You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
MicroRNA‑microbiome cross‑kingdom networks drive inflammatory bowel disease through dynamic regulatory ecosystems (Review)
Inflammatory bowel disease (IBD) pathogenesis reflects complex interactions between host immunity and gut microbiome dynamics, with microRNAs (miRNAs) functioning as key mediators of cross‑kingdom communication. Host‑derived miRNAs modulate bacterial gene expression and reshape microbial communities, while gut microbiota influences host miRNA expression through microbial metabolites and multiple immune signaling. In IBD, dysregulated miRNAs disrupt immune homeostasis by affecting inflammatory responses, lymphocyte differentiation and epithelial barrier integrity. Yet many miRNAs exhibit context‑dependent dual functions, complicating therapeutic targeting. Despite their biomarker potential for distinguishing IBD subtypes and tracking disease activity, clinical validation faces substantial obstacles including methodological inconsistencies, patient heterogeneity and temporal expression variability. Single-target miRNA therapeutics have yielded modest clinical outcomes, exposing the resilience of regulatory networks and compensatory mechanisms that limit intervention efficacy. The bidirectional architecture of miRNA‑microbiome communication argues against reductionist approaches. Effective IBD management requires integrated strategies that address multiple regulatory nodes rather than isolated pathways. Advancing this field demands deeper investigation of temporal dynamics, spatial organization and network‑level interactions. Such understanding will inform precision medicine strategies that restore regulatory equilibrium without compromising the adaptive capacity of host‑microbiome systems. Progress depends on recognizing the integrated nature of these regulatory networks rather than treating components in isolation.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Wan J, Zhou J, Wang Z, Liu D, Zhang H, Xie S and Wu K: Epidemiology, pathogenesis, diagnosis, and treatment of inflammatory bowel disease: Insights from the past two years. Chin Med J (Engl). 138:763–776. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Clarke WT and Feuerstein JD: Colorectal cancer surveillance in inflammatory bowel disease: Practice guidelines and recent developments. World J Gastroenterol. 25:4148–4157. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Giammona A, Galuzzi BG, Imperia E, Gervasoni C, Remedia S, Restaneo L, Nespoli M, De Gara L, Tani F, Cicala M, et al: Chronic gastrointestinal disorders and miRNA-associated disease: An up-to-date. Int J Mol Sci. 26:4132025. View Article : Google Scholar : PubMed/NCBI | |
|
Rishik S, Hirsch P, Grandke F, Fehlmann T and Keller A: miRNATissueAtlas 2025: An update to the uniformly processed and annotated human and mouse non-coding RNA tissue atlas. Nucleic Acids Res. 53:D129–D137. 2025. View Article : Google Scholar : | |
|
Ramadan YN, Kamel AM, Medhat MA and Hetta HF: MicroRNA signatures in the pathogenesis and therapy of inflammatory bowel disease. Clin Exp Med. 24:2172024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu XM and Zhang HJ: miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation. World J Gastroenterol. 22:2206–2218. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gu H, Zhao C, Zhang T, Liang H, Wang XM, Pan Y, Chen X, Zhao Q, Li D, Liu F, et al: Salmonella produce microRNA-like RNA fragment sal-1 in the infected cells to facilitate intracellular survival. Sci Rep. 7:23922017. View Article : Google Scholar : PubMed/NCBI | |
|
Dalmasso G, Nguyen HT, Yan Y, Laroui H, Charania MA, Ayyadurai S, Sitaraman SV and Merlin D: Microbiota modulate host gene expression via MicroRNAs. PLoS One. 6:e192932011. View Article : Google Scholar : PubMed/NCBI | |
|
Pös O, Styk J, Buglyó G, Zeman M, Lukyova L, Bernatova K, Hrckova Turnova E, Rendek T, Csók Á, Repiska V, et al: Cross-kingdom interaction of miRNAs and Gut microbiota with non-invasive diagnostic and therapeutic implications in colorectal cancer. Int J Mol Sci. 24:105202023. View Article : Google Scholar : PubMed/NCBI | |
|
Temido MJ, Honap S, Jairath V, Vermeire S, Danese S, Portela F and Peyrin-Biroulet L: Overcoming the challenges of overtreating and undertreating inflammatory bowel disease. Lancet Gastroenterol Hepatol. 10:462–474. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB and Tavakkolizadeh A: MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp Cell Res. 316:3512–3521. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Panelli S, Epis S, Cococcioni L, Perini M, Paroni M, Bandi C, Drago L and Zuccotti GV: Inflammatory bowel diseases, the hygiene hypothesis and the other side of the microbiota: Parasites and fungi. Pharmacol Res. 159:1049622020. View Article : Google Scholar : PubMed/NCBI | |
|
James JP, Riis LB, Malham M, Høgdall E, Langholz E and Nielsen BS: MicroRNA biomarkers in IBD-differential diagnosis and prediction of colitis-associated cancer. Int J Mol Sci. 21:78932020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, Comstock LE, Gandhi R and Weiner HL: The host shapes the gut microbiota via fecal MicroRNA. Cell Host Microbe. 19:32–43. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Witwer KW and Hirschi KD: Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist. Bioessays. 36:394–406. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Witwer KW and Zhang CY: Diet-derived microRNAs: Unicorn or silver bullet? Genes Nutr. 12:152017. View Article : Google Scholar : PubMed/NCBI | |
|
Lakkisto P, Dalgaard LT, Belmonte T, Pinto-Sietsma SJ, Devaux Y and de Gonzalo-Calvo D; EU-CardioRNA COST Action CA17129: https://cardiorna.eu/. Development of circulating microRNA-based biomarkers for medical decision-making: A friendly reminder of what should NOT be done. Crit Rev Clin Lab Sci. 60:pp. 141–152. 2023, View Article : Google Scholar | |
|
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM and Voinea SC: miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells. 9:2762020. View Article : Google Scholar : PubMed/NCBI | |
|
Sokal-Dembowska A, Jarmakiewicz-Czaja S, Helma K and Filip R: The role of microRNAs in inflammatory bowel disease. Int J Mol Sci. 26:47502025. View Article : Google Scholar : PubMed/NCBI | |
|
Casado-Bedmar M, Roy M, Berthet L, Hugot JP, Yang C, Manceau H, Peoc'h K, Chassaing B, Merlin D and Viennois E: Fecal let-7b and miR-21 directly modulate the intestinal microbiota, driving chronic inflammation. Gut Microbes. 16:23942492024. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Chen WD and Wang YD: The roles of the gut microbiota-miRNA interaction in the host pathophysiology. Mol Med. 26:1012020. View Article : Google Scholar : PubMed/NCBI | |
|
Anzola A, González R, Gámez-Belmonte R, Ocón B, Aranda CJ, Martínez-Moya P, López-Posadas R, Hernández-Chirlaque C, Sánchez de Medina F and Martínez-Augustin O: miR-146a regulates the crosstalk between intestinal epithelial cells, microbial components and inflammatory stimuli. Sci Rep. 8:173502018. View Article : Google Scholar : PubMed/NCBI | |
|
Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, Kwon JH and Chang EB: The microbe-derived short chain fatty acid butyrate targets miRNA-Dependent p21 gene expression in human colon cancer. PLoS One. 6:e162212011. View Article : Google Scholar : PubMed/NCBI | |
|
Sanchez HN, Moroney JB, Gan H, Shen T, Im JL, Li T, Taylor JR, Zan H and Casali P: B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun. 11:602020. View Article : Google Scholar : PubMed/NCBI | |
|
Fardi F, Khasraghi LB, Shahbakhti N, Salami Naseriyan A, Najafi S, Sanaaee S, Alipourfard I, Zamany M, Karamipour S, Jahani M, et al: An interplay between non-coding RNAs and gut microbiota in human health. Diabetes Res Clin Pract. 201:1107392023. View Article : Google Scholar : PubMed/NCBI | |
|
Fleishman JS and Kumar S: Bile acid metabolism and signaling in health and disease: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 9:972024. View Article : Google Scholar : PubMed/NCBI | |
|
Virtue AT, McCright SJ, Wright JM, Jimenez MT, Mowel WK, Kotzin JJ, Joannas L, Basavappa MG, Spencer SP, Clark ML, et al: The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci Transl Med. 11:eaav18922019. View Article : Google Scholar : PubMed/NCBI | |
|
