You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
Beyond hepatic stellate cell heterogeneity: Resolving fibrosis, restoring regeneration (Review)
Hepatic stellate cells (HSCs), specialized liver‑resident pericytes, play pivotal roles in both liver fibrogenesis and regeneration. Following hepatic injury, quiescent HSCs undergo activation and transdifferentiation into myofibroblasts, which drive tissue remodeling and scar formation. Recent advances have uncovered notable phenotypic and functional heterogeneity within HSC populations, with distinct subsets displaying context‑dependent activation states and specialized functions across diverse liver pathologies. The present review synthesizes current insights into the dynamic spectrum of HSC phenotypes and the molecular mechanisms governing their plasticity, emphasizing the mechanisms through which niche‑specific signaling, epigenetic regulation and metabolic reprogramming coordinate their functional diversity. The present review further discuss emerging therapeutic strategies that leverage this heterogeneity to selectively target pathogenic HSC subsets, while preserving their homeostatic roles, thereby opening new avenues for precision anti‑fibrotic therapies and liver regeneration.
![]() |
![]() |
|
Campana L, Esser H, Huch M and Forbes S: Liver regeneration and inflammation: From fundamental science to clinical applications. Nat Rev Mol Cell Biol. 22:608–624. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wake K: 'Sternzellen' in the liver. Perisinusoidal cells with special reference to storage of vitamin A. Am J Anat. 132:429–462. 1971. View Article : Google Scholar : PubMed/NCBI | |
|
Cogliati B, Yashaswini CN, Wang S, Sia D and Friedman SL: Friend or foe? The elusive role of hepatic stellate cells in liver cancer. Nat Rev Gastroenterol Hepatol. 20:647–661. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kamm DR and McCommis KS: Hepatic stellate cells in physiology and pathology. J Physiol. 600:1825–1837. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Ye X, Yang L, Zhao J, You J and Feng Y: Linking fatty liver diseases to hepatocellular carcinoma by hepatic stellate cells. J Natl Cancer Cent. 4:25–35. 2024.PubMed/NCBI | |
|
Friedman SL: Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 88:125–172. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Yang T, Gu Z, Feng J, Shan J, Qian C and Zhuang N: Non-parenchymal cells: Key targets for modulating chronic liver disease. Front Immunol. 16:15767392025. View Article : Google Scholar | |
|
Shu W, Yang M, Yang J, Lin S, Wei X and Xu X: Cellular crosstalk during liver regeneration: unity in diversity. Cell Commun Signal. 20:1172022. View Article : Google Scholar : PubMed/NCBI | |
|
Trefts E, Gannon M and Wasserman DH: The liver. Curr Biol. 27:R1147–R1151. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Carter JK and Friedman SL: Hepatic stellate cell-immune interactions in NASH. Front Endocrinol (Lausanne). 13:8679402022. View Article : Google Scholar : PubMed/NCBI | |
|
Xia M, Li J, Martinez Aguilar LM, Wang J, Trillos Almanza MC, Li Y, Buist-Homan M and Moshage H: Arctigenin attenuates hepatic stellate cell activation via endoplasmic reticulum-associated degradation (ERAD)-Mediated restoration of lipid homeostasis. J Agric Food Chem. 73:13918–13933. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Kisseleva T: The origin of fibrogenic myofibroblasts in fibrotic liver. Hepatology. 65:1039–1043. 2017. View Article : Google Scholar | |
|
Wiering L, Subramanian P and Hammerich L: Hepatic stellate cells: Dictating outcome in nonalcoholic fatty liver disease. Cell Mol Gastroenterol Hepatol. 15:1277–1292. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Acharya P, Chouhan K, Weiskirchen S and Weiskirchen R: Cellular mechanisms of liver fibrosis. Front Pharmacol. 12:6716402021. View Article : Google Scholar : PubMed/NCBI | |
|
Nishio T, Hu R, Koyama Y, Liang S, Rosenthal SB, Yamamoto G, Karin D, Baglieri J, Ma HY, Xu J, et al: Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice. J Hepatol. 71:573–585. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kim HY, Sakane S, Eguileor A, Carvalho Gontijo Weber R, Lee W, Liu X, Lam K, Ishizuka K, Rosenthal SB, Diggle K, et al: The origin and fate of liver myofibroblasts. Cell Mol Gastroenterol Hepatol. 17:93–106. 2024. View Article : Google Scholar | |
|
Yang W, He H, Wang T, Su N, Zhang F, Jiang K, Zhu J, Zhang C, Niu K, Wang L, et al: Single-Cell transcriptomic analysis reveals a hepatic stellate cell-activation roadmap and myofibroblast origin during liver fibrosis in mice. Hepatology. 74:2774–2790. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hernandez-Gea V and Friedman SL: Pathogenesis of liver fibrosis. Annu Rev Pathol. 6:425–456. 2011. View Article : Google Scholar | |
|
Krenkel O, Hundertmark J, Ritz TP, Weiskirchen R and Tacke F: Single Cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cells. 8:5032019. View Article : Google Scholar : PubMed/NCBI | |
|
Tsuchida T and Friedman SL: Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 14:397–411. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, Portman JR, Matchett KP, Brice M, Marwick JA, et al: Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 575:512–518. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng S, Zou Y, Zhang M, Bai S, Tao K, Wu J, Shi Y, Wu Y, Lu Y, He K, et al: Single-cell RNA sequencing reveals the heterogeneity and intercellular communication of hepatic stellate cells and macrophages during liver fibrosis. MedComm (2020). 4:e3782023. View Article : Google Scholar : PubMed/NCBI | |
|
Deng G, Liang X, Pan Y, Luo Y, Luo Z, He S, Huang S, Chen Z, Wang J and Fang S: Single-cell transcriptomic analysis of different liver fibrosis models: Elucidating molecular distinctions and commonalities. Biomedicines. 13:17882025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang ZY, Keogh A, Waldt A, Cuttat R, Neri M, Zhu S, Schuierer S, Ruchti A, Crochemore C, Knehr J, et al: Single-cell and bulk transcriptomics of the liver reveals potential targets of NASH with fibrosis. Sci Rep. 11:193962021. View Article : Google Scholar : PubMed/NCBI | |
