You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
Natural products as multi‑target therapies for sepsis‑induced myocardial dysfunction (Review)
Sepsis, an infection‑triggered systemic inflammatory response syndrome, ranks as the third leading cause of death worldwide due to its high incidence and mortality. Sepsis‑induced myocardial dysfunction (SIMD) is a frequent and serious complication that notably increases patient morbidity and mortality. The underlying pathophysiology of SIMD involves a complex interplay of inflammation, oxidative stress, mitochondrial impairment and apoptosis, yet no effective therapies have been established. Thus, uncovering the molecular mechanisms of SIMD, identifying novel therapeutic targets and developing efficacious agents are key. For centuries, natural products have been used in traditional medical systems across China and Asia to manage cardiovascular disease. These compounds can confer cardioprotection by modulating inflammatory pathways, decreasing oxidative stress, inhibiting apoptotic cell death and improving mitochondrial function. The present review aimed to summarize the clinical manifestations and pathophysiology of SIMD and how natural products exert their protective effects. The present study aimed to explore structure‑activity relationships and highlight key molecular targets and representative natural product binding affinities for SIMD‑related proteins. In summary, the present study presents a comprehensive overview of the multi‑targeted strategies employed by natural products against SIMD and provides guidance for the discovery of SIMD‑focused dietary supplements and lead compounds, laying the groundwork for future translational research.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Angus DC and van der Poll T: Severe sepsis and septic shock. N Engl J Med. 369:840–851. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yan J, Li Z, Li Y and Zhang Y: Sepsis induced cardiotoxicity by promoting cardiomyocyte cuproptosis. Biochem Biophys Res Commun. 690:1492452024. View Article : Google Scholar | |
|
Cecconi M, Evans L, Levy M and Rhodes A: Sepsis and septic shock. Lancet. 392:75–87. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Iyer S, Kennedy JN, Jentzer JC, Senussi MH and Seymour CW: Cardiac function before sepsis and clinical outcomes. JAMA. 331:1496–1499. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
van der Poll T and van Deventer SJ: Cytokines and anticytokines in the pathogenesis of sepsis. Infect Dis Clin North Am. 13:413–426. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Li J, Tian P, Guli B, Weng G, Li L and Cheng Q: H2S attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Exp Ther Med. 17:4064–4072. 2019.PubMed/NCBI | |
|
Tang F, Zhang JN, Xu LY, Zhao XL, Wan F, Ao H and Peng C: Endothelial-derived exosomes: A novel therapeutic strategy for LPS-induced myocardial damage with anisodamine. Int J Biol Macromol. 282:1369932024. View Article : Google Scholar : PubMed/NCBI | |
|
Tang X, Zhang C, Tian T, Dai X, Xing Y, Wang Y, Yang D, Li H, Wang Y, Lv X and Wang H: Posttreatment with dexmedetomidine aggravates LPS-induced myocardial dysfunction partly via activating cardiac endothelial α2A-AR in mice. Int Immunopharmacol. 116:1097242023. View Article : Google Scholar | |
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H and Peng C: Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res. 197:1069532023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Weng D, Shi W, Wei S, Ji W, Wang X, Xu Y, Wang X, Mei X and Guo S: Integrative network pharmacology and multi-omics reveal anisodamine hydrobromide's multi-target mechanisms in sepsis. Sci Rep. 15:279962025. View Article : Google Scholar : PubMed/NCBI | |
|
Palmieri V, Innocenti F, Guzzo A, Guerrini E, Vignaroli D and Pini R: Left ventricular systolic longitudinal function as predictor of outcome in patients with sepsis. Circ Cardiovasc Imaging. 8:e0038652015. View Article : Google Scholar : PubMed/NCBI | |
|
Fan R, Liu H and Liang Q: Roles and therapeutic targeting of exosomes in Sepsis-induced cardiomyopathy. J Cell Mol Med. 29:e705592025. View Article : Google Scholar : PubMed/NCBI | |
|
Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F and Scolletta S: Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. J Crit Care. 29:500–511. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Repessé X, Charron C and Vieillard-Baron A: Evaluation of left ventricular systolic function revisited in septic shock. Crit Care. 17:1642013. View Article : Google Scholar : PubMed/NCBI | |
|
Aissaoui N, Boissier F, Chew M, Singer M and Vignon P: Sepsis-induced cardiomyopathy. Eur Heart J. 46:3339–3353. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA and Parrillo JE: Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med. 100:483–490. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
Zaky A, Deem S, Bendjelid K and Treggiari MM: Characterization of cardiac dysfunction in sepsis: An ongoing challenge. Shock. 41:12–24. 2014. View Article : Google Scholar | |
|
ver Elst KM, Spapen HD, Nguyen DN, Garbar C, Huyghens LP and Gorus FK: Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem. 46:650–657. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Sheyin O, Davies O, Duan W and Perez X: The prognostic significance of troponin elevation in patients with sepsis: A meta-analysis. Heart Lung. 44:75–81. 2015. View Article : Google Scholar | |
|
Clerico A, Iervasi G and Mariani G: Pathophysiologic relevance of measuring the plasma levels of cardiac natriuretic peptide hormones in humans. Horm Metab Res. 31:487–498. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Chua G and Kang-Hoe L: Marked elevations in N-terminal brain natriuretic peptide levels in septic shock. Crit Care. 8:R248–R250. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Roch A, Allardet-Servent J, Michelet P, Oddoze C, Forel JM, Barrau K, Loundou A, Perrin G, Auffray JP, Portugal H and Papazian L: NH2 terminal pro-brain natriuretic peptide plasma level as an early marker of prognosis and cardiac dysfunction in septic shock patients. Crit Care Med. 33:1001–1007. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Alam ML, Katz R, Bellovich KA, Bhat ZY, Brosius FC, de Boer IH, Gadegbeku CA, Gipson DS, Hawkins JJ, Himmelfarb J, et al: Soluble ST2 and Galectin-3 and Progression of CKD. Kidney Int Rep. 4:103–111. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chang X, Guo Y, Wang J, Liu J, Ma Y, Lu Q and Han Y: Heart-type fatty acid binding protein (H-FABP) as an early biomarker in sepsis-induced cardiomyopathy: A prospective observational study. Lipids Health Dis. 23:2832024. View Article : Google Scholar : PubMed/NCBI | |
|
Weinberger J, Klompas M and Rhee C: What is the utility of measuring lactate levels in patients with sepsis and septic shock? Semin Respir Crit Care Med. 42:650–661. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Benz F, Roy S, Trautwein C, Roderburg C and Luedde T: Circulating MicroRNAs as biomarkers for sepsis. Int J Mol Sci. 17:782016. View Article : Google Scholar : PubMed/NCBI | |
|
Manetti AC, Maiese A, Paolo MD, De Matteis A, La Russa R, Turillazzi E, Frati P and Fineschi V: MicroRNAs and Sepsis-induced cardiac dysfunction: A systematic review. Int J Mol Sci. 22:3212020. View Article : Google Scholar | |
|
Ketelut-Carneiro N and Fitzgerald KA: Apoptosis, pyroptosis, and Necroptosis-Oh My! The many ways a cell can die. J Mol Biol. 434:1673782022. View Article : Google Scholar | |
|
Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ and Hajjar RJ: Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA. 99:6252–6256. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Nevière R, Fauvel H, Chopin C, Formstecher P and Marchetti P: Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am J Respir Crit Care Med. 163:218–225. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hu H, Tian M, Ding C and Yu S: The C/EBP Homologous protein (CHOP) Transcription factor functions in endoplasmic reticulum Stress-induced apoptosis and microbial infection. Front Immunol. 9:30832018. View Article : Google Scholar | |
