You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
MTHFR‑folate axis as a modulator of the epigenetic landscape in autoimmune diseases (Review)
The one‑carbon metabolism pathway, regulated by the methylenetetrahydrofolate reductase (MTHFR) enzyme, represents a key nexus where genetic predisposition and nutrient status converge to shape the epigenetic landscape of autoimmune diseases. The objective of the present review is to synthesize evidence of how the MTHFR‑folate axis drives epigenomic patterns in these conditions. One of the main diseases involved is rheumatoid arthritis, where drug‑naïve patients show T‑cell and synovial hypomethylation with cytokine‑driven DNMT suppression, a process aggravated by reduced folate availability and MTHFR polymorphisms that constrain S‑adenosylmethionine supply. Similarly, in systemic lupus erythematosus, CD4+ T cells exhibit global hypomethylation with an interferon‑skewed signature (such as IFI44L), associated with impaired MTHFR activity and a folate‑dependent SAM:SAH imbalance that further diminishes DNMT function. Finally, in celiac disease, intestinal differential methylation, including LINE‑1 hypomethylation, is observed, driven by gluten‑induced villous atrophy and folate malabsorption. Overall, impaired one‑carbon metabolism and MTHFR‑dependent methylation capacity may be key determinants of epigenomic dysfunction underlying autoimmune disease and its clinical severity.17
![]() |
![]() |
|
Song Y, Li J and Wu Y: Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther. 9:2632024. View Article : Google Scholar : PubMed/NCBI | |
|
Danieli MG, Casciaro M, Paladini A, Bartolucci M, Sordoni M, Shoenfeld Y and Gangemi S: Exposome: Epigenetics and autoimmune diseases. Autoimmun Rev. 23:1035842024. View Article : Google Scholar : PubMed/NCBI | |
|
Gurugubelli KR and Ballambattu VB: Perspectives on folate with special reference to epigenetics and neural tube defects. Reprod Toxicol. 125:1085762024. View Article : Google Scholar : PubMed/NCBI | |
|
Souza LL, da Mota JCNL, Carvalho LM, Ribeiro AA, Caponi CA, Pinhel MAS, Costa-Fraga N, Diaz-Lagares A, Izquierdo AG, Nonino CB, et al: Genome-wide impact of folic acid on DNA methylation and gene expression in lupus adipocytes: An in vitro study on obesity. Nutrients. 17:10862025. View Article : Google Scholar : PubMed/NCBI | |
|
Lu M, Peng K, Song L, Luo L, Liang P and Liang Y: Association between Genetic polymorphisms in Methylenetetrahydrofolate reductase and risk of autoimmune diseases: A systematic review and meta-analysis. Dis Markers. 2022:45681452022. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai TY, Lee TH, Wang HH, Yang TH, Chang IJ and Huang YC: Serum Homocysteine, Folate, and vitamin B12 levels in patients with systemic lupus Erythematosus: A meta-analysis and meta-regression. J Am Coll Nutr. 40:443–453. 2021. View Article : Google Scholar | |
|
Dardiotis E, Arseniou S, Sokratous M, Tsouris Z, Siokas V, Mentis AA, Michalopoulou A, Andravizou A, Dastamani M, Paterakis K, et al: Vitamin B12, folate, and homocysteine levels and multiple sclerosis: A meta-analysis. Mult Scler Relat Disord. 17:190–197. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nomair AM, Abdelati A, Dwedar FI, Elnemr R, Kamel YN and Nomeir HM: The impact of folate pathway variants on the outcome of methotrexate therapy in rheumatoid arthritis patients. Clin Rheumatol. 43:971–983. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Crider KS, Yang TP, Berry RJ and Bailey LB: Folate and DNA methylation: A review of molecular mechanisms and the evidence for Folate's role. Adv Nutr. 3:21–38. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Coppedè F, Denaro M, Tannorella P and Migliore L: Increased MTHFR promoter methylation in mothers of Down syndrome individuals. Mutat Res. 787:1–6. 2016.PubMed/NCBI | |
|
Sun H, Song K, Zhou Y, Ding JF, Tu B, Yang JJ, Sha JM, Zhao JY, Zhang Y and Tao H: MTHFR epigenetic derepression protects against diabetes cardiac fibrosis. Free Radic Biol Med. 193:330–341. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Prasad S, Adivikolanu H, Banerjee A, Mittal M, Lemos JRN, Mittal R and Hirani K: The role of microRNAs and long non-coding RNAs in epigenetic regulation of T cells: Implications for autoimmunity. Front Immunol. 16:16958942025. View Article : Google Scholar : PubMed/NCBI | |
|
Nuermaimaiti K, Li T, Li N, Shi T, Liu W, Abulaiti P, Abulaihaiti K and Gao F: Vitamin and trace elements imbalance are very common in adult patients with newly diagnosed Celiac disease. Sci Rep. 15:283152025. View Article : Google Scholar : PubMed/NCBI | |
|
Fusco R, Siracusa R, D'Amico R, Peritore AF, Cordaro M, Gugliandolo E, Crupi R, Impellizzeri D, Cuzzocrea S and Di Paola R: Melatonin plus folic acid treatment ameliorates reserpine-induced fibromyalgia: An evaluation of pain, oxidative stress, and inflammation. Antioxidants (Basel). 8:6282019. View Article : Google Scholar : PubMed/NCBI | |
|
Nielsen HM and Tost J: Epigenetic Changes in Inflammatory and Autoimmune Diseases. Epigenetics: Development and Disease. Kundu TK: 61. Springer; Netherlands, Dordrecht: pp. 455–478. 2013 | |
|
Surace AEA and Hedrich CM: The role of epigenetics in autoimmune/inflammatory disease. Front Immunol. 10:15252019. View Article : Google Scholar : PubMed/NCBI | |
|
Funes SC, Fernández-Fierro A, Rebolledo-Zelada D, Mackern-Oberti JP and Kalergis AM: Contribution of Dysregulated DNA methylation to autoimmunity. Int J Mol Sci. 22:118922021. View Article : Google Scholar : PubMed/NCBI | |
|
Wills L and Stewart A: Experimental anæmia in monkeys, with special reference to macrocytic nutritional anæmia. Br J Exp Pathol. 16:444–453. 1935. | |
|
