Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
April 2012 Volume 40 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April 2012 Volume 40 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use

  • Authors:
    • Kyoung-Yoon Kim
    • Bo-Rim Yi
    • Hye-Rim Lee
    • Nam-Hee Kang
    • Eui-Bae Jeung
    • Seung U. Kim
    • Kyung-Chul Choi
  • View Affiliations / Copyright

    Affiliations: Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea, Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
  • Pages: 1097-1104
    |
    Published online on: December 8, 2011
       https://doi.org/10.3892/ijo.2011.1288
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Genetically engineered stem cells (GESTECs) producing suicide enzymes and immunotherapeutic cytokines have therapeutic effects on tumors, and may possibly reduce the side effects of toxic drugs used for treatments. Suicide enzymes can convert non-toxic pro-drugs to toxic metabolites that can reduce tumor growth. Cytosine deaminase (CD) is a suicide enzyme that metabolizes a non-toxic pro-drug, 5-fluorocytosine (5-FC), into the cytotoxic agent, 5-fluorouracil (5-FU). As an immunotherapeutic agent, human interferon‑β (IFN‑β) has anticancer effects. In this study, we used modified human neural stem cells (HB1.F3) expressing the Escherichia coli (E. coli) CD gene (HB1.F3.CD) or both the CD and human IFN‑β genes (HB1.F3.CD.IFN‑β) and evaluated their effectiveness on gastric carcinoma cells (AGS); migration of GESTECs to AGS was analyzed as well as formation of 5-FU and IFN‑β. Reverse transcription-polymerase chain reaction (RT-PCR) was used to confirm the expression of CD and IFN‑β genes in GESTECs along with confirming the production of chemoattractant molecules such as stem cell factor (SCF), CXCR4, c-Kit, vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). In addition, by co-culturing GESTECs with AGS in the presence of 5-FC, we were able to confirm that cancer growth was inhibited, along with a synergistic effect when the CD and IFN‑β genes (HB1.F3.CD.IFN‑β) were co-expressed. Indeed a marked anticancer effect was demonstrated when the CD and IFN‑β genes were expressed together compared to expression of the CD gene alone (HB1.F3.CD). According to a modified transwell migration assay, the migration of GESTECs toward AGS was confirmed. In conclusion, these data suggest potential application of GESTECs to gastric cancer therapy, due to a remarkable synergistic effect of CD and IFN‑β genes in the presence of 5-FC. Additionally, the tumor-selective migration capability in vitro suggests that GESTECs are a potential anticancer therapy candidate that may result in minimal side effects compared to the conventional chemotherapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Isik M, Caner S, Metin Seker M, et al: Gastric adenocarcinoma under the age of 40; more metastatic, less differentiated. J BUON. 16:253–256. 2011.PubMed/NCBI

2 

Blum M, Suzuki A and Ajani JA: A comprehensive review of S-1 in the treatment of advanced gastric adenocarcinoma. Future Oncol. 7:715–726. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Fidan E, Fidan S, Yildiz B, et al: Bolus fluorouracil induced syncope and pulseless ventricular tachycardia: a case report. Hippokratia. 15:93–95. 2011.PubMed/NCBI

4 

Longley DB, Harkin DP and Johnston PG: 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 3:330–338. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Luo XR, Li JS, Niu Y and Miao L: Targeted killing effects of double CD and TK suicide genes controlled by survivin promoter on gastric cancer cell. Mol Biol Rep. 38:1201–1207. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Anderson LM, Krotz S, Weitzman SA and Thimmapaya B: Breast cancer-specific expression of the Candida albicans cytosine deaminase gene using a transcriptional targeting approach. Cancer Gene Ther. 7:845–852. 2000.PubMed/NCBI

7 

Joo KM, Park IH, Shin JY, et al: Human neural stem cells can target and deliver therapeutic genes to breast cancer brain metastases. Mol Ther. 17:570–575. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ and Andreeff M: Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res. 62:3603–3608. 2002.

