You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
Epigenetic dysregulation of B‑cells in autoimmune diseases and lymphomas (Review)
B‑lymphocytes (B‑cells) develop from hematopoietic stem cells in the bone marrow or fetal liver and differentiate into antibody‑secreting cells and memory B‑cells upon encountering antigens in peripheral lymphoid organs. Throughout this process, the expression of lineage‑associated genes is upregulated, whereas that of lineage‑inappropriate genes is repressed, thereby directing commitment to a specific B‑cell fate. Epigenetic regulatory mechanisms, including DNA methylation, post‑translational histone modifications and non‑coding RNAs, regulate gene transcription and play crucial roles in B‑cell development and differentiation. The dysregulation of these epigenetic processes may contribute to the pathogenesis of autoimmune diseases and B‑cell malignancies. Recent advances in high‑throughput techniques, including single‑cell RNA sequencing, chromatin immunoprecipitation‑sequencing and whole‑genome bisulfite sequencing, have significantly enhanced the understanding of epigenetic dysregulation in these disorders. The present review summarizes recent advances in the understanding of dysregulated epigenetic mechanisms underlying B‑cell‑mediated autoimmune diseases (such as systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis and type 1 diabetes mellitus) and lymphomas (such as diffuse large B‑cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma and marginal zone lymphoma), and highlights emerging diagnostic biomarkers and therapeutic strategies.
![]() |
![]() |
![]() |
|
Pieper K, Grimbacher B and Eibel H: B-cell biology and development. J Allergy Clin Immunol. 131:959–971. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hardy RR, Kincade PW and Dorshkind K: The protean nature of cells in the B lymphocyte lineage. Immunity. 26:703–714. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Jensen CT, Strid T and Sigvardsson M: Exploring the multifaceted nature of the common lymphoid progenitor compartment. Curr Opin Immunol. 39:121–126. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Suan D, Sundling C and Brink R: Plasma cell and memory B cell differentiation from the germinal center. Curr Opin Immunol. 45:97–102. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kaliman P: Epigenetics and meditation. Curr Opin Psychol. 28:76–80. 2019. View Article : Google Scholar | |
|
Silkenstedt E, Salles G, Campo E and Dreyling M: B-cell non-Hodgkin lymphomas. Lancet. 403:1791–1807. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mu S, Wang W, Liu Q, Ke N, Li H, Sun F, Zhang J and Zhu Z: Autoimmune disease: A view of epigenetics and therapeutic targeting. Front Immunol. 15:14827282024. View Article : Google Scholar : PubMed/NCBI | |
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M and Jamali E: The emerging role non-coding RNAs in B cell-related disorders. Cancer Cell Int. 22:912022. View Article : Google Scholar : PubMed/NCBI | |
|
Sermer D, Pasqualucci L, Wendel HG, Melnick A and Younes A: Emerging epigenetic-modulating therapies in lymphoma. Nat Rev Clin Oncol. 16:494–507. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gamarra N and Narlikar GJ: Collaboration through chromatin: Motors of transcription and chromatin structure. J Mol Biol. 433:1668762021. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng H and Xie W: The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol. 20:535–550. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zaret KS: Pioneer Transcription factors initiating gene network changes. Annu Rev Genet. 54:367–385. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Klemm SL, Shipony Z and Greenleaf WJ: Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 20:207–220. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chiarella AM, Lu D and Hathaway NA: Epigenetic control of a local chromatin landscape. Int J Mol Sci. 21:9432020. View Article : Google Scholar : PubMed/NCBI | |
|
Nodelman IM and Bowman GD: Biophysics of chromatin remodeling. Annu Rev Biophys. 50:73–93. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tan T, Shi P, Abbas MN, Wang Y, Xu J, Chen Y and Cui H: Epigenetic modification regulates tumor progression and metastasis through EMT (review). Int J Oncol. 60:702022. View Article : Google Scholar : PubMed/NCBI | |
|
Lorch Y and Kornberg RD: Chromatin-remodeling for transcription. Q Rev Biophys. 50:e52017. View Article : Google Scholar : PubMed/NCBI | |
|
Tanny JC: Chromatin modification by the RNA polymerase II elongation complex. Transcription. 5:e9880932014. View Article : Google Scholar : PubMed/NCBI | |
|
Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013. View Article : Google Scholar | |
|
López-Moyado IF, Ko M, Hogan PG and Rao A: TET enzymes in the immune system: From DNA demethylation to immunotherapy, inflammation, and cancer. Annu Rev Immunol. 42:455–488. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gigek CO, Chen ES and Smith MA: Methyl-CpG-binding protein (MBD) family: Epigenomic read-outs functions and roles in tumorigenesis and psychiatric diseases. J Cell Biochem. 117:29–38. 2016. View Article : Google Scholar | |
|
Kouzarides T: Chromatin modifications and their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Shvedunova M and Akhtar A: Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 23:329–349. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sabari BR, Zhang D, Allis CD and Zhao Y: Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 18:90–101. 2017. View Article : Google Scholar : | |
|
Jambhekar A, Dhall A and Shi Y: Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 20:625–641. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mattiroli F and Penengo L: Histone ubiquitination: An integrative signaling platform in genome stability. Trends Genet. 37:566–581. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Oss-Ronen L, Sarusi T and Cohen I: Histone mono-ubiquitination in transcriptional regulation and its mark on life: Emerging roles in tissue development and disease. Cells. 11:24042022. View Article : Google Scholar : PubMed/NCBI | |
|
Lim PS, Li J, Holloway AF and Rao S: Epigenetic regulation of inducible gene expression in the immune system. Immunology. 139:285–293. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Su N, Yu X, Duan M and Shi N: Recent advances in methylation modifications of microRNA. Genes Dis. 12:1012012023. View Article : Google Scholar | |
|
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S and Ghaffari SH: An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 234:5451–5465. 2019. View Article : Google Scholar | |
|