|
Li L, Peng X, Guo L, Zhao Y and Cheng Q: Sepsis causes heart injury through endoplasmic reticulum stress-mediated apoptosis signaling pathway. Int J Clin Exp Pathol. 13:964–971. 2020.PubMed/NCBI | |
|
Xu X, Liu Q, He S, Zhao J, Wang N, Han X and Guo Y: Qiang-Xin 1 formula prevents Sepsis-induced apoptosis in murine cardiomyocytes by suppressing endoplasmic Reticulum- and Mitochondria-associated pathways. Front Pharmacol. 9:8182018. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Chen W, Gong F, Chen Y and Chen E: The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: A review. Front Immunol. 12:7119392021. View Article : Google Scholar : PubMed/NCBI | |
|
Xue Z, Xi Q, Liu H, Guo X, Zhang J, Zhang Z, Li Y, Yang G, Zhou D, Yang H, et al: miR-21 promotes NLRP3 inflammasome activation to mediate pyroptosis and endotoxic shock. Cell Death Dis. 10:4612019. View Article : Google Scholar : PubMed/NCBI | |
|
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Li W, Leng Y, Xiong Y and Xia Z: Ferroptosis is involved in diabetes myocardial Ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol. 39:210–225. 2020. View Article : Google Scholar | |
|
Parzych KR and Klionsky DJ: An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal. 20:460–473. 2014. View Article : Google Scholar : | |
|
Liu AB, Li SJ, Yu YY, Zhang JF and Ma L: Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol. 11:13097192023. View Article : Google Scholar : | |
|
Denk S, Perl M and Huber-Lang M: Damage- and pathogen-associated molecular patterns and alarmins: Keys to sepsis? Eur Surg Res. 48:171–179. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Vénéreau E, Ceriotti C and Bianchi ME: DAMPs from cell death to new life. Front Immunol. 6:4222015. View Article : Google Scholar : PubMed/NCBI | |
|
Hobai IA, Morse JC, Siwik DA and Colucci WS: Lipopolysaccharide and cytokines inhibit rat cardiomyocyte contractility in vitro. J Surg Res. 193:888–901. 2015. View Article : Google Scholar | |
|
Zhang YY and Ning BT: Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther. 6:4072021. View Article : Google Scholar : PubMed/NCBI | |
|
Fujimura K, Karasawa T, Komada T, Yamada N, Mizushina Y, Baatarjav C, Matsumura T, Otsu K, Takeda N, Mizukami H, et al: NLRP3 inflammasome-driven IL-1β and IL-18 contribute to lipopolysaccharide-induced septic cardiomyopathy. J Mol Cell Cardiol. 180:58–68. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Busch K, Kny M, Huang N, Klassert TE, Stock M, Hahn A, Graeger S, Todiras M, Schmidt S, Chamling B, et al: Inhibition of the NLRP3/IL-1β axis protects against sepsis-induced cardiomyopathy. J Cachexia Sarcopenia Muscle. 12:1653–1668. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar V: Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol. 89:1070872020. View Article : Google Scholar : PubMed/NCBI | |
|
Hoover DB, Ozment TR, Wondergem R, Li C and Williams DL: Impaired heart rate regulation and depression of cardiac chronotropic and dromotropic function in polymicrobial sepsis. Shock. 43:185–191. 2015. View Article : Google Scholar : | |
|
Nolfi-Donegan D, Braganza A and Shiva S: Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 37:1016742020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YR and Zweier JL: Cardiac mitochondria and reactive oxygen species generation. Circ Res. 114:524–537. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M and Rao Z: Crystal structure of mitochondrial respiratory membrane protein complex II. Cell. 121:1043–1057. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Tsolaki V, Makris D, Mantzarlis K and Zakynthinos E: Sepsis-induced cardiomyopathy: Oxidative implications in the initiation and resolution of the damage. Oxid Med Cell Longev. 2017:73935252017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YR, Chen CL, Yeh A, Liu X and Zweier JL: Direct and indirect roles of cytochrome b in the mediation of superoxide generation and NO catabolism by mitochondrial succinate-cytochrome c reductase. J Biol Chem. 281:13159–13168. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, Jarman S, Efimov IR, Janks DL, Srivastava A, et al: Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 187:509–517. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Vanasco V, Saez T, Magnani ND, Pereyra L, Marchini T, Corach A, Vaccaro MI, Corach D, Evelson P and Alvarez S: Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radic Biol Med. 77:1–9. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Haileselassie B, Mukherjee R, Joshi AU, Napier BA, Massis LM, Ostberg NP, Queliconi BB, Monack D, Bernstein D and Mochly-Rosen D: Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. J Mol Cell Cardiol. 130:160–169. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wagner S, Schürmann S, Hein S, Schüttler J and Friedrich O: Septic cardiomyopathy in rat LPS-induced endotoxemia: Relative contribution of cellular diastolic Ca(2+) removal pathways, myofibrillar biomechanics properties and action of the cardiotonic drug levosimendan. Basic Res Cardiol. 110:5072015. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Y, Xu Y and Zhang Z: Sepsis-induced myocardial dysfunction (SIMD): The pathophysiological mechanisms and therapeutic strategies targeting mitochondria. Inflammation. 43:1184–1200. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ravikumar N, Sayed MA, Poonsuph CJ, Sehgal R, Shirke MM and Harky A: Septic cardiomyopathy: From basics to management choices. Curr Probl Cardiol. 46:1007672021. View Article : Google Scholar : PubMed/NCBI | |
|
Cao T, Ni R, Ding W, Ji X, Fan GC, Zhang Z and Peng T: Nicotinamide mononucleotide as a therapeutic agent to alleviate multi-organ failure in sepsis. J Transl Med. 21:8832023. View Article : Google Scholar : PubMed/NCBI | |
|
Furian T, Aguiar C, Prado K, Ribeiro RV, Becker L, Martinelli N, Clausell N, Rohde LE and Biolo A: Ventricular dysfunction and dilation in severe sepsis and septic shock: Relation to endothelial function and mortality. J Crit Care. 27:319.e9–e15. 2012. View Article : Google Scholar | |
|
Kacimi R, Karliner JS, Koudssi F and Long CS: Expression and regulation of adhesion molecules in cardiac cells by cytokines: Response to acute hypoxia. Circ Res. 82:576–586. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Tang F, Zhao XL, Xu LY, Zhang JN, Ao H and Peng C: Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed Pharmacother. 178:1171802024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhan JH, Wei J, Liu YJ, Wang PX and Zhu XY: Sepsis-associated endothelial glycocalyx damage: A review of animal models, clinical evidence, and molecular mechanisms. Int J Biol Macromol. 295:1395482025. View Article : Google Scholar : PubMed/NCBI | |
|
Burg N, Malpass R, Alex L, Tran M, Englebrecht E, Kuo A, Pannelini T, Minett M, Athukorala K and Worgall T: Endothelial cell sphingosine 1-phosphate receptor 1 restrains VE-cadherin cleavage and attenuates experimental inflammatory arthritis. JCI Insight. 9:e1714672024. View Article : Google Scholar : PubMed/NCBI | |
|
de Oliveira J and Miranda CH: Doxycycline protects against sepsis-induced endothelial glycocalyx shedding. Sci Rep. 14:104772024. View Article : Google Scholar : PubMed/NCBI | |
|
van de Sandt AM, Windler R, Gödecke A, Ohlig J, Zander S, Reinartz M, Graf J, van Faassen EE, Rassaf T, Schrader J, et al: Endothelial NOS (NOS3) impairs myocardial function in developing sepsis. Basic Res Cardiol. 108:3302013. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng N, Xu J, Yao W, Li S, Ruan W and Xiao F: Brain-derived neurotrophic factor attenuates septic myocardial dysfunction via eNOS/NO pathway in rats. Oxid Med Cell Longev. 2017:17214342017. View Article : Google Scholar : PubMed/NCBI | |
|
Hong G, Zheng D, Zhang L, Ni R, Wang G, Fan GC, Lu Z and Peng T: Administration of nicotinamide riboside prevents oxidative stress and organ injury in sepsis. Free Radic Biol Med. 123:125–137. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mirna M, Paar V, Rezar R, Topf A, Eber M, Hoppe UC, Lichtenauer M and Jung C: MicroRNAs in inflammatory heart diseases and Sepsis-induced cardiac dysfunction: A potential scope for the future? Cells. 8:13522019. View Article : Google Scholar : PubMed/NCBI | |