|
Peyser R, MacDonnell S, Gao Y, Cheng L, Kim Y, Kaplan T, Ruan Q, Wei Y, Ni M, Adler C, et al: Defining the activated fibroblast population in lung fibrosis using single-cell sequencing. Am J Respir Cell Mol Biol. 61:74–85. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sugimoto A, Saito Y, Wang G, Sun Q, Yin C, Lee KH, Geng Y, Rajbhandari P, Hernandez C, Steffani M, et al: Hepatic stellate cells control liver zonation, size and functions via R-spondin 3. Nature. 640:752–761. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Geng Y and Schwabe RF: Hepatic stellate cell heterogeneity: Functional aspects and therapeutic implications. Hepatology. May 8–2025.Epub ahead of print. View Article : Google Scholar | |
|
Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP and Schwabe RF: Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 4:28232013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang SS, Tang XT, Lin M, Yuan J, Peng YJ, Yin X, Shang G, Ge G, Ren Z and Zhou BO: Perivenous stellate cells are the main source of myofibroblasts and cancer-associated fibroblasts formed after chronic liver injuries. Hepatology. 74:1578–1594. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenthal SB, Liu X, Ganguly S, Dhar D, Pasillas MP, Ricciardelli E, Li RZ, Troutman TD, Kisseleva T, Glass CK and Brenner DA: Heterogeneity of HSCs in a mouse model of NASH. Hepatology. 74:667–685. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
MacParland SA, Liu JC, Ma XZ, Innes BT, Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri J, Linares I, et al: Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. 9:43832018. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong X, Kuang H, Ansari S, Liu T, Gong J, Wang S, Zhao XY, Ji Y, Li C, Guo L, et al: Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell. 75:644–660.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lotto J, Drissler S, Cullum R, Wei W, Setty M, Bell EM, Boutet SC, Nowotschin S, Kuo YY, Garg V, et al: Single-cell transcriptomics reveals early emergence of liver parenchymal and non-parenchymal cell lineages. Cell. 183:702–716 e14. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Xu J, Rosenthal S, Zhang LJ, McCubbin R, Meshgin N, Shang L, Koyama Y, Ma HY, Sharma S, et al: Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution. Gastroenterology. 158:1728–1744.e14. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Su Q, Kim SY, Adewale F, Zhou Y, Aldler C, Ni M, Wei Y, Burczynski ME, Atwal GS, Sleeman MW, et al: Single-cell RNA transcriptome landscape of hepatocytes and non-parenchymal cells in healthy and NAFLD mouse liver. iScience. 24:1032332021. View Article : Google Scholar : PubMed/NCBI | |
|
Fan W, Liu T, Chen W, Hammad S, Longerich T, Hausser I, Fu Y, Li N, He Y, Liu C, et al: ECM1 prevents activation of transforming growth factor β, hepatic stellate cells, and fibrogenesis in mice. Gastroenterology. 157:1352–1367.e13. 2019. View Article : Google Scholar | |
|
Ben-Moshe S and Itzkovitz S: Spatial heterogeneity in the mammalian liver. Nat Rev Gastroenterol Hepatol. 16:395–410. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dobie R, Wilson-Kanamori JR, Henderson BEP, Smith JR, Matchett KP, Portman JR, Wallenborg K, Picelli S, Zagorska A, Pendem SV, et al: Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29:1832–1847.e8. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Watson BR, Paul B, Rahman RU, Amir-Zilberstein L, Segerstolpe Å, Epstein ET, Murphy S, Geistlinger L, Lee T, Shih A, et al: Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution. Nat Commun. 16:3192025. View Article : Google Scholar : PubMed/NCBI | |
|
Khan MA, Fischer J, Harrer L, Schwiering F, Groneberg D and Friebe A: Hepatic stellate cells in zone 1 engage in capillarization rather than myofibroblast formation in murine liver fibrosis. Sci Rep. 14:188402024. View Article : Google Scholar : PubMed/NCBI | |
|
Ramm GA, Britton RS, O'Neill R, Blaner WS and Bacon BR: Vitamin A-poor lipocytes: A novel desmin-negative lipocyte subpopulation, which can be activated to myofibroblasts. Am J Physiol. 269(4 Pt 1): G532–G541. 1995.PubMed/NCBI | |
|
Ballardini G, Groff P, Badiali de Giorgi L, Schuppan D and Bianchi FB: Ito cell heterogeneity: Desmin-negative Ito cells in normal rat liver. Hepatology. 19:440–446. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
D'Ambrosio DN, Walewski JL, Clugston RD, Berk PD, Rippe RA and Blaner WS: Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage. PLoS One. 6:e249932011. View Article : Google Scholar : PubMed/NCBI | |
|
Payen VL, Lavergne A, Alevra Sarika N, Colonval M, Karim L, Deckers M, Najimi M, Coppieters W, Charloteaux B, Sokal EM and El Taghdouini A: Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. JHEP Rep. 3:1002782021. View Article : Google Scholar : PubMed/NCBI | |
|
Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C, Iwaisako K, Moore-Morris T, Scott B, Tsukamoto H, et al: Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci USA. 109:9448–9453. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Q, Wu J, Wang Q, Huang Y, Chen L, Gong J, Du M, Cheng G, Lu T, Zhao M, et al: Single-cell transcriptome analysis uncovers underlying mechanisms of acute liver injury induced by tripterygium glycosides tablet in mice. J Pharm Anal. 13:908–925. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cook D, Achanta S, Hoek JB, Ogunnaike BA and Vadigepalli R: Cellular network modeling and single cell gene expression analysis reveals novel hepatic stellate cell phenotypes controlling liver regeneration dynamics. BMC Syst Biol. 12:862018. View Article : Google Scholar : PubMed/NCBI | |
|
Kolodziejczyk AA, Federici S, Zmora N, Mohapatra G, Dori-Bachash M, Hornstein S, Leshem A, Reuveni D, Zigmond E, Tobar A, et al: Acute liver failure is regulated by MYC- and microbiome-dependent programs. Nat Med. 26:1899–1911. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kostallari E, Wei B, Sicard D, Li J, Cooper SA, Gao J, Dehankar M, Li Y, Cao S, Yin M, et al: Stiffness is associated with hepatic stellate cell heterogeneity during liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 322:G234–G246. 2022. View Article : Google Scholar : | |