Bastian H: Lucy Wills (1888-1964): The life and research of an adventurous independent woman. J R Coll Phys Edinb. 38:89–91. 2008. View Article : Google Scholar | |
|
Viswanathan M, Urrutia RP, Hudson KN, Middleton JC and Kahwati LC: Folic acid supplementation to prevent neural tube defects: Updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 330:460–466. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mitchell HK, Snell EE and Williams RJ: Journal of the American Chemical Society, Vol. 63, 1941: The concentration of 'folic acid' by Herschel K. Mitchell, Esmond E. Snell, and Roger J. Williams. Nutr Rev. 46:324–325. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenberg IH: A history of the isolation and identification of folic acid (folate). Ann Nutr Metab. 61:231–235. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Angier RB, Boothe JH, Hutchings BL, Mowat JH, Semb J, Stokstad EL, Subbarow Y, Waller CW, Cosulich DB, Fahrenbach MJ, et al: Synthesis of a compound identical with the L. casei factor isolated from liver. Science. 102:227–228. 1945. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar Upadhyay A, Prakash A, Kumar A, Jena S, Sinha N and Sharma S: Dr. Sidney Farber (1903-1973): Founder of pediatric pathology and the father of modern chemotherapy. Cureus. 16:e682862024.PubMed/NCBI | |
|
Kutzbach C and Stokstad ELR: Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine. Biochim Biophys Acta. 250:459–477. 1971. View Article : Google Scholar : PubMed/NCBI | |
|
Tamura T and Stokstad ELR: The availability of food folate in man. Br J Haematol. 25:513–532. 1973. View Article : Google Scholar : PubMed/NCBI | |
|
Castillo LF, Pelletier CM, Heyden KE and Field MS: New insights into folate-vitamin B12 interactions. Annu Rev Nutr. 45:23–39. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP, et al: A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat Genet. 10:111–113. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Loperfido F, Sottotetti F, Bianco I, El Masri D, Maccarini B, Ferrara C, Limitone A, Cena H and De Giuseppe R: Folic acid supplementation in European women of reproductive age and during pregnancy with excessive weight: A systematic review. Reprod Health. 22:132025. View Article : Google Scholar : PubMed/NCBI | |
|
Arynchyna-Smith A, Arynchyn AN, Kancherla V, Anselmi K, Aban I, Hoogeveen RC, Steffen LM, Becker DJ, Kulczycki A, Carlo WA and Blount JP: Improvement of serum folate status in the US women of reproductive age with fortified iodised salt with folic acid (FISFA study). Public Health Nutr. 27:e2182024. View Article : Google Scholar : PubMed/NCBI | |
|
Quinn M, Halsey J, Sherliker P, Pan H, Chen Z, Bennett DA and Clarke R: Global heterogeneity in folic acid fortification policies and implications for prevention of neural tube defects and stroke: A systematic review. EClinicalMedicine. 67:1023662023. View Article : Google Scholar | |
|
He Q and Li J: The evolution of folate supplementation-from one size for all to personalized, precision, poly-paths. J Transl Int Med. 11:128–137. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Scaglione F and Panzavolta G: Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica. 44:480–488. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hoffbrand AV and Weir DG: The history of folic acid. Br J Haematol. 113:579–589. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra VK, Rodriguez-Lecompte JC and Ahmed M: Nanoparticles mediated folic acid enrichment. Food Chem. 456:1399642024. View Article : Google Scholar : PubMed/NCBI | |
|
Wusigale and Liang L: Folates: Stability and interaction with biological molecules. J Agric Food Res. 2:1000392020. | |
|
Siatka T, Mát'uš M, Moravcová M, Harčárová P, Lomozová Z, Matoušová K, Suwanvecho C, Kujovská Krčmová L and Mladěnka P: Biological, dietetic and pharmacological properties of vitamin B9. NPJ Sci Food. 9:302025. View Article : Google Scholar | |
|
Erşan S, Chen Y and Park JO: Comprehensive profiling of folates across polyglutamylation and one-carbon states. Metabolomics. 21:712025. View Article : Google Scholar | |
|
Yang M, Wang D, Wang X, Mei J and Gong Q: Role of folate in liver diseases. Nutrients. 16:18722024. View Article : Google Scholar : PubMed/NCBI | |
|
Revuelta JL, Serrano-Amatriain C, Ledesma-Amaro R and Jiménez A: Formation of folates by microorganisms: Towards the biotechnological production of this vitamin. Appl Microbiol Biotechnol. 102:8613–8620. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shulpekova Y, Nechaev V, Kardasheva S, Sedova A, Kurbatova A, Bueverova E, Kopylov A, Malsagova K, Dlamini JC and Ivashkin V: The concept of folic acid in health and disease. Molecules. 26:37312021. View Article : Google Scholar : PubMed/NCBI | |
|
U.S. Department of Agriculture, National Agricultural Library: Nutrient Lists from Standard Reference Legacy. 2018, https://www.nal.usda.gov/human-nutrition-and-food-safety/nutrient-lists-standard-reference-legacy-2018. Accessed Dec 17, 2025 | |
|
Spanish Agency for Food Safety and Nutrition: Composition of Foods. 2025, https://www.aesan.gob.es/en/AECOSAN/web/seguridad_alimentaria/subseccion/composicion_alimentos_BD.htm. Accessed Dec 17, 2025 | |
|
Food and Agriculture Organization of the United Nations: FAO/INFOODS Food Composition Database. https://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/. Accessed Dec 17, 2025 | |
|
Li J, Duan H, Ramaswamy H and Wang C: A comprehensive review of fortification, bioavailability, and health benefits of folate. Int J Mol Sci. 26:77032025. View Article : Google Scholar : PubMed/NCBI | |
|