|
Gao M, Wang X, Zhang X, Ha T, Ma H, Liu L, Kalbfleisch JH, Gao X, Kao RL, Williams DL and Li C: Attenuation of cardiac dysfunction in polymicrobial sepsis by MicroRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. J Immunol. 195:672–682. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ma H, Wang X, Ha T, Gao M, Liu L, Wang R, Yu K, Kalbfleisch JH, Kao RL, Williams DL and Li C: MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-Mediated nuclear factor κB activation and p53-Mediated apoptotic signaling. J Infect Dis. 214:1773–1783. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yao Y, Sun F and Lei M: miR-25 inhibits sepsis-induced cardiomyocyte apoptosis by targetting PTEN. Biosci Rep. 38:BSR201715112018. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Yi N, Chen R, Meng Y, Wang Y, Liu H, Cao W, Hu Y, Gu Y, Tong C, et al: miR-29b-3p protects cardiomyocytes against endotoxin-induced apoptosis and inflammatory response through targeting FOXO3A. Cell Signal. 74:1097162020. View Article : Google Scholar : PubMed/NCBI | |
|
Long X, Huang Y, He J, Zhang X, Zhou Y, Wei Y, Tang Y and Liu L: Upregulation of miR-335 exerts protective effects against sepsis-induced myocardial injury. Mol Med Rep. 24:8062021. View Article : Google Scholar : | |
|
Liang L, Liu S, Wu Q, Chen R, Jiang S and Yang Z: m6A-mediated upregulation of miRNA-193a aggravates cardiomyocyte apoptosis and inflammatory response in sepsis-induced cardiomyopathy via the METTL3/miRNA-193a/BCL2L2 pathway. Exp Cell Res. 430:1137122023. View Article : Google Scholar | |
|
He Z, Xu L, Zeng X, Yang B, Liu P, Han D, Xue H and Luo B: circROCK1 Promotes septic myocardial injury through regulating miR-96-5p/OXSR1 axis. Acta Biochim Pol. 70:567–574. 2023.PubMed/NCBI | |
|
Wang H, Bei Y, Shen S, Huang P, Shi J, Zhang J, Sun Q, Chen Y, Yang Y, Xu T, et al: miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol Cell Cardiol. 94:43–53. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ge C, Liu J and Dong S: miRNA-214 protects Sepsis-induced myocardial injury. Shock. 50:112–118. 2018. View Article : Google Scholar | |
|
Li Y, Sun G and Wang L: MiR-21 participates in LPS-induced myocardial injury by targeting Bcl-2 and CDK6. Inflamm Res. 71:205–214. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu XG, Zhang TN, Wen R and Liu CF: Overexpression of miR-150-5p alleviates apoptosis in Sepsis-induced myocardial depression. Biomed Res Int. 2020:30231862020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Li B, Li W, Jiang J, Chen W, Yang H and Pan D: miR-107 attenuates Sepsis-induced myocardial injury by targeting PTEN and activating the PI3K/AKT signaling pathway. Cells Tissues Organs. 212:523–534. 2023. View Article : Google Scholar | |
|
Sun F, Yuan W, Wu H, Chen G, Sun Y, Yuan L, Zhang W and Lei M: LncRNA KCNQ1OT1 attenuates sepsis-induced myocardial injury via regulating miR-192-5p/XIAP axis. Exp Biol Med (Maywood). 245:620–630. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen DD, Wang HW and Cai XJ: Long non-coding RNA ZFAS1 alleviates sepsis-induced myocardial injury via target miR-34b-5p/SIRT1. Innate Immun. 27:377–387. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu LJ, Yang Y, Yuan LF, Liu H, Xu NP, Yang Y and Huang L: SP1-stimulated miR-208a-5p aggravates sepsis-induced myocardial injury via targeting XIAP. Exp Cell Res. 435:1139052024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Shao Y, Su J and Dong S: MiR-383-3p attenuates sepsis-induced myocardial ferroptosis by targeting ATF4 and inhibiting the ATF4-CHOP-CHAC1 signaling axis. Cell Signal. 136:1121692025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Wei T, Zhang W, Chu Y, Zhang D, Zhang M, Hu J, Ji Z and Hao Q: Inhibition of miR-194-5p avoids DUSP9 downregulation thus limiting sepsis-induced cardiomyopathy. Sci Rep. 14:203132024. View Article : Google Scholar : PubMed/NCBI | |
|
Liang D, Jin Y, Lin M, Xia X, Chen X and Huang A: Down-regulation of Xist and Mir-7a-5p improves LPS-induced myocardial injury. Int J Med Sci. 17:2570–2577. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gong M, Tao L and Li X: MicroRNA-21-3p/Rcan1 signaling axis affects apoptosis of cardiomyocytes of sepsis rats. Gen Physiol Biophys. 42:217–227. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dao L, Liu H, Xiu R, Yao T, Tong R and Xu L: Gramine improves sepsis-induced myocardial dysfunction by binding to NF-κB p105 and inhibiting its ubiquitination. Phytomedicine. 125:1553252024. View Article : Google Scholar | |
|
Chen D, Wang H and Cai X: Curcumin interferes with sepsis-induced cardiomyocyte apoptosis via TLR1 inhibition. Rev Port Cardiol. 42:209–221. 2023.In English, Portuguese. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Zhu D, Wang Y and Ju Y: Andrographolide attenuates LPS-induced cardiac malfunctions through Inhibition of IκB phosphorylation and apoptosis in mice. Cell Physiol Biochem. 37:1619–1628. 2015. View Article : Google Scholar | |
|
Wang YY, Li HM, Wang HD, Peng XM, Wang YP, Lu DX, Qi RB, Hu CF and Jiang JW: Pretreatment with berberine and yohimbine protects against LPS-induced myocardial dysfunction via inhibition of cardiac I-[kappa]B[alpha] phosphorylation and apoptosis in mice. Shock. 35:322–328. 2011. View Article : Google Scholar | |
|
Meng YY, Liu Y, Hu ZF, Zhang Y, Ni J, Ma ZG, Liao HH, Wu QQ and Tang QZ: Sanguinarine attenuates lipopolysaccharide-induced inflammation and apoptosis by inhibiting the TLR4/NF-κB pathway in H9c2 Cardiomyocytes. Curr Med Sci. 38:204–211. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong L, Zhou XL, Liu YS, Wang YM, Ma F, Guo BL, Yan ZQ and Zhang QY: Estrogen receptor α mediates the effects of notoginsenoside R1 on endotoxin-induced inflammatory and apoptotic responses in H9c2 cardiomyocytes. Mol Med Rep. 12:119–126. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sun B, Xiao J, Sun XB and Wu Y: Notoginsenoside R1 attenuates cardiac dysfunction in endotoxemic mice: An insight into oestrogen receptor activation and PI3K/Akt signalling. Br J Pharmacol. 168:1758–1770. 2013. View Article : Google Scholar : | |
|
Zhu H, Zhang L, Jia H, Xu L, Cao Y, Zhai M, Li K, Xia L, Jiang L, Li X, et al: Tetrahydrocurcumin improves lipopolysaccharide-induced myocardial dysfunction by inhibiting oxidative stress and inflammation via JNK/ERK signaling pathway regulation. Phytomedicine. 104:1542832022. View Article : Google Scholar : PubMed/NCBI | |
|
Xie WJ, Hou G, Wang L, Wang SS and Xiong XX: Astaxanthin suppresses lipopolysaccharide-induced myocardial injury by regulating MAPK and PI3K/AKT/mTOR/GSK3β signaling. Mol Med Rep. 22:3338–3346. 2020.PubMed/NCBI | |
|
Jiang L, Zhang L, Yang J, Shi H, Zhu H, Zhai M, Lu L, Wang X, Li XY, Yu S, et al: 1-Deoxynojirimycin attenuates septic cardiomyopathy by regulating oxidative stress, apoptosis, and inflammation via the JAK2/STAT6 signaling pathway. Biomed Pharmacother. 155:1136482022. View Article : Google Scholar : PubMed/NCBI | |
|
Su Y, Yin X, Huang X, Guo Q, Ma M and Guo L: Astragaloside IV ameliorates sepsis-induced myocardial dysfunction by regulating NOX4/JNK/BAX pathway. Life Sci. 310:1211232022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Yan T, Du J, Wang S and Yang H: Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Chem Biol Interact. 233:46–55. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yu H, Du Q, Wu J, Feng F, Hou S, Liu M, Wang S, Liu X, Wang C and Xu K: Gastrodin regulates H3K14la through the CDT2-KAT2A axis to treat sepsis-induced myocardial dysfunction. Int Immunopharmacol. 161:1150652025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang RY, Wang MG, Tang HZ, Du H, Luo Y, Li Q, Zhang XH, Fu J and Lv CZ: The protective effects of ruscogenin against Lipopolysaccharide-induced myocardial injury in septic mice. J Cardiovasc Pharmacol. 84:175–187. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu XX, Meng XY, Zhang AY, Zhao CY, Chang C, Chen TX, Huang YB, Xu JP, Fu X, Cai WW, et al: Vaccarin alleviates septic cardiomyopathy by potentiating NLRP3 palmitoylation and inactivation. Phytomedicine. 131:1557712024. View Article : Google Scholar : PubMed/NCBI | |