|
Andrews TS, Atif J, Liu JC, Perciani CT, Ma XZ, Thoeni C, Slyper M, Eraslan G, Segerstolpe A, Manuel J, et al: Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol Commun. 6:821–840. 2022. View Article : Google Scholar | |
|
Wang S, Li K, Pickholz E, Dobie R, Matchett KP, Henderson NC, Carrico C, Driver I, Borch Jensen M, Chen L, et al: An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis. Sci Transl Med. 15:d39492023. View Article : Google Scholar | |
|
He W, Huang C, Shi X, Wu M, Li H, Liu Q, Zhang X, Zhao Y and Li X: Single-cell transcriptomics of hepatic stellate cells uncover crucial pathways and key regulators involved in non-alcoholic steatohepatitis. Endocr Connect. 12:e2205022023. View Article : Google Scholar : | |
|
Cavalli M, Diamanti K, Pan G, Spalinskas R, Kumar C, Deshmukh AS, Mann M, Sahlén P, Komorowski J and Wadelius C: A multi-omics approach to liver diseases: Integration of single nuclei transcriptomics with proteomics and HiCap bulk data in human liver. OMICS. 24:180–194. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Terkelsen MK, Bendixen SM, Hansen D, Scott EAH, Moeller AF, Nielsen R, Mandrup S, Schlosser A, Andersen TL, Sorensen GL, et al: Transcriptional dynamics of hepatic sinusoid-associated cells after liver injury. Hepatology. 72:2119–2133. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Conway SJ, Liu Y, Snider P, Chen H, Gao H, Liu Y, Isidan K, Lopez KJ, Campana G, et al: Heterogeneity of hepatic stellate cells in fibrogenesis of the liver: Insights from single-cell transcriptomic analysis in liver injury. Cells. 10:21292021. View Article : Google Scholar : PubMed/NCBI | |
|
Yin L, Qi Y, Xu Y, Xu L, Han X, Tao X, Song S and Peng J: Dioscin Inhibits HSC-T6 cell migration via adjusting SDC-4 Expression: Insights from iTRAQ-Based quantitative proteomics. Front Pharmacol. 8:6652017. View Article : Google Scholar : PubMed/NCBI | |
|
Krenkel O, Puengel T, Govaere O, Abdallah AT, Mossanen JC, Kohlhepp M, Liepelt A, Lefebvre E, Luedde T, Hellerbrand C, et al: Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology. 67:1270–1283. 2018. View Article : Google Scholar | |
|
Nevi L, Costantini D, Safarikia S, Di Matteo S, Melandro F, Berloco PB and Cardinale V: Cholest-4,6-Dien-3-One promote epithelial-to-mesenchymal transition (EMT) in biliary tree stem/progenitor cell cultures in vitro. Cells. 8:14432019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Nakajima T, Gonzalez FJ and Tanaka N: PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-Null mice. Int J Mol Sci. 21:20612020. View Article : Google Scholar : PubMed/NCBI | |
|
Katsumata LW, Miyajima A and Itoh T: Portal fibroblasts marked by the surface antigen Thy1 contribute to fibrosis in mouse models of cholestatic liver injury. Hepatol Commun. 1:198–214. 2017. View Article : Google Scholar | |
|
Balog S, Fujiwara R, Pan SQ, El-Baradie KB, Choi HY, Sinha S, Yang Q, Asahina K, Chen Y, Li M, et al: Emergence of highly profibrotic and proinflammatory Lrat+Fbln2+ HSC subpopulation in alcoholic hepatitis. Hepatology. 78:212–224. 2023. View Article : Google Scholar | |
|
Li X, Wang Q, Ai L and Cheng K: Unraveling the activation process and core driver genes of HSCs during cirrhosis by single-cell transcriptome. Exp Biol Med (Maywood). 248:1414–1424. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chung BK, Ogaard J, Reims HM, Karlsen TH and Melum E: Spatial transcriptomics identifies enriched gene expression and cell types in human liver fibrosis. Hepatol Commun. 6:2538–2550. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fred RG, Steen PJ, Thompson JJ, Lee J, Timshel PN, Stender S, Opseth Rygg M, Gluud LL, Bjerregaard Kristiansen V, Bendtsen F, et al: Single-cell transcriptome and cell type-specific molecular pathways of human non-alcoholic steatohepatitis. Sci Rep. 12:134842022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Zhao Z, Xia Y, Cai Z, Wang C, Shen Y, Liu R, Qin H, Jia J and Yuan G: Potential biomarkers in the fibrosis progression of nonalcoholic steatohepatitis (NASH). J Endocrinol Invest. 45:1379–1392. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Filliol A, Saito Y, Nair A, Dapito DH, Yu LX, Ravichandra A, Bhattacharjee S, Affo S, Fujiwara N, Su H, et al: Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature. 610:356–365. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Li Y, Zhou L, Cheng X and Gong Z: Hepatic stellate cells promote hepatocellular carcinoma development by regulating histone lactylation: Novel insights from single-cell RNA sequencing and spatial transcriptomics analyses. Cancer Lett. 604:2172432024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Sun X, Wu C, Hong X, Xie L, Shi Z, Zhao L, Du Q, Xiao W, Sun J and Wang J: Single-cell transcriptome analysis reveals liver injury induced by glyphosate in mice. Cell Mol Biol Lett. 28:112023. View Article : Google Scholar : PubMed/NCBI | |
|
Bai YM, Yang F, Luo P, Xie LL, Chen JH, Guan YD, Zhou HC, Xu TF, Hao HW, Chen B, et al: Single-cell transcriptomic dissection of the cellular and molecular events underlying the triclosan-induced liver fibrosis in mice. Mil Med Res. 10:72023.PubMed/NCBI | |
|
Hu S, Tang B, Lu C, Wang S, Wu L, Lei Y, Tang L, Zhu H, Wang D and Yang S: Lactobacillus rhamnosus GG ameliorates triptolide-induced liver injury through modulation of the bile acid-FXR axis. Pharmacol Res. 206:1072752024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang AT, Kim YO, Yan XZ, Abe H, Aslam M, Park KS, Zhao XY, Jia JD, Klein T, You H and Schuppan D: Fibroblast activation protein activates macrophages and promotes parenchymal liver inflammation and fibrosis. Cell Mol Gastroenterol Hepatol. 15:841–867. 2023. View Article : Google Scholar : | |
|
Li Y, Sheng Q, Zhang C, Han C, Bai H, Lai P, Fan Y, Ding Y and Dou X: STAT6 up-regulation amplifies M2 macrophage anti-inflammatory capacity through mesenchymal stem cells. Int Immunopharmacol. 91:1072662021. View Article : Google Scholar | |
|
Kimura Y, Koyama Y, Taura K, Kudoh A, Echizen K, Nakamura D, Li X, Nam NH, Uemoto Y, Nishio T, et al: Characterization and role of collagen gene expressing hepatic cells following partial hepatectomy in mice. Hepatology. 77:443–455. 2023. View Article : Google Scholar | |