Nguyen TA, Park J, Dang TL, Choi YG and Kim VN: Microprocessor depends on hemin to recognize the apical loop of primary microRNA. Nucleic Acids Res. 46:5726–5736. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP and Doudna JA: Dicer-TRBP complex formation ensures accurate mammalian MicroRNA biogenesis. Mol Cell. 57:397–407. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fareh M, Yeom KH, Haagsma AC, Chauhan S, Heo I and Joo C: TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat Commun. 7:136942016. View Article : Google Scholar : PubMed/NCBI | |
|
Bartel DP: Metazoan MicroRNAs. Cell. 173:20–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Abdelfattah AM, Park C and Choi MY: Update on non-canonical microRNAs. Biomol Concepts. 5:275–287. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Coyle MC and King N: The evolutionary foundations of transcriptional regulation in animals. Nat Rev Genet. 26:812–827. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen LL and Kim VN: Small and long non-coding RNAs: Past, present, and future. Cell. 187:6451–6485. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Winkle M, Kluiver JL, Diepstra A and van den Berg A: Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit Rev Oncol Hematol. 120:77–85. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al: Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 24:430–447. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar | |
|
Gail EH, Healy E, Flanigan SF, Jones N, Ng XH, Uckelmann M, Levina V, Zhang Q and Davidovich C: Inseparable RNA binding and chromatin modification activities of a nucleosome-interacting surface in EZH2. Nat Genet. 56:1193–1202. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Tan JY and Marques AC: The activity of human enhancers is modulated by the splicing of their associated lncRNAs. PLoS Comput Biol. 18:e10097222022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Liu H, Niu M, Wang Y, Xu R, Guo Y and Zhang C: Roles of long noncoding RNAs in human inflammatory diseases. Cell Death Discov. 10:2352024. View Article : Google Scholar : PubMed/NCBI | |
|
Corfe SA and Paige CJ: The many roles of IL-7 in B cell development; mediator of survival, proliferation and differentiation. Semin Immunol. 24:198–208. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Egawa T, Kawabata K, Kawamoto H, Amada K, Okamoto R, Fujii N, Kishimoto T, Katsura Y and Nagasawa T: The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor. Immunity. 15:323–334. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Zhiming W, Luman W, Tingting Q and Yiwei C: Chemokines and receptors in intestinal B lymphocytes. J Leukoc Biol. 103:807–819. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Maeda T, Merghoub T, Hobbs RM, Dong L, Maeda M, Zakrzewski J, van den Brink MR, Zelent A, Shigematsu H, Akashi K, et al: Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science. 316:860–866. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kosan C, Saba I, Godmann M, Herold S, Herkert B, Eilers M and Möröy T: Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation. Immunity. 33:917–928. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bosticardo M, Pala F and Notarangelo LD: RAG deficiencies: Recent advances in disease pathogenesis and novel therapeutic approaches. Eur J Immunol. 51:1028–1038. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rolink AG, Tschopp J, Schneider P and Melchers F: BAFF is a survival and maturation factor for mouse B cells. Eur J Immunol. 32:2004–2010. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
De Silva NS and Klein U: Dynamics of B cells in germinal centres. Nat Rev Immunol. 15:137–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Stavnezer J, Guikema JE and Schrader CE: Mechanism and regulation of class switch recombination. Annu Rev Immunol. 26:261–292. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Nera KP, Kyläniemi MK and Lassila O: Regulation of B cell to plasma cell transition within the follicular B cell response. Scand J Immunol. 82:225–234. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Victora GD and Nussenzweig MC: Germinal centers. Annu Rev Immunol. 30:429–457. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Shapiro-Shelef M, Lin KI, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG and Calame K: Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 19:607–620. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Martin-Subero JI and Oakes CC: Charting the dynamic epigenome during B-cell development. Semin Cancer Biol. 51:139–148. 2018. View Article : Google Scholar | |
|
Lai AY, Mav D, Shah R, Grimm SA, Phadke D, Hatzi K, Melnick A, Geigerman C, Sobol SE, Jaye DL and Wade PA: DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B-cell activation. Genome Res. 23:2030–2041. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Schuyler RP, Merkel A, Raineri E, Altucci L, Vellenga E, Martens JHA, Pourfarzad F, Kuijpers TW, Burden F, Farrow S, et al: Distinct trends of DNA methylation patterning in the innate and adaptive immune systems. Cell Rep. 17:2101–2111. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Odegard VH, Kim ST, Anderson SM, Shlomchik MJ and Schatz DG: Histone modifications associated with somatic hypermutation. Immunity. 23:101–110. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Begum NA, Stanlie A, Nakata M, Akiyama H and Honjo T: The histone chaperone Spt6 is required for activation-induced cytidine deaminase target determination through H3K4me3 regulation. J Biol Chem. 287:32415–32429. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Cyster JG and Allen CDC: B cell responses: Cell interaction dynamics and decisions. Cell. 177:524–540. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Victora GD and Nussenzweig MC: Germinal centers. Annu Rev Immunol. 40:413–442. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fujimura S, Matsui T, Kuwahara K, Maeda K and Sakaguchi N: Germinal center B-cell-associated DNA hypomethylation at transcriptional regions of the AID gene. Mol Immunol. 45:1712–1719. 2008. View Article : Google Scholar | |
|
Barwick BG, Scharer CD, Martinez RJ, Price MJ, Wein AN, Haines RR, Bally APR, Kohlmeier JE and Boss JM: B cell activation and plasma cell differentiation are inhibited by de novo DNA methylation. Nat Commun. 9:19002018. View Article : Google Scholar : PubMed/NCBI | |
|
Manoharan A, Du Roure C, Rolink AG and Matthias P: De novo DNA Methyltransferases Dnmt3a and Dnmt3b regulate the onset of Igκ light chain rearrangement during early B-cell development. Eur J Immunol. 45:2343–2355. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shaknovich R, Cerchietti L, Tsikitas L, Kormaksson M, De S, Figueroa ME, Ballon G, Yang SN, Weinhold N, Reimers M, et al: DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood. 118:3559–3569. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Orlanski S, Labi V, Reizel Y, Spiro A, Lichtenstein M, Levin-Klein R, Koralov SB, Skversky Y, Rajewsky K, Cedar H and Bergman Y: Tissue-specific DNA demethylation is required for proper B-cell differentiation and function. Proc Natl Acad Sci USA. 113:5018–5023. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Millán-Zambrano G, Burton A, Bannister AJ and Schneider R: Histone post-translational modifications-cause and consequence of genome function. Nat Rev Genet. 23:563–580. 2022. View Article : Google Scholar | |
