen J,
Tang H, Chen ZS, Chen W and Ding M: Targeting anoikis resistance as
a strategy for cancer therapy. Drug Resist Updat. 75:1010992024.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li
C and He J: TGF-β signaling in health, disease, and therapeutics.
Signal Transduct Target Ther. 9:612024. View Article : Google Scholar
|
|
117
|
Elkoshi Z: TGF-β, IL-1β, IL-6 levels and
TGF-β/Smad pathway reactivity regulate the link between allergic
diseases, cancer risk, and metabolic dysregulations. Front Immunol.
15:13717532024. View Article : Google Scholar
|
|
118
|
Du YQ, Yuan B, Ye YX, Zhou FL, Liu H,
Huang JJ and Wei YF: Plumbagin regulates snail to inhibit
hepatocellular carcinoma epithelial-mesenchymal transition in vivo
and in vitro. J Hepatocell Carcinoma. 11:565–580. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Qiu X, Dong L, Wang K, Zhong X, Xu H, Xu
S, Guo H, Wei X, Chen W and Xu X: Development and validation of a
novel nomogram integrated with hypoxic and lactate metabolic
characteristics for prognosis prediction in hepatocellular
carcinoma. J Hepatocell Carcinoma. 11:241–255. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Wang P, Ke B and Ma G: Drug-tolerant
persister cancer cells. J Natl Cancer Cent. 4:1–5. 2023.
|
|
121
|
Yoo W, Choi H, Son YH, Lee J, Jo S, Jung
D, Kim YJ, Koh SS, Yang YR, Kwon ES, et al: Pancreatic cancer
induces muscle wasting by promoting the release of pancreatic
adenocarcinoma upregulated factor. Exp Mol Med. 53:432–445. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kim SK, Song SY, Kim S, Cho NH, Yim GW,
Kim SW, Kim YT and Nam EJ: Association of pancreatic adenocarcinoma
up-regulated factor expression in ovarian mucinous adenocarcinoma
with poor prognosis. Int J Clin Exp Pathol. 7:5103–5110.
2014.PubMed/NCBI
|
|
123
|
Kim J, Chung JY, Kim TJ, Lee JW, Kim BG,
Bae DS, Choi CH and Hewitt SM: Genomic network-based analysis
reveals pancreatic adenocarcinoma up-regulating factor-related
prognostic markers in cervical carcinoma. Front Oncol. 8:4652018.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Choi CH, Chung JY, Park HS, Jun M, Lee YY,
Kim BG and Hewitt SM: Pancreatic adenocarcinoma up-regulated factor
expression is associated with disease-specific survival in cervical
cancer patients. Hum Pathol. 46:884–893. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Zhang T, Wang Y, Dong Y, Liu L, Han Y,
Wang H, Wei Q, Xia P, Ma W and Li L: Identification of novel
diagnostic biomarkers in prostate adenocarcinoma based on the
stromal-immune score and analysis of the WGCNA and ceRNA network.
Dis Markers. 2022:19091962022.PubMed/NCBI
|
|
126
|
Jin HJ, Jung S, DebRoy AR and Davuluri RV:
Identification and validation of regulatory SNPs that modulate
transcription factor chromatin binding and gene expression in
prostate cancer. Oncotarget. 7:54616–54626. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Chen W, Liao L, Lai H, Yi X and Wang D:
Identification of core biomarkers associated with pathogenesis and
prognostic outcomes of laryngeal squamous-cell cancer using
bioinformatics analysis. Eur Arch Otorhinolaryngol. 277:1397–1408.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Lu H, Shi C, Liu X, Liang C, Yang C, Wan
X, Li L and Liu Y: Identification of ZG16B as a prognostic
biomarker in breast cancer. Open Med (Wars). 16:1–13. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Perumal N, Funke S, Wolters D, Pfeiffer N
and Grus FH: Characterization of human reflex tear proteome reveals
high expression of lacrimal proline-rich protein 4 (PRR4).
Proteomics. 15:3370–3381. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Wang Y, Luo H, Che G, Li Y, Gao J, Yang Q,
Zhou B, Gao L, Wang T, Liang Y, et al: Placental protein 14 as a
potential biomarker for diagnosis of preterm premature rupture of
membranes. Mol Med Rep. 18:113–122. 2018.PubMed/NCBI
|
|
131
|
Ghosh S, Ahearn CP, Isabella CR, Marando
VM, Dodge GJ, Bartlett H, McPherson RL, Dugan AE, Jain S, Neznanova
L, et al: Human oral lectin ZG16B acts as a cell wall
polysaccharide probe to decode host-microbe interactions with oral
commensals. Proc Natl Acad Sci USA. 120:e22163041202023. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Baik JE, Choe HI, Hong SW, Kang SS, Ahn
KB, Cho K, Yun CH and Han SH: Human salivary proteins with affinity
to lipoteichoic acid of Enterococcus faecalis. Mol Immunol.