|
Kumar S, Duan Q, Wu R, Harris EN and Su Q: Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev. 176:1138692021. View Article : Google Scholar : PubMed/NCBI | |
|
Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L and Lowe SW: Senescence of activated stellate cells limits liver fibrosis. Cell. 134:657–667. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bernard M, Yang B, Migneault F, Turgeon J, Dieudé M, Olivier MA, Cardin GB, El-Diwany M, Underwood K, Rodier F and Hébert MJ: Autophagy drives fibroblast senescence through MTORC2 regulation. Autophagy. 16:2004–2016. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, et al: Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 499:97–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yashaswini CN, Qin T, Bhattacharya D, Amor C, Lowe S, Lujambio A, Wang S and Friedman SL: Phenotypes and ontogeny of senescent hepatic stellate cells in metabolic dysfunction-associated steatohepatitis. J Hepatol. 81:207–217. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E and Kamath PS: Global burden of liver disease: 2023 update. J Hepatol. 79:516–537. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Zhang L, Ma Y, Xie L, Yang YY, Jin C, Chen H, Zhou Y, Song GQ, Ding J and Wu J: Secretome of senescent hepatic stellate cells favors malignant transformation from nonalcoholic steatohepatitis-fibrotic progression to hepatocellular carcinoma. Theranostics. 13:4430–4448. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V and Lowe SW: Non-cell-autonomous tumor suppression by p53. Cell. 153:449–460. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng N, Kim KH and Lau LF: Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight. 7:e1582072022. View Article : Google Scholar : PubMed/NCBI | |
|
Ramachandran P, Matchett KP, Dobie R, Wilson-Kanamori JR and Henderson NC: Single-cell technologies in hepatology: New insights into liver biology and disease pathogenesis. Nat Rev Gastroenterol Hepatol. 17:457–472. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Ma H, Liang S, Sun M, Karin G, Koyama Y, Hu R, Quehenberger O, Davidson NO, Dennis EA, et al: The role of human cytochrome P450 2E1 in liver inflammation and fibrosis. Hepatol Commun. 1:1043–1057. 2017. View Article : Google Scholar | |
|
Ben-Moshe S, Veg T, Manco R, Dan S, Papinutti D, Lifshitz A, Kolodziejczyk AA, Bahar Halpern K, Elinav E and Itzkovitz S: The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell. 29:973–989.e10. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jain I, Brougham-Cook A and Underhill GH: Effect of distinct ECM microenvironments on the genome-wide chromatin accessibility and gene expression responses of hepatic stellate cells. Acta Biomater. 167:278–292. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Brougham-Cook A, Jain I, Kukla DA, Masood F, Kimmel H, Ryoo H, Khetani SR and Underhill GH: High throughput interrogation of human liver stellate cells reveals microenvironmental regulation of phenotype. Acta Biomater. 138:240–253. 2022. View Article : Google Scholar : | |
|
Cai X, Wang J, Wang J, Zhou Q, Yang B, He Q and Weng Q: Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol Res. 155:1047202020. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Chang N and Li L: Heterogeneity and function of kupffer cells in liver injury. Front Immunol. 13:9408672022. View Article : Google Scholar : PubMed/NCBI | |
|
Dai Q, Ain Q, Seth N, Rooney M and Zipprich A: Liver sinusoidal endothelial cells: Friend or foe in metabolic dysfunction-associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis. Dig Liver Dis. 57:493–503. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Du K, Jin N, Tang B and Zhang W: Macrophage in liver fibrosis: Identities and mechanisms. Int Immunopharmacol. 120:1103572023. View Article : Google Scholar : PubMed/NCBI | |
|
Walesky CM, Kolb KE, Winston CL, Henderson J, Kruft B, Fleming I, Ko S, Monga SP, Mueller F, Apte U, et al: Functional compensation precedes recovery of tissue mass following acute liver injury. Nat Commun. 11:57852020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YA, Wallace MC and Friedman SL: Pathobiology of liver fibrosis: A translational success story. Gut 2015. 64:830–841. 2015. | |
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X and Guo J: CCAAT/enhancer-binding proteins in fibrosis: Complex roles beyond conventional understanding. Research (Wash DC). 2022:98916892022. | |
|
Lee W, Liu X, Rosenthal SB, Miciano C, Sakane S, Hokutan K, Dhar D, Kim HY, Brenner DA and Kisseleva T: ETS1 suppresses hepatic stellate cell activation and liver fibrosis. JCI Insight. Nov 4–2025.Epub ahead of print. View Article : Google Scholar | |
|
Altamirano-Barrera A, Barranco-Fragoso B and Mendez-Sanchez N: Management strategies for liver fibrosis. Ann Hepatol. 16:48–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Guan Y, Fang Z, Hu A, Roberts S, Wang M, Ren W, Johansson PK, Heilshorn SC, Enejder A and Peltz G: Live-cell imaging of human liver fibrosis using hepatic micro-organoids. JCI Insight. 10:e1870992024. View Article : Google Scholar : PubMed/NCBI | |
|
Duspara K, Bojanic K, Pejic JI, Kuna L, Kolaric TO, Nincevic V, Smolic R, Vcev A, Glasnovic M, Curcic IB and Smolic M: Targeting the Wnt signaling pathway in liver fibrosis for drug options: An update. J Clin Transl Hepatol. 9:960–971. 2021.PubMed/NCBI | |
|
Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K and Tsukamoto H: Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 294:G39–G49. 2008. View Article : Google Scholar | |
|
Lv X, Liu C, Liu S, Li Y, Wang W, Li K, Hua F, Cui B, Zhang X, Yu J, et al: The cell cycle inhibitor P21 promotes the development of pulmonary fibrosis by suppressing lung alveolar regeneration. Acta Pharm Sin B. 12:735–746. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu R, Zhang L, Pan H and Zhang Y: Retinoid X receptor heterodimers in hepatic function: Structural insights and therapeutic potential. Front Pharmacol. 15:14646552024. View Article : Google Scholar : PubMed/NCBI | |
|