|
Long H, Xu B, Luo Y and Luo K: Artemisinin protects mice against burn sepsis through inhibiting NLRP3 inflammasome activation. Am J Emerg Med. 34:772–777. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Sun Y, Zhang Y, Yang G, Guo L, Zhao Y and Pei Z: Role of thymoquinone in cardiac damage caused by sepsis from BALB/c mice. Inflammation. 42:516–525. 2019. View Article : Google Scholar | |
|
Wei A, Liu J, Li D, Lu Y, Yang L, Zhuo Y, Tian W and Cong H: Syringaresinol attenuates sepsis-induced cardiac dysfunction by inhibiting inflammation and pyroptosis in mice. Eur J Pharmacol. 913:1746442021. View Article : Google Scholar : PubMed/NCBI | |
|
Luo M, Yan D, Sun Q, Tao J, Xu L, Sun H and Zhao H: Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-κB/NLRP3 pathway. J Cell Biochem. 121:2994–3004. 2020. View Article : Google Scholar | |
|
Shao F, Zhou L, Zhang Y, Chen H, Zhang Y and Guan Z: Gastrodin alleviates inflammatory injury of cardiomyocytes in septic shock mice via inhibiting NLRP3 expression. In Vitro Cell Dev Biol Anim. 57:571–581. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Khodir AE, Samra YA and Said E: A novel role of nifuroxazide in attenuation of sepsis-associated acute lung and myocardial injuries; role of TLR4/NLPR3/IL-1β signaling interruption. Life Sci. 256:1179072020. View Article : Google Scholar | |
|
Song P, Shen DF, Meng YY, Kong CY, Zhang X, Yuan YP, Yan L, Tang QZ and Ma ZG: Geniposide protects against sepsis-induced myocardial dysfunction through AMPKα-dependent pathway. Free Radic Biol Med. 152:186–196. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dai S, Ye B, Chen L, Hong G, Zhao G and Lu Z: Emodin alleviates LPS-induced myocardial injury through inhibition of NLRP3 inflammasome activation. Phytother Res. 35:5203–5213. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Du R, Yun Q, Wang Y, Dou X, Ye H, Wang J and Gao Q: Plumbagin protect against sepsis-induced myocardial injury in mice by inhibiting the JAK2/STAT3 signaling pathway to reduce cardiomyocyte pyroptosis. Nan Fang Yi Ke Da Xue Xue Bao. 44:2209–2219. 2024.In Chinese. PubMed/NCBI | |
|
Joshi S, Kundu S, Priya VV, Kulhari U, Mugale MN and Sahu BD: Anti-inflammatory activity of carvacrol protects the heart from lipopolysaccharide-induced cardiac dysfunction by inhibiting pyroptosis via NLRP3/Caspase1/Gasdermin D signaling axis. Life Sci. 324:1217432023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Feng W, Li S, Liu C, Jia L, Wang P, Li L, Du H and Yu W: Oxycodone attenuates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidation and pyroptosis via Nrf2/HO-1 signalling pathway. Clin Exp Pharmacol Physiol. 51:e139102024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu B, Song H, Fan M, You F, Zhang L, Luo J, Li J, Wang L, Li C and Yuan M: Luteolin attenuates sepsis-induced myocardial injury by enhancing autophagy in mice. Int J Mol Med. 45:1477–1487. 2020.PubMed/NCBI | |
|
Shiroorkar PN, Afzal O, Kazmi I, Al-Abbasi FA, Altamimi ASA, Gubbiyappa KS and Sreeharsha N: Cardioprotective effect of tangeretin by inhibiting PTEN/AKT/mTOR axis in experimental Sepsis-induced myocardial dysfunction. Molecules. 25:56222020. View Article : Google Scholar : PubMed/NCBI | |
|
Cardenas H, Arango D, Nicholas C, Duarte S, Nuovo GJ, He W, Voss OH, Gonzalez-Mejia ME, Guttridge DC, Grotewold E and Doseff AI: Dietary apigenin exerts Immune-regulatory activity in vivo by reducing NF-κB activity, halting leukocyte infiltration and restoring normal metabolic function. Int J Mol Sci. 17:3232016. View Article : Google Scholar | |
|
Li F, Lang F, Zhang H, Xu L, Wang Y, Zhai C and Hao E: Apigenin alleviates Endotoxin-induced myocardial toxicity by modulating inflammation, oxidative stress, and autophagy. Oxid Med Cell Longev. 2017:23028962017. View Article : Google Scholar : PubMed/NCBI | |
|
Chang X, He Y, Wang L, Luo C, Liu Y and Li R: Puerarin alleviates LPS-induced H9C2 cell injury by inducing mitochondrial autophagy. J Cardiovasc Pharmacol. 80:600–608. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tang R, Jia L, Li Y, Zheng J and Qi P: Narciclasine attenuates sepsis-induced myocardial injury by modulating autophagy. Aging (Albany NY). 13:15151–15163. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan X, Chen G, Guo D, Xu L and Gu Y: Polydatin alleviates septic myocardial injury by promoting SIRT6-mediated autophagy. Inflammation. 43:785–795. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yu YW, Chen X, Yan JY, Hu J, Huang KY, Ji KT and Cai HL: Phlorizin, a novel caloric restriction mimetic, stimulates hypoxia and protects cardiomyocytes through activating autophagy via modulating the Hif-1α/Bnip3 axis in sepsis-induced myocardial dysfunction. Int Immunopharmacol. 126:1112412024. View Article : Google Scholar | |
|
Zhou B, Zhang J, Chen Y, Liu Y, Tang X, Xia P, Yu P and Yu S: Puerarin protects against sepsis-induced myocardial injury through AMPK-mediated ferroptosis signaling. Aging (Albany NY). 14:3617–3632. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin X, Zhao X, Chen Q, Wang X, Wu Y and Zhao H: Quercetin ameliorates ferroptosis of rat cardiomyocytes via activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate sepsis-induced cardiomyopathy. Int J Mol Med. 52:1162023. View Article : Google Scholar : | |
|
Xiao Y, Yu Y, Hu L, Yang Y, Yuan Y, Zhang W, Luo J and Yu L: Matrine alleviates Sepsis-induced myocardial injury by inhibiting ferroptosis and apoptosis. Inflammation. 46:1684–1696. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin LQ, Mao FK, Lin J, Guo L, Yuan WR and Wang BY: Ginsenoside Rg1 induces ferroptosis by regulating the focal adhesion kinase/protein kinase B-forkhead box O3A signaling pathway and alleviates sepsis-induced myocardial damage. J Physiol Pharmacol. 75:2024. View Article : Google Scholar | |
|
Wang X, Simayi A, Fu J, Zhao X and Xu G: Resveratrol mediates the miR-149/HMGB1 axis and regulates the ferroptosis pathway to protect myocardium in endotoxemia mice. Am J Physiol Endocrinol Metab. 323:e21–e32. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tang R, Jiang M, Tang X, Chen S, Xu H, Pan Y, Lin B, Wei X, Ye Q, Wu M and Qi P: Narciclasine mitigates sepsis-induced cardiac dysfunction by enhancing BNIP3-mediated mitophagy and suppressing ferroptosis. Free Radic Biol Med. 238:220–234. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Y, Cao G, Lin L, Zhang Y, Luo X, Ma X, Aiyisake A and Cheng Q: Resveratrol attenuates Sepsis-induced cardiomyopathy in rats through Anti-Ferroptosis via the Sirt1/Nrf2 pathway. J Invest Surg. 36:21575212023. View Article : Google Scholar | |
|
Ye H, Wu L, Liu YM, Zhang JX, Hu HT, Dong ML and Ren J: Wogonin attenuates septic cardiomyopathy by suppressing ALOX15-mediated ferroptosis. Acta Pharmacol Sin. 46:2407–2422. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Guan F, Du H, Li J, Ren H and Dong A: Quercetin alleviates LPS-stimulated myocardial injury through regulating ALOX5/PI3K/AKT pathway in sepsis. Cardiovasc Toxicol. 24:1116–1124. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang SH, Xu M, Wu HM, Wan CX, Wang HB, Wu QQ, Liao HH, Deng W and Tang QZ: Isoquercitrin attenuated cardiac dysfunction via AMPKα-Dependent pathways in LPS-Treated mice. Mol Nutr Food Res. 62:e18009552018. View Article : Google Scholar | |
|
Wei X, Meng X, Yuan Y, Shen F, Li C and Yang J: Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-κB phosphorylation, and caspase activity. Mol Cell Biochem. 446:43–52. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Q, Zeng X, Kang W, Pan X, Wang L and Xia Z: Ciprofol attenuates sepsis-induced cardiomyopathy via α7 nicotinic acetylcholine receptor-dependent modulation of myocardial inflammation and NF-κB/STAT3 signaling. Eur J Pharmacol. 1003:1779832025. View Article : Google Scholar | |
|