|
Konuma T and Zhou MM: Distinct histone H3 lysine 27 modifications dictate different outcomes of gene transcription. J Mol Biol. 436:1683762024. View Article : Google Scholar | |
|
Weake VM and Workman JL: Histone ubiquitination: Triggering gene activity. Mol Cell. 29:653–663. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Chowdhury M, Forouhi O, Dayal S, McCloskey N, Gould HJ, Felsenfeld G and Fear DJ: Analysis of intergenic transcription and histone modification across the human immunoglobulin heavy-chain locus. Proc Natl Acad Sci USA. 105:15872–15877. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Crouch EE, Li Z, Takizawa M, Fichtner-Feigl S, Gourzi P, Montaño C, Feigenbaum L, Wilson P, Janz S, Papavasiliou FN and Casellas R: Regulation of AID expression in the immune response. J Exp Med. 204:1145–1156. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Mai A and Sun J: Lysine acetylation regulates Bruton's tyrosine kinase in B cell activation. J Immunol. 184:244–254. 2010. View Article : Google Scholar | |
|
Iwama A, Oguro H, Negishi M, Kato Y and Nakauchia H: Epigenetic regulation of hematopoietic stem cell self-renewal by polycomb group genes. Int J Hematol. 81:294–300. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gu Y, Jones AE, Yang W, Liu S, Dai Q, Liu Y, Swindle CS, Zhou D, Zhang Z, Ryan TM, et al: The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function. Proc Natl Acad Sci USA. 113:E51–E60. 2016. View Article : Google Scholar : | |
|
Li C, Irrazabal T, So CC, Berru M, Du L, Lam E, Ling AK, Gommerman JL, Pan-Hammarström Q and Martin A: The H2B deubiquitinase Usp22 promotes antibody class switch recombination by facilitating non-homologous end joining. Nat Commun. 9:10062018. View Article : Google Scholar : PubMed/NCBI | |
|
So CC, Ramachandran S and Martin A: E3 ubiquitin ligases RNF20 and RNF40 are required for double-stranded break (DSB) repair: Evidence for monoubiquitination of histone H2B lysine 120 as a novel axis of DSB signaling and repair. Mol Cell Biol. 39:e00488–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CZ, Li L, Lodish HF and Bartel DP: MicroRNAs modulate hematopoietic lineage differentiation. Science. 303:83–86. 2004. View Article : Google Scholar | |
|
Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, et al: Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 132:875–886. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Rao DS, O'Connell RM, Chaudhuri AA, Garcia-Flores Y, Geiger TL and Baltimore D: MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. Immunity. 33:48–59. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP and Rajewsky K: MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 131:146–159. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Mehta A, Mann M, Zhao JL, Marinov GK, Majumdar D, Garcia-Flores Y, Du X, Erikci E, Chowdhury K and Baltimore D: The microRNA-212/132 cluster regulates B cell development by targeting Sox4. J Exp Med. 212:1679–1692. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
King JK, Ung NM, Paing MH, Contreras JR, Alberti MO, Fernando TR, Zhang K, Pellegrini M and Rao DS: Regulation of marginal zone B-cell differentiation by MicroRNA-146a. Front Immunol. 7:6702017. View Article : Google Scholar : PubMed/NCBI | |
|
Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, et al: Regulation of the germinal center response by microRNA-155. Science. 316:604–608. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, et al: microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 27:847–859. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kramer NJ, Wang WL, Reyes EY, Kumar B, Chen CC, Ramakrishna C, Cantin EM, Vonderfecht SL, Taganov KD, Chau N and Boldin MP: Altered lymphopoiesis and immunodeficiency in miR-142 null mice. Blood. 125:3720–3730. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wigton EJ and Ansel KM: Noncoding RNAs in B cell responses. RNA Biol. 18:633–639. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Brazão TF, Johnson JS, Müller J, Heger A, Ponting CP and Tybulewicz VL: Long noncoding RNAs in B-cell development and activation. Blood. 128:e10–e19. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tschumper RC, Hoelzinger DB, Walters DK, Davila JI, Osborne CA and Jelinek DF: Stage-specific non-coding RNA expression patterns during in vitro human B cell differentiation into antibody secreting plasma cells. Noncoding RNA. 8:152022.PubMed/NCBI | |
|
Petri A, Dybkær K, Bøgsted M, Thrue CA, Hagedorn PH, Schmitz A, Bødker JS, Johnsen HE and Kauppinen S: Long noncoding RNA expression during human B-cell development. PLoS One. 10:e01382362015. View Article : Google Scholar : PubMed/NCBI | |
|
Mielczarek O, Rogers CH, Zhan Y, Matheson LS, Stubbington MJT, Schoenfelder S, Bolland DJ, Javierre BM, Wingett SW, Várnai C, et al: Intra- and interchromosomal contact mapping reveals the Igh locus has extensive conformational heterogeneity and interacts with B-lineage genes. Cell Rep. 42:1130742023. View Article : Google Scholar : PubMed/NCBI | |
|
Rothschild G, Zhang W, Lim J, Giri PK, Laffleur B, Chen Y, Fang M, Chen Y, Nair L, Liu ZP, et al: Noncoding RNA transcription alters chromosomal topology to promote isotype-specific class switch recombination. Sci Immunol. 5:eaay58642020. View Article : Google Scholar : PubMed/NCBI | |
|
Luo M, Jeong M, Sun D, Park HJ, Rodriguez BA, Xia Z, Yang L, Zhang X, Sheng K, Darlington GJ, et al: Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell. 16:426–438. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yu B, Qi Y, Li R, Shi Q, Satpathy AT and Chang HY: B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell. 184:1790–1803.e17. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kiriakidou M and Ching CL: Systemic lupus erythematosus. Ann Intern Med. 172:ITC81–ITC96. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dai X, Fan Y and Zhao X: Systemic lupus erythematosus: Updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther. 10:1022025. View Article : Google Scholar : PubMed/NCBI | |
|
Ulff-Møller CJ, Asmar F, Liu Y, Svendsen AJ, Busato F, Grønbaek K, Tost J and Jacobsen S: Twin DNA methylation profiling reveals flare-dependent interferon signature and B cell promoter hypermethylation in systemic lupus erythematosus. Arthritis Rheumatol. 70:878–890. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J, Chatham WW and Kimberly RP: Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet. 9:e10036782013. View Article : Google Scholar : PubMed/NCBI | |