Beltramo B, Urlings M, Padilla-Díaz CM, Bast A, Diliën H and De Boer A: Bioavailability of vitamins C, B2 and B9 (Folate) in nutrition and health claims: A critical appraisal. Food Prod Process Nutr. 7:552025. View Article : Google Scholar | |
|
Liu F, Kariluoto S, Edelmann M and Piironen V: Bioaccessibility of folate in faba bean, oat, rye and wheat matrices. Food Chem. 350:1292592021. View Article : Google Scholar : PubMed/NCBI | |
|
Visentin M, Diop-Bove N, Zhao R and Goldman ID: The intestinal absorption of folates. Annu Rev Physiol. 76:251–274. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Pietrzik K, Bailey L and Shane B: Folic acid and L-5-methyltetrahydrofolate: Comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 49:535–548. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao R, Matherly LH and Goldman ID: Membrane transporters and folate homeostasis: Intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med. 11:e42009. View Article : Google Scholar : PubMed/NCBI | |
|
O'Connor C, Wallace-Povirk A, Ning C, Frühauf J, Tong N, Gangjee A, Matherly LH and Hou Z: Folate transporter dynamics and therapy with classic and tumor-targeted antifolates. Sci Rep. 11:63892021. View Article : Google Scholar : PubMed/NCBI | |
|
Matherly LH, Schneider M, Gangjee A and Hou Z: Biology and therapeutic applications of the proton-coupled folate transporter. Expert Opin Drug Metab Toxicol. 18:695–706. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Alpers DH: Absorption and blood/cellular transport of folate and cobalamin: Pharmacokinetic and physiological considerations. Biochimie. 126:52–56. 2016. View Article : Google Scholar : | |
|
Ebara S: Nutritional role of folate. Congenit Anom (Kyoto). 57:138–141. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Froese DS, Fowler B and Baumgartner MR: Vitamin B12, folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis. 42:673–685. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zarou MM, Vazquez A and Vignir Helgason G: Folate metabolism: A re-emerging therapeutic target in haematological cancers. Leukemia. 35:1539–1551. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S and Gasque P: Methotrexate an old drug with new tricks. Int J Mol Sci. 20:50232019. View Article : Google Scholar : PubMed/NCBI | |
|
Cronstein BN and Aune TM: Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol. 16:145–154. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Wu P, Yang Z and Miao RR: Relationship between the efficacy and adverse effects of methotrexate and gene polymorphism. Egypt J Med Hum Genet. 25:892024. View Article : Google Scholar | |
|
Rogers LM, Cordero AM, Pfeiffer CM, Hausman DB, Tsang BL, De-Regil LM, Rosenthal J, Razzaghi H, Wong EC, Weakland AP and Bailey LB: Global folate status in women of reproductive age: A systematic review with emphasis on methodological issues. Ann N Y Acad Sci. 1431:35–57. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Colapinto CK, O'Connor DL, Sampson M, Williams B and Tremblay MS: Systematic review of adverse health outcomes associated with high serum or red blood cell folate concentrations. J Public Health (Oxf). 38:e84–e97. 2016. View Article : Google Scholar | |
|
Cordero AM, Crider KS, Rogers LM, Cannon MJ and Berry RJ: Optimal serum and red blood cell folate concentrations in women of reproductive age for prevention of neural tube defects: World Health Organization guidelines. MMWR Morb Mortal Wkly Rep. 64:421–423. 2015.PubMed/NCBI | |
|
Novaković R, Geelen A, Ristić-Medić D, Nikolić M, Souverein OW, McNulty H, Duffy M, Hoey L, Dullemeijer C, Renkema JMS, et al: Systematic review of observational studies with Dose-response meta-analysis between folate intake and status biomarkers in adults and the elderly. Ann Nutr Metab. 73:30–43. 2018. View Article : Google Scholar | |
|
Zhou Y, Sinnathamby V, Yu Y, Sikora L, Johnson CY, Mossey P and Little J: Folate intake, markers of folate status and oral clefts: An updated set of systematic reviews and meta-analyses. Birth Defects Res. 112:1699–1719. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Choumenkovitch SF, Selhub J, Wilson PW, Rader JI, Rosenberg IH and Jacques PF: Folic acid intake from fortification in United States exceeds predictions. J Nutr. 132:2792–2798. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Wang A, Yeung LF, Qi YP, Pfeiffer CM and Crider KS: Folate and vitamin B12 usual intake and biomarker status by intake source in United States adults aged ≥19 y: NHANES 2007-2018. Am J Clin Nutr. 118:241–254. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
National Institutes of Health: Office of Dietary Supplements: Folate-Consumer. 2022. | |
|
National Academies Press: Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: 2011 | |
|
Zarembska E, Ślusarczyk K and Wrzosek M: The implication of a polymorphism in the methylenetetrahydrofolate reductase gene in homocysteine metabolism and related civilisation diseases. Int J Mol Sci. 25:1932023. View Article : Google Scholar | |
|
Tran P, Leclerc D, Chan M, Pai A, Hiou-Tim F, Wu Q, Goyette P, Artigas C, Milos R and Rozen R: Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms. Mamm Genome. 13:483–492. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Homberger A, Linnebank M, Winter C, Willenbring H, Marquardt T, Harms E and Koch HG: Genomic structure and transcript variants of the human methylenetetrahydrofolate reductase gene. Eur J Hum Genet. 8:725–729. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Araszkiewicz AF, Jańczak K, Wójcik P, Białecki B, Kubiak S, Szczechowski M and Januszkiewicz-Lewandowska D: MTHFR gene polymorphisms: A single gene with wide-ranging clinical implications-a review. Genes (Basel). 16:4412025. View Article : Google Scholar : PubMed/NCBI | |
|