9 

Zhang JF, Wei F, Wang HP, et al: Potent anti-tumor activity of telomerase-dependent and HSV-TK armed oncolytic adenovirus for non-small cell lung cancer in vitro and in vivo. J Exp Clin Cancer Res. 29:522010. View Article : Google Scholar : PubMed/NCBI

10 

Aboody KS, Brown A, Rainov NG, et al: Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA. 97:12846–12851. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Aboody KS, Bush RA, Garcia E, et al: Development of a tumor-selective approach to treat metastatic cancer. PLoS One. 1:e232006. View Article : Google Scholar : PubMed/NCBI

12 

Kim SK, Kim SU, Park IH, et al: Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res. 12:5550–5556. 2006. View Article : Google Scholar

13 

Kim KY, Kim SU, Leung PC, Jeung EB and Choi KC: Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: tumor-tropic potential and inhibition of ovarian cancer cell growth. Cancer Sci. 101:955–962. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Kim SU: Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology. 24:159–171. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Kim SU, Nakagawa E, Hatori K, Nagai A, Lee MA and Bang JH: Production of immortalized human neural crest stem cells. Methods Mol Biol. 198:55–65. 2002.PubMed/NCBI

16 

Evoy D, Hirschowitz EA, Naama HA, et al: In vivo adenoviral-mediated gene transfer in the treatment of pancreatic cancer. J Surg Res. 69:226–231. 1997. View Article : Google Scholar : PubMed/NCBI

17 

Hirschowitz EA, Ohwada A, Pascal WR, Russi TJ and Crystal RG: In vivo adenovirus-mediated gene transfer of the Escherichia coli cytosine deaminase gene to human colon carcinoma-derived tumors induces chemosensitivity to 5-fluorocytosine. Hum Gene Ther. 6:1055–1063. 1995.PubMed/NCBI

18 

Kanai F, Lan KH, Shiratori Y, et al: In vivo gene therapy for α-fetoprotein-producing hepatocellular carcinoma by adenovirus-mediated transfer of cytosine deaminase gene. Cancer Res. 57:461–465. 1997.

19 

Lan KH, Kanai F, Shiratori Y, et al: Tumor-specific gene expression in carcinoembryonic antigen - producing gastric cancer cells using adenovirus vectors. Gastroenterology. 111:1241–1251. 1996. View Article : Google Scholar : PubMed/NCBI

20 

Li Z, Shanmugam N, Katayose D, et al: Enzyme/prodrug gene therapy approach for breast cancer using a recombinant adenovirus expressing Escherichia coli cytosine deaminase. Cancer Gene Ther. 4:113–117. 1997.PubMed/NCBI

21 

Austin EA and Huber BE: A first step in the development of gene therapy for colorectal carcinoma: cloning, sequencing, and expression of Escherichia coli cytosine deaminase. Mol Pharmacol. 43:380–387. 1993.PubMed/NCBI

22 

Mullen CA, Kilstrup M and Blaese RM: Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci USA. 89:33–37. 1992. View Article : Google Scholar : PubMed/NCBI

23 

Etienne MC, Cheradame S, Fischel JL, et al: Response to fluorouracil therapy in cancer patients: the role of tumoral dihydropyrimidine dehydrogenase activity. J Clin Oncol. 13:1663–1670. 1995.PubMed/NCBI

24 

Pinedo HM and Peters GF: Fluorouracil: biochemistry and pharmacology. J Clin Oncol. 6:1653–1664. 1988.PubMed/NCBI

25 

Chung-Faye GA, Chen MJ, Green NK, et al: In vivo gene therapy for colon cancer using adenovirus-mediated, transfer of the fusion gene cytosine deaminase and uracil phosphoribosyltransferase. Gene Ther. 8:1547–1554. 2001. View Article : Google Scholar

26 

Crystal RG, Hirschowitz E, Lieberman M, et al: Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther. 8:985–1001. 1997.PubMed/NCBI

27 

Freytag SO, Khil M, Stricker H, et al: Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 62:4968–4976. 2002.

28 

Dong Z, Greene G, Pettaway C, et al: Suppression of angiogenesis, tumorigenicity, and metastasis by human prostate cancer cells engineered to produce interferon-β. Cancer Res. 59:872–879. 1999.PubMed/NCBI

29 

Rossiello F, De Cicco Nardone F and Dell’Acqua S: Interferon-β increases the sensitivity of endometrial cancer cells to cell-mediated cytotoxicity. Gynecol Oncol. 54:130–136. 1994.

30 

Yi BR, Hwang KA, Kang NH, Kim SU, Jeung EB and Choi KC: Antitumor therapeutic effects of cytosine deaminase and interferon-β against endometrial cancer cells using genetically engineered stem cells in vitro. Anticancer Res. 31:2853–2862. 2011.

31 

Yi BR, O SN, Kang NH, et al: Genetically engineered stem cells expressing cytosine deaminase and interferon-β migrate to human lung cancer cells and have potentially therapeutic anti-tumor effects. Int J Oncol. 39:833–839. 2011.