|
Fali T, Le Dantec C, Thabet Y, Jousse S, Hanrotel C, Youinou P, Brooks WH, Perl A and Renaudineau Y: DNA methylation modulates HRES1/p28 expression in B cells from patients with lupus. Autoimmunity. 47:265–271. 2014. View Article : Google Scholar : | |
|
Hui-Yuen J, Jiang K, Malkiel S, Eberhard BA, Walters H, Diamond B and Jarvis J: B lymphocytes in treatment-naive paediatric patients with lupus are epigenetically distinct from healthy children. Lupus Sci Med. 10:e0009212023. View Article : Google Scholar : PubMed/NCBI | |
|
Mazari L, Ouarzane M and Zouali M: Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus. Proc Natl Acad Sci USA. 104:6317–6322. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka S, Ise W, Inoue T, Ito A, Ono C, Shima Y, Sakakibara S, Nakayama M, Fujii K, Miura I, et al: Tet2 and Tet3 in B cells are required to repress CD86 and prevent autoimmunity. Nat Immunol. 21:950–961. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hung KH, Woo YH, Lin IY, Liu CH, Wang LC, Chen HY, Chiang BL and Lin KI: The KDM4A/KDM4C/NF-κB and WDR5 epigenetic cascade regulates the activation of B cells. Nucleic Acids Res. 46:5547–5560. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rohraff DM, He Y, Farkash EA, Schonfeld M, Tsou PS and Sawalha AH: Inhibition of EZH2 ameliorates lupus-like disease in MRL/lpr mice. Arthritis Rheumatol. 71:1681–1690. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gautam P, Sharma A and Bhatnagar A: Global histone modification analysis reveals hypoacetylated H3 and H4 histones in B Cells from systemic lupus erythematosus patients. Immunol Lett. 240:41–45. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Regna NL, Vieson MD, Gojmerac AM, Luo XM, Caudell DL and Reilly CM: HDAC expression and activity is upregulated in diseased lupus-prone mice. Int Immunopharmacol. 29:494–503. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Forster N, Gallinat S, Jablonska J, Weiss S, Elsässer HP and Lutz W: p300 protein acetyltransferase activity suppresses systemic lupus erythematosus-like autoimmune disease in mice. J Immunol. 178:6941–6948. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Dong J, Mu R, Gao Y, Tan X, Li Y, Li Z and Yang G: MicroRNA-30a promotes B cell hyperactivity in patients with systemic lupus erythematosus by direct interaction with Lyn. Arthritis Rheum. 65:1603–1611. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Luo S, Liu Y, Liang G, Zhao M, Wu H, Liang Y, Qiu X, Tan Y, Dai Y, Yung S, et al: The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clin Epigenetics. 7:242015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Chen H, Qiu J, Yang HX, Zhang CY, Fei YY, Zhao LD, Zhou JX, Wang L, Wu QJ, et al: Antagonizing miR-7 suppresses B cell hyperresponsiveness and inhibits lupus development. J Autoimmun. 109:1024402020. View Article : Google Scholar : PubMed/NCBI | |
|
Garchow BG, Bartulos Encinas O, Leung YT, Tsao PY, Eisenberg RA, Caricchio R, Obad S, Petri A, Kauppinen S and Kiriakidou M: Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med. 3:605–615. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Y, Kasar S, Underbayev C, Vollenweider D, Salerno E, Kotenko SV and Raveche E: Role of microRNA-15a in autoantibody production in interferon-augmented murine model of lupus. Mol Immunol. 52:61–70. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL and Rajewsky K: Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 9:405–414. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Jang S, Kwon EJ and Lee JJ: Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int J Mol Sci. 23:9052022. View Article : Google Scholar : PubMed/NCBI | |
|
Smolen JS, Aletaha D and McInnes IB: Rheumatoid arthritis. Lancet. 388:2023–2038. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Scott DL, Wolfe F and Huizinga TW: Rheumatoid arthritis. Lancet. 376:1094–1108. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Julià A, Absher D, López-Lasanta M, Palau N, Pluma A, Waite Jones L, Glossop JR, Farrell WE, Myers RM and Marsal S: Epigenome-wide association study of rheumatoid arthritis identifies differentially methylated loci in B cells. Hum Mol Genet. 26:2803–2811. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
de Andres MC, Perez-Pampin E, Calaza M, Santaclara FJ, Ortea I, Gomez-Reino JJ and Gonzalez A: Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate. Arthritis Res Ther. 17:2332015. View Article : Google Scholar : PubMed/NCBI | |
|
Ocskó T, Tóth DM, Hoffmann G, Tubak V, Glant TT and Rauch TA: Transcription factor Zbtb38 downregulates the expression of anti-inflammatory IL1r2 in mouse model of rheumatoid arthritis. Biochim Biophys Acta Gene Regul Mech. 1861:1040–1047. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tóth DM, Ocskó T, Balog A, Markovics A, Mikecz K, Kovács L, Jolly M, Bukiej AA, Ruthberg AD, Vida A, et al: Amelioration of autoimmune arthritis in mice treated with the DNA methyltransferase inhibitor 5'-azacytidine. Arthritis Rheumatol. 71:1265–1275. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zhou M, Lv X, Song L, Zhang D, He Y, Wang M, Zhao X, Yuan X, Shi G and Wang D: Reduced activity of HDAC3 and increased acetylation of histones H3 in peripheral blood mononuclear cells of patients with rheumatoid arthritis. J Immunol Res. 2018:73135152018. View Article : Google Scholar : PubMed/NCBI | |
|
Heinicke F, Zhong X, Flåm ST, Breidenbach J, Leithaug M, Mæhlen MT, Lillegraven S, Aga AB, Norli ES, Mjaavatten MD, et al: MicroRNA expression differences in blood-derived CD19+ B cells of methotrexate treated rheumatoid arthritis patients. Front Immunol. 12:6637362021. View Article : Google Scholar : PubMed/NCBI | |
|
Alivernini S, Kurowska-Stolarska M, Tolusso B, Benvenuto R, Elmesmari A, Canestri S, Petricca L, Mangoni A, Fedele AL, Di Mario C, et al: MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nat Commun. 7:129702016. View Article : Google Scholar : PubMed/NCBI | |
|
Kurowska-Stolarska M, Alivernini S, Ballantine LE, Asquith DL, Millar NL, Gilchrist DS, Reilly J, Ierna M, Fraser AR, Stolarski B, et al: MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA. 108:11193–11198. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Baldini C, Fulvio G, La Rocca G and Ferro F: Update on the pathophysiology and treatment of primary Sjögren syndrome. Nat Rev Rheumatol. 20:473–491. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Luppi F, Sebastiani M, Sverzellati N, Cavazza A, Salvarani C and Manfredi A: Lung complications of Sjogren syndrome. Eur Respir Rev. 29:2000212020. View Article : Google Scholar : PubMed/NCBI | |
|
Rischmueller M, Tieu J and Lester S: Primary Sjogren's syndrome. Best Pract Res Clin Rheumatol. 30:189–220. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Miceli-Richard C, Wang-Renault SF, Boudaoud S, Busato F, Lallemand C, Bethune K, Belkhir R, Nocturne G, Mariette X and Tost J: Overlap between differentially methylated DNA regions in blood B lymphocytes and genetic at-risk loci in primary Sjögren's syndrome. Ann Rheum Dis. 75:933–940. 2016. View Article : Google Scholar | |