Wrzosek M and Ślusarczyk K: Methylenetetrahydrofolate reductase C677T gene variant in relation to body mass index and folate concentration in a polish population. Biomedicines. 10:31402022. View Article : Google Scholar : PubMed/NCBI | |
|
Froese DS, Kopec J, Rembeza E, Bezerra GA, Oberholzer AE, Suormala T, Lutz S, Chalk R, Borkowska O, Baumgartner MR and Yue WW: Structural basis for the regulation of human 5,10-methylenetetrahydrofolate reductase by phosphorylation and S-adenosylmethionine inhibition. Nat Commun. 9:22612018. View Article : Google Scholar : PubMed/NCBI | |
|
Sibani S, Christensen B, O'Ferrall E, Saadi I, Hiou-Tim F, Rosenblatt DS and Rozen R: Characterization of six novel mutations in the methylenetetrahydrofolate reductase (MTHFR) gene in patients with homocystinuria. Hum Mutat. 15:280–287. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Weisberg I, Tran P, Christensen B, Sibani S and Rozen R: A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 64:169–172. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Liew SC and Gupta ED: Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur J Med Genet. 58:1–10. 2015. View Article : Google Scholar | |
|
Bhatia M, Thakur J, Suyal S, Oniel R, Chakraborty R, Pradhan S, Sharma M, Sengupta S, Laxman S, Masakapalli SK and Bachhawat AK: Allosteric inhibition of MTHFR prevents futile SAM cycling and maintains nucleotide pools in one-carbon metabolism. J Biol Chem. 295:16037–16057. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G and Han JJ: Connections between metabolism and epigenetic modifications in cancer. Med Rev (Berl). 1:199–221. 2022. View Article : Google Scholar | |
|
Wu W, Shen O, Qin Y, Niu X, Lu C, Xia Y, Song L, Wang S and Wang X: Idiopathic male infertility is strongly associated with aberrant promoter methylation of methylenetetrahydrofolate reductase (MTHFR). PLoS One. 5:e138842010. View Article : Google Scholar : PubMed/NCBI | |
|
Kulac T, Hekim N, Kocamanoglu F, Beyaz C, Gunes S and Asci R: Methylation patterns of methylenetetrahydrofolate reductase gene promoter in infertile males. Andrologia. 53:e139422021. View Article : Google Scholar | |
|
Shaker MM, Shalabi TA and Amr KS: Correlation of methylation status in MTHFR promoter region with recurrent pregnancy loss. J Genet Eng Biotechnol. 19:442021. View Article : Google Scholar : PubMed/NCBI | |
|
Saraswathy KN, Kaur L, Talwar S, Mishra J, Huidrom S, Sachdeva MP and Puri M: Methylenetetrahydrofolate reductase gene-specific methylation and recurrent miscarriages: A case-control study from North India. J Hum Reprod Sci. 11:142–147. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Koturbash I, Melnyk S, James SJ, Beland FA and Pogribny IP: Role of epigenetic and miR-22 and miR-29b alterations in the downregulation of Mat1a and Mthfr genes in early preneoplastic livers in rats induced by 2-acetylaminofluorene. Mol Carcinog. 52:318–327. 2013. View Article : Google Scholar | |
|
Su A, Ling F, Vaganay C, Sodaro G, Benaksas C, Dal Bello R, Forget A, Pardieu B, Lin KH, Rutter JC, et al: The folate cycle enzyme MTHFR is a critical regulator of cell response to MYC-targeting therapies. Cancer Discov. 10:1894–1911. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Clark DF, Schmelz R, Rogers N, Smith NE and Shorter KR: Acute high folic acid treatment in SH-SY5Y cells with and without MTHFR function leads to gene expression changes in epigenetic modifying enzymes changes in epigenetic marks and changes in dendritic spine densities. PLoS One. 16:e02450052021. View Article : Google Scholar | |
|
Al Sayed R, Smith W, Rogers N, Smith N, Clark D, Castillo G, McLeod H, Glenister S and Shorter KR: A 2x folic acid treatment affects epigenetics and dendritic spine densities in SHSY5Y cells. Biochem Biophys Rep. 20:1006812019.PubMed/NCBI | |
|
Wu C, Gong Y, Sun A, Zhang Y, Zhang C, Zhang W, Zhao G, Zou Y and Ge J: The human MTHFR rs4846049 polymorphism increases coronary heart disease risk through modifying miRNA binding. Nutr Metab Cardiovasc Dis. 23:693–698. 2013. View Article : Google Scholar | |
|
Li C, Ni J, Liu YX, Wang H, Liang ZQ and Wang X: Response of MiRNA-22-3p and MiRNA-149-5p to folate deficiency and the differential regulation of MTHFR expression in normal and cancerous human hepatocytes. PLoS One. 12:e01680492017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Zheng F, Zhang L, Huang Z, Huang X, Pan Z, Chen S, Xu C, Jiang Y, Gu S, et al: LncRNA HOTAIR-mediated MTHFR methylation inhibits 5-fluorouracil sensitivity in esophageal cancer cells. J Exp Clin Cancer Res. 39:1312020. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Li X, Wang H, Guo X, Xue J, Wang X and Ni J: MicroRNA-22-3p and MicroRNA-149-5p inhibit human hepatocellular carcinoma cell growth and metastasis properties by regulating methylenetetrahydrofolate reductase. Curr Issues Mol Biol. 44:952–962. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Glossop JR, Emes RD, Nixon NB, Haworth KE, Packham JC, Dawes PT, Fryer AA, Mattey DL and Farrell WE: Genome-wide DNA methylation profiling in rheumatoid arthritis identifies disease-associated methylation changes that are distinct to individual T- and B-lymphocyte populations. Epigenetics. 9:1228–1237. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao M, Zhou Y, Zhu B, Wan M, Jiang T, Tan Q, Liu Y, Jiang J, Luo S, Tan Y, et al: IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann Rheum Dis. 75:1998–2006. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Dang X, Wu X, Xiang Z, Li Y, Fu Y and Shen T: DNA methylation of IFI44L as a potential blood biomarker for childhood-onset systemic lupus erythematosus. Pediatr Res. 96:494–501. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Feng Q, Lee C, Wang S, Pelleymounter LL, Moon I, Eckloff BW, Wieben ED, Schaid DJ, Yee V and Weinshilboum RM: Human betaine-homocysteine methyltransferase (BHMT) and BHMT2: Common gene sequence variation and functional characterization. Mol Genet Metab. 94:326–335. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Delgado-Reyes CV, Wallig MA and Garrow TA: Immunohistochemical detection of betaine-homocysteine S-methyltransferase in human, pig, and rat liver and kidney. Arch Biochem Biophys. 393:184–186. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Sunden SLF, Renduchintala MS, Park EI, Miklasz SD and Garrow TA: Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch Biochem Biophys. 345:171–174. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Tehlivets O, Malanovic N, Visram M, Pavkov-Keller T and Keller W: S-adenosyl-L-homocysteine hydrolase and methylation disorders: Yeast as a model system. Biochim Biophys Acta. 1832:204–215. 2013. View Article : Google Scholar : | |
|
Stipanuk MH: Sulfur amino acid metabolism: Pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 24:539–577. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Chiang PK: Biological effects of inhibitors of S-adenosylhomocysteine hydrolase. Pharmacol Ther. 77:115–134. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D, Gómez Padilla P, Ables G, Bamman MM, Thalacker-Mercer AE, et al: Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22:861–873. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS, et al: Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet. 10:433–443. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, Olivieri O, Jacques PF, Rosenberg IH, Corrocher R, et al: A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 99:5606–5611. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Mandaviya PR, Joehanes R, Brody J, Castillo-Fernandez JE, Dekkers KF, Do AN, Graff M, Hänninen IK, Tanaka T, de Jonge EAL, et al: Association of dietary folate and vitamin B-12 intake with genome-wide DNA methylation in blood: A large-scale epigenome-wide association analysis in 5841 individuals. Am J Clin Nutr. 110:437–450. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kok DEG, Dhonukshe-Rutten RAM, Lute C, Heil SG, Uitterlinden AG, van der Velde N, van Meurs JB, van Schoor NM, Hooiveld GJ, de Groot LC, et al: The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects. Clin Epigenetics. 7:1212015. View Article : Google Scholar : PubMed/NCBI | |
|
Pufulete M, Al-Ghnaniem R, Khushal A, Appleby P, Harris N, Gout S, Emery PW and Sanders TA: Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut. 54:648–653. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Lingappan K: NF-κB in oxidative stress. Curr Opin Toxicol. 7:81–86. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yu W, Wang Z, Zhang K, Chi Z, Xu T, Jiang D, Chen S, Li W, Yang X, Zhang X, et al: One-carbon metabolism supports S-Adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol Cell. 75:1147–1160.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Strickland FM, Li Y, Johnson K, Sun Z and Richardson BC: CD4(+) T cells epigenetically modified by oxidative stress cause lupus-like autoimmunity in mice. J Autoimmun. 62:75–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gorelik GJ, Yarlagadda S, Patel DR and Richardson BC: Protein kinase Cδ oxidation contributes to ERK inactivation in lupus T cells. Arthritis Rheum. 64:2964–2974. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Gorelik G, Strickland FM and Richardson BC: Oxidative stress, T cell DNA methylation, and lupus. Arthritis Rheumatol. 66:1574–1582. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Paul DS, Teschendorff AE, Dang MAN, Lowe R, Hawa MI, Ecker S, Beyan H, Cunningham S, Fouts AR, Ramelius A, et al: Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat Commun. 7:135552016. View Article : Google Scholar : PubMed/NCBI | |
|
Cerna M: Epigenetic regulation in etiology of type 1 diabetes mellitus. Int J Mol Sci. 21:362019. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng M, Yang L, Dong Z, Wang M, Sun Y, Liu H, Wang X, Sai N, Huang G and Zhang X: Folic acid deficiency enhanced microglial immune response via the Notch1/nuclear factor kappa B p65 pathway in hippocampus following rat brain I/R injury and BV2 cells. J Cell Mol Med. 23:4795–4807. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kolb AF and Petrie L: Folate deficiency enhances the inflammatory response of macrophages. Mol Immunol. 54:164–172. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nakano K, Boyle DL and Firestein GS: Regulation of DNA methylation in rheumatoid arthritis synoviocytes. J Immunol. 190:1297–1303. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G, Siow YL and O K: Homocysteine stimulates nuclear factor kappaB activity and monocyte chemoattractant protein-1 expression in vascular smooth-muscle cells: A possible role for protein kinase C. Biochem J. 352:817–826. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Au-Yeung KKW, Woo CWH, Sung FL, Yip JCW, Siow YL and O K: Hyperhomocysteinemia activates nuclear factor-kappaB in endothelial cells via oxidative stress. Circ Res. 94:28–36. 2004. View Article : Google Scholar | |
|
Webster AP, Plant D, Ecker S, Zufferey F, Bell JT, Feber A, Paul DS, Beck S, Barton A, Williams FMK, et al: Increased DNA methylation variability in rheumatoid arthritis-discordant monozygotic twins. Genome Med. 10:642018. View Article : Google Scholar : PubMed/NCBI | |
|
Guderud K, Sunde LH, Flåm ST, Mæhlen MT, Mjaavatten MD, Lillegraven S, Aga AB, Evenrød IM, Norli ES, Andreassen BK, et al: Rheumatoid arthritis patients, both newly diagnosed and methotrexate treated, show more DNA methylation differences in CD4+ memory than in CD4+ Naïve T cells. Front Immunol. 11:1942020. View Article : Google Scholar | |