32 

Schmidt NO, Przylecki W, Yang W, et al: Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia. 7:623–629. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Sun L, Lee J and Fine HA: Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest. 113:1364–1374. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Ehtesham M, Yuan X, Kabos P, et al: Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia. 6:287–293. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Jeong SW, Chu K, Jung KH, Kim SU, Kim M and Roh JK: Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke. 34:2258–2263. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Kim SU, Park IH, Kim TH, et al: Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology. 26:129–140. 2006. View Article : Google Scholar

37 

Meng XL, Shen JS, Ohashi T, Maeda H, Kim SU and Eto Y: Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse. J Neurosci Res. 74:266–277. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Rosser AE, Zietlow R and Dunnett SB: Stem cell transplantation for neurodegenerative diseases. Curr Opin Neurol. 20:688–692. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Ryu JK, Kim J, Cho SJ, et al: Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol Dis. 16:68–77. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Lee ST, Chu K, Park JE, et al: Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci Res. 52:243–249. 2005.PubMed/NCBI

41 

Lee DH, Ahn Y, Kim SU, et al: Targeting rat brainstem glioma using human neural stem cells and human mesenchymal stem cells. Clin Cancer Res. 15:4925–4934. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Boucher PD, Im MM, Freytag SO and Shewach DS: A novel mechanism of synergistic cytotoxicity with 5-fluorocytosine and ganciclovir in double suicide gene therapy. Cancer Res. 66:3230–3237. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Hartmann KU and Heidelberger C: Studies on fluorinated pyrimidines. XIII. Inhibition of thymidylate synthetase. J Biol Chem. 236:3006–3013. 1961.PubMed/NCBI

44 

Wei J, Wahl J, Knauss H, et al: Cytosine deaminase/5-fluorocytosine gene therapy and Apo2L/TRAIL cooperate to kill TRAIL-resistant tumor cells. Cancer Gene Ther. 14:640–651. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Huber BE, Austin EA, Richards CA, Davis ST and Good SS: Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA. 91:8302–8306. 1994. View Article : Google Scholar

46 

Saukkonen K and Hemminki A: Tissue-specific promoters for cancer gene therapy. Expert Opin Biol Ther. 4:683–696. 2004. View Article : Google Scholar

47 

Tubiana M: Tumor cell proliferation kinetics and tumor growth rate. Acta Oncol. 28:113–121. 1989. View Article : Google Scholar : PubMed/NCBI

48 

Beppu K, Jaboine J, Merchant MS, Mackall CL and Thiele CJ: Effect of imatinib mesylate on neuroblastoma tumorigenesis and vascular endothelial growth factor expression. J Natl Cancer Inst. 96:46–55. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Sun L, Hui AM, Su Q, et al: Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell. 9:287–300. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Nakamizo A, Marini F, Amano T, et al: Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 65:3307–3318. 2005.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kim K, Yi B, Lee H, Kang N, Jeung E, Kim SU and Choi K: Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use. Int J Oncol 40: 1097-1104, 2012.
APA
Kim, K., Yi, B., Lee, H., Kang, N., Jeung, E., Kim, S.U., & Choi, K. (2012). Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use. International Journal of Oncology, 40, 1097-1104. https://doi.org/10.3892/ijo.2011.1288
MLA
Kim, K., Yi, B., Lee, H., Kang, N., Jeung, E., Kim, S. U., Choi, K."Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use". International Journal of Oncology 40.4 (2012): 1097-1104.
Chicago
Kim, K., Yi, B., Lee, H., Kang, N., Jeung, E., Kim, S. U., Choi, K."Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use". International Journal of Oncology 40, no. 4 (2012): 1097-1104. https://doi.org/10.3892/ijo.2011.1288
Copy and paste a formatted citation
x
Spandidos Publications style
Kim K, Yi B, Lee H, Kang N, Jeung E, Kim SU and Choi K: Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use. Int J Oncol 40: 1097-1104, 2012.
APA
Kim, K., Yi, B., Lee, H., Kang, N., Jeung, E., Kim, S.U., & Choi, K. (2012). Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use. International Journal of Oncology, 40, 1097-1104. https://doi.org/10.3892/ijo.2011.1288
MLA
Kim, K., Yi, B., Lee, H., Kang, N., Jeung, E., Kim, S. U., Choi, K."Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use". International Journal of Oncology 40.4 (2012): 1097-1104.
Chicago
Kim, K., Yi, B., Lee, H., Kang, N., Jeung, E., Kim, S. U., Choi, K."Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use". International Journal of Oncology 40, no. 4 (2012): 1097-1104. https://doi.org/10.3892/ijo.2011.1288
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team