Moloney GM, O'Leary OF, Salvo-Romero E, Desbonnet L, Shanahan F, Dinan TG, Clarke G and Cryan JF: Microbial regulation of hippocampal miRNA expression: Implications for transcription of kynurenine pathway enzymes. Behav Brain Res. 334:50–54. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Froy O and Weintraub Y: The circadian clock, metabolism, and inflammation-the holy trinity of inflammatory bowel diseases. Clin Sci (Lond). 139:777–790. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Torres M, Becquet D, Franc JL and François-Bellan AM: Circadian processes in the RNA life cycle. Wiley Interdiscip Rev RNA. 9:e14672018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Zhou C, Li X, Li H, Han Q, Chen Z, Tang W and Yin J: Interactions between Gut microbiota, host circadian rhythms, and metabolic diseases. Adv Nutr. 16:1004162025. View Article : Google Scholar : PubMed/NCBI | |
|
Van Wijk N, Zohar K and Linial M: Challenging cellular homeostasis: Spatial and temporal regulation of miRNAs. Int J Mol Sci. 23:161522022. View Article : Google Scholar : PubMed/NCBI | |
|
Hicks SD, Khurana N, Williams J, Dowd Greene C, Uhlig R and Middleton FA: Diurnal oscillations in human salivary microRNA and microbial transcription: Implications for human health and disease. PLoS One. 13:e01982882018. View Article : Google Scholar : PubMed/NCBI | |
|
Herichová I, Vanátová D, Reis R, Stebelová K, Olexová L, Morová M, Ghosh A, Baláž M, Štefánik P and Kršková L: Daily profile of miRNAs in the rat colon and in silico analysis of their possible relationship to colorectal cancer. Biomedicines. 13:18652025. View Article : Google Scholar : PubMed/NCBI | |
|
Muttiah B and Law JX: Milk-derived extracellular vesicles and gut health. NPJ Sci Food. 9:122025. View Article : Google Scholar : PubMed/NCBI | |
|
Yi C, Lu L, Li Z, Guo Q, Ou L, Wang R and Tian X: Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment. Drug Deliv Transl Res. 15:84–101. 2025. View Article : Google Scholar | |
|
Xu Q, Li Y, Qin X, Xin Y, Wang J, Zhang Y, Xu K, Yang X and Wang X: osa-miR168a, a plant miRNA that survives the process of in vivo food digestion, attenuates dextran sulfate sodium-induced colitis in mice by oral administration. J Agric Food Chem. 72:25146–25160. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Guzmán-Lorite M, Muñoz-Moreno L, Marina ML, Carmena MJ and García MC: Extraction, detection and determination of dietary microRNA: A review. Trends in Food Science & Technology. 135:215–233. 2023. View Article : Google Scholar | |
|
Jiang K, Pang X, Li W, Xu X, Yang Y, Shang C and Gao X: Interbacterial warfare in the human gut: Insights from Bacteroidales' perspective. Gut Microbes. 17:24735222025. View Article : Google Scholar : PubMed/NCBI | |
|
Neurath MF, Artis D and Becker C: The intestinal barrier: A pivotal role in health, inflammation, and cancer. Lancet Gastroenterol Hepatol. 10:573–592. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, et al: Environment dominates over host genetics in shaping human gut microbiota. Nature. 555:210–215. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Flanagan K, Gassner K, Lang M, Ozelyte J, Hausmann B, Crepaz D, Pjevac P, Gasche C, Berry D, Vesely C and Pereira FC: Human-derived microRNA 21 regulates indole and L-tryptophan biosynthesis transcripts in the gut commensal Bacteroides thetaiotaomicron. mBio. 16:e03928242025. View Article : Google Scholar : PubMed/NCBI | |
|
Santos AA, Afonso MB, Ramiro RS, Pires D, Pimentel M, Castro RE and Rodrigues CMP: Host miRNA-21 promotes liver dysfunction by targeting small intestinal Lactobacillus in mice. Gut Microbes. 12:1–18. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, Hutchins E, Mu J, Deng Z, Luo C, et al: Plant-derived exosomal MicroRNAs shape the gut microbiota. Cell Host Microbe. 24:637–652.e8. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Rezende RM, Moreira TG, Tankou SK, Cox LM, Wu M, Song A, Dhang FH, Wei Z, Costamagna G and Weiner HL: Oral Administration of miR-30d from Feces of MS patients suppresses MS-like symptoms in mice by expanding akkermansia muciniphila. Cell Host Microbe. 26:779–794.e8. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
He L, Zhou X, Liu Y, Zhou L and Li F: Fecal miR-142a-3p from dextran sulfate sodium-challenge recovered mice prevents colitis by promoting the growth of Lactobacillus reuteri. Mol Ther. 30:388–399. 2022. View Article : Google Scholar : | |
|
Tambaro F, Gallicchio C, Orlando S, Carnevale S and Muscaritoli M: The conundrum of XenomiRs and human health. Adv Nutr. 16:1005102025. View Article : Google Scholar : PubMed/NCBI | |
|
Dickinson B, Zhang Y, Petrick JS, Heck G, Ivashuta S and Marshall WS: Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat Biotechnol. 31:965–967. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lang C, Karunairetnam S, Lo KR, Kralicek AV, Crowhurst RN, Gleave AP, MacDiarmid RM and Ingram JR: Common variants of the plant microrna-168a exhibit differing silencing efficacy for human low-density lipoprotein receptor adaptor protein 1 (LDLRAP1). Microrna. 8:166–170. 2019. View Article : Google Scholar | |
|
Xu T, Zhu Y, Lin Z, Lei J, Li L, Zhu W and Wu D: Evidence of Cross-Kingdom gene regulation by plant MicroRNAs and possible reasons for inconsistencies. J Agric Food Chem. 72:4564–4573. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mayoral RJ, Pipkin ME, Pachkov M, van Nimwegen E, Rao A and Monticelli S: MicroRNA-221-222 regulate the cell cycle in mast cells. J Immunol. 182:433–445. 2009. View Article : Google Scholar | |
|
Mayoral RJ, Deho L, Rusca N, Bartonicek N, Saini HK, Enright AJ and Monticelli S: MiR-221 influences effector functions and actin cytoskeleton in mast cells. PLoS One. 6:e261332011. View Article : Google Scholar : PubMed/NCBI | |
|
Lu TX, Lim EJ, Besse JA, Itskovich S, Plassard AJ, Fulkerson PC, Aronow BJ and Rothenberg ME: MiR-223 deficiency increases eosinophil progenitor proliferation. J Immunol. 190:1576–1582. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Khan AU, Chacon-Millan P and Stiuso P: Potential miRNAs as diagnostic biomarkers for differentiating disease states in ulcerative colitis: A systematic review. Int J Mol Sci. 26:68222025. View Article : Google Scholar : PubMed/NCBI | |
|
Neudecker V, Haneklaus M, Jensen O, Khailova L, Masterson JC, Tye H, Biette K, Jedlicka P, Brodsky KS, Gerich ME, et al: Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J Exp Med. 214:1737–1752. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lin S, Zheng B, Wu R, Wu Q and Chen X: Investigation of the mechanism by which miR-223-3p inhibits reflux esophagitis through targeting the NLRP3 inflammasome. BMC Gastroenterol. 25:3652025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, Xiao J, Wu N, Liu C, Xu J, Liu F and Wu L: MicroRNA-223 regulates the differentiation and function of intestinal dendritic cells and macrophages by targeting C/EBPβ. Cell Rep. 13:1149–1160. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liao TL, Chen YM, Tang KT, Chen PK, Liu HJ and Chen DY: MicroRNA-223 inhibits neutrophil extracellular traps formation through regulating calcium influx and small extracellular vesicles transmission. Sci Rep. 11:156762021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu ZJ, Wu JJ, Jiang WL, Xiao JH, Tao KZ, Ma L, Zheng P, Wan R and Wang XP: MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J Gastroenterol. 23:976–385. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Knolle MD, Chin SB, Rana BMJ, Englezakis A, Nakagawa R, Fallon PG, Git A and McKenzie ANJ: MicroRNA-155 protects group 2 innate lymphoid cells from apoptosis to promote type-2 immunity. Front Immunol. 9:22322018. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Y, Zeng Q, Wen Y, Li J, Xiao H, Yang C, Luo R and Liu W: Apolipoprotein A-I inhibited group II innate lymphoid cell response mediated by microRNA-155 in allergic rhinitis. J Allergy Clin Immunol Glob. 3:1002122024. View Article : Google Scholar : PubMed/NCBI | |
|
Trotta R, Chen L, Ciarlariello D, Josyula S, Mao C, Costinean S, Yu L, Butchar JP, Tridandapani S, Croce CM and Caligiuri MA: miR-155 regulates IFN-γ production in natural killer cells. Blood. 119:3478–3485. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Adel RM, Helal H, Ahmed Fouad M and Sobhy Abd-Elhalem S: Regulation of miRNA-155-5p ameliorates NETosis in pulmonary fibrosis rat model via inhibiting its target cytokines IL-1β, TNF-α and TGF-β1. Int Immunopharmacol. 127:1114562024. View Article : Google Scholar | |