|
Pitaksalee R, Parmar R, Hodgett R, Emery P and Ponchel F: DNA Hypomethylation in the TNF-alpha gene predicts rheumatoid arthritis classification in patients with early inflammatory symptoms. Cells. 12:23762023. View Article : Google Scholar : PubMed/NCBI | |
|
Zafari P, Yari K, Mostafaei S, Iranshahi N, Assar S, Fekri A and Taghadosi M: Analysis of Helios gene expression and Foxp3 TSDR methylation in the newly diagnosed Rheumatoid Arthritis patients. Immunol Invest. 47:632–642. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cribbs AP, Kennedy A, Penn H, Amjadi P, Green P, Read JE, Brennan F, Gregory B and Williams RO: Methotrexate restores regulatory T cell function through demethylation of the FoxP3 upstream enhancer in patients with rheumatoid arthritis. Arthritis Rheumatol. 67:1182–1192. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Adams C, Nair N, Plant D, Verstappen SMM, Quach HL, Quach DL, Carvidi A, Nititham J, Nakamura M, Graf J, et al: Identification of cell-specific differential DNA methylation associated with methotrexate treatment response in rheumatoid arthritis. Arthritis Rheumatol. 75:1088–1097. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Nair N, Plant D, Verstappen SM, Isaacs JD, Morgan AW, Hyrich KL, Barton A and Wilson AG; MATURA investigators: Differential DNA methylation correlates with response to methotrexate in rheumatoid arthritis. Rheumatology (Oxford). 59:1364–1371. 2020. View Article : Google Scholar | |
|
Gosselt HR, van Zelst BD, de Rotte MCFJ, Hazes JMW, de Jonge R and Heil SG: Higher baseline global leukocyte DNA methylation is associated with MTX non-response in early RA patients. Arthritis Res Ther. 21:1572019. View Article : Google Scholar : PubMed/NCBI | |
|
Ravaei A, Pulsatelli L, Assirelli E, Ciaffi J, Meliconi R, Salvarani C, Govoni M and Rubini M: MTHFR c.665C>T and c.1298A>C polymorphisms in tailoring personalized Anti-TNF-α therapy for rheumatoid arthritis. Int J Mol Sci. 24:41102023. View Article : Google Scholar | |
|
Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, Beloukhova MI, Deviatkin AA, Lukashev AN and Zamyatnin AA Jr: Epigenetic changes in the pathogenesis of rheumatoid arthritis. Front Genet. 10:5702019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Li D, Teng D, Zhou Y, Zhang L, Zhong Z and Yang GJ: Epigenetic regulation in the pathogenesis of rheumatoid arthritis. Front Immunol. 13:8594002022. View Article : Google Scholar : PubMed/NCBI | |
|
Jeffries MA, Dozmorov M, Tang Y, Merrill JT, Wren JD and Sawalha AH: Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics. 6:593–601. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hanaei S, Sanati G, Zoghi S, Gharibzadeh S, Ziaee V and Rezaei N: The status of FOXP3 gene methylation in pediatric systemic lupus erythematosus. Allergol Immunopathol (Madr). 48:332–338. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ribeiro AA, Carvalho LM, Da Mota JCNL, Nonino CB, Gualano B, Nunes JAV, Martinez JA and Nicoletti CF: Diet, DNA methylation and systemic lupus erythematosus: Evidence and perspectives focused on personalized nutrition. Lifestyle Genomics. 17:31–40. 2024. | |
|
Liu X, Zhou S, Huang M, Zhao M, Zhang W, Liu Q, Song K, Wang X, Liu J, OuYang Q, et al: DNA methylation and whole-genome transcription analysis in CD4+ T cells from systemic lupus erythematosus patients with or without renal damage. Clin Epigenetics. 16:982024. View Article : Google Scholar | |
|
da Mota JCNL, Carvalho LM, Ribeiro AA, Souza LL, Borba EF, Roschel H, Gualano B and Nicoletti CF: Methyl-donor supplementation in women with systemic lupus erythematosus with different nutritional status: The protocol for a randomised, double-blind, placebo-controlled trial. Lupus Sci Med. 11:e0012792024. View Article : Google Scholar : PubMed/NCBI | |
|
Ferreira RC, Simons HZ, Thompson WS, Rainbow DB, Yang X, Cutler AJ, Oliveira J, Castro Dopico X, Smyth DJ, Savinykh N, et al: Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity. J Autoimmun. 84:75–86. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Coit P, Jeffries M, Altorok N, Dozmorov MG, Koelsch KA, Wren JD, Merrill JT, McCune WJ and Sawalha AH: Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve CD4+ T cells from lupus patients. J Autoimmun. 43:78–84. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Tiane A, Schepers M, Reijnders RA, van Veggel L, Chenine S, Rombaut B, Dempster E, Verfaillie C, Wasner K, Grünewald A, et al: From methylation to myelination: Epigenomic and transcriptomic profiling of chronic inactive demyelinated multiple sclerosis lesions. Acta Neuropathol. 146:283–299. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Carlström KE, Ewing E, Granqvist M, Gyllenberg A, Aeinehband S, Enoksson SL, Checa A, Badam TVS, Huang J, Gomez-Cabrero D, et al: Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat Commun. 10:30812019. View Article : Google Scholar : PubMed/NCBI | |
|
Pinto-Medel MJ, Oliver-Martos B, Urbaneja-Romero P, Hurtado-Guerrero I, Ortega-Pinazo J, Serrano-Castro P, Fernández Ó and Leyva L: Global methylation correlates with clinical status in multiple sclerosis patients in the first year of IFNbeta treatment. Sci Rep. 7:87272017. View Article : Google Scholar : PubMed/NCBI | |
|
Maltby VE, Graves MC, Lea RA, Benton MC, Sanders KA, Tajouri L, Scott RJ and Lechner-Scott J: Genome-wide DNA methylation profiling of CD8+ T cells shows a distinct epigenetic signature to CD4+ T cells in multiple sclerosis patients. Clin Epigenetics. 7:1182015. View Article : Google Scholar : PubMed/NCBI | |
|