Friedman SL and Weiskirchen R: Working with immortalized hepatic stellate cell lines. Methods Mol Biol. 2669:129–162. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kong X, Feng D, Wang H, Hong F, Bertola A, Wang FS and Gao B: Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology. 56:1150–1159. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang TW, Johmura Y, Suzuki N, Omori S, Migita T, Yamaguchi K, Hatakeyama S, Yamazaki S, Shimizu E, Imoto S, et al: Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature. 611:358–364. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Akkiz H, Gieseler RK and Canbay A: Liver fibrosis: From basic science towards clinical progress, focusing on the central role of hepatic stellate cells. Int J Mol Sci. 25:78732024. View Article : Google Scholar : PubMed/NCBI | |
|
Du K, Maeso-Diaz R, Oh SH, Wang E, Chen T, Pan C, Xiang K, Dutta RK, Wang XF, Chi JT and Diehl AM: Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis. Hepatology. 77:1998–2015. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R, Li Y, Zheng Q, Ding M, Zhou H and Li X: Epigenetic modification in liver fibrosis: Promising therapeutic direction with significant challenges ahead. Acta Pharm Sin B. 14:1009–1029. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Page A, Paoli P, Moran Salvador E, White S, French J and Mann J: Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol. 64:661–673. 2016. View Article : Google Scholar : | |
|
Li N, Liu S, Zhang Y, Yu L, Hu Y, Wu T, Fang M and Xu Y: Transcriptional activation of matricellular protein spondin2 (SPON2) by BRG1 in vascular endothelial cells promotes macrophage chemotaxis. Front Cell Dev Biol. 8:7942020. View Article : Google Scholar : PubMed/NCBI | |
|
Gotze S, Schumacher EC, Kordes C and Häussinger D: Epigenetic changes during Hepatic stellate cell activation. PLoS One. 10:e1287452015. View Article : Google Scholar | |
|
Dewidar B, Meyer C, Dooley S and Meindl-Beinker AN: TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells. 8:14192019. View Article : Google Scholar | |
|
Huang YH, Yang YL and Wang FS: The role of miR-29a in the regulation, function, and signaling of liver fibrosis. Int J Mol Sci. 19:18892018. View Article : Google Scholar : PubMed/NCBI | |
|
Dou C, Liu Z, Tu K, Zhang H, Chen C, Yaqoob U, Wang Y, Wen J, van Deursen J, Sicard D, et al: P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology. 154:2209–2221.e14. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Paluvai H, Di Giorgio E and Brancolini C: The histone code of senescence. Cells. 9:4662020. View Article : Google Scholar : PubMed/NCBI | |
|
Dong F, Jiang S, Li J, Wang Y, Zhu L, Huang Y, Jiang X, Hu X, Zhou Q, Zhang Z and Bao Z: The histone demethylase KDM4D promotes hepatic fibrogenesis by modulating Toll-like receptor 4 signaling pathway. EBioMedicine. 39:472–483. 2019. View Article : Google Scholar : | |
|
Gerovska D, Garcia-Gallastegi P, Crende O, Márquez J, Larrinaga G, Unzurrunzaga M, Araúzo-Bravo MJ and Badiola I: GeromiRs are downregulated in the tumor microenvironment during colon cancer colonization of the liver in a murine metastasis model. Int J Mol Sci. 22:48192021. View Article : Google Scholar : PubMed/NCBI | |
|
Gholizadeh M, Szelag-Pieniek S, Post M, Kurzawski M, Prieto J, Argemi J, Drozdzik M and Kaderali L: Identifying differentially expressed MicroRNAs, target genes, and key pathways deregulated in patients with liver diseases. Int J Mol Sci. 21:73682020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Li WX, Chen Y, Li XF, Li HD, Huang HM, Bu FT, Pan XY, Yang Y, Huang C, et al: Suppression of SUN2 by DNA methylation is associated with HSCs activation and hepatic fibrosis. Cell Death Dis. 9:10212018. View Article : Google Scholar : PubMed/NCBI | |
|
Bates J, Vijayakumar A, Ghoshal S, Marchand B, Yi S, Kornyeyev D, Zagorska A, Hollenback D, Walker K, Liu K, et al: Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J Hepatol. 73:896–905. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Horn P and Tacke F: Metabolic reprogramming in liver fibrosis. Cell Metab. 36:1439–1455. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
McCommis KS, Hodges WT, Brunt EM, Nalbantoglu I, McDonald WG, Holley C, Fujiwara H, Schaffer JE, Colca JR and Finck BN: Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology. 65:1543–1556. 2017. View Article : Google Scholar | |
|
Benedicto AM, Lucantoni F, Fuster-Martinez I, Diaz-Pozo P, Dorcaratto D, Muñoz-Forner E, Victor VM, Esplugues JV, Blas-García A and Apostolova N: Interference with mitochondrial function as part of the antifibrogenic effect of Rilpivirine: A step towards novel targets in hepatic stellate cell activation. Biomed Pharmacother. 178:1172062024. View Article : Google Scholar : PubMed/NCBI | |
|
Smith-Cortinez N, van Eunen K, Heegsma J, Serna-Salas SA, Sydor S, Bechmann LP, Moshage H, Bakker BM and Faber KN: Simultaneous induction of glycolysis and oxidative phosphorylation during activation of hepatic stellate cells reveals novel mitochondrial targets to treat liver fibrosis. Cells. 9:24562020. View Article : Google Scholar : PubMed/NCBI | |
|
Cho EH: Succinate as a regulator of hepatic stellate cells in liver fibrosis. Front Endocrinol (Lausanne). 9:4552018. View Article : Google Scholar : PubMed/NCBI | |
|
Sinha S, Aizawa S, Nakano Y, Rialdi A, Choi HY, Shrestha R, Pan SQ, Chen Y, Li M, Kapelanski-Lamoureux A, et al: Hepatic stellate cell stearoyl co-A desaturase activates leukotriene B4 receptor 2 - β-catenin cascade to promote liver tumorigenesis. Nat Commun. 14:26512023. View Article : Google Scholar | |
|
Li J, Yao S, Zimny S, Koob D, Jin H, Wimmer R, Denk G, Tuo B and Hohenester S: The acidic microenvironment in the perisinusoidal space critically determines bile salt-induced activation of hepatic stellate cells. Commun Biol. 7:15912024. View Article : Google Scholar : PubMed/NCBI | |
|
Yasukawa K, Shimada S, Akiyama Y, Taniai T, Igarashi Y, Tsukihara S, Tanji Y, Umemura K, Kamachi A, Nara A, et al: ACVR2A attenuation impacts lactate production and hyperglycolytic conditions attracting regulatory T cells in hepatocellular carcinoma. Cell Rep Med. 6:1020382025. View Article : Google Scholar | |