|
Hawez A, Al-Haidari A, Madhi R, Rahman M and Thorlacius H: MiR-155 Regulates PAD4-Dependent formation of neutrophil extracellular traps. Front Immunol. 10:24622019. View Article : Google Scholar : PubMed/NCBI | |
|
Taganov KD, Boldin MP, Chang KJ and Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 103:12481–12486. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Wu H, Fan H, Shou Z, Xu M, Chen Q, Ai C, Dong Y, Liu Y, Nan Z, Wang Y, et al: Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1. Int Immunopharmacol. 68:204–212. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lyu B, Wei Z, Jiang L, Ma C, Yang G and Han S: MicroRNA-146a negatively regulates IL-33 in activated group 2 innate lymphoid cells by inhibiting IRAK1 and TRAF6. Genes Immun. 21:37–44. 2020. View Article : Google Scholar | |
|
Hsieh YT, Chou YC, Kuo PY, Tsai HW, Yen YT, Shiau AL and Wang CR: Down-regulated miR-146a expression with increased neutrophil extracellular traps and apoptosis formation in autoimmune-mediated diffuse alveolar hemorrhage. J Biomed Sci. 29:622022. View Article : Google Scholar : PubMed/NCBI | |
|
Zare E, Yaghoubi SM, Khoshnazar M, Jafari Dargahlou S, Machhar JS, Zheng Z, Duijf PHG and Mansoori B: MicroRNAs in cancer immunology: Master regulators of the tumor microenvironment and immune evasion, with therapeutic potential. Cancers (Basel). 17:21722025. View Article : Google Scholar : PubMed/NCBI | |
|
Galbiati V, Lefevre MA, Maddalon A, Vocanson M, Iulini M, Marinovich M and Corsini E: Role of miR-24-3p and miR-146a-5p in dendritic cells' maturation process induced by contact sensitizers. Arch Toxicol. 97:2183–2191. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sonoyama K and Ohsaka F: Role of microRNAs in the crosstalk between the gut microbiota and intestinal immune system. Biosci Microbiota Food Health. 42:222–228. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Y, Wang D and Liu F: miR-146b suppresses LPS-induced M1 macrophage polarization via inhibiting the FGL2-activated NF-κB/MAPK signaling pathway in inflammatory bowel disease. Clinics (Sao Paulo). 77:1000692022. View Article : Google Scholar | |
|
Yousefi MJ, Afshar Y, Amoozadehsamakoosh A, Naseri A, Soltani F, Yazdanpanah N, Saleki K and Rezaei N: Interplay between innate-like T-cells and microRNAs in cancer immunity. Discov Oncol. 16:14252025. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Zhang J, Guo H, Yang S, Fan W, Ye N, Tian Z, Yu T, Ai G, Shen Z, et al: Critical role of alternative M2 Skewing in miR-155 deletion-mediated protection of colitis. Front Immunol. 9:9042018. View Article : Google Scholar : PubMed/NCBI | |
|
Quero L, Tiaden AN, Hanser E, Roux J, Laski A, Hall J and Kyburz D: miR-221-3p Drives the Shift of M2-macrophages to a pro-inflammatory function by suppressing JAK3/STAT3 activation. Front Immunol. 10:30872019. View Article : Google Scholar | |
|
Duroux-Richard I, Roubert C, Ammari M, Présumey J, Grün JR, Häupl T, Grützkau A, Lecellier CH, Boitez V, Codogno P, et al: miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood. 128:3125–3136. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wu Y, Wang C, Hu W, Zou S, Ren H, Zuo Y and Qu L: MiR-127-3p enhances macrophagic proliferation via disturbing fatty acid profiles and oxidative phosphorylation in atherosclerosis. J Mol Cell Cardiol. 193:36–52. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Sprenkle NT, Serezani CH and Pua HH: MicroRNAs in macrophages: Regulators of activation and function. J Immunol. 210:359–368. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Zhu H and Jounaidi Y: Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther. 9:3022024. View Article : Google Scholar : PubMed/NCBI | |
|
Kurowska-Stolarska M, Alivernini S, Melchor EG, Elmesmari A, Tolusso B, Tange C, Petricca L, Gilchrist DS, Di Sante G, Keijzer C, et al: MicroRNA-34a dependent regulation of AXL controls the activation of dendritic cells in inflammatory arthritis. Nat Commun. 8:158772017. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Z, Yang Y, Liu H, Hu M and Chen P: Inhibition of miR-let-7i Induces DC immature cells and improves skin graft tolerance. Dis Markers. 2022:86056212022. View Article : Google Scholar : PubMed/NCBI | |
|
Gaál Z: Role of microRNAs in immune regulation with translational and clinical applications. Int J Mol Sci. 25:19422024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu SJ, Chen JH, Chang S and Li HL: The role of miRNAs in T helper cell development, activation, fate decisions and tumor immunity. Front Immunol. 14:13203052023. View Article : Google Scholar | |
|
Liu SQ, Jiang S, Li C, Zhang B and Li QJ: miR-17-92 cluster targets phosphatase and tensin homology and ikaros family zinc finger 4 to promote TH17-mediated inflammation. J Biol Chem. 289:12446–12456. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Singh UP, Murphy AE, Enos RT, Shamran HA, Singh NP, Guan H, Hegde VL, Fan D, Price RL, Taub DD, et al: miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses. Immunology. 143:478–489. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shi T, Xie Y, Fu Y, Zhou Q, Ma Z, Ma J, Huang Z, Zhang J and Chen J: The signaling axis of microRNA-31/interleukin-25 regulates Th1/Th17-mediated inflammation response in colitis. Mucosal Immunol. 10:983–995. 2017. View Article : Google Scholar | |
|
Guo M, Mao X, Ji Q, Lang M, Li S, Peng Y, Zhou W, Xiong B and Zeng Q: miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome. Immunol Cell Biol. 88:555–564. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Qin Z, Wang PY, Wan JJ, Zhang Y, Wei J, Sun Y and Liu X: MicroRNA124-IL6R mediates the effect of nicotine in inflammatory bowel disease by shifting Th1/Th2 balance toward Th1. Front Immunol. 11:2352020. View Article : Google Scholar : PubMed/NCBI | |
|
Sheedy FJ: Turning 21: Induction of miR-21 as a key switch in the inflammatory response. Front Immunol. 6:192015. View Article : Google Scholar : PubMed/NCBI | |
|
Sawant DV, Wu H, Kaplan MH and Dent AL: The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway. Mol Immunol. 54:435–442. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lu TX, Hartner J, Lim EJ, Fabry V, Mingler MK, Cole ET, Orkin SH, Aronow BJ and Rothenberg ME: MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol. 187:3362–3373. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Czopik AK, McNamee EN, Vaughn V, Huang X, Bang IH, Clark T, Wang Y, Ruan W, Nguyen T, Masterson JC, et al: HIF-2α-dependent induction of miR-29a restrains TH1 activity during T cell dependent colitis. Nat Commun. 15:80422024. View Article : Google Scholar | |
|
Smith KM, Guerau-de-Arellano M, Costinean S, Williams JL, Bottoni A, Mavrikis Cox G, Satoskar AR, Croce CM, Racke MK, Lovett-Racke AE and Whitacre CC: miR-29ab1 deficiency identifies a negative feedback loop controlling Th1 bias that is dysregulated in multiple sclerosis. J Immunol. 189:1567–1576. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wu R, Zeng J, Yuan J, Deng X, Huang Y, Chen L, Zhang P, Feng H, Liu Z, Wang Z, et al: MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest. 128:2551–2568. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cho S, Wu CJ, Yasuda T, Cruz LO, Khan AA, Lin LL, Nguyen DT, Miller M, Lee HM, Kuo ML, et al: miR-23~27~24 clusters control effector T cell differentiation and function. J Exp Med. 213:235–249. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Maschmeyer P, Petkau G, Siracusa F, Zimmermann J, Zügel F, Kühl AA, Lehmann K, Schimmelpfennig S, Weber M, Haftmann C, et al: Selective targeting of pro-inflammatory Th1 cells by microRNA-148a-specific antagomirs in vivo. J Autoimmun. 89:41–52. 2018. View Article : Google Scholar : | |
|
Holvoet P: miRNAs and T cell-mediated immune response in disease. Yale J Biol Med. 98:187–202. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Cichalewska-Studzinska M, Szymanski J, Stec-Martyna E, Perdas E, Studzinska M, Jerczynska H, Kulczycka-Wojdala D, Stawski R and Mycko MP: The role of miR-155 in modulating gene expression in CD4+ T cells: insights into alternative immune pathways in autoimmune encephalomyelitis. Int J Mol Sci. 25:113552024. View Article : Google Scholar : PubMed/NCBI | |
|
Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K and Rudensky AY: Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity. 30:80–91. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu F, Li H, Liu Y, Tan C, Liu X, Fan H, Wu H, Dong Y, Yu T, Chu S, et al: miR-155 antagomir protect against DSS-induced colitis in mice through regulating Th17/Treg cell balance by Jarid2/Wnt/β-catenin. Biomed Pharmacother. 126:1099092020. View Article : Google Scholar | |
|
O'Connell RM, Kahn D, Gibson WSJ, Round JL, Scholz RL, Chaudhuri AA, Kahn ME, Rao DS and Baltimore D: MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity. 33:607–619. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hu J, Huang S, Liu X, Zhang Y, Wei S and Hu X: miR-155: An important role in inflammation response. J Immunol Res. 2022:74372812022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Wang E, Wang Y, Mines R, Xiang K, Sun Z, Zhou G, Chen KY, Rakhilin N, Chao S, et al: miR-34a is a microRNA safeguard for Citrobacter-induced inflammatory colon oncogenesis. Elife. 7:e394792018. View Article : Google Scholar : PubMed/NCBI | |
|
Brockmann L, Tran A, Huang Y, Edwards M, Ronda C, Wang HH and Ivanov II: Intestinal microbiota-specific Th17 cells possess regulatory properties and suppress effector T cells via c-MAF and IL-10. Immunity. 56:2719–2735.e7. 2023. View Article : Google Scholar | |
|
Mikami Y, Philips RL, Sciumè G, Petermann F, Meylan F, Nagashima H, Yao C, Davis FP, Brooks SR, Sun HW, et al: MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as negative feedback regulators downstream of interleukin-23. Immunity. 54:514–525.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ge Y, Sun M, Wu W, Ma C, Zhang C, He C, Li J, Cong Y, Zhang D and Liu Z: MicroRNA-125a suppresses intestinal mucosal inflammation through targeting ETS-1 in patients with inflammatory bowel diseases. J Autoimmun. 101:109–120. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cho S, Lee HM, Yu IS, Choi YS, Huang HY, Hashemifar SS, Lin LL, Chen MC, Afanasiev ND, Khan AA, et al: Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 9:27572018. View Article : Google Scholar : PubMed/NCBI | |
|
Li B, Wang X, Choi IY, Wang YC, Liu S, Pham AT, Moon H, Smith DJ, Rao DS, Boldin MP and Yang L: miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J Clin Invest. 127:3702–3716. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Honardoost MA, Naghavian R, Ahmadinejad F, Hosseini A and Ghaedi K: Integrative computational mRNA-miRNA interaction analyses of the autoimmune-deregulated miRNAs and well-known Th17 differentiation regulators: An attempt to discover new potential miRNAs involved in Th17 differentiation. Gene. 572:153–162. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sanctuary MR, Huang RH, Jones AA, Luck ME, Aherne CM, Jedlicka P, de Zoeten EF and Collins CB: miR-106a deficiency attenuates inflammation in murine IBD models. Mucosal Immunol. 12:200–211. 2019. View Article : Google Scholar | |
|
Wu W, He C, Liu C, Cao AT, Xue X, Evans-Marin HL, Sun M, Fang L, Yao S, Pinchuk IV, et al: miR-10a inhibits dendritic cell activation and Th1/Th17 cell immune responses in IBD. Gut. 64:1755–1764. 2015. View Article : Google Scholar | |
|
Yang W, Chen L, Xu L, Bilotta AJ, Yao S, Liu Z and Cong Y: MicroRNA-10a negatively regulates CD4+ T Cell IL-10 production through suppression of Blimp1. J Immunol. 207:985–995. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Yu T, Yang H, Yao S, Ma R, Steinert EM, Ridge KM, Cui W, Chandel NS and Cong Y: Intrinsic MicroRNA-10a restricts regulatory T cell suppressive function and intestinal repair by coordinating transcriptional, metabolic, and epithelial repair pathways. Adv Sci (Weinh). 13:e099532025. View Article : Google Scholar : PubMed/NCBI | |
|
Liao K, Chen P, Zhang M, Wang J, Hatzihristidis T, Lin X, Yang L, Yao N, Liu C, Hong Y, et al: Critical roles of the miR-17~92 family in thymocyte development, leukemogenesis, and autoimmunity. Cell Rep. 43:1142612024. View Article : Google Scholar | |
|
Jiang S, Li C, Olive V, Lykken E, Feng F, Sevilla J, Wan Y, He L and Li QJ: Molecular dissection of the miR-17-92 cluster's critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood. 118:5487–5497. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Fujiwara M, Raheja R, Garo LP, Ajay AK, Kadowaki-Saga R, Karandikar SH, Gabriely G, Krishnan R, Beynon V, Paul A, et al: microRNA-92a promotes CNS autoimmunity by modulating the regulatory and inflammatory T cell balance. J Clin Invest. 132:e1556932022. View Article : Google Scholar : PubMed/NCBI | |
|
Veryaskina YA, Titov SE, Kovynev IB, Fyodorova SS, Berezina OV, Zhurakovskij IP, Antonenko OV, Demakov SA, Demenkov PS, Ruzankin PS, et al: MicroRNAs in diffuse large B-cell lymphoma (DLBCL): Biomarkers with prognostic potential. Cancers (Basel). 17:13002025. View Article : Google Scholar : PubMed/NCBI | |
|
Hu YZ, Li Q, Wang PF, Li XP and Hu ZL: Multiple functions and regulatory network of miR-150 in B lymphocyte-related diseases. Front Oncol. 13:11408132023. View Article : Google Scholar : PubMed/NCBI | |
|
Thai TH, Patterson HC, Pham DH, Kis-Toth K, Kaminski DA and Tsokos GC: Deletion of microRNA-155 reduces autoantibody responses and alleviates lupus-like disease in the Fas (lpr)'mouse. Proc Natl Acad Sci USA. 110:20194–20199. 2013. View Article : Google Scholar | |
|
Casali P, Li S, Morales G, Daw CC, Chupp DP, Fisher AD and Zan H: Epigenetic modulation of class-switch DNA recombination to IgA by miR-146a through downregulation of Smad2, Smad3 and Smad4. Front Immunol. 12:7614502021. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Tian J and Cai T: Integrated analysis of miRNAs and mRNAs in thousands of single cells. Sci Rep. 15:16362025. View Article : Google Scholar : PubMed/NCBI | |
|
Niderla-Bielińska J, Jankowska-Steifer E and Włodarski P: Non-Coding RNAs and human diseases: Current status and future perspectives. Int J Mol Sci. 24:116792023. View Article : Google Scholar | |
|
Săsăran MO and Bănescu C: Role of salivary miRNAs in the diagnosis of gastrointestinal disorders: A mini-review of available evidence. Front Genet. 14:12284822023. View Article : Google Scholar : PubMed/NCBI | |
|
Layton E, Goldsworthy S, Yang E, Ong WY, Sutherland TE, Bancroft AJ, Thompson S, Au VB, Griffiths-Jones S, Grencis RK, et al: An optimised faecal microRNA sequencing pipeline reveals fibrosis in Trichuris muris infection. Nat Commun. 16:15892025. View Article : Google Scholar : PubMed/NCBI | |
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T and Wei J: Liquid biopsy in cancer current: Status, challenges and future prospects. Signal Transduct Target Ther. 9:3362024. View Article : Google Scholar : PubMed/NCBI | |
|
Dhuppar S and Murugaiyan G: MicroRNA effects on gut homeostasis: Therapeutic implications for inflammatory bowel disease. Trends Immunol. 43:917–931. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Y and Pedersen O: Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 19:55–71. 2021. View Article : Google Scholar | |
|
Komatsu S, Kitai H and Suzuki HI: Network regulation of microRNA biogenesis and target interaction. Cells. 12:3062023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu F, Zikusoka M, Trindade A, Dassopoulos T, Harris ML, Bayless TM, Brant SR, Chakravarti S and Kwon JH: MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2α. Gastroenterology. 135:1624–1635.e24. 2008. View Article : Google Scholar | |
|
Chapman CG and Pekow J: The emerging role of miRNAs in inflammatory bowel disease: A review. Therap Adv Gastroenterol. 8:4–22. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Thorlacius-Ussing G, Schnack Nielsen B, Andersen V, Holmstrøm K and Pedersen AE: Expression and localization of miR-21 and miR-126 in mucosal tissue from patients with inflammatory bowel disease. Inflamm Bowel Dis. 23:739–752. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xie X, Liu P, Wu H, Li H, Tang Y, Chen X, Xu C, Liu X and Dai G: miR-21 antagonist alleviates colitis and angiogenesis via the PTEN/PI3K/AKT pathway in colitis mice induced by TNBS. Ann Transl Med. 10:4132022. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Ouyang Y, Xu X, Yuan Z, Liu C and Zhu Z: MiR-155 promotes colitis-associated intestinal fibrosis by targeting HBP1/Wnt/β-catenin signalling pathway. J Cell Mol Med. 25:4765–4775. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Masi L, Capobianco I, Magrì C, Marafini I, Petito V and Scaldaferri F: MicroRNAs as innovative biomarkers for inflammatory bowel disease and prediction of colorectal cancer. Int J Mol Sci. 23:79912022. View Article : Google Scholar : PubMed/NCBI | |