77:52–59. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Costa-da-Silva AC, Aure MH, Dodge J,
Martin D, Dhamala S, Cho M, Rose JJ, Bassim CW, Ambatipudi K, Hakim
FT, et al: Salivary ZG16B expression loss follows exocrine gland
dysfunction related to oral chronic graft-versus-host disease.
iScience. 25:1035922021. View Article : Google Scholar
|
|
134
|
Martin-Lorenzo M, Zubiri I, Maroto AS,
Gonzalez-Calero L, Posada-Ayala M, de la Cuesta F, Mourino-Alvarez
L, Lopez-Almodovar LF, Calvo-Bonacho E, Ruilope LM, et al: KLK1 and
ZG16B proteins and arginine-proline metabolism identified as novel
targets to monitor atherosclerosis, acute coronary syndrome and
recovery. Metabolomics. 11:1056–1067. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Perumal N, Funke S, Pfeiffer N and Grus
FH: Proteomics analysis of human tears from aqueous-deficient and
evaporative dry eye patients. Sci Rep. 6:296292016. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Salvisberg C, Tajouri N, Hainard A,
Burkhard PR, Lalive PH and Turck N: Exploring the human tear fluid:
Discovery of new biomarkers in multiple sclerosis. Proteomics Clin
Appl. 8:185–194. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Sun Y, Ye L, Zheng Y and Yang Z:
Identification of crucial genes associated with Parkinson's disease
using microarray data. Mol Med Rep. 17:3775–3782. 2018.
|
|
138
|
Hu W and Xu Y: Transcriptomics in
idiopathic pulmonary fibrosis unveiled: A new perspective from
differentially expressed genes to therapeutic targets. Front
Immunol. 15:13751712024. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Kunimune Y, Suehiro Y, Saeki I, Yamauchi
Y, Tanabe N, Matsumoto T, Higaki S, Fujii I, Suzuki C, Okayama N,
et al: Combination assay of methylated HOXA1 with tumor markers
shows high sensitivity for detection of early-stage hepatocellular
carcinoma. Liver Cancer. 13:487–497. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Zezulinski D, Hoteit MA, Kaplan DE,
Simeone A, Zhan T, Doria C, Ahmed FY, Roberts LR, Block TM and
Sayeed A: Detection of circulating mRNA variants in hepatocellular
carcinoma patients using targeted RNAseq. Liver Cancer. 14:555–586.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Garcia-Silva S, Marchetti D and Gallardo
M: Editorial: Liquid biopsies in hematological malignancies. Front
Immunol. 15:14403942024. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Li M, Zhang Y, Yu D, Yu Y and Ma W:
Immunotherapy biomarkers in brain metastases: Insights into tumor
microenvironment dynamics. Front Immunol. 16:16002612025.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Zhang S, Zhao H, Wang K, Li L, Pan Q, Lu M
and Zhang X: Tracing the history of clinical practice of liquid
biopsy: A bibliometric analysis. Front Immunol. 16:15747362025.
View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Sato K, Toh S, Murakami T, Nakano T, Hongo
T, Matsuo M, Hashimoto K, Sugasawa M, Yamazaki K, Ueki Y, et al:
Nationwide multi-centric prospective study for the identification
of biomarkers to predict the treatment responses of nivolumab
through comprehensive analyses of pretreatment plasma exosome mRNAs
from head and neck cancer patients (BIONEXT study). Front Immunol.
15:14644192025. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Cho JH, Kim SA, Park SB, Kim HM and Song
SY: Suppression of pancreatic adenocarcinoma upregulated factor
(PAUF) increases the sensitivity of pancreatic cancer to
gemcitabine and 5FU, and inhibits the formation of pancreatic
cancer stem like cells. Oncotarget. 8:76398–76407. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Gao CC, Xu XL, Li F, Gong BG, Liu S, Cui
YQ, Sun HC, Xu PY, Zheng YM and Jiang H: Silencing pancreatic
adenocarcinoma upregulated factor (PAUF) increases the sensitivity
of pancreatic cancer cells to gemcitabine. Tumour Biol.
37:7555–7564. 2016. View Article : Google Scholar
|
|
147
|
Kaowinn S, Cho IR, Moon J, Jun SW, Kim CS,
Kang HY, Kim M, Koh SS and Chung YH: Pancreatic adenocarcinoma
upregulated factor (PAUF) confers resistance to pancreatic cancer
cells against oncolytic parvovirus H-1 infection through IFNA
receptor-mediated signaling. Biochem Biophys Res Commun.
459:313–318. 2015. View Article : Google Scholar : PubMed/NCBI
|