|
Imgenberg-Kreuz J, Sandling JK, Almlöf JC, Nordlund J, Signér L, Norheim KB, Omdal R, Rönnblom L, Eloranta ML, Syvänen AC and Nordmark G: Genome-wide DNA methylation analysis in multiple tissues in primary Sjögren's syndrome reveals regulatory effects at interferon-induced genes. Ann Rheum Dis. 75:2029–2036. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cole MB, Quach H, Quach D, Baker A, Taylor KE, Barcellos LF and Criswell LA: Epigenetic signatures of salivary gland inflammation in Sjogren's syndrome. Arthritis Rheumatol. 68:2936–2944. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Konsta OD, Le Dantec C, Charras A, Brooks WH, Arleevskaya MI, Bordron A and Renaudineau Y: An in silico approach reveals associations between genetic and epigenetic factors within regulatory elements in B cells from primary Sjögren's syndrome patients. Front Immunol. 6:4372015. View Article : Google Scholar | |
|
Inamo J, Suzuki K, Takeshita M, Kassai Y, Takiguchi M, Kurisu R, Okuzono Y, Tasaki S, Yoshimura A and Takeuchi T: Identification of novel genes associated with dysregulation of B cells in patients with primary Sjögren's syndrome. Arthritis Res Ther. 22:1532020. View Article : Google Scholar | |
|
Wang-Renault SF, Boudaoud S, Nocturne G, Roche E, Sigrist N, Daviaud C, Bugge Tinggaard A, Renault V, Deleuze JF, Mariette X and Tost J: Deregulation of microRNA expression in purified T and B lymphocytes from patients with primary Sjögren's syndrome. Ann Rheum Dis. 77:133–140. 2018. View Article : Google Scholar | |
|
Daridon C, Devauchelle V, Hutin P, Le Berre R, Martins-Carvalho C, Bendaoud B, Dueymes M, Saraux A, Youinou P and Pers JO: Aberrant expression of BAFF by B lymphocytes infiltrating the salivary glands of patients with primary Sjögren's syndrome. Arthritis Rheum. 56:1134–1144. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Oh J, Vidal-Jordana A and Montalban X: Multiple sclerosis: Clinical aspects. Curr Opin Neurol. 31:752–759. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Wang J and Feng J: Multiple sclerosis and pregnancy: Pathogenesis, influencing factors, and treatment options. Autoimmun Rev. 22:1034492023. View Article : Google Scholar : PubMed/NCBI | |
|
Comi G, Bar-Or A, Lassmann H, Uccelli A, Hartung HP, Montalban X, Sørensen PS, Hohlfeld R and Hauser SL: Expert Panel of the 27th Annual Meeting of the European Charcot Foundation: Role of B cells in multiple sclerosis and related disorders. Ann Neurol. 89:13–23. 2021. View Article : Google Scholar | |
|
Cencioni MT, Mattoscio M, Magliozzi R, Bar-Or A and Muraro PA: B cells in multiple sclerosis-from targeted depletion to immune reconstitution therapies. Nat Rev Neurol. 17:399–414. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bar-Or A, Fawaz L, Fan B, Darlington PJ, Rieger A, Ghorayeb C, Calabresi PA, Waubant E, Hauser SL, Zhang J and Smith CH: Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol. 67:452–461. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, Shen P, Moore CS, Michel L, Althekair F, Rajasekharan S, et al: Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med. 7:310ra1662015. View Article : Google Scholar : PubMed/NCBI | |
|
Kappos L, Li D, Calabresi PA, O'Connor P, Bar-Or A, Barkhof F, Yin M, Leppert D, Glanzman R, Tinbergen J and Hauser SL: Ocrelizumab in relapsing-remitting multiple sclerosis: A phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 378:1779–1787. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ewing E, Kular L, Fernandes SJ, Karathanasis N, Lagani V, Ruhrmann S, Tsamardinos I, Tegner J, Piehl F, Gomez-Cabrero D and Jagodic M: Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during multiple sclerosis progression. EBioMedicine. 43:411–423. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Maltby VE, Lea RA, Graves MC, Sanders KA, Benton MC, Tajouri L, Scott RJ and Lechner-Scott J: Genome-wide DNA methylation changes in CD19+ B cells from relapsing-remitting multiple sclerosis patients. Sci Rep. 8:174182018. View Article : Google Scholar | |
|
Ma Q, Shams H, Didonna A, Baranzini SE, Cree BAC, Hauser SL, Henry RG and Oksenberg JR: Integration of epigenetic and genetic profiles identifies multiple sclerosis disease-critical cell types and genes. Commun Biol. 6:3422023. View Article : Google Scholar : PubMed/NCBI | |
|
Annibali V, Umeton R, Palermo A, Severa M, Etna MP, Giglio S, Romano S, Ferraldeschi M, Buscarinu MC, Vecchione A, et al: Analysis of coding and non-coding transcriptome of peripheral B cells reveals an altered interferon response factor (IRF)-1 pathway in multiple sclerosis patients. J Neuroimmunol. 324:165–171. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lindberg RLP, Hoffmann F, Mehling M, Kuhle J and Kappos L: Altered expression of miR-17-5p in CD4+ lymphocytes of relapsing-remitting multiple sclerosis patients. Eur J Immunol. 40:888–898. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sievers C, Meira M, Hoffmann F, Fontoura P, Kappos L and Lindberg RLP: Altered microRNA expression in B lymphocytes in multiple sclerosis: Towards a better understanding of treatment effects. Clin Immunol. 144:70–79. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Miyazaki Y, Li R, Rezk A, Misirliyan H, Moore C, Farooqi N, Solis M, Goiry LG, de Faria O Junior, Dang VD, et al: A novel microRNA-132-sirtuin-1 axis underlies aberrant B-cell cytokine regulation in patients with relapsing-remitting multiple sclerosis [corrected]. PLoS One. 9:e1054212014. View Article : Google Scholar : PubMed/NCBI | |
|
Syed FZ: Type 1 diabetes mellitus. Ann Intern Med. 175:ITC33–ITC48. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YN, Li R, Huang Y, Chen H, Nie H, Liu L, Zou X, Zhong J, Zheng B and Gong Q: The role of B cells in the pathogenesis of type 1 diabetes. Front Immunol. 15:14503662024. View Article : Google Scholar | |
|
Stefan M, Zhang W, Concepcion E, Yi Z and Tomer Y: DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun. 50:33–37. 2014. View Article : Google Scholar : | |
|
Paul DS, Teschendorff AE, Dang MAN, Lowe R, Hawa MI, Ecker S, Beyan H, Cunningham S, Fouts AR, Ramelius A, et al: Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat Commun. 7:135552016. View Article : Google Scholar : PubMed/NCBI | |
|
Miao F, Smith DD, Zhang L, Min A, Feng W and Natarajan R: Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: An epigenetic study in diabetes. Diabetes. 57:3189–3198. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Berry GJ, Budgeon LR, Cooper TK, Christensen ND and Waldner H: The type 1 diabetes resistance locus B10 Idd9.3 mediates impaired B-cell lymphopoiesis and implicates microRNA-34a in diabetes protection. Eur J Immunol. 44:1716–1727. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zou D, Feng S, Hu B, Guo M, Lv Y, Ma R, Du Y and Feng J: Bromodomain proteins as potential therapeutic targets for B-cell non-Hodgkin lymphoma. Cell Biosci. 14:1432024. View Article : Google Scholar : PubMed/NCBI | |