|
Willeit P, Zampetaki A, Dudek K, Kaudewitz D, King A, Kirkby NS, Crosby-Nwaobi R, Prokopi M, Drozdov I, Langley SR, et al: Circulating microRNAs as novel biomarkers for platelet activation. Circ Res. 112:595–600. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Q, Qin X, Zhang Y, Xu K, Li Y, Li Y, Qi B, Li Y, Yang X and Wang X: Plant miRNA bol-miR159 regulates gut microbiota composition in mice: In vivo evidence of the crosstalk between plant miRNAs and intestinal microbes. J Agric Food Chem. 71:16160–16173. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Aguilar C, Mano M and Eulalio A: MicroRNAs at the host-bacteria interface: Host defense or bacterial offense. Trends Microbiol. 27:206–218. 2019. View Article : Google Scholar | |
|
Abu-Halima M, Keller A, Becker LS, Fischer U, Engel A, Ludwig N, Kern F, Rounge TB, Langseth H, Meese E and Keller V: Dynamic and static circulating cancer microRNA biomarkers - a validation study. RNA Biol. 20:1–9. 2023. View Article : Google Scholar | |
|
Ma C, Chen K, Wang Y, Cen C, Zhai Q and Zhang J: Establishing a novel colorectal cancer predictive model based on unique gut microbial single nucleotide variant markers. Gut Microbes. 13:1–6. 2021. View Article : Google Scholar | |
|
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Khalilov R, Samiei M, Zununi Vahed S and Ahmadian E: Salivary biomarkers in cancer. Adv Clin Chem. 110:171–192. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo S, Wang X, Shan D, Xiao Y, Ju L, Zhang Y, Wang G and Qian K: The detection, biological function, and liquid biopsy application of extracellular vesicle-associated DNA. Biomark Res. 12:1232024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y and Yin Z: Prediction of miRNA-disease association based on multisource inductive matrix completion. Sci Rep. 14:275032024. View Article : Google Scholar : PubMed/NCBI | |
|
Ionescu RF, Enache RM, Cretoiu SM and Cretoiu D: The interplay between gut microbiota and miRNAs in cardiovascular diseases. Front Cardiovasc Med. 9:8569012022. View Article : Google Scholar : PubMed/NCBI | |
|
Nai S, Song J, Su W and Liu X: Bidirectional interplay among non-coding RNAs, the microbiome, and the host during development and diseases. Genes (Basel). 16:2082025. View Article : Google Scholar : PubMed/NCBI | |
|
Xue X, Cao AT, Cao X, Yao S, Carlsen ED, Soong L, Liu CG, Liu X, Liu Z, Duck LW, et al: Downregulation of microRNA-107 in intestinal CD11c(+) myeloid cells in response to microbiota and proinflammatory cytokines increases IL-23p19 expression. Eur J Immunol. 44:673–682. 2014. View Article : Google Scholar : | |
|
Chen YH, Wu KH and Wu HP: Unraveling the complexities of toll-like receptors: From molecular mechanisms to clinical applications. Int J Mol Sci. 25:50372024. View Article : Google Scholar : PubMed/NCBI | |
|
Liang H, Zhang L, Hoden B, Qu B, Derubeis D, Song X and Zhang D: Delineating the role of toll-like receptors in inflammatory bowel disease. Methods Mol Biol. 2700:221–228. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Moghaddam MM, Behzadi E, Sedighian H, Goleij Z, Kachuei R, Heiat M and Fooladi AAI: Regulation of immune responses to infection through interaction between stem cell-derived exosomes and toll-like receptors mediated by microRNA cargoes. Front Cell Infect Microbiol. 14:13844202024. View Article : Google Scholar : PubMed/NCBI | |
|
Garo LP, Ajay AK, Fujiwara M, Gabriely G, Raheja R, Kuhn C, Kenyon B, Skillin N, Kadowaki-Saga R, Saxena S and Murugaiyan G: MicroRNA-146a limits tumorigenic inflammation in colorectal cancer. Nat Commun. 12:24192021. View Article : Google Scholar : PubMed/NCBI | |
|
Schmolka N, Papotto PH, Romero PV, Amado T, Enguita FJ, Amorim A, Rodrigues AF, Gordon KE, Coroadinha AS, Boldin M, et al: MicroRNA-146a controls functional plasticity in γδ T cells by targeting NOD1. Sci Immunol. 3:eaao13922018. View Article : Google Scholar | |
|
Zhu F, Yang T, Ning M, Liu Y, Xia W, Fu Y, Wen T, Zheng M, Xia R, Qian R, et al: MiR-146a alleviates inflammatory bowel disease in mice through systematic regulation of multiple genetic networks. Front Immunol. 15:13663192024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Wang C, Liu Y, Tang L, Zheng M, Xu C, Song J and Meng X: miR-122 targets NOD2 to decrease intestinal epithelial cell injury in crohn's disease. Biochem Biophys Res Commun. 438:133–139. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Brain O, Owens BM, Pichulik T, Allan P, Khatamzas E, Leslie A, Steevels T, Sharma S, Mayer A, Catuneanu AM, et al: The intracellular sensor NOD2 induces MicroRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity. 39:521–536. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yao XC, Wu JJ, Yuan ST and Yuan FL: Recent insights and perspectives into the role of the miRNA-29 family in innate immunity (Review). Int J Mol Med. 55:532025. View Article : Google Scholar : | |
|
Ghorpade DS, Sinha AY, Holla S, Singh V and Balaji KN: NOD2-Nitric Oxide-responsive MicroRNA-146a activates sonic hedgehog signaling to orchestrate inflammatory responses in murine model of inflammatory bowel disease. J Biol Chem. 288:33037–33048. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bras JP, Silva AM, Calin GA, Barbosa MA, Santos SG and Almeida MI: miR-195 inhibits macrophages pro-inflammatory profile and impacts the crosstalk with smooth muscle cells. PLoS One. 12:e01885302017. View Article : Google Scholar : PubMed/NCBI | |
|
Kankuri E: Deficiency of miRNA-149-3p shaped gut microbiota and enhanced dextran sulfate sodium-induced colitis. Mol Ther Nucleic Acids. 31:367–369. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Packwood K, Drewe E, Staples E, Webster D, Witte T, Litzman J, Egner W, Sargur R, Sewell W, Lopez-Granados E, et al: NOD2 polymorphisms in clinical phenotypes of common variable immunodeficiency disorders. Clin Exp Immunol. 161:536–541. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chan SY and Loscalzo J: The emerging paradigm of network medicine in the study of human disease. Circ Res. 111:359–374. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
de Oliveira ECS, Quaglio AEV, Grillo TG, Di Stasi LC and Sassaki LY: MicroRNAs in inflammatory bowel disease: What do we know and what can we expect? World J Gastroenterol. 30:2184–2190. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou R, Qiu P, Wang H, Yang H, Yang X, Ye M, Wang F and Zhao Q: Identification of microRNA-16-5p and microRNA-21-5p in feces as potential noninvasive biomarkers for inflammatory bowel disease. Aging (Albany NY). 13:4634–4646. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Clough J, Colwill M, Poullis A, Pollok R, Patel K and Honap S: Biomarkers in inflammatory bowel disease: A practical guide. Therap Adv Gastroenterol. 17:175628482412516002024. View Article : Google Scholar : PubMed/NCBI | |
|
Wohnhaas CT, Schmid R, Rolser M, Kaaru E, Langgartner D, Rieber K, Strobel B, Eisele C, Wiech F, Jakob I, et al: Fecal MicroRNAs show promise as noninvasive crohn's disease biomarkers. Crohns Colitis. 3602:otaa0032020. View Article : Google Scholar | |
|
Schaefer JS, Attumi T, Opekun AR, Abraham B, Hou J, Shelby H, Graham DY, Streckfus C and Klein JR: MicroRNA signatures differentiate Crohn's disease from ulcerative colitis. BMC Immunol. 16:52015. View Article : Google Scholar : PubMed/NCBI | |
|
Peck BC, Weiser M, Lee SE, Gipson GR, Iyer VB, Sartor RB, Herfarth HH, Long MD, Hansen JJ, Isaacs KL, et al: MicroRNAs classify different disease behavior phenotypes of Crohn's disease and may have prognostic utility. Inflamm Bowel Dis. 21:2178–2187. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammadi A, Kelly OB, Smith MI, Kabakchiev B and Silverberg MS: Differential miRNA expression in ileal and colonic tissues reveals an altered immunoregulatory molecular profile in individuals with Crohn's disease versus healthy subjects. J Crohns Colitis. 13:1459–1469. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Wang Y, Chen S and Liu L: The landscape of miRNA-mRNA regulatory network and cellular sources in inflammatory bowel diseases: Insights from text mining and single cell RNA sequencing analysis. Front Immunol. 15:14545322024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Guo Z, Wang Z, Zhu W and Li Q: Fecal miR-223 is a noninvasive biomarker for estimating Crohn's disease activity. Immun Inflamm Dis. 11:e11312023. View Article : Google Scholar | |