Huang X, Zhang MZ, Liu B, Ma SY, Yin X and Guo LH: Astragaloside IV Attenuates polymicrobial Sepsis-induced cardiac dysfunction in rats via IKK/NF-κB pathway. Chin J Integr Med. 27:825–831. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S and Fan B: Myricetin protects cardiomyocytes from LPS-induced injury. Herz. 43:265–274. 2018. View Article : Google Scholar | |
|
Zhang N, Feng H, Liao HH, Chen S, Yang Z, Deng W and Tang QZ: Myricetin attenuated LPS induced cardiac injury in vivo and in vitro. Phytother Res. 32:459–470. 2018. View Article : Google Scholar | |
|
Xianchu L, Lan PZ, Qiufang L, Yi L, Xiangcheng R, Wenqi H and Yang D: Naringin protects against lipopolysaccharide-induced cardiac injury in mice. Environ Toxicol Pharmacol. 48:1–6. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sun LJ, Qiao W, Xiao YJ, Cui L, Wang X and Ren WD: Naringin mitigates myocardial strain and the inflammatory response in sepsis-induced myocardial dysfunction through regulation of PI3K/AKT/NF-κB pathway. Int Immunopharmacol. 75:1057822019. View Article : Google Scholar | |
|
Fang Z, Wang G, Huang R, Liu C, Yushanjiang F, Mao T and Li J: Astilbin protects from sepsis-induced cardiac injury through the NRF2/HO-1 and TLR4/NF-κB pathway. Phytother Res. 38:1044–1058. 2024. View Article : Google Scholar | |
|
Su Z, Gao M, Weng L and Xu T: Esculin targets TLR4 to protect against LPS-induced septic cardiomyopathy. Int Immunopharmacol. 131:1118972024. View Article : Google Scholar : PubMed/NCBI | |
|
Shaojun Z, Yanyan X, Jian C, Xia Z, Qiang F and Saiping J: Effects of puerarin on lipopolysaccharide-induced myocardial dysfunction in isolated rat hearts. Pak J Pharm Sci. 30:1195–1202. 2017.PubMed/NCBI | |
|
Xing C, Xu L and Yao Y: Beneficial role of oleuropein in sepsis-induced myocardial injury. Possible Involvement of GSK-3β/NF-κB pathway. Acta Cir Bras. 36:e3601072021. View Article : Google Scholar | |
|
Shyni GL, Renjitha J, B Somappa S and Raghu KG: Zerumin A attenuates the inflammatory responses in LPS-stimulated H9c2 cardiomyoblasts. J Biochem Mol Toxicol. 35:1–11. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yan C, Kuang W, Jin L, Wang R, Niu L, Xie C, Ding J, Liao Y, Wang L, Wan H and Ma G: Carvacrol protects mice against LPS-induced sepsis and attenuates inflammatory response in macrophages by modulating the ERK1/2 pathway. Sci Rep. 13:128092023. View Article : Google Scholar : PubMed/NCBI | |
|
Tang J, Hu JJ, Lu CH, Liang JN, Xiao JF, Liu YT, Lin CS and Qin ZS: Propofol inhibits lipopolysaccharide-induced tumor necrosis factor-alpha expression and myocardial depression through decreasing the generation of superoxide anion in cardiomyocytes. Oxid Med Cell Longev. 2014:1573762014. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Wan W, Ye T, Sun Y, Chen X, Liu X, Shi S, Zhang Y, Qu C, Yang B, et al: Pinocembrin alleviates lipopolysaccharide-induced myocardial injury and cardiac dysfunction in rats by inhibiting p38/JNK MAPK pathway. Life Sci. 277:1194182021. View Article : Google Scholar : PubMed/NCBI | |
|
Cao W, Li XQ, Zhang XN, Hou Y, Zeng AG, Xie YH and Wang SW: Madecassoside suppresses LPS-induced TNF-alpha production in cardiomyocytes through inhibition of ERK, p38, and NF-kappaB activity. Int Immunopharmacol. 10:723–729. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Chen L, Dai L, Fang W and Wang H: Alisol B 23-Acetate ameliorates Lipopolysaccharide-induced cardiac dysfunction by suppressing Toll-Like Receptor 4 (TLR4)/NADPH Oxidase 2 (NOX2) signaling pathway. Med Sci Monit. 25:8472–8481. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Wang X, Wang X, Hou X, Teng P, Jiang Y, Zhang L, Yang X, Tian J, Li G, et al: Oxymatrine protects against myocardial injury via inhibition of JAK2/STAT3 signaling in rat septic shock. Mol Med Rep. 7:1293–1299. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Wang X, Bai B, Zhang R, Li Y and Wang Y: Oxymatrine protects against sepsis-induced myocardial injury via inhibition of the TNF-α/p38-MAPK/caspase-3 signaling pathway. Mol Med Rep. 14:551–559. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao P, Wang Y, Zeng S, Lu J, Jiang TM and Li YM: Protective effect of astragaloside IV on lipopolysaccharide-induced cardiac dysfunction via downregulation of inflammatory signaling in mice. Immunopharmacol Immunotoxicol. 37:428–433. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhai J and Guo Y: Paeoniflorin attenuates cardiac dysfunction in endotoxemic mice via the inhibition of nuclear factor-κB. Biomed Pharmacother. 80:200–206. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shang X, Lin K, Yu R, Zhu P, Zhang Y, Wang L, Xu J and Chen K: Resveratrol protects the myocardium in sepsis by activating the phosphatidylinositol 3-Kinases (PI3K)/AKT/Mammalian target of rapamycin (mTOR) pathway and inhibiting the nuclear Factor-κB (NF-κB) signaling pathway. Med Sci Monit. 25:9290–9298. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lee AS, Chen WP, Kuo YL, Ho YJ, Lee SS and Su MJ: Thaliporphine preserves cardiac function of endotoxemic rabbits by both directly and indirectly attenuating NFκB signaling pathway. PLoS One. 7:e391742012. View Article : Google Scholar | |
|
He H, Chang X, Gao J, Zhu L, Miao M and Yan T: Salidroside mitigates Sepsis-Induced myocarditis in rats by regulating IGF-1/PI3K/Akt/GSK-3β signaling. Inflammation. 38:2178–2184. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Hou D, Huang Y, Liu Y, Li Y and Wang C: Corylin alleviated sepsis-associated cardiac dysfunction via attenuating inflammation through downregulation of microRNA-214-5p. Toxicol Res (Camb). 13:tfae0812024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Liu Y and Liu L: Hyperoside prevents sepsis-associated cardiac dysfunction through regulating cardiomyocyte viability and inflammation via inhibiting miR-21. Biomed Pharmacother. 138:1115242021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Liu L and Zhang J: Protective role of matrine in sepsis-associated cardiac dysfunction through regulating the lncRNA PTENP1/miR-106b-5p axis. Biomed Pharmacother. 134:1111122021. View Article : Google Scholar | |
|
Zhao H, Wang Y and Zhu X: Chrysophanol exerts a protective effect against sepsis-induced acute myocardial injury through modulating the microRNA-27b-3p/Peroxisomal proliferating-activated receptor gamma axis. Bioengineered. 13:12673–12690. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Athapaththu A, Lee KT, Kavinda MHD, Lee S, Kang S, Lee MH, Kang CH, Choi YH and Kim GY: Pinostrobin ameliorates lipopolysaccharide (LPS)-induced inflammation and endotoxemia by inhibiting LPS binding to the TLR4/MD2 complex. Biomed Pharmacother. 156:1138742022. View Article : Google Scholar : PubMed/NCBI | |
|
Feng J, Liu Z, Chen H, Zhang M, Ma X, Han Q, Lu D and Wang C: Protective effect of cynaroside on sepsis-induced multiple organ injury through Nrf2/HO-1-dependent macrophage polarization. Eur J Pharmacol. 911:1745222021. View Article : Google Scholar : PubMed/NCBI | |
|
Jinzhong Wang MS and Jian Fu MS: STAT3/FoxO3a/Sirt1 pathway inhibition by ginsenoside Rc ameliorates cardiomyocyte damage in septic cardiomyopathy by altering macrophage polarization. J Mol Histol. 56:1482025. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Lang F, Wang Y, Zhai C, Zhang C, Zhang L and Hao E: Cyanidin ameliorates endotoxin-induced myocardial toxicity by modulating inflammation and oxidative stress through mitochondria and other factors. Food Chem Toxicol. 120:104–111. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen HM, Liou SF, Hsu JH, Chen TJ, Cheng TL, Chiu CC and Yeh JL: Baicalein inhibits HMGB1 release and MMP-2/-9 expression in lipopolysaccharide-induced cardiac hypertrophy. Am J Chin Med. 42:785–797. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu W, Wang J, Wang G, Wang F, Yang Y, Liu Z, Song Q, Chen S and Chen H: Monotropein inhibits MMP9-mediated cardiac oxidative stress, inflammation, matrix degradation and apoptosis in a mouse and cell line models of septic cardiac injury. Mol Biol Rep. 52:3292025. View Article : Google Scholar : PubMed/NCBI | |
|