|
Martelli M, Ferreri AJM, Agostinelli C, Di Rocco A, Pfreundschuh M and Pileri SA: Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 87:146–171. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C and Schmitz G: Potential pathogenic impact of Cow's milk consumption and bovine milk-derived exosomal MicroRNAs in diffuse large B-cell lymphoma. Int J Mol Sci. 24:61022023. View Article : Google Scholar : PubMed/NCBI | |
|
Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, Johnson NA, Severson TM, Chiu R, Field M, et al: Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 476:298–303. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
You H, Xu-Monette ZY, Wei L, Nunns H, Nagy ML, Bhagat G, Fang X, Zhu F, Visco C, Tzankov A, et al: Genomic complexity is associated with epigenetic regulator mutations and poor prognosis in diffuse large B-cell lymphoma. Oncoimmunology. 10:19283652021. View Article : Google Scholar : PubMed/NCBI | |
|
Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y, Zhao C, Jiang M, Hu D, Agirre X, Niesvizky I, et al: The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med. 21:1199–1208. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, Wells VA, Grunn A, Messina M, Elliot O, et al: Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 43:830–837. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper LH, Lerach S, Tang H, Ma J, et al: Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 471:189–195. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Marquard L, Poulsen CB, Gjerdrum LM, de Nully Brown P, Christensen IJ, Jensen PB, Sehested M, Johansen P and Ralfkiaer E: Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas. Histopathology. 54:688–698. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Cosenza M and Pozzi S: The therapeutic strategy of HDAC6 inhibitors in lymphoproliferative disease. Int J Mol Sci. 19:23372018. View Article : Google Scholar : PubMed/NCBI | |
|
Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A and Yao TP: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 115:727–738. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Kovacs JJ, Murphy PJM, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB and Yao TP: HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 18:601–607. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Amara K, Ziadi S, Hachana M, Soltani N, Korbi S and Trimeche M: DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 101:1722–1730. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Loo SK, Ab Hamid SS, Musa M and Wong KK: DNMT1 is associated with cell cycle and DNA replication gene sets in diffuse large B-cell lymphoma. Pathol Res Pract. 214:134–143. 2018. View Article : Google Scholar | |
|
Asmar F, Punj V, Christensen J, Pedersen MT, Pedersen A, Nielsen AB, Hother C, Ralfkiaer U, Brown P, Ralfkiaer E, et al: Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma. Haematologica. 98:1912–1920. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mouly E, Ghamlouch H, Della-Valle V, Scourzic L, Quivoron C, Roos-Weil D, Pawlikowska P, Saada V, Diop MK, Lopez CK, et al: B-cell tumor development in Tet2-deficient mice. Blood Adv. 2:703–714. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dominguez PM, Ghamlouch H, Rosikiewicz W, Kumar P, Béguelin W, Fontán L, Rivas MA, Pawlikowska P, Armand M, Mouly E, et al: TET2 deficiency causes germinal center hyperplasia, impairs plasma cell differentiation, and promotes B-cell lymphomagenesis. Cancer Discov. 8:1632–1653. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cimmino L, Dawlaty MM, Ndiaye-Lobry D, Yap YS, Bakogianni S, Yu Y, Bhattacharyya S, Shaknovich R, Geng H, Lobry C, et al: TET1 is a tumor suppressor of hematopoietic malignancy. Nat Immunol. 16:653–662. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tian X, Pelton A, Shahsafaei A and Dorfman DM: Differential expression of enhancer of zeste homolog 2 (EZH2) protein in small cell and aggressive B-cell non-Hodgkin lymphomas and differential regulation of EZH2 expression by p-ERK1/2 and MYC in aggressive B-cell lymphomas. Mod Pathol. 29:1050–1057. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A III, Diaz E, et al: EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 492:108–112. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Caganova M, Carrisi C, Varano G, Mainoldi F, Zanardi F, Germain PL, George L, Alberghini F, Ferrarini L, Talukder AK, et al: Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest. 123:5009–5022. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Fu Y, Wang Y and Wang J: The m6A methyltransferase METTL3 is functionally implicated in DLBCL development by regulating m6A modification in PEDF. Front Genet. 11:9552020. View Article : Google Scholar : PubMed/NCBI | |
|
He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ and Hammond SM: A microRNA polycistron as a potential human oncogene. Nature. 435:828–833. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Tagawa H, Karube K, Tsuzuki S, Ohshima K and Seto M: Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci. 98:1482–1490. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Roehle A, Hoefig KP, Repsilber D, Thorns C, Ziepert M, Wesche KO, Thiere M, Loeffler M, Klapper W, Pfreundschuh M, et al: MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol. 142:732–744. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lawrie CH, Chi J, Taylor S, Tramonti D, Ballabio E, Palazzo S, Saunders NJ, Pezzella F, Boultwood J, Wainscoat JS and Hatton CS: Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J Cell Mol Med. 13:1248–1260. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Carbone A, Roulland S, Gloghini A, Younes A, von Keudell G, López-Guillermo A and Fitzgibbon J: Follicular lymphoma. Nat Rev Dis Primers. 5:832019. View Article : Google Scholar : PubMed/NCBI | |
|
Green MR: Chromatin modifying gene mutations in follicular lymphoma. Blood. 131:595–604. 2018. View Article : Google Scholar : | |
|