|
Shumway AJ, Shanahan MT, Hollville E, Chen K, Beasley C, Villanueva JW, Albert S, Lian G, Cure MR, Schaner M, et al: Aberrant miR-29 is a predictive feature of severe phenotypes in pediatric Crohn's disease. JCI Insight. 9:e1688002024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Zhang S, Yu Q, Yang G, Guo J, Li M, Zeng Z, He Y, Chen B and Chen M: Circulating MicroRNA223 is a new biomarker for inflammatory bowel disease. Medicine (Baltimore). 95:e27032016. View Article : Google Scholar : PubMed/NCBI | |
|
Viennois E, Zhao Y, Han MK, Xiao B, Zhang M, Prasad M, Wang L and Merlin D: Serum miRNA signature diagnoses and discriminates murine colitis subtypes and predicts ulcerative colitis in humans. Sci Rep. 7:25202017. View Article : Google Scholar : PubMed/NCBI | |
|
Tran F, Scharmacher A, Baran N, Mishra N, Wozny M, Chavez SP, Bhardwaj A, Hinz S, Juzenas S, Bernardes JP, et al: Dynamic changes in extracellular vesicle-associated miRNAs elicited by ultrasound in inflammatory bowel disease patients. Sci Rep. 14:109252024. View Article : Google Scholar : PubMed/NCBI | |
|
Shen Q, Huang Z, Ma L, Yao J, Luo T, Zhao Y, Xiao Y and Jin Y: Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in colitis. Gut Microbes. 14:21286042022. View Article : Google Scholar : PubMed/NCBI | |
|
Morilla I, Uzzan M, Laharie D, Cazals-Hatem D, Denost Q, Daniel F, Belleannee G, Bouhnik Y, Wainrib G, Panis Y, et al: Colonic MicroRNA profiles, identified by a deep learning algorithm, that predict responses to therapy of patients with acute severe ulcerative colitis. Clin Gastroenterol Hepatol. 17:905–913. 2019. View Article : Google Scholar | |
|
Batra SK, Heier CR, Diaz-Calderon L, Tully CB, Fiorillo AA, van den Anker J and Conklin LS: Serum miRNAs are pharmacodynamic biomarkers associated with therapeutic response in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 26:1597–1606. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cerutti C, Edwards LJ, de Vries HE, Sharrack B, Male DK and Romero IA: MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium. Sci Rep. 7:452842017. View Article : Google Scholar : PubMed/NCBI | |
|
Han Z, Estephan RJ, Wu X, Su C, Yuan YC, Qin H, Kil SH, Morales C, Schmolze D, Sanchez JF, et al: MicroRNA regulation of T-Cell exhaustion in cutaneous T cell lymphoma. J Invest Dermatol. 142:603–612.e7. 2022. View Article : Google Scholar | |
|
Innocenti T, Bigagli E, Lynch EN, Galli A and Dragoni G: MiRNA-based therapies for the treatment of inflammatory bowel disease: What are we still missing? Inflamm Bowel Dis. 29:308–323. 2023. View Article : Google Scholar | |
|
Ye D, Guo S, Al-Sadi R and Ma TY: MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology. 141:1323–1333. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Rawat M, Govindappa PK, Gupta Y and Ma TY: MicroRNA in intestinal tight junction regulation. NPJ Gut Liver. 2:112025. View Article : Google Scholar | |
|
Rawat M, Nighot M, Al-Sadi R, Gupta Y, Viszwapriya D, Yochum G, Koltun W and Ma TY: IL1B increases intestinal tight junction permeability by up-regulation of MIR200C-3p, which degrades occludin mRNA. Gastroenterology. 159:1375–1389. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh A and Farjadfar A: Novel targets for mucosal healing in inflammatory bowel disease therapy. Int Immunopharmacol. 144:1135442025. View Article : Google Scholar | |
|
Popa ML, Ichim C, Anderco P, Todor SB and Pop-Lodromanean D: MicroRNAs in the diagnosis of digestive diseases: A comprehensive review. J Clin Med. 14:20542025. View Article : Google Scholar : PubMed/NCBI | |
|
Xia X, Yang Q, Han X, Du Y, Guo S, Hua M, Fang F, Ma Z, Ma H, Yuan H, et al: Explore on the mechanism of miRNA-146a/TAB1 in the regulation of cellular apoptosis and inflammation in ulcerative colitis based on NF-κB Pathway. Curr Mol Med. 25:330–342. 2025. View Article : Google Scholar | |
|
He S, Lv Y, Jiang Y, Tao H, Chen X and Peng L: Recombination of miR-146b by lactococcus lactis for remolding macrophages and the microbiome in the treatment of murine colitis. J Agric Food Chem. 73:13427–13438. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Zhuang H, Chen K, Zhao Y, Wang D, Ran T and Zou D: Intestinal fibrosis associated with inflammatory bowel disease: Known and unknown. Chin Med J (Engl). 138:883–893. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Brillante S, Volpe M and Indrieri A: Advances in MicroRNA therapeutics: From preclinical to clinical studies. Hum Gene Ther. 35:628–648. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Huang Z, Wang Y, Xiong S, Lin S, He J, Tan J, Liu C, Wu X, Nie J, et al: Intestinal strictures in Crohn's disease: An update from 2023. United European Gastroenterol J. 12:802–813. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Zhou CZ, Zhu R, Fan H, Liu XX, Duan XY, Tang Q, Shou ZX and Zuo DM: miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition. J Gastroenterol Hepatol. 32:1966–1974. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nijhuis A, Curciarello R, Mehta S, Feakins R, Bishop CL, Lindsay JO and Silver A: MCL-1 is modulated in Crohn's disease fibrosis by miR-29b via IL-6 and IL-8. Cell Tissue Res. 368:325–335. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yin J, Ye YL, Hu T, Xu LJ, Zhang LP, Ji RN, Li P, Chen Q, Zhu JY and Pang Z: Hsa_circRNA_102610 upregulation in Crohn's disease promotes transforming growth factor-β1-induced epithelial-mesenchymal transition via sponging of hsa-miR-130a-3p. World J Gastroenterol. 26:3034–3055. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kaz AM and Venu N: Diagnostic methods and biomarkers in inflammatory bowel disease. Diagnostics (Basel). 15:13032025. View Article : Google Scholar : PubMed/NCBI | |
|
Rojas-Feria M, Romero-García T, Fernández Caballero-Rico JÁ, Pastor Ramírez H, Avilés-Recio M, Castro-Fernandez M, Chueca Porcuna N, Romero-Gόmez M, García F, Grande L and Del Campo JA: Modulation of faecal metagenome in Crohn's disease: Role of microRNAs as biomarkers. World J Gastroenterol. 24:5223–5233. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G and Shen J: Artificial intelligence enhances studies on inflammatory bowel disease. Front Bioeng Biotechnol. 9:6357642021. View Article : Google Scholar : PubMed/NCBI | |
|
Segal M and Slack FJ: Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin Drug Discov. 15:987–992. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sabour S, Sadeghi Koupaei H, Ghasemi H, Amin M and Azimi T: Anaerobic gut bacteria and their potential role in the initiation, exacerbation, and development of human colorectal cancer: A narrative review. Front Cell Infect Microbiol. 15:15590012025. View Article : Google Scholar : PubMed/NCBI | |
|
Nanni L, Murgiano M, Hsu CE, Khalili S, Cammarota G, Papa A, Gasbarrini A, Scaldaferri F and Lopetuso LR: Gut microbial healing in IBD: Visionary approach or evidence-based reality? Expert Rev Gastroenterol Hepatol. 19:833–851. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Rawat M, Nara S, Gupta Y, Ma TY and Parasher G: Lipid membrane-camouflaged biomimetic nanoparticle for MicroRNA based therapeutic delivery to intestinal epithelial cells. Sci Rep. 15:313632025. View Article : Google Scholar : PubMed/NCBI | |
|
Seyhan AA: Trials and tribulations of MicroRNA therapeutics. Int J Mol Sci. 25:14692024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JY, Xiao L and Wang JY: Posttranscriptional regulation of intestinal epithelial integrity by noncoding RNAs. Wiley Interdiscip Rev RNA. 8: View Article : Google Scholar : 2017. | |
|
Pandey S and Yadav P: Exploring the therapeutic potential of microRNAs: Targeted gene regulation strategies for enhanced cancer therapy. J Genet Eng Biotechnol. 23:1005562025. View Article : Google Scholar : PubMed/NCBI | |
|
Salunkhe SS, Ghatage T and Prabhakar BS: Multi-oncogene targeting in cancer therapy: A miRNA-driven pharmacological approach. Biochem Pharmacol. 242:1174172025. View Article : Google Scholar : PubMed/NCBI | |
|
Niu J, Zhu J, Li Z, Wang H, Gao Y, Wei B, Li Y, Wang H, Qian Y, Jing G, et al: MiR-29a-loaded nanoparticles alleviate inflammatory bowel disease via Sgk1/Foxo3a axis. J Control Release. 387:1141752025. View Article : Google Scholar : PubMed/NCBI | |
|