|
Kikuchi K and Tsukamoto H: Stearoyl-CoA desaturase and tumorigenesis. Chem Biol Interact. 316:1089172020. View Article : Google Scholar : | |
|
Tian XP, Wang CY, Jin XH, Li M, Wang FW, Huang WJ, Yun JP, Xu RH, Cai QQ and Xie D: Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics. 9:1965–1979. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gallego-Duran R, Ampuero J, Pastor-Ramirez H, Álvarez-Amor L, Del Campo JA, Maya-Miles D, Montero-Vallejo R, Cárdenas-García A, Pareja MJ, Gato-Zambrano S, et al: Liver injury in non-alcoholic fatty liver disease is associated with urea cycle enzyme dysregulation. Sci Rep. 12:34182022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu B, Feng J, Guo J, Wang J, Xiu G and Xu J, Ning K, Ling B, Fu Q and Xu J: ADSCs-derived exosomes ameliorate hepatic fibrosis by suppressing stellate cell activation and remodeling hepatocellular glutamine synthetase-mediated glutamine and ammonia homeostasis. Stem Cell Res Ther. 13:4942022. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Mao Y, Zhao L, Li L, Wu J, Zhao M, Du W, Yu L and Jiang P: p53 regulation of ammonia metabolism through urea cycle controls polyamine biosynthesis. Nature. 567:253–256. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Thomsen KL, Eriksen PL, Kerbert AJ, De Chiara F, Jalan R and Vilstrup H: Role of ammonia in NAFLD: An unusual suspect. JHEP Rep. 5:1007802023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng W, Guan F, Xu G, Yu Y, Xiao J and Huang X: FAT10 silencing prevents liver fibrosis through regulating SIRT1 expression in hepatic stellate cells. Int J Med Sci. 20:557–565. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Deng C, Krall L and Shan Z: ScRNA-seq and ST-seq in liver research. Cell Regen. 12:112023. View Article : Google Scholar : PubMed/NCBI | |
|
Gilgenkrantz H, Mallat A, Moreau R and Lotersztajn S: Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol. 74:1442–1454. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Chen X, Chen L, Bao B, Li C and Zhou Y: MFAP2 promotes HSCs activation through FBN1/TGF-β/Smad3 pathway. J Cell Mol Med. 27:3235–3246. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li HM, Zhang JY, Wang XQ, Ye LT, Ren B, Leng YH, Zhang JX, Yang Y, Jiang Q, Feng LL, et al: Therapeutic potential of PDA@CeO2 in suppressing hepatic stellate cell activation and preventing liver fibrosis. Int J Nanomedicine. 20:9073–9091. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Zhan Y, Zhang R, Tao Q, Lang Z and Zheng J: 20(S)-Protopanaxadiol suppresses hepatic stellate cell activation via WIF1 demethylation-mediated inactivation of the Wnt/β-catenin pathway. J Ginseng Res. 47:515–523. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Shang J, Yang Q, Dai Z, Liang Y, Lai C, Feng T, Zhong D, Zou H, Sun L, et al: Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J Nanobiotechnology. 21:292023. View Article : Google Scholar : PubMed/NCBI | |
|
Loomba R, Kayali Z, Noureddin M, Ruane P, Lawitz EJ, Bennett M, Wang L, Harting E, Tarrant JM, McColgan BJ, et al: GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology. 155:1463–1473.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bhattacharya D, Basta B, Mato JM, Craig A, Fernández-Ramos D, Lopitz-Otsoa F, Tsvirkun D, Hayardeny L, Chandar V, Schwartz RE, et al: Aramchol downregulates stearoyl CoA-desaturase 1 in hepatic stellate cells to attenuate cellular fibrogenesis. JHEP Rep. 3:1002372021. View Article : Google Scholar : PubMed/NCBI | |
|
Ratziu V, de Guevara L, Safadi R, Poordad F, Fuster F, Flores-Figueroa J, Arrese M, Fracanzani AL, Ben Bashat D, Lackner K, et al: Aramchol in patients with nonalcoholic steatohepatitis: A randomized, double-blind, placebo-controlled phase 2b trial. Nat Med. 27:1825–1835. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tacke F, Puengel T, Loomba R and Friedman SL: An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J Hepatol. 79:552–566. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Harrison SA, Bashir MR, Guy CD, Zhou R, Moylan CA, Frias JP, Alkhouri N, Bansal MB, Baum S, Neuschwander-Tetri BA, et al: Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 394:2012–2024. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yabut JM and Drucker DJ: Glucagon-like Peptide-1 Receptor-based therapeutics for metabolic liver disease. Endocr Rev. 44:14–32. 2023. View Article : Google Scholar | |
|
Desjardins EM, Wu J, Lavoie DCT, Ahmadi E, Townsend LK, Morrow MR, Wang D, Tsakiridis EE, Batchuluun B, Fayyazi R, et al: Combination of an ACLY inhibitor with a GLP-1R agonist exerts additive benefits on nonalcoholic steatohepatitis and hepatic fibrosis in mice. Cell Rep Med. 4:1011932023. View Article : Google Scholar : PubMed/NCBI | |
|
Giannelli G, Santoro A, Kelley RK, Gane E, Paradis V, Cleverly A, Smith C, Estrem ST, Man M, Wang S, et al: Biomarkers and overall survival in patients with advanced hepatocellular carcinoma treated with TGF-βRI inhibitor galunisertib. PLoS One. 15:e2222592020. View Article : Google Scholar | |
|
Faivre S, Santoro A, Kelley RK, Gane E, Costentin CE, Gueorguieva I, Smith C, Cleverly A, Lahn MM, Raymond E, et al: Novel transforming growth factor beta receptor I kinase inhibitor galunisertib (LY2157299) in advanced hepatocellular carcinoma. Liver Int. 39:1468–1477. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Brauer NR, Kempen AL, Hernandez D and Sintim HO: Non-kinase off-target inhibitory activities of clinically-relevant kinase inhibitors. Eur J Med Chem. 275:1165402024. View Article : Google Scholar : PubMed/NCBI | |
|
Pesce A, Ciurleo R, Bramanti A, Armeli Iapichino EC, Petralia MC, Magro GG, Fagone P, Bramanti P, Nicoletti F and Mangano K: Effects of combined admistration of imatinib and sorafenib in a murine model of liver fibrosis. Molecules. 25:43102020. View Article : Google Scholar : PubMed/NCBI | |
|
Hany NM, Eissa S, Basyouni M, Hasanin AH, Aboul-Ela YM, Elmagd NMA, Montasser IF, Ali MA, Skipp PJ and Matboli M: Modulation of hepatic stellate cells by Mutaflor((R)) probiotic in non-alcoholic fatty liver disease management. J Transl Med. 20:3422022. View Article : Google Scholar | |
|