Green MR, Kihira S, Liu CL, Nair RV, Salari R, Gentles AJ, Irish J, Stehr H, Vicente-Dueñas C, Romero-Camarero I, et al: Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc Natl Acad Sci USA. 112:E1116–E1125. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, et al: Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 42:181–185. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Béguelin W, Teater M, Meydan C, Hoehn KB, Phillip JM, Soshnev AA, Venturutti L, Rivas MA, Calvo-Fernández MT, Gutierrez J, et al: Mutant EZH2 induces a pre-malignant lymphoma niche by reprogramming the immune response. Cancer Cell. 37:655–673.e11. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Vlasevska S, Wells VA, Nataraj S, Holmes AB, Duval R, Meyer SN, Mo T, Basso K, Brindle PK, et al: The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma. Cancer Discov. 7:322–337. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Antoniolli M, Solovey M, Hildebrand JA, Freyholdt T, Strobl CD, Bararia D, Keay WD, Adolph L, Heide M, Passerini V, et al: ARID1A mutations protect follicular lymphoma from FAS-dependent immune surveillance by reducing RUNX3/ETS1-driven FAS-expression. Cell Death Differ. 32:899–910. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Corrigan-Cummins M, Hudson J, Maric I, Simakova O, Neelapu SS, Kwak LW, Janik JE, Gause B, Jaffe ES and Calvo KR: MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. Haematologica. 97:586–594. 2012. View Article : Google Scholar : | |
|
Ryan CE, Armand P and LaCasce AS: Frontline management of mantle cell lymphoma. Blood. 145:663–672. 2025. View Article : Google Scholar | |
|
López C, Silkenstedt E, Dreyling M and Beà S: Biological and clinical determinants shaping heterogeneity in mantle cell lymphoma. Blood Adv. 8:3652–3664. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hill HA, Qi X, Jain P, Nomie K, Wang Y, Zhou S and Wang ML: Genetic mutations and features of mantle cell lymphoma: A systematic review and meta-analysis. Blood Adv. 4:2927–2938. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Greiner TC, Dasgupta C, Ho VV, Weisenburger DD, Smith LM, Lynch JC, Vose JM, Fu K, Armitage JO, Braziel RM, et al: Mutation and genomic deletion status of ataxia telangiectasia mutated (ATM) and p53 confer specific gene expression profiles in mantle cell lymphoma. Proc Natl Acad Sci USA. 103:2352–2357. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, Gunawardana J, Jenkins CE, Cochrane C, Ben-Neriah S, et al: Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood. 119:1963–1971. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Enjuanes A, Albero R, Clot G, Navarro A, Beà S, Pinyol M, Martín-Subero JI, Klapper W, Staudt LM, Jaffe ES, et al: Genome-wide methylation analyses identify a subset of mantle cell lymphoma with a high number of methylated CpGs and aggressive clinicopathological features. Int J Cancer. 133:2852–2863. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li XY, Li Y, Zhang L, Liu X, Feng L and Wang X: The antitumor effects of arsenic trioxide in mantle cell lymphoma via targeting Wnt/β-catenin pathway and DNA methyltransferase-1. Oncol Rep. 38:3114–3120. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Queirós Ana C, Beekman R, Vilarrasa-Blasi R, Duran-Ferrer M, Clot G, Merkel A, Raineri E, Russiñol N, Castellano G, Beà S, et al: Decoding the DNA methylome of mantle cell lymphoma in the light of the entire B cell lineage. Cancer Cell. 30:806–821. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xargay-Torrent S, López-Guerra M, Saborit-Villarroya I, Rosich L, Campo E, Roué G and Colomer D: Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res. 17:3956–3968. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
West AC and Johnstone RW: New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 124:30–39. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Jima D, Moffitt AB, Liu Q, Czader M, Hsi ED, Fedoriw Y, Dunphy CH, Richards KL, Gill JI, et al: The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells. Blood. 123:2988–2996. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Dominguez-Sola D, Hussein S, Lee JE, Holmes AB, Bansal M, Vlasevska S, Mo T, Tang H, Basso K, et al: Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med. 21:1190–1198. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Demosthenous C, Gupta SK, Sun J, Wang Y, Troska TP and Gupta M: Deregulation of polycomb repressive complex-2 in mantle cell lymphoma confers growth advantage by epigenetic suppression of cdkn2b. Front Oncol. 10:12262020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, Dessureault S, Moscinski LC, Rezania D, Dalton WS, et al: microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood. 115:2630–2639. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Di Lisio L, Gómez-López G, Sánchez-Beato M, Gómez-Abad C, Rodríguez ME, Villuendas R, Ferreira BI, Carro A, Rico D, Mollejo M, et al: Mantle cell lymphoma: Transcriptional regulation by microRNAs. Leukemia. 24:1335–1342. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Robaina MC, Mazzoccoli L, Arruda VO, Reis FR, Apa AG, de Rezende LM and Klumb CE: Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp Mol Pathol. 98:200–207. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF, Di Virgilio M, Reina San-Martin B, Heidkamp G, Schwickert TA, et al: MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity. 28:630–638. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Yang W, Li M and Li Y: Low expression of miR-150 in pediatric intestinal Burkitt lymphoma. Exp Mol Pathol. 96:261–266. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Di Lisio L, Sánchez-Beato M, Gómez-López G, Rodríguez ME, Montes-Moreno S, Mollejo M, Menárguez J, Martínez MA, Alves FJ, Pisano DG, et al: MicroRNA signatures in B-cell lymphomas. Blood Cancer J. 2:e572012. View Article : Google Scholar : PubMed/NCBI | |
|
Bueno MJ, Gómez de Cedrón M, Gómez-López G, Pérez de Castro I, Di Lisio L, Montes-Moreno S, Martínez N, Guerrero M, Sánchez-Martínez R, Santos J, et al: Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway. Blood. 117:6255–6266. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zucca E, Arcaini L, Buske C, Johnson PW, Ponzoni M, Raderer M, Ricardi U, Salar A, Stamatopoulos K, Thieblemont C, et al: Marginal zone lymphomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 31:17–29. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, De Wolf-Peeters C, Hagemeijer A, Van den Berghe H and Marynen P: The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 93:3601–3609. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Willis TG, Jadayel DM, Du MQ, Peng H, Perry AR, Abdul-Rauf M, Price H, Karran L, Majekodunmi O, Wlodarska I, et al: Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell. 96:35–45. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Streubel B, Lamprecht A, Dierlamm J, Cerroni L, Stolte M, Ott G, Raderer M and Chott A: T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood. 101:2335–2339. 2003. View Article : Google Scholar | |
|
Bühler MM, Martin-Subero JI, Pan-Hammarström Q, Campo E and Rosenquist R: Towards precision medicine in lymphoid malignancies. J Intern Med. 292:221–242. 2022. View Article : Google Scholar | |
|