Rojo Arias JE and Busskamp V: Challenges in microRNAs' targetome prediction and validation. Neural Regen Res. 14:1672–1677. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cui S, Yu S, Huang HY, Lin YC, Huang Y, Zhang B, Xiao J, Zuo H, Wang J, Li Z, et al: miRTarBase 2025: Updates to the collection of experimentally validated microRNA-target interactions. Nucleic Acids Res. 53:D147–D156. 2025. View Article : Google Scholar | |
|
Aggeletopoulou I, Mouzaki A, Thomopoulos K and Triantos C: miRNA molecules-late breaking treatment for inflammatory bowel diseases? Int J Mol Sci. 24:22332023. View Article : Google Scholar : PubMed/NCBI | |
|
Furey TS, Sethupathy P and Sheikh SZ: Redefining the IBDs using genome-scale molecular phenotyping. Nat Rev Gastroenterol Hepatol. 16:296–311. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
D'Argenio V: The high-throughput analyses era: Are we ready for the data struggle? High Throughput. 7:82018. View Article : Google Scholar : PubMed/NCBI | |
|
Bracken CP, Scott HS and Goodall GJ: A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet. 17:719–732. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bruscadin JJ, Cardoso TF, Conteville LC, da Silva JV, Ibelli AMG, Pena GAC, Porto T, de Oliveira PSN, Andrade BGN, Zerlotini A and Regitano LCA: HolomiRA: A reproducible pipeline for miRNA binding site prediction in microbial genomes. BMC Bioinformatics. 26:2362025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z: Expanding bioinformatics: Toward a paradigm shift from data to theory. Fundam Res. Dec 3–2024.Epub ahead of print. | |
|
Rahmati R, Zarimeidani F, Ahmadi F, Yousefi-Koma H, Mohammadnia A, Hajimoradi M, Shafaghi S and Nazari E: Identification of novel diagnostic and prognostic microRNAs in sarcoma on TCGA dataset: bioinformatics and machine learning approach. Sci Rep. 15:75212025. View Article : Google Scholar : PubMed/NCBI | |
|
Stafford IS, Gosink MM, Mossotto E, Ennis S and Hauben M: A systematic review of artificial intelligence and machine learning applications to inflammatory bowel disease, with practical guidelines for interpretation. Inflamm Bowel Dis. 28:1573–1583. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Stankovic B, Kotur N, Nikcevic G, Gasic V, Zukic B and Pavlovic S: Machine learning modeling from omics data as prospective tool for improvement of inflammatory bowel disease diagnosis and clinical classifications. Genes (Basel). 12:14382021. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Y, Peng L, Shan W, Sun M, Luo L and Liang W: Machine learning in the development of targeting microRNAs in human disease. Front Genet. 13:10881892022. View Article : Google Scholar | |
|
Luna Buitrago D, Lovering RC and Caporali A: Insights into online microRNA bioinformatics tools. Noncoding RNA. 9:182023.PubMed/NCBI | |
|
Lou Y, Wang Y, Lu J and Chen X: MicroRNA-targeted nanoparticle delivery systems for cancer therapy: Current status and future prospects. Nanomedicine (Lond). 20:1181–1194. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Telkoparan-Akillilar P, Chichiarelli S, Tucci P and Saso L: Integration of MicroRNAs with nanomedicine: Tumor targeting and therapeutic approaches. Front Cell Dev Biol. 13:15691012025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Z, Liao L, Gao M and Liu Q: Garlic-derived exosome-like nanovesicles alleviate dextran sulphate sodium-induced mouse colitis via the TLR4/MyD88/NF-κB pathway and gut microbiota modulation. Food Funct. 14:7520–7534. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tian Y, Xu J, Li Y, Zhao R, Du S, Lv C, Wu W, Liu R, Sheng X, Song Y, et al: MicroRNA-31 reduces inflammatory signaling and promotes regeneration in colon epithelium, and delivery of mimics in microspheres reduces colitis in mice. Gastroenterology. 156:2281–2296.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fukata T, Mizushima T, Nishimura J, Okuzaki D, Wu X, Hirose H, Yokoyama Y, Kubota Y, Nagata K, Tsujimura N, et al: The supercarbonate apatite-MicroRNA complex inhibits dextran sodium sulfate-induced colitis. Mol Ther Nucleic Acids. 12:658–671. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang R, Xu K, Li H, Feng Y, Xiang G, Zhou X and Zhang C: Laminarin-mediated oral delivery of miRNA-223 for targeted macrophage polarization in inflammatory bowel disease. Int J Biol Macromol. 311:1430522025. View Article : Google Scholar : PubMed/NCBI | |
|
Long J, Liang X, Ao Z, Tang X, Li C, Yan K, Yu X, Wan Y, Li Y, Li C and Zhou M: Stimulus-responsive drug delivery nanoplatforms for inflammatory bowel disease therapy. Acta Biomater. 188:27–47. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao G, Zeng Y, Cheng W, Karkampouna S, Papadopoulou P, Hu B, Zang S, Wezenberg E, Forn-Cuní G, Lopes-Bastos B, et al: Peptide-modified lipid nanoparticles boost the antitumor efficacy of RNA therapeutics. ACS Nano. 19:13685–13704. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Haque MA, Shrestha A, Mikelis CM and Mattheolabakis G: Comprehensive analysis of lipid nanoparticle formulation and preparation for RNA delivery. Int J Pharm X. 8:1002832024.PubMed/NCBI | |
|
Martino MTD, Tagliaferri P and Tassone P: MicroRNA in cancer therapy: Breakthroughs and challenges in early clinical applications. J Exp Clin Cancer Res. 44:1262025. View Article : Google Scholar : PubMed/NCBI | |
|
Sundaram V and Aryal S: Emerging biomimetic drug delivery nanoparticles inspired by extracellular vesicles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 17:e700252025. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu S, Zhu F and Tong L: Application of targeted drug delivery by cell membrane-based biomimetic nanoparticles for inflammatory diseases and cancers. Eur J Med Res. 29:5232024. View Article : Google Scholar : PubMed/NCBI | |
|
Beuzelin D and Kaeffer B: Exosomes and miRNA-Loaded biomimetic nanovehicles, a focus on their potentials preventing type-2 diabetes linked to metabolic Syndrome. Front Immunol. 9:27112018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui C, Wang Y, Liu J, Zhao J, Sun P and Wang S: A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. Nat Commun. 10:42982019. View Article : Google Scholar : PubMed/NCBI | |
|
Mathur M, Nair A and Kadoo N: Plant-pathogen interactions: MicroRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics. 112:3021–3035. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wong-Bajracharya J, Singan VR, Monti R, Plett KL, Ng V, Grigoriev IV, Martin FM, Anderson IC and Plett JM: The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved in cross-kingdom gene silencing during symbiosis. Proc Natl Acad Sci USA. 119:e21035271192022. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Li C, Lv M, Hu Q, Guo L and Xiong D: Correlation between alterations of gut microbiota and miR-122-5p expression in patients with type 2 diabetes mellitus. Ann Transl Med. 8:14812020. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta P, O'Neill H, Wolvetang EJ, Chatterjee A and Gupta I: Advances in single-cell long-read sequencing technologies. NAR Genom Bioinform. 6:lqae0472024. View Article : Google Scholar : PubMed/NCBI | |
|
Duan D, Wang M, Han J, Li M, Wang Z, Zhou S, Xin W and Li X: Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications. Front Microbiol. 15:15091172025. View Article : Google Scholar : PubMed/NCBI | |
|
Moisoiu T, Dragomir MP, Iancu SD, Schallenberg S, Birolo G, Ferrero G, Burghelea D, Stefancu A, Cozan RG, Licarete E, et al: Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer. Mol Med. 28:392022. View Article : Google Scholar : PubMed/NCBI | |
|
Dave VP, Ngo TA, Pernestig AK, Tilevik D, Kant K, Nguyen T, Wolff A and Bang DD: MicroRNA amplification and detection technologies: Opportunities and challenges for point of care diagnostics. Lab Invest. 99:452–469. 2019. View Article : Google Scholar | |
|
Akbarian P, Asadi F and Sabahi A: Developing mobile health applications for inflammatory bowel disease: A systematic review of features and technologies. Middle East J Dig Dis. 16:2112024. View Article : Google Scholar | |
|
De Deo D, Dal Buono A, Gabbiadini R, Nardone OM, Ferreiro-Iglesias R, Privitera G, Bonifacio C, Barreiro-de Acosta M, Bezzio C and Armuzzi A: Digital biomarkers and artificial intelligence: A new frontier in personalized management of inflammatory bowel disease. Front Immunol. 16:16371592025. View Article : Google Scholar : PubMed/NCBI | |