Cao W, Zhang W, Liu J, Wang Y, Peng X, Lu D, Qi R, Wang Y and Wang H: Paeoniflorin improves survival in LPS-challenged mice through the suppression of TNF-α and IL-1β release and augmentation of IL-10 production. Int Immunopharmacol. 11:172–178. 2011. View Article : Google Scholar | |
|
Liu A, Xun S, Zhou G, Zhang Y and Lin L: Honokiol alleviates sepsis-associated cardiac dysfunction via attenuating inflammation, apoptosis and oxidative stress. J Pharm Pharmacol. 75:397–406. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tang X, Xu Y, Dai X, Xing Y, Yang D, Huang Q, Li H, Lv X, Wang Y, Lu D and Wang H: The Long-term effect of dobutamine on intrinsic myocardial function and myocardial injury in septic rats with myocardial dysfunction. Shock. 56:582–592. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai YC, Cheng PY, Kung CW, Peng YJ, Ke TH, Wang JJ and Yen MH: Beneficial effects of magnolol in a rodent model of endotoxin shock. Eur J Pharmacol. 641:67–73. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Meng ZJ, Wang C, Meng LT, Bao BH, Wu JH and Hu YQ: Sodium tanshinone IIA sulfonate attenuates cardiac dysfunction and improves survival of rats with cecal ligation and puncture-induced sepsis. Chin J Nat Med. 16:846–855. 2018.PubMed/NCBI | |
|
Dörtbudak MB, Demircioğlu M and Kapucuk FS: Micromeria congesta alleviates LPS-Induced inflammation, apoptosis, oxidative stress and DNA damage in rat heart and kidneys. Vet Med Sci. 11:e702642025. View Article : Google Scholar : PubMed/NCBI | |
|
Pan J, Meng L, Li R, Wang Z, Yuan W, Li Y, Chen L, Shen Q, Liu W and Zhu L: Naringenin protects against septic cardiomyopathy in mice by targeting HIF-1α. Biochem Biophys Res Commun. 704:1496132024. View Article : Google Scholar | |
|
Cheng Z, Lv D, Luo M, Wang R, Guo Y, Yang X, Huang L, Li X, Li C, Shang FF, et al: Tubeimoside I protects against sepsis-induced cardiac dysfunction via SIRT3. Eur J Pharmacol. 905:1741862021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yu X, Wang F, Wang Y, Wang Y, Li H, Lv X, Lu D and Wang H: Yohimbine promotes cardiac NE release and prevents LPS-induced cardiac dysfunction via blockade of presynaptic α2A-adrenergic receptor. PLoS One. 8:e636222013. View Article : Google Scholar | |
|
Duzen IV, Oguz E, Yilmaz R, Taskin A, Vuruskan E, Cekici Y, Bilgel ZG, Goksuluk H, Candemir B and Sucu M: Lycopene has a protective effect on septic shock-induced cardiac injury in rats. Bratisl Lek Listy. 120:919–923. 2019. | |
|
Ben-Shaul V, Lomnitski L, Nyska A, Zurovsky Y, Bergman M and Grossman S: The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol Lett. 123:1–10. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Zhang Z, Zhang X, Yin Y, Yuan X, You X and Wu J: Echinacoside prevents Sepsis-induced myocardial damage via targeting SOD2. J Med Food. 27:123–133. 2024. View Article : Google Scholar | |
|
Xianchu L, Lan Z, Ming L and Yanzhi M: Protective effects of rutin on lipopolysaccharide-induced heart injury in mice. J Toxicol Sci. 43:329–337. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Wu K, Li SH and You Q: Protective effect of curcumin against cardiac dysfunction in sepsis rats. Pharm Biol. 51:482–487. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sompamit K, Kukongviriyapan U, Nakmareong S, Pannangpetch P and Kukongviriyapan V: Curcumin improves vascular function and alleviates oxidative stress in non-lethal lipopolysaccharide-induced endotoxaemia in mice. Eur J Pharmacol. 616:192–199. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kukongviriyapan U, Sompamit K, Pannangpetch P, Kukongviriyapan V and Donpunha W: Preventive and therapeutic effects of quercetin on lipopolysaccharide-induced oxidative stress and vascular dysfunction in mice. Can J Physiol Pharmacol. 90:1345–1353. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hao E, Lang F, Chen Y, Zhang H, Cong X, Shen X and Su G: Resveratrol alleviates endotoxin-induced myocardial toxicity via the Nrf2 transcription factor. PLoS One. 8:e694522013. View Article : Google Scholar : PubMed/NCBI | |
|
Xingyue L, Shuang L, Qiang W, Jinjuan F and Yongjian Y: Chrysin ameliorates Sepsis-induced cardiac dysfunction through upregulating Nfr2/Heme oxygenase 1 pathway. J Cardiovasc Pharmacol. 77:491–500. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tan Y, Wan HH, Sun MM, Zhang WJ, Dong M, Ge W, Ren J and Peng H: Cardamonin protects against lipopolysaccharide-induced myocardial contractile dysfunction in mice through Nrf2-regulated mechanism. Acta Pharmacol Sin. 42:404–413. 2021. View Article : Google Scholar : | |
|
Li Y, Zhang L, Zhang P and Hao Z: Dehydrocorydaline protects against Sepsis-induced myocardial injury through modulating the TRAF6/NF-κB pathway. Front Pharmacol. 12:7096042021. View Article : Google Scholar | |
|
Lee YM, Cheng PY, Chim LS, Kung CW, Ka SM, Chung MT and Sheu JR: Baicalein, an active component of Scutellaria baicalensis Georgi, improves cardiac contractile function in endotoxaemic rats via induction of heme oxygenase-1 and suppression of inflammatory responses. J Ethnopharmacol. 135:179–185. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng PY, Lee YM, Wu YS, Chang TW, Jin JS and Yen MH: Protective effect of baicalein against endotoxic shock in rats in vivo and in vitro. Biochem Pharmacol. 73:793–804. 2007. View Article : Google Scholar | |
|
Chen WP, Tzeng HJ, Ku HC, Ho YJ, Lee SS and Su MJ: Thaliporphine ameliorates cardiac depression in endotoxemic rats through attenuating TLR4 signaling in the downstream of TAK-1 phosphorylation and NF-κB signaling. Naunyn Schmiedebergs Arch Pharmacol. 382:441–453. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen RC, Wang J, Yang L, Sun GB and Sun XB: Protective effects of ginsenoside Re on lipopolysaccharide-induced cardiac dysfunction in mice. Food Funct. 7:2278–2287. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Liu P, Feng X and Ma C: Salidroside suppressing LPS-induced myocardial injury by inhibiting ROS-mediated PI3K/Akt/mTOR pathway in vitro and in vivo. J Cell Mol Med. 21:3178–3189. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xie L, Zhao M, Zong L and Yue Y: Propofol ameliorates Sepsis-induced myocardial dysfunction via Anti-Apoptotic, Anti-Oxidative properties, and mTOR signaling. Discov Med. 36:2088–2097. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Zhao Y, Su Z, Zhao K, Li P and Xu T: Ginkgolide A targets forkhead box O1 to protect against lipopolysaccharide-induced septic cardiomyopathy. Phytother Res. 37:3309–3322. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang L, Zheng M, Zhou Y, Zhu J, Zhu M, Zhao F and Cui S: Tanshinone IIA attenuates cardiac dysfunction in endotoxin-induced septic mice via inhibition of NADPH oxidase 2-related signaling pathway. Int Immunopharmacol. 28:444–449. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hou D, Liao H, Hao S, Liu R, Huang H and Duan C: Curcumin simultaneously improves mitochondrial dynamics and myocardial cell bioenergy after sepsis via the SIRT1-DRP1/PGC-1α pathway. Heliyon. 10:e285012024. View Article : Google Scholar | |
|
Smeding L, Leong-Poi H, Hu P, Shan Y, Haitsma JJ, Horvath E, Furmli S, Masoom H, Kuiper JW, Slutsky AS, et al: Salutary effect of resveratrol on sepsis-induced myocardial depression. Crit Care Med. 40:1896–1907. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Peng K, Yang F, Qiu C, Yang Y and Lan C: Rosmarinic acid protects against lipopolysaccharide-induced cardiac dysfunction via activating Sirt1/PGC-1α pathway to alleviate mitochondrial impairment. Clin Exp Pharmacol Physiol. 50:218–227. 2023. View Article : Google Scholar | |
|
Li Y, Feng YF, Liu XT, Li YC, Zhu HM, Sun MR, Li P, Liu B and Yang H: Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis. Redox Biol. 38:1017712021. View Article : Google Scholar | |
|
Yang Z, Liu Y, Deng W, Dai J, Li F, Yuan Y, Wu Q, Zhou H, Bian Z and Tang Q: Hesperetin attenuates mitochondria-dependent apoptosis in lipopolysaccharide-induced H9C2 cardiomyocytes. Mol Med Rep. 9:1941–1946. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang YP, Zhao JQ, Gao HB, Li JJ, Li XL, Niu XL, Lei YH and Li X: Tannic acid alleviates lipopolysaccharide-induced H9C2 cell apoptosis by suppressing reactive oxygen species-mediated endoplasmic reticulum stress. Mol Med Rep. 24:5352021. View Article : Google Scholar : | |