Bos SD, Page CM, Andreassen BK, Elboudwarej E, Gustavsen MW, Briggs F, Quach H, Leikfoss IS, Bjølgerud A, Berge T, et al: Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in multiple sclerosis. PLoS One. 10:e01174032015. View Article : Google Scholar : PubMed/NCBI | |
|
Azizi S, Shamshirian A, Alizadeh-Navaei R, Jafarpour H, Asemi Z, Tamtaji OR, Vaziri MS, Homayounfar R, Rezaei Shahmirzadi A and Alipoor R: A genetic association study of MTHFR C677T polymorphism with risk of metabolic syndrome: A systematic review and meta-analysis. Galen Med J. 8:e14722019. View Article : Google Scholar : PubMed/NCBI | |
|
Cevik B, Yigit S, Karakus N, Aksoy D, Kurt S and Ates O: Association of methylenetetrahydrofolate reductase gene C677T polymorphism with multiple sclerosis in Turkish patients. J Investig Med. 62:980–984. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Xavier A, Campagna MP, Maltby VE, Kilpatrick T, Taylor BV, Butzkueven H, Ponsonby AL, Scott RJ, Jokubaitis VG, Lea RA, et al: Interferon beta treatment is a potent and targeted epigenetic modifier in multiple sclerosis. Front Immunol. 14:11627962023. View Article : Google Scholar : PubMed/NCBI | |
|
Holm Hansen R, Højsgaard Chow H, Christensen JR, Sellebjerg F and von Essen MR: Dimethyl fumarate therapy reduces memory T cells and the CNS migration potential in patients with multiple sclerosis. Mult Scler Relat Disord. 37:1014512020. View Article : Google Scholar | |
|
Maltby VE, Lea RA, Ribbons KA, Sanders KA, Kennedy D, Min M, Scott RJ and Lechner-Scott J: DNA methylation changes in CD4+ T cells isolated from multiple sclerosis patients on dimethyl fumarate. Mult Scler J Exp Transl Clin. 4:20552173187878262018. | |
|
Cielo D, Galatola M, Fernandez-Jimenez N, De Leo L, Garcia-Etxebarria K, Loganes C, Tommasini A, Not T, Auricchio R, Greco L, et al: Combined analysis of methylation and gene expression profiles in separate compartments of small bowel mucosa identified celiac disease patients' signatures. Sci Rep. 9:100202019. View Article : Google Scholar : PubMed/NCBI | |
|
Fernandez-Jimenez N, Garcia-Etxebarria K, Plaza-Izurieta L, Romero-Garmendia I, Jauregi-Miguel A, Legarda M, Ecsedi S, Castellanos-Rubio A, Cahais V, Cuenin C, et al: The methylome of the celiac intestinal epithelium harbours genotype-independent alterations in the HLA region. Sci Rep. 9:12982019. View Article : Google Scholar : PubMed/NCBI | |
|
Fernandez-Jimenez N, Castellanos-Rubio A, Plaza-Izurieta L, Irastorza I, Elcoroaristizabal X, Jauregi-Miguel A, Lopez-Euba T, Tutau C, de Pancorbo MM, Vitoria JC, et al: Coregulation and modulation of NFκB-related genes in celiac disease: Uncovered aspects of gut mucosal inflammation. Hum Mol Genet. 23:1298–1310. 2014. View Article : Google Scholar | |
|
Hearn NL, Coleman AS, Ho V, Chiu CL and Lind JM: Comparing DNA methylation profiles in saliva and intestinal mucosa. BMC Genomics. 20:1632019. View Article : Google Scholar : PubMed/NCBI | |
|
Libera L, Vanoli A, Sahnane N, Adnan M, Guerini C, Arpa G, Bianchi PI, Lenti MV, Corazza GR, La Rosa S, et al: LINE-1 hypomethylation characterizes the inflammatory response in coeliac disease associated-intestinal mucosa and small bowel adenocarcinomas. J Pathol. 265:99–109. 2025. View Article : Google Scholar | |
|
Cardo A, Churruca I, Lasa A, Navarro V, Vázquez-Polo M, Perez-Junkera G and Larretxi I: Nutritional imbalances in adult celiac patients following a gluten-free diet. Nutrients. 13:28772021. View Article : Google Scholar : PubMed/NCBI | |
|
Valente FX, Campos TN, Moraes LFDS, Hermsdorff HH, Cardoso LM, Pinheiro-Sant'Ana HM, Gilberti FA and Peluzio MC: B vitamins related to homocysteine metabolism in adults celiac disease patients: A cross-sectional study. Nutr J. 14:1102015. View Article : Google Scholar : PubMed/NCBI | |
|
Wierdsma NJ, van Bokhorst-de van der Schueren MA, Berkenpas M, Mulder CJ and van Bodegraven AA: Vitamin and mineral deficiencies are highly prevalent in newly diagnosed celiac disease patients. Nutrients. 5:3975–3992. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Polli A, Ghosh M, Bakusic J, Ickmans K, Monteyne D, Velkeniers B, Bekaert B, Godderis L and Nijs J: DNA methylation and brain-derived neurotrophic factor expression account for symptoms and widespread hyperalgesia in patients with chronic fatigue syndrome and comorbid fibromyalgia. Arthritis Rheumatol. 72:1936–1944. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YH, Kim JH and Song GG: Association between the COMT Val158Met polymorphism and fibromyalgia susceptibility and fibromyalgia impact questionnaire score: A meta-analysis. Rheumatol Int. 35:159–166. 2015. View Article : Google Scholar | |
|
Ovrom EA, Mostert KA, Khakhkhar S, McKee DP, Yang P and Her YF: A comprehensive review of the genetic and epigenetic contributions to the development of fibromyalgia. Biomedicines. 11:11192023. View Article : Google Scholar : PubMed/NCBI | |
|
Gerra MC, Carnevali D, Ossola P, González-Villar A, Pedersen IS, Triñanes Y, Donnini C, Manfredini M, Arendt-Nielsen L and Carrillo-de-la-Peña MT: DNA methylation changes in fibromyalgia suggest the role of the immune-inflammatory response and central sensitization. J Clin Med. 10:49922021. View Article : Google Scholar : PubMed/NCBI | |
|
Przybylowicz PK, Sokolowska KE, Rola H and Wojdacz TK: DNA methylation changes in blood cells of fibromyalgia and chronic fatigue syndrome patients. J Pain Res. 16:4025–4036. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ciampi de Andrade D, Maschietto M, Galhardoni R, Gouveia G, Chile T, Victorino Krepischi AC, Dale CS, Brunoni AR, Parravano DC, Cueva Moscoso AS, et al: Epigenetics insights into chronic pain: DNA hypomethylation in fibromyalgia-a controlled pilot-study. Pain. 158:1473–1480. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Estévez-López F, Salazar-Tortosa DF, Camiletti-Moirón D, Gavilán-Carrera B, Aparicio VA, Acosta-Manzano P, Segura-Jiménez V, Álvarez-Gallardo IC, Carbonell-Baeza A, Munguía-Izquierdo D, et al: Fatigue in women with fibromyalgia: A gene-physical activity interaction study. J Clin Med. 10:19022021. View Article : Google Scholar : PubMed/NCBI | |