Habash NW, Sehrawat TS, Shah VH and Cao S: Epigenetics of alcohol-related liver diseases. JHEP Rep. 4:1004662022. View Article : Google Scholar : PubMed/NCBI | |
|
Pan XY, You HM, Wang L, Bi YH, Yang Y, Meng HW, Meng XM, Ma TT, Huang C and Li J: Methylation of RCAN1.4 mediated by DNMT1 and DNMT3b enhances hepatic stellate cell activation and liver fibrogenesis through Calcineurin/NFAT3 signaling. Theranostics. 9:4308–4323. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, He Y, Mackowiak B and Gao B: MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut. 70:784–795. 2021. View Article : Google Scholar | |
|
Lucantoni F, Martinez-Cerezuela A, Gruevska A, Moragrega ÁB, Víctor VM, Esplugues JV, Blas-García A and Apostolova N: Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: Are we there yet? J Pathol. 254:216–228. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Le TV, Phan-Thi HT, Huynh-Thi MX, Dang TM, Holterman AXL, Grassi G, Nguyen-Luu TU and Truong NH: Autophagy inhibitor chloroquine downmodulates hepatic stellate cell activation and liver damage in bile-duct-ligated mice. Cells. 12:10252023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Elfimova N, Muller M, Bachurski D, Koitzsch U, Drebber U, Mahabir E, Hansen HP, Friedman SL, Klein S, et al: Autophagy-related activation of hepatic stellate cells reduces cellular miR-29a by promoting its vesicular secretion. Cell Mol Gastroenterol Hepatol. 13:1701–1716. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Yao Z, Zhao S, Shao J, Chen A, Zhang F and Zheng S: Interaction between autophagy and senescence is required for dihydroartemisinin to alleviate liver fibrosis. Cell Death Dis. 8:e28862017. View Article : Google Scholar : PubMed/NCBI | |
|
Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR, Shan QY, Wang ZC and Cao G: Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis. 15:3362024. View Article : Google Scholar : PubMed/NCBI | |
|
Yan M, Cui Y and Xiang Q: Metabolism of hepatic stellate cells in chronic liver diseases: Emerging molecular and therapeutic interventions. Theranostics. 15:1715–1740. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
He S, Luo Y, Ma W, Wang X, Yan C, Hao W, Fang Y, Su H, Lai B, Liu J, et al: Endothelial POFUT1 controls injury-induced liver fibrosis by repressing fibrinogen synthesis. J Hepatol. 81:135–148. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kisseleva T and Brenner D: Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 18:151–166. 2021. View Article : Google Scholar | |
|
Maretti-Mira AC, Salomon MP, Hsu AM, Dara L and Golden-Mason L: Etiology of end-stage liver cirrhosis impacts hepatic natural killer cell heterogenicity. Front Immunol. 14:11370342023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu F, Gao Y, Li T, Jiang T, Wu X, Yu Z, Zhang J, Hu Y and Cao J: Single-cell sequencing reveals the heterogeneity of hepatic natural killer cells and identifies the cytotoxic natural killer subset in schistosomiasis mice. Int J Mol Sci. 26:32112025. View Article : Google Scholar : PubMed/NCBI | |
|
Ma X, Qiu J, Zou S, Tan L and Miao T: The role of macrophages in liver fibrosis: Composition, heterogeneity, and therapeutic strategies. Front Immunol. 15:14942502024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang WM, Xu XS and Miao CM: Kupffer cell-derived TNF-α triggers the apoptosis of hepatic stellate cells through TNF-R1/Caspase 8 due to ER stress. Biomed Res Int. 2020:80356712020. View Article : Google Scholar | |
|
Jia K, Ma Z, Zhang Y, Xie K, Li J, Wu J, Qu J, Li F and Li X: Picroside II promotes HSC apoptosis and inhibits the cholestatic liver fibrosis in Mdr2(-/-) mice by polarizing M1 macrophages and balancing immune responses. Chin J Nat Med. 22:582–598. 2024.PubMed/NCBI | |
|
Li Y, Zhang Y, Pan G, Xiang LX, Luo DC and Shao JZ: Occurrences and functions of Ly6C(hi) and Ly6C(lo) macrophages in health and disease. Front Immunol. 13:9016722022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Qi J, Zhao J, Lim CW, Kim JW and Kim B: Dual TBK1/IKKε inhibitor amlexanox attenuates the severity of hepatotoxin-induced liver fibrosis and biliary fibrosis in mice. J Cell Mol Med. 24:1383–1398. 2020. View Article : Google Scholar | |
|
Lai Q, Li W, Hu D, Huang Z, Wu M, Feng S and Wan Y: Hepatic stellate cell-targeted chemo-gene therapy for liver fibrosis using fluorinated peptide-lipid hybrid nanoparticles. J Control Release. 376:601–617. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SW, Kim SM, Hur W, Kang BY, Lee HL, Nam H, Yoo SH, Sung PS, Kwon JH, Jang JW, et al: Tenofovir disoproxil fumarate directly ameliorates liver fibrosis by inducing hepatic stellate cell apoptosis via downregulation of PI3K/Akt/mTOR signaling pathway. PLoS One. 16:e2610672021. View Article : Google Scholar | |
|
Fondevila MF, Novoa E, Gonzalez-Rellan MJ, Fernandez U, Heras V, Porteiro B, Parracho T, Dorta V, Riobello C, da Silva Lima N, et al: p63 controls metabolic activation of hepatic stellate cells and fibrosis via an HER2-ACC1 pathway. Cell Rep Med. 5:1014012024. View Article : Google Scholar : PubMed/NCBI | |
|
Trinh VQ, Lee TF, Lemoinne S, Ray KC, Ybanez MD, Tsuchida T, Carter JK, Agudo J, Brown BD, Akat KM, et al: Hepatic stellate cells maintain liver homeostasis through paracrine neurotrophin-3 signaling that induces hepatocyte proliferation. Sci Signal. 16:f66962023. View Article : Google Scholar | |
|
Yang F, Li H, Li Y, Hao Y, Wang C, Jia P, Chen X, Ma S and Xiao Z: Crosstalk between hepatic stellate cells and surrounding cells in hepatic fibrosis. Int Immunopharmacol. 99:1080512021. View Article : Google Scholar : PubMed/NCBI | |
|
Vyas K and Patel MM: Insights on drug and gene delivery systems in liver fibrosis. Asian J Pharm Sci. 18:1007792023.PubMed/NCBI | |
|
Lawitz EJ, Shevell DE, Tirucherai GS, Du S, Chen W, Kavita U, Coste A, Poordad F, Karsdal M, Nielsen M, et al: BMS-986263 in patients with advanced hepatic fibrosis: 36-week results from a randomized, placebo-controlled phase 2 trial. Hepatology. 75:912–923. 2022. View Article : Google Scholar | |
|