Mirandari A, Parker H, Ashton-Key M, Stevens B, Walewska R, Stamatopoulos K, Bryant D, Oscier DG, Gibson J and Strefford JC: The genomic and molecular landscape of splenic marginal zone lymphoma, biological and clinical implications. Explor Target Antitumor Ther. 5:877–901. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Arribas AJ, Rinaldi A, Mensah AA, Kwee I, Cascione L, Robles EF, Martinez-Climent JA, Oscier D, Arcaini L, Baldini L, et al: DNA methylation profiling identifies two splenic marginal zone lymphoma subgroups with different clinical and genetic features. Blood. 125:1922–1931. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Arribas AJ, Campos-Martín Y, Gómez-Abad C, Algara P, Sánchez-Beato M, Rodriguez-Pinilla MS, Montes-Moreno S, Martinez N, Alves-Ferreira J, Piris MA and Mollejo M: Nodal marginal zone lymphoma: Gene expression and miRNA profiling identify diagnostic markers and potential therapeutic targets. Blood. 119:e9–e21. 2012. View Article : Google Scholar | |
|
Xiao F, Rui K, Shi X, Wu H, Cai X, Lui KO, Lu Q, Ballestar E, Tian J, Zou H and Lu L: Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol. 19:1215–1234. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lanata CM, Paranjpe I, Nititham J, Taylor KE, Gianfrancesco M, Paranjpe M, Andrews S, Chung SA, Rhead B, Barcellos LF, et al: A phenotypic and genomics approach in a multi-ethnic cohort to subtype systemic lupus erythematosus. Nat Commun. 10:39022019. View Article : Google Scholar : PubMed/NCBI | |
|
Imgenberg-Kreuz J, Almlöf JC, Leonard D, Sjöwall C, Syvänen AC, Rönnblom L, Sandling JK and Nordmark G: Shared and unique patterns of DNA methylation in systemic lupus erythematosus and primary Sjögren's syndrome. Front Immunol. 10:16862019. View Article : Google Scholar | |
|
Imgenberg-Kreuz J, Rasmussen A, Sivils K and Nordmark G: Genetics and epigenetics in primary Sjögren's syndrome. Rheumatology (Oxford). 60:2085–2098. 2021. View Article : Google Scholar | |
|
Zhang K, Luo Z, Yao X, Lu D, Hong T, Zhu X, Chen M and Wang X: Identification of epigenetic alteration of the IFI44L gene in B cells of sjogren's syndrome as a clinical biomarker and molecular significance. J Inflamm Res. 18:2499–2512. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Nair N, Plant D, Verstappen SM, Isaacs JD, Morgan AW, Hyrich KL, Barton A and Wilson AG; MATURA investigators: Differential DNA methylation correlates with response to methotrexate in rheumatoid arthritis. Rheumatology (Oxford). 59:1364–1371. 2020. View Article : Google Scholar | |
|
Kiselev IS, Kulakova OG, Boyko AN and Favorova OO: DNA methylation as an epigenetic mechanism in the development of multiple sclerosis. Acta Naturae. 13:45–57. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F, Gao Y, Chen Y, Li P, Zeng Y, Chen Y, Yin Y, Jia Y and Wang Y: Development of a mitochondria-related gene signature for prognostic assessment in diffuse large B cell lymphoma. Front Oncol. 15:15428292025. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Z, Li M, Hong H, Xu Q, He Z and Peng Z: Expression of N6-methyladenosine (m6A) regulators correlates with immune microenvironment characteristics and predicts prognosis in diffuse large cell lymphoma (DLBCL). Bioengineered. 12:6115–6133. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rosikiewicz W, Chen X, Dominguez PM, Ghamlouch H, Aoufouchi S, Bernard OA, Melnick A and Li S: TET2 deficiency reprograms the germinal center B cell epigenome and silences genes linked to lymphomagenesis. Sci Adv. 6:eaay58722020. View Article : Google Scholar : PubMed/NCBI | |
|
Amin R and Braza MS: The follicular lymphoma epigenome regulates its microenvironment. J Exp Clin Cancer Res. 41:212022. View Article : Google Scholar : PubMed/NCBI | |
|
Straining R and Eighmy W: Tazemetostat: EZH2 inhibitor. J Adv Pract Oncol. 13:158–163. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Morschhauser F, Tilly H, Chaidos A, McKay P, Phillips T, Assouline S, Batlevi CL, Campbell P, Ribrag V, Damaj GL, et al: Tazemetostat for patients with relapsed or refractory follicular lymphoma: An open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol. 21:1433–1442. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Niccolai R, Göbel C, Ndoj K, Kreft M, Kuiken HJ, Lieftink C, Morris B, Yska SD, Hendrix S, van den Broek B, et al: Cholesterol biosynthesis as a drug-induced vulnerability in diffuse large B cell lymphoma insensitive to EZH2 inhibition. Neoplasia. 70:1012432025. View Article : Google Scholar : PubMed/NCBI | |
|
Heward J, Konali L, D'Avola A, Close K, Yeomans A, Philpott M, Dunford J, Rahim T, Al Seraihi AF, Wang J, et al: KDM5 inhibition offers a novel therapeutic strategy for the treatment of KMT2D mutant lymphomas. Blood. 138:370–381. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Ortega-Molina A, Geng H, Ying HY, Hatzi K, Parsa S, McNally D, Wang L, Doane AS, Agirre X, et al: CREBBP inactivation promotes the development of HDAC3-dependent lymphomas. Cancer Discov. 7:38–53. 2017. View Article : Google Scholar | |
|
Mondello P, Tadros S, Teater M, Fontan L, Chang AY, Jain N, Yang H, Singh S, Ying HY, Chu CS, et al: Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma. Cancer Discov. 10:440–459. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Straus DJ, Hamlin PA, Matasar MJ, Lia Palomba M, Drullinsky PR, Zelenetz AD, Gerecitano JF, Noy A, Hamilton AM, Elstrom R, et al: Phase I/II trial of vorinostat with rituximab, cyclophosphamide, etoposide and prednisone as palliative treatment for elderly patients with relapsed or refractory diffuse large B-cell lymphoma not eligible for autologous stem cell transplantation. Br J Haematol. 168:663–670. 2015. View Article : Google Scholar | |
|
Jiang M, Huang F, Hong X, Xu C, Zhang B, Hu S, Wang G, Hu D, Sun W, Lu Q, et al: PQQ inhibits PRC2 methyltransferase activity and suppresses the proliferation of B-cell lymphoma in vitro. Chem Biodivers. 22:e2025001982025. View Article : Google Scholar : PubMed/NCBI | |
|
Vijaykrishnaraj M, Patil P, Ghate SD, Bhandary AK, Haridas VM and Shetty P: Efficacy of HDAC inhibitors and epigenetic modulation in the amelioration of synovial inflammation, cellular invasion, and bone erosion in rheumatoid arthritis pathogenesis. Int Immunopharmacol. 122:1106442023. View Article : Google Scholar : PubMed/NCBI | |
|
Regna NL, Vieson MD, Luo XM, Chafin CB, Puthiyaveetil AG, Hammond SE, Caudell DL, Jarpe MB and Reilly CM: Specific HDAC6 inhibition by ACY-738 reduces SLE pathogenesis in NZB/W mice. Clin Immunol. 162:58–73. 2016. View Article : Google Scholar | |
|
Ren J, Catalina MD, Eden K, Liao X, Read KA, Luo X, McMillan RP, Hulver MW, Jarpe M, Bachali P, et al: Selective histone deacetylase 6 inhibition normalizes B cell activation and germinal center formation in a model of systemic lupus erythematosus. Front Immunol. 10:25122019. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenthal AC, Munoz JL and Villasboas JC: Clinical advances in epigenetic therapies for lymphoma. Clin Epigenetics. 15:392023. View Article : Google Scholar : PubMed/NCBI |