|
Inanir A, Yigit S, Tekcan A, Pinarli FA, Inanir S and Karakus N: Angiotensin converting enzyme and methylenetetrahydrofolate reductase gene variations in fibromyalgia syndrome. Gene. 564:188–192. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Regland B, Forsmark S, Halaouate L, Matousek M, Peilot B, Zachrisson O and Gottfries CG: Response to vitamin B12 and folic acid in myalgic encephalomyelitis and fibromyalgia. PLoS One. 10:e01246482015. View Article : Google Scholar : PubMed/NCBI | |
|
Gharibpoor F, Ghavidel-Parsa B, Sattari N, Bidari A, Nejatifar F and Montazeri A: Effect of vitamin B12 on the symptom severity and psychological profile of fibromyalgia patients; a prospective pre-post study. BMC Rheumatol. 6:512022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Zhang N, Wei M, Pan Q, Cheng C, Lu KE, Mo J and Chen Y: Methylation factors as biomarkers of fibromyalgia. Ann Transl Med. 11:169. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Crider KS, Devine O, Qi YP, Yeung LF, Sekkarie A, Zaganjor I, Wong E, Rose CE and Berry RJ: Systematic review and Bayesian Meta-analysis of the Dose-response relationship between folic acid intake and changes in blood folate concentrations. Nutrients. 11:712019. View Article : Google Scholar : PubMed/NCBI | |
|
Rennie KL, Hughes J, Lang R and Jebb SA: Nutritional management of rheumatoid arthritis: A review of the evidence. J Hum Nutr Diet. 16:97–109. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Nikolova-Ganeva K and Tchorbanov A: Folic acid in systemic lupus erythematosus-a new aspect. Clin Rheumatol. 42:1729–1730. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kirsty CW, Mary H and Sumner J: The relationship of cobalamin and/or folate to the patient-centred outcomes in multiple sclerosis: A systematic review and meta-analysis. Nutr Health. 28:527–542. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lamjadli S, Oujamaa I, Souli I, Eddehbi FE, Lakhouaja N, M'raouni B, Salami A, Guennouni M, Belghali MY, Hazime R and Admou B: Micronutrient deficiencies in patients with celiac disease: A systematic review and meta-analysis. Int J Immunopathol Pharmacol. 39:39463202413134262025. View Article : Google Scholar : PubMed/NCBI | |
|
Bennett RM, Friend R, Jones KD, Ward R, Han BK and Ross RL: The revised fibromyalgia impact questionnaire (FIQR): Validation and psychometric properties. Arthritis Res Ther. 11:R1202009. View Article : Google Scholar : PubMed/NCBI | |
|
Correa-Rodríguez M, Rueda-Medina B, Casas-Barragán A, Tapia-Haro RM, Molina F and Aguilar-Ferrándiz ME: Dietary intake assessment, severity of symptoms, and pain in women with fibromyalgia. Clin Nurs Res. 30:1164–1173. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Colson NJ, Naug HL, Nikbakht E, Zhang P and McCormack J: The impact of MTHFR 677 C/T genotypes on folate status markers: A meta-analysis of folic acid intervention studies. Eur J Nutr. 56:247–260. 2017. View Article : Google Scholar | |
|
Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW and Murthy SN: The metabolism and significance of homocysteine in nutrition and health. Nutr Metab (Lond). 14:782017. View Article : Google Scholar | |
|
Łoboś P and Regulska-Ilow B: Link between methyl nutrients and the DNA methylation process in the course of selected diseases in adults. Rocz Panstw Zakl Hig. 72:123–136. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
van Vliet MM, Schoenmakers S, Gribnau J and Steegers-Theunissen RPM: The one-carbon metabolism as an underlying pathway for placental DNA methylation-a systematic review. Epigenetics. 19:23185162024. View Article : Google Scholar | |
|
Wernimont SM, Clark AG, Stover PJ, Wells MT, Litonjua AA, Weiss ST, Gaziano JM, Tucker KL, Baccarelli A, Schwartz J, et al: Folate network genetic variation, plasma homocysteine, and global genomic methylation content: A genetic association study. BMC Med Genet. 12:1502011. View Article : Google Scholar : PubMed/NCBI | |
|
Bakulski KM, Dou JF, Feinberg JI, Brieger KK, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Schmidt RJ and Fallin MD: Prenatal multivitamin use and MTHFR genotype are associated with newborn cord blood DNA methylation. Int J Environ Res Public Health. 17:91902020. View Article : Google Scholar : PubMed/NCBI | |
|
de Oliveira NFP, Persuhn DC and Dos Santos MCLG: Can global DNA methylation be influenced by polymorphisms in genes involved in epigenetic mechanisms? A review. Genes (Basel). 15:15042024. View Article : Google Scholar | |
|
Dević Pavlić S, Šverko R, Barišić A, Mladenić T, Vraneković J, Stanković A, Peterlin A, Peterlin B, Ostojić S and Pereza N: MTHFR gene polymorphisms and DNA methylation in idiopathic spontaneous preterm birth. Medicina (Kaunas). 60:20282024. View Article : Google Scholar | |
|
Majstorović D, Stoccoro A, Barišić A, Buretić Tomljanović A, Giangreco M, Nicolì V, Coppedè F and Vraneković J: Increased methylation levels of the MTHFR gene promoter in Down syndrome. Epigenomics. 17:1141–1151. 2025. View Article : Google Scholar | |
|
Tsymbalova EA, Chernyavskaya EA, Bisaga GN, Polushin AY, Lopatina EI, Abdurasulova IN and Lioudyno VI: LINE-1 methylation status in multiple sclerosis patients is associated with changes in folate metabolism. Acta Nat. 17:94–103. 2025. View Article : Google Scholar |