Matsumoto Y, Itami S, Kuroda M, Yoshizato K, Kawada N and Murakami Y: MiR-29a assists in preventing the activation of human stellate cells and promotes recovery from liver fibrosis in mice. Mol Ther. 24:1848–1859. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Teng Y, Li F, Ho W, Bai X, Xu X and Zhang XQ: Nanoparticle-Mediated RNA therapy attenuates nonalcoholic steatohepatitis and related fibrosis by targeting activated hepatic stellate cells. ACS Nano. 17:14852–14870. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Weber F, Casalini T, Valentino G, Brülisauer L, Andreas N, Koeberle A, Kamradt T, Contini A and Luciani P: Targeting transdifferentiated hepatic stellate cells and monitoring the hepatic fibrogenic process by means of IGF2R-specific peptides designed in silico. J Mater Chem B. 9:2092–2106. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Puche JE, Lee YA, Jiao J, Aloman C, Fiel MI, Muñoz U, Kraus T, Lee T, Yee HF Jr and Friedman SL: A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology. 57:339–350. 2013. View Article : Google Scholar | |
|
Cortes E, Lachowski D, Rice A, Thorpe SD, Robinson B, Yeldag G, Lee DA, Ghemtio L, Rombouts K and Del Río Hernández AE: Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor. Oncogene. 38:2910–2922. 2019. View Article : Google Scholar : | |
|
Harrison SA, Abdelmalek MF, Caldwell S, Shiffman ML, Diehl AM, Ghalib R, Lawitz EJ, Rockey DC, Schall RA, Jia C, et al: Simtuzumab is ineffective for patients with bridging fibrosis or compensated cirrhosis caused by nonalcoholic steatohepatitis. Gastroenterology. 155:1140–1153. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Masuda A, Nakamura T, Abe M, Iwamoto H, Sakaue T, Tanaka T, Suzuki H, Koga H and Torimura T: Promotion of liver regeneration and anti-fibrotic effects of the TGF-β receptor kinase inhibitor galunisertib in CCl4-treated mice. Int J Mol Med. 46:427–438. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang J, Huang H, Wang Y, Xu B, Lin M, Han S, Yuan Y, Wang Y and Shuai X: Retinol-binding protein-hijacking nanopolyplex delivering siRNA to cytoplasm of hepatic stellate cell for liver fibrosis alleviation. Biomaterials. 299:1221342023. View Article : Google Scholar : PubMed/NCBI | |
|
Ramani K, Mavila N, Abeynayake A, Tomasi ML, Wang J, Matsuda M and Seki E: Targeting A-kinase anchoring protein 12 phosphorylation in hepatic stellate cells regulates liver injury and fibrosis in mouse models. Elife. 11:e784302022. View Article : Google Scholar : PubMed/NCBI | |
|
Hazra S, Xiong S, Wang J, Rippe RA, Krishna V, Chatterjee K and Tsukamoto H: Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem. 279:11392–11401. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Nakano Y, Kamiya A, Sumiyoshi H, Tsuruya K, Kagawa T and Inagaki Y: A deactivation factor of fibrogenic hepatic stellate cells induces regression of liver fibrosis in mice. Hepatology. 71:1437–1452. 2020. View Article : Google Scholar | |
|
Luo J, Li L, Chang B, Zhu Z, Deng F, Hu M, Yu Y, Lu X, Chen Z, Zuo D and Zhou J: Mannan-binding lectin via interaction with cell surface calreticulin promotes senescence of activated hepatic stellate cells to limit liver fibrosis progression. Cell Mol Gastroenterol Hepatol. 14:75–99. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Q, Chen M, Chen Q, Xiao G, Chen Z, Wang X and Huang Y: Silencing p53 inhibits interleukin 10-induced activated hepatic stellate cell senescence and fibrotic degradation in vivo. Exp Biol Med (Maywood). 246:447–458. 2021. View Article : Google Scholar | |
|
Huang YH, Chen MH, Guo QL, Chen ZX, Chen QD and Wang XZ: Interleukin-10 induces senescence of activated hepatic stellate cells via STAT3-p53 pathway to attenuate liver fibrosis. Cell Signal. 66:1094452020. View Article : Google Scholar | |
|
Barcena-Varela M, Caruso S, Llerena S, Álvarez-Sola G, Uriarte I, Latasa MU, Urtasun R, Rebouissou S, Alvarez L, Jimenez M, et al: Dual targeting of histone methyltransferase G9a and DNA-Methyltransferase 1 for the treatment of experimental hepatocellular carcinoma. Hepatology. 69:587–603. 2019. View Article : Google Scholar | |
|
Barcena-Varela M, Paish H, Alvarez L, Uriarte I, Latasa MU, Santamaria E, Recalde M, Garate M, Claveria A, Colyn L, et al: Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: Dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis. Gut. 70:388–400. 2021. View Article : Google Scholar | |
|
Lu P, Yan M, He L, Li J, Ji Y and Ji J: Crosstalk between epigenetic modulations in valproic acid deactivated hepatic stellate cells: An integrated protein and miRNA profiling study. Int J Biol Sci. 15:93–104. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Lu Y, Yang P, Chen Q, Wang Y, Ding Q, Xu T, Li X, Li C, Huang C, et al: MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2. J Cell Physiol. 234:7587–7599. 2019. View Article : Google Scholar | |
|
Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay HC, Yang D, Reetz J, Brandes S, Dai Z, Pützer BM, et al: Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell. 18:797–808. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rezvani M, Espanol-Suner R, Malato Y, Dumont L, Grimm AA, Kienle E, Bindman JG, Wiedtke E, Hsu BY, Naqvi SJ, et al: In vivo hepatic reprogramming of myofibroblasts with AAV Vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell. 18:809–816. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Heslop JA and Duncan SA: FoxA factors: The chromatin key and doorstop essential for liver development and function. Genes Dev. 34:1003–1004. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Battle MA, Konopka G, Parviz F, Gaggl AL, Yang C, Sladek FM and Duncan SA: Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc Natl Acad Sci USA. 103:8419–8424. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Mannaerts I, Leite SB, Verhulst S, Claerhout S, Eysackers N, Thoen LF, Hoorens A, Reynaert H, Halder G and van Grunsven LA: The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol. 63:679–688. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Du K, Hyun J, Premont RT, Choi SS, Michelotti GA, Swiderska-Syn M, Dalton GD, Thelen E, Rizi BS, Jung Y and Diehl AM: Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology. 154:1465–1479.e13. 2018. View Article : Google Scholar : PubMed/NCBI |