|
Xie WJ, Liu M, Zhang X, Zhang YG, Jian ZH and Xiong XX: Astaxanthin suppresses LPS-induced myocardial apoptosis by regulating PTP1B/JNK pathway in vitro. Int Immunopharmacol. 127:1113952024. View Article : Google Scholar | |
|
Ye G, Wang M, Liu D, Cheng L, Yin X, Zhang Q and Liu W: Mechanism of naringenin blocking the protection of LTB4/BLT1 receptor against septic cardiac dysfunction. Ann Clin Lab Sci. 50:769–774. 2020.PubMed/NCBI | |
|
Zhao H, Chen Y, Qian L, Du L, Wu X, Tian Y, Deng C, Liu S, Yang W, Lu C, et al: Lycorine protects against septic myocardial injury by activating AMPK-related pathways. Free Radic Biol Med. 197:1–14. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Miao H, Tang X, Cui Y, Shi J, Xiong X, Wang C and Zhang Y: Obeticholic acid inhibit mitochondria dysfunction via regulating ERK1/2-DRP pathway to exert protective effect on lipopolysaccharide-induced myocardial injury. Adv Biol (Weinh). 8:e23005762024. View Article : Google Scholar : PubMed/NCBI | |
|
Qi Z, Wang R, Liao R, Xue S and Wang Y: Neferine ameliorates Sepsis-induced myocardial dysfunction through Anti-apoptotic and antioxidative effects by regulating the PI3K/AKT/mTOR signaling pathway. Front Pharmacol. 12:7062512021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Pan H, Zhang Y, Zheng Z, Xiao W, Hong X, Chen F, Peng X, Pei Y, Rong J, et al: Ginsenoside-Rg1 attenuates sepsis-induced cardiac dysfunction by modulating mitochondrial damage via the P2X7 receptor-mediated Akt/GSK-3β signaling pathway. J Biochem Mol Toxicol. 36:e228852022. View Article : Google Scholar | |
|
Zhu X, Sun M, Guo H, Lu G, Gu J, Zhang L, Shi L, Gao J, Zhang D, Wang W, et al: Verbascoside protects from LPS-induced septic cardiomyopathy via alleviating cardiac inflammation, oxidative stress and regulating mitochondrial dynamics. Ecotoxicol Environ Saf. 233:1133272022. View Article : Google Scholar : PubMed/NCBI | |
|
Lu C, Lei W, Sun M, Wu X, Liu Q, Liu J, Yang Y, Yang W, Zhang Z, Li X, et al: Identification of CCR2 as a hub in septic myocardial injury and cardioprotection of silibinin. Free Radic Biol Med. 197:46–57. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun M, Zhao H, Jin Z, Lei W, Deng C, Yang W, Lu C, Hou Y, Zhang Y, Tang R, et al: Silibinin protects against sepsis and septic myocardial injury in an NR1H3-dependent pathway. Free Radic Biol Med. 187:141–157. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun HJ, Zheng GL, Wang ZC, Liu Y, Bao N, Xiao PX, Lu QB and Zhang JR: Chicoric acid ameliorates sepsis-induced cardiomyopathy via regulating macrophage metabolism reprogramming. Phytomedicine. 123:1551752024. View Article : Google Scholar | |
|
Chen M, Huang S, Weng S, Weng J, Guo R, Shi B and Liu D: Songorine ameliorates LPS-induced sepsis cardiomyopathy by Wnt/β-catenin signaling pathway-mediated mitochondrial biosynthesis. Naunyn Schmiedebergs Arch Pharmacol. 397:4713–4725. 2024. View Article : Google Scholar | |
|
Hwang HR, Tai BY, Cheng PY, Chen PN, Sung PJ, Wen ZH and Hsu CH: Excavatolide B modulates the electrophysiological characteristics and calcium homeostasis of atrial myocytes. Mar Drugs. 15:252017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen R, Zheng A, Wang Y, Guo L, Dou H, Lu L, Rafiq M, Li P, Chen X and Xiao Q: Salvianolic acid B improves mitochondrial dysfunction of septic cardiomyopathy via enhancing ATF5-mediated mitochondrial unfolded protein response. Toxicol Appl Pharmacol. 491:1170722024. View Article : Google Scholar : PubMed/NCBI | |
|
Nong Y, Lu J, Yu D and Wei X: Neohesperidin dihydrochalcone alleviates Lipopolysaccharide-induced vascular endothelium dysfunction by regulating antioxidant capacity. Immun Inflamm Dis. 12:e701072024. View Article : Google Scholar : PubMed/NCBI | |
|
Tang F, Liu D, Wan F, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H and Peng C: Ameliorative effect of anisodamine (654-1/654-2) against myocardial dysfunction induced by septic shock via the NF-κB/NLRP-3 or the PI3K-AKT/NF-κB pathway. Phytomedicine. 123:1552772024. View Article : Google Scholar | |
|
Chiorcea-Paquim AM: Electrochemistry of flavonoids: A comprehensive review. Int J Mol Sci. 24:156672023. View Article : Google Scholar : PubMed/NCBI | |
|
Billowria K, Ali R, Rangra NK, Kumar R and Chawla PA: Bioactive flavonoids: A comprehensive review on pharmacokinetics and analytical aspects. Crit Rev Anal Chem. 54:1002–1016. 2024. View Article : Google Scholar | |
|
Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K and Valko M: Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact. 413:1114892025. View Article : Google Scholar : PubMed/NCBI | |
|
Patel S: Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed Pharmacother. 84:1036–1041. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA and Pastore GM: Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 338:1275352021. View Article : Google Scholar | |
|
Cinelli MA and Jones AD: Alkaloids of the genus datura: Review of a rich resource for natural product discovery. Molecules. 26:26292021. View Article : Google Scholar : PubMed/NCBI | |
|
Jolly A, Hour Y and Lee YC: An outlook on the versatility of plant saponins: A review. Fitoterapia. 174:1058582024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S, Liu D, Sun J, Zhang H, Zhang J, Wang Q, Gan L, Qu G, Qiu J, Deng J, et al: Tim-3 regulates sepsis-induced immunosuppression by inhibiting the NF-κB signaling pathway in CD4 T cells. Mol Ther. 30:1227–1238. 2022. View Article : Google Scholar | |
|
Chen XS, Wang SH, Liu CY, Gao YL, Meng XL, Wei W, Shou ST, Liu YC and Chai YF: Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling. Pharmacol Res. 185:1064732022. View Article : Google Scholar | |
|
Yang Q, Wang Y, Cao G, Li X and Zhao T: Anti-sepsis effect of Xiaochaihu decoction based on the TLR4/MyD88/NF-κB signalling pathway. Heliyon. 10:e267122024. View Article : Google Scholar | |
|
Huang L, Li Y, Cheng Z, Lv Z, Luo S and Xia Y: PCSK9 promotes endothelial dysfunction during sepsis via the TLR4/MyD88/NF-κB and NLRP3 Pathways. Inflammation. 46:115–128. 2023. View Article : Google Scholar | |
|
Wu Y, Wang Q, Li M, Lao J, Tang H, Ming S, Wu M, Gong S, Li L, Liu L and Huang X: SLAMF7 regulates the inflammatory response in macrophages during polymicrobial sepsis. J Clin Invest. 133:e1502242023. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Kadi A, Anter AF, Rofaeil RR, Sayed-Ahmed MM, Hafez S and Ahmed AF: Endothelin system blockade extenuates Sepsis-induced acute heart and kidney injuries via modulating ET-1/Klotho/p38-MAPK. Clin Exp Pharmacol Physiol. 52:e700422025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yu W, Shi C and Hu P: Crocetin attenuates Sepsis-induced cardiac dysfunction via regulation of inflammatory response and mitochondrial function. Front Physiol. 11:5142020. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Wang L, Wang B, Zhang Z, Jiang L, Qin Z, Zhao Y and Su B: NOX4 is a potential therapeutic target in septic acute kidney injury by inhibiting mitochondrial dysfunction and inflammation. Theranostics. 13:2863–2878. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Pan T, Sun S, Chen Y, Tian R, Chen E, Tan R, Wang X, Liu Z, Liu J and Qu H: Immune effects of PI3K/Akt/HIF-1α-regulated glycolysis in polymorphonuclear neutrophils during sepsis. Crit Care. 26:292022. View Article : Google Scholar | |
|
Ma L, Zhang R, Li D, Qiao T and Guo X: Fluoride regulates chondrocyte proliferation and autophagy via PI3K/AKT/mTOR signaling pathway. Chem Biol Interact. 349:1096592021. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J, Kim J, Lee JH, Choi YM, Choi H, Cho HD, Cha GH, Lee YH, Jo EK, Park BH and Yuk JM: SIRT1 promotes host protective immunity against toxoplasma gondii by controlling the FoxO-autophagy axis via the AMPK and PI3K/AKT signalling pathways. Int J Mol Sci. 23:135782022. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Z, Tian L, Kou W, Cao G, Wang L, Xia Y, Lin Y, Tang S, Zhang J and Yang H: Xiyangshen Sanqi Danshen granules attenuated D-gal-induced C57BL/6J mouse aging through the AMPK/SIRT1 signaling pathway. Phytomedicine. 136:1562132025. View Article : Google Scholar | |