|
Asadi F, Hosseini A and Daeechini AH: Designing the essential informational needs of a smartphone application for self-management of patients with inflammatory bowel disease. Health Sci Rep. 7:e701862024. View Article : Google Scholar : PubMed/NCBI | |
|
Yarani R, Shojaeian A, Palasca O, Doncheva NT, Jensen LJ, Gorodkin J and Pociot F: Differentially expressed miRNAs in ulcerative colitis and Crohn's disease. Front Immunol. 13:8657772022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu F, Zhang S, Dassopoulos T, Harris ML, Bayless TM, Meltzer SJ, Brant SR and Kwon JH: Identification of microRNAs associated with ileal and colonic Crohn's disease. Inflamm Bowel Dis. 16:1729–1738. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lederer T, Hipler NM, Thon C, Kupcinskas J and Link A: Comparison of fecal MicroRNA isolation using various total RNA isolation kits. Genes (Basel). 15:4982024. View Article : Google Scholar : PubMed/NCBI | |
|
Tam S, Tsao MS and McPherson JD: Optimization of miRNA-seq data preprocessing. Brief Bioinform. 16:950–963. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Rashid H, Hossain B, Siddiqua T, Kabir M, Noor Z, Ahmed M and Haque R: Fecal MicroRNAs as potential biomarkers for screening and diagnosis of intestinal diseases. Front Mol Biosci. 7:1812020. View Article : Google Scholar : PubMed/NCBI | |
|
Drago L, De La Motte LR, Deflorio L, Sansico DF, Salvatici M, Micaglio E, Biazzo M and Giarritiello F: Systematic review of bidirectional interaction between gut microbiome, miRNAs, and human pathologies. Front Microbiol. 16:15409432025. View Article : Google Scholar : PubMed/NCBI | |
|
Cuinat C, Pan J and Comelli EM: Host-dependent alteration of the gut microbiota: the role of luminal microRNAs. Microbiome Res Rep. 4:152025. View Article : Google Scholar : PubMed/NCBI | |
|
Lv Y, Zhen C, Liu A, Hu Y, Yang G, Xu C, Lou Y, Cheng Q, Luo Y, Yu J, et al: Profiles and interactions of gut microbiome and intestinal microRNAs in pediatric Crohn's disease. mSystems. 9:e00783242024. View Article : Google Scholar : PubMed/NCBI | |
|
Metwaly A, Kriaa A, Hassani Z, Carraturo F, Druart C; IHMCSA Consortium; Arnauts K, Wilmes P, Walter J, Rosshart S, et al: A Consensus Statement on establishing causality, therapeutic applications and the use of preclinical models in microbiome research. Nat Rev Gastroenterol Hepatol. 22:343–356. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
What will it take to get miRNA therapies to market? Nat Biotechnol. 42:1623–1624. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Diener C, Keller A and Meese E: Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Monaghan TM, Seekatz AM, Markham NO, Yau TO, Hatziapostolou M, Jilani T, Christodoulou N, Roach B, Birli E, Pomenya O, et al: Fecal microbiota transplantation for recurrent clostridioides difficile infection associates with functional alterations in circulating microRNAs. Gastroenterology. 161:255–270.e4. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Brusnic O, Adrian B, Sorin-Radu F, Grama B, Sofonea F, Roman-Filip C, Roman-Filip I, Solomon A, Bîrsan S, Dura H, et al: Importance of fecal microbiota transplantation and molecular regulation as therapeutic strategies in inflammatory bowel diseases. Nutrients. 16:44112024. View Article : Google Scholar : | |
|
Cerrotti G, Buratta S, Latella R, Calzoni E, Cusumano G, Bertoldi A, Porcellati S, Emiliani C and Urbanelli L: Hitting the target: Cell signaling pathways modulation by extracellular vesicles. Extracell Vesicles Circ Nucl Acids. 5:527–552. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yan Y, Nguyen LH, Franzosa EA and Huttenhower C: Strain-level epidemiology of microbial communities and the human microbiome. Genome Med. 12:712020. View Article : Google Scholar : PubMed/NCBI | |
|
Iacomino G: miRNAs: The Road from Bench to Bedside. Genes (Basel). 14:3142023. View Article : Google Scholar : PubMed/NCBI | |
|
Jones CH, Androsavich JR, So N, Jenkins MP, MacCormack D, Prigodich A, Welch V, True JM and Dolsten M: Breaking the mold with RNA-a 'RNAissance' of life science. NPJ Genom Med. 9:22024. View Article : Google Scholar | |
|
Santo J, Gineste P, Scherrer D, Nitcheu J, Ehrlich H, Sands BE and Vermeire S: P001 Obefazimod upregulates miR-124 and downregulates the expression of some cytokines in blood and rectal biopsies of patients with moderate-to-severe ulcerative colitis. J Crohns Colitis. 17:i169–i170. 2023. View Article : Google Scholar | |
|
Vermeire S, Sands BE, Tilg H, Tulassay Z, Kempinski R, Danese S, Bunganič I, Nitcheu J, Santo J, Scherrer D, et al: ABX464 (obefazimod) for moderate-to-severe, active ulcerative colitis: A phase 2b, double-blind, randomised, placebo-controlled induction trial and 48 week, open-label extension. Lancet Gastroenterol Hepatol. 7:1024–1035. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Abivax: Abivax announces positive phase 3 results from both ABTECT 8-week induction trials investigating obefazimod its first-in-class oral miΡ-124 enhancer in moderate to severely active ulcerative colitis. 2025. | |
|
Zendjabil M: Preanalytical, analytical and postanalytical considerations in circulating microRNAs measurement. Biochem Med (Zagreb). 34:0205012024. View Article : Google Scholar : PubMed/NCBI | |
|
Sandau US, Wiedrick JT, McFarland TJ, Galasko DR, Fanning Z, Quinn JF and Saugstad JA: Analysis of the longitudinal stability of human plasma miRNAs and implications for disease biomarkers. Sci Rep. 14:21482024. View Article : Google Scholar : PubMed/NCBI | |
|
Link J, Thon C, Petkevicius V, Steponaitiene R, Malfertheiner P, Kupcinskas J and Link A: The translational impact of plant-derived Xeno-miRNA miR-168 in gastrointestinal cancers and preneoplastic conditions. Diagnostics (Basel). 13:27012023. View Article : Google Scholar : PubMed/NCBI | |
|
Tembo KM, Wang X, Bolideei M, Liu Q, Baboni F, Mehran MJ, Sun F and Wang CY: Exploring the bioactivity of MicroRNAs originated from plant-derived exosome-like nanoparticles (PELNs): Current perspectives. J Nanobiotechnology. 23:5632025. View Article : Google Scholar | |
|
Zheng Y, Ji B, Song R, Wang S, Li T, Zhang X, Chen K, Li T and Li J: Accurate detection for a wide range of mutation and editing sites of microRNAs from small RNA high-throughput sequencing profiles. Nucleic Acids Res. 44:e1232016. View Article : Google Scholar : PubMed/NCBI | |
|
Kern F, Krammes L, Danz K, Diener C, Kehl T, Küchler O, Fehlmann T, Kahraman M, Rheinheimer S, Aparicio-Puerta E, et al: Validation of human microRNA target pathways enables evaluation of target prediction tools. Nucleic Acids Res. 49:127–144. 2021. View Article : Google Scholar : | |
|
Witkos TM, Koscianska E and Krzyzosiak WJ: Practical aspects of microRNA target prediction. Curr Mol Med. 11:93–109. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Oliveira ECS, Quaglio AEV, Magro DO, Di Stasi LC and Sassaki LY: Intestinal microbiota and miRNA in IBD: A narrative review about discoveries and perspectives for the future. Int J Mol Sci. 24:71762023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Zhao Z and Li M: Overcoming the cellular barriers and beyond: Recent progress on cell penetrating peptide modified nanomedicine in combating physiological and pathological barriers. Asian J Pharm Sci. 17:523–543. 2022.PubMed/NCBI | |
|
Singh D: Next-generation miRNA therapeutics: From computational design to translational engineering. Naunyn Schmiedebergs Arch Pharmacol. Aug 15–2025.Epub ahead of print. View Article : Google Scholar | |
|
Casado-Bedmar M and Viennois E: MicroRNA and gut microbiota: Tiny but mighty-novel insights into their cross-talk in inflammatory bowel disease pathogenesis and therapeutics. J Crohns Colitis. 16:992–1005. 2022. View Article : Google Scholar | |
|
Chodur GM and Steinberg FM: Human MicroRNAs modulated by diet: A scoping review. Adv Nutr. 15:1002412024. View Article : Google Scholar : PubMed/NCBI | |
|
Campbell K: Do the microRNAs we eat affect gene expression? Nature. 582:S10–S11. 2020. View Article : Google Scholar | |
|
Jouve de la Barreda N: From transgenesis to gene edition. Bioethical and applied considerations. Cuad Bioet. 31:387–401. 2020.In Spanish. PubMed/NCBI | |
|
Shin A and Xu H: Privacy risks in microbiome research: Public perspectives before and during a global pandemic. Ethics Hum Res. 44:2–13. 2022. View Article : Google Scholar : PubMed/NCBI |