|
Chen Y, Chen J, Xing Z, Peng C and Li D: Autophagy in neuroinflammation: A focus on epigenetic regulation. Aging Dis. 15:739–754. 2024. View Article : Google Scholar : | |
|
Lu SM, Yang B, Tan ZB, Wang HJ, Xie JD, Xie MT, Jiang WH, Huang JZ, Li J, Zhang L, et al: TaoHe ChengQi decoction ameliorates sepsis-induced cardiac dysfunction through anti-ferroptosis via the Nrf2 pathway. Phytomedicine. 129:1555972024. View Article : Google Scholar : PubMed/NCBI | |
|
Tang F, Yan YM, Yan HL, Wang LX, Hu CJ, Wang HL, Ao H, Peng C and Tan YZ: Chuanxiongdiolides R4 and R5, phthalide dimers with a complex polycyclic skeleton from the aerial parts of Ligusticum chuanxiong and their vasodilator activity. Bioorg Chem. 107:1045232021. View Article : Google Scholar | |
|
Zhang T, Lu M, Yang Y, Ji X, Gu H, Sun Y, Chen C and Sun T: Cold-adapted nanozymes. Adv Healthc Mater. 14:e25012112025. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Wang F, Hao L, Zhang P, Song G, Zhang Y, Wang C, Wang Z and Wu Q: Enhancing peroxidase activity of NiCo2O4 nanoenzyme by Mn doping for catalysis of CRISPR/Cas13a-mediated non-coding RNA detection. Int J Biol Macromol. 283:1375942024. View Article : Google Scholar | |
|
Meng X, Fan K and Yan X: Nanozymes: An emerging field bridging nanotechnology and enzymology. Sci China Life Sci. 62:1543–1546. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cao X, Jiang H, Huang X, Sun D and Qi G: Hydrogel patch doped with nanoenzyme for SERS detection of hydrogen peroxide in complex body fluids. Talanta. 285:1273282025. View Article : Google Scholar | |
|
Jiang C, Shi Q, Yang J, Ren H, Zhang L, Chen S, Si J, Liu Y, Sha D, Xu B and Ni J: Ceria nanozyme coordination with curcumin for treatment of sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation. J Adv Res. 63:159–170. 2024. View Article : Google Scholar : | |
|
Li S, Wang K, Jiang K, Xing D, Deng R, Xu Y, Ding Y, Guan H, Chen LL, Wang D, et al: Brazilin-Ce nanoparticles attenuate inflammation by de/anti-phosphorylation of IKKβ. Biomaterials. 305:1224662024. View Article : Google Scholar | |
|
Mai BT, Fernandes S, Balakrishnan PB and Pellegrino T: Nanosystems based on magnetic nanoparticles and thermo\or pH-Responsive polymers: An update and future perspectives. Acc Chem Res. 51:999–1013. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
De Jong WH and Borm PJ: Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine. 3:133–149. 2008. View Article : Google Scholar : | |
|
Wang J, Wang H, Zhu R, Liu Q, Fei J and Wang S: Anti-inflammatory activity of Curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials. 53:475–483. 2015. View Article : Google Scholar | |
|
Rattis BAC, Piva HL, Duarte A, Gomes FGFLR, Lellis JR, Soave DF, Ramos SG, Tedesco AC and Celes MRN: Modulation of the mTOR pathway by curcumin in the heart of septic mice. Pharmaceutics. 14:22772022. View Article : Google Scholar : PubMed/NCBI | |
|
Tian B, Hua S and Liu J: Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr Polym. 232:1158052020. View Article : Google Scholar : PubMed/NCBI | |
|
Sahu KM, Patra S and Swain SK: Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: A review. Int J Biol Macromol. 240:1243382023. View Article : Google Scholar | |
|
Heimfarth L, Dos Santos KS, Monteiro BS, de Souza Oliveira AK, Coutinho HDM, Menezes IRA, Dos Santos MRV, de Souza Araújo AA, Picot L, de Oliveira Júnior RG, et al: The protective effects of naringenin, a citrus flavonoid, non-complexed or complexed with hydroxypropyl-β-cyclodextrin against multiorgan damage caused by neonatal endotoxemia. Int J Biol Macromol. 264:1305002024. View Article : Google Scholar | |
|
Penalva R, González-Navarro CJ, Gamazo C, Esparza I and Irache JM: Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine. 13:103–110. 2017. View Article : Google Scholar | |
|
Wang S, Tan KS, Beng H, Liu F, Huang J, Kuai Y, Zhang R and Tan W: Protective effect of isosteviol sodium against LPS-induced multiple organ injury by regulating of glycerophospholipid metabolism and reducing macrophage-driven inflammation. Pharmacol Res. 172:1057812021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Yao C, Xie J, Liu H, Wang H, Lin Z, Qin B, Wang D, Lu W, Ma X, et al: Effect of an Herbal-based injection on 28-Day mortality in patients with sepsis: The EXIT-SEP randomized clinical trial. JAMA Intern Med. 183:647–655. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Wei L, Zhao G, Liu S, Zhang Z, Zhang J and Yang Y: Protective effect of Xuebijing injection on myocardial injury in patients with sepsis: A randomized clinical trial. J Tradit Chin Med. 36:706–710. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, He C, Liu C, Xu X, Chen C, Yang H, Shi H, Fei Y, Sun Y, Zhou S and Fang B: Mechanisms of JinHong Formula on treating sepsis explored by randomized controlled trial combined with network pharmacology. J Ethnopharmacol. 305:1160402023. View Article : Google Scholar | |
|
Huang N, Tam YH, Zhang Z, Kao X, Yang Z, Xu W, Yuan K, He M and Chen J: Efficacy and safety of Dachaihu decoction for sepsis: A randomized controlled trial. Phytomedicine. 136:1563112025. View Article : Google Scholar | |
|
Liao J, Qin C, Wang Z, Gao L, Zhang S, Feng Y, Liu J and Tao L: Effect of shenfu injection in patients with septic shock: A systemic review and meta-analysis for randomized clinical trials. J Ethnopharmacol. 320:1174312024. View Article : Google Scholar | |
|
Yu Y, Zhu C, Hong Y, Chen L, Huang Z, Zhou J, Tian X, Liu D, Ren B, Zhang C, et al: Effectiveness of anisodamine for the treatment of critically ill patients with septic shock: A multicentre randomized controlled trial. Crit Care. 25:3492021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang F, Mei X, Zhou P, Tian YP, Liu JX, Dong X, Yuan DS, Lin ZF, Zhang L, Lin JH, et al: Anisodamine hydrobromide in the treatment of critically ill patients with septic shock: A multi-center randomized controlled trial. Ann Med. 55:22643182023. View Article : Google Scholar | |
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J and Wang Y: Natural products from herbal medicine Self-Assemble into advanced bioactive materials. Adv Sci (Weinh). 11:e24033882024. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Sun S, Zhu D, Mei X, Lyu Y, Huang K, Li Y, Liu S, Wang Z, Hu S, et al: Inhalable stem cell exosomes promote heart repair after myocardial infarction. Circulation. 150:710–723. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Y, Mei Z, Qu Z, Li G, Yu S, Liu Y, Liu K, Shen Z, Pu J, Wang Y, et al: Exosomes secreted from cardiomyocytes suppress the sensitivity of tumor ferroptosis in ischemic heart failure. Signal Transduct Target Ther. 8:1212023. View Article : Google Scholar : PubMed/NCBI | |
|
Tirziu D, Giordano FJ and Simons M: Cell communications in the heart. Circulation. 122:928–937. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Y, Chen H, Zhang L, Lin X, Li X, Zhuang H, Fan H, Meng T, He Z, Huang H, et al: The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy. 17:1142–1156. 2021. View Article : Google Scholar : | |
|
Wu S, Lu Q, Ding Y, Wu Y, Qiu Y, Wang P, Mao X, Huang K, Xie Z and Zou MH: Hyperglycemia-driven inhibition of AMP-activated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo. Circulation. 139:1913–1936. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou ZK, Yu MM, Shou ST, Chai YF and Liu YC: Interaction between gut-heart axis in sepsis-induced cardiomyopathy. Pharmacol Res. 217:1078062025. View Article : Google Scholar : PubMed/NCBI | |
|
Yuzefpolskaya M, Bohn B, Nasiri M, Zuver AM, Onat DD, Royzman EA, Nwokocha J, Mabasa M, Pinsino A, Brunjes D, et al: Gut microbiota, endotoxemia, inflammation, and oxidative stress in patients with heart failure, left ventricular assist device, and transplant. J Heart Lung Transplant. 39:880–890. 2020. View Article : Google Scholar : PubMed/NCBI |