|
1.
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2.
|
Cho KR and Shih Ie M: Ovarian cancer. Annu
Rev Pathol. 4:287–313. 2009. View Article : Google Scholar
|
|
3.
|
Schnitt SJ: Classification and prognosis
of invasive breast cancer: from morphology to molecular taxonomy.
Mod Pathol. 23(Suppl 2): S60–S64. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
Kurman RJ and Shih Ie M: Pathogenesis of
ovarian cancer: lessons from morphology and molecular biology and
their clinical implications. Int J Gynecol Pathol. 27:151–160.
2008.PubMed/NCBI
|
|
5.
|
Lambeir AM, Durinx C, Scharpe S and De
Meester I: Dipeptidyl-peptidase IV from bench to bedside: an update
on structural properties, functions, and clinical aspects of the
enzyme DPP IV. Crit Rev Clin Lab Sci. 40:209–294. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6.
|
Bjelke JR, Christensen J, Nielsen PF,
Branner S, Kanstrup AB, Wagtmann N and Rasmussen HB: Dipeptidyl
peptidases 8 and 9: specificity and molecular characterization
compared with dipeptidyl peptidase IV. Biochem J. 396:391–399.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Ajami K, Pitman MR, Wilson CH, Park J,
Menz RI, Starr AE, Cox JH, Abbott CA, Overall CM and Gorrell MD:
Stromal cell-derived factors 1alpha and 1beta, inflammatory
protein-10 and interferon-inducible T cell chemo-attractant are
novel substrates of dipeptidyl peptidase 8. FEBS Lett. 582:819–825.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
8.
|
Keane FM, Nadvi NA, Yao TW and Gorrell MD:
Neuropeptide Y, B-type natriuretic peptide, substance P and peptide
YY are novel substrates of fibroblast activation protein-alpha.
FEBS J. 278:1316–1332. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9.
|
Busso N, Wagtmann N, Herling C,
Chobaz-Peclat V, Bischof-Delaloye A, So A and Grouzmann E:
Circulating CD26 is negatively associated with inflammation in
human and experimental arthritis. Am J Pathol. 166:433–442. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Barbieri F, Bajetto A and Florio T: Role
of chemokine network in the development and progression of ovarian
cancer: a potential novel pharmacological target. J Oncol.
2010:4269562010. View Article : Google Scholar : PubMed/NCBI
|
|
11.
|
Ali S and Lazennec G: Chemokines: novel
targets for breast cancer metastasis. Cancer Metastasis Rev.
26:401–420. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12.
|
Balkwill F: Cancer and the chemokine
network. Nat Rev Cancer. 4:540–550. 2004. View Article : Google Scholar
|
|
13.
|
Mentlein R: Dipeptidyl-peptidase IV
(CD26): role in the inactivation of regulatory peptides. Regul
Pept. 85:9–24. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
14.
|
Sun YX, Pedersen EA, Shiozawa Y, Havens
AM, Jung Y, Wang J, Pienta KJ and Taichman RS: CD26/dipeptidyl
peptidase IV regulates prostate cancer metastasis by degrading
SDF-1/CXCL12. Clin Exp Metastasis. 25:765–776. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15.
|
Arscott WT, La Bauve AE, May V and Wesley
UV: Suppression of neuroblastoma growth by dipeptidyl peptidase IV:
relevance of chemokine regulation and caspase activation. Oncogene.
28:479–491. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Lu C, Tilan JU, Everhart L, Czarnecka M,
Soldin SJ, Mendu DR, Jeha D, Hanafy J, Lee CK, Sun J,
Izycka-Swiezczewska E, Toretsky JA and Kitlinska J: Dipeptidyl
peptidases as survival factors in Ewing sarcoma family of tumors. J
Biol Chem. 286:27494–27505. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Yu DM, Wang XM, McCaughan GW and Gorrell
MD: Extra-enzymatic functions of the dipeptidyl peptidase
IV-related proteins DP8 and DP9 in cell adhesion, migration and
apoptosis. FEBS J. 273:2447–2460. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18.
|
Wang XM, Yu DM, McCaughan GW and Gorrell
MD: Fibroblast activation protein increases apoptosis, cell
adhesion, and migration by the LX-2 human stellate cell line.
Hepatology. 42:935–945. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Sulda ML, Abbott CA and Hildebrandt M:
DPIV/CD26 and FAP in cancer: a tale of contradictions. Adv Exp Med
Biol. 575:197–206. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Johnson RC, Zhu D, Augustin-Voss HG and
Pauli BU: Lung endothelial dipeptidyl peptidase IV is an adhesion
molecule for lung-metastatic rat breast and prostate carcinoma
cells. J Cell Biol. 121:1423–1432. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Cheng HC, Abdel-Ghany M, Elble RC and
Pauli BU: Lung endothelial dipeptidyl peptidase IV promotes
adhesion and metastasis of rat breast cancer cells via tumor cell
surface-associated fibronectin. J Biol Chem. 273:24207–24215. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Cheng HC, Abdel-Ghany M, Zhang S and Pauli
BU: Is the Fischer 344/CRJ rat a protein-knock-out model for
dipeptidyl peptidase IV-mediated lung metastasis of breast cancer?
Clin Exp Metastasis. 17:609–615. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
23.
|
Kajiyama H, Kikkawa F, Suzuki T, Shibata
K, Ino K and Mizutani S: Prolonged survival and decreased invasive
activity attributable to dipeptidyl peptidase IV overexpression in
ovarian carcinoma. Cancer Res. 62:2753–2757. 2002.PubMed/NCBI
|
|
24.
|
Kajiyama H, Shibata K, Ino K, Mizutani S,
Nawa A and Kikkawa F: The expression of dipeptidyl peptidase IV
(DPPIV/CD26) is associated with enhanced chemosensitivity to
paclitaxel in epithelial ovarian carcinoma cells. Cancer Sci.
101:347–354. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Garin-Chesa P, Old LJ and Rettig WJ: Cell
surface glycoprotein of reactive stromal fibroblasts as a potential
antibody target in human epithelial cancers. Proc Natl Acad Sci
USA. 87:7235–7239. 1990. View Article : Google Scholar
|
|
26.
|
Chen D, Kennedy A, Wang JY, Zeng W, Zhao
Q, Pearl M, Zhang M, Suo Z, Nesland JM, Qiao Y, Ng AK, Hirashima N,
Yamane T, Mori Y, Mitsumata M, Ghersi G and Chen WT: Activation of
EDTA-resistant gelatinases in malignant human tumors. Cancer Res.
66:9977–9985. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27.
|
Kraman M, Bambrough PJ, Arnold JN, Roberts
EW, Magiera L, Jones JO, Gopinathan A, Tuveson DA and Fearon DT:
Suppression of antitumor immunity by stromal cells expressing
fibroblast activation protein-alpha. Science. 330:827–830. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Kelly T, Kechelava S, Rozypal TL, West KW
and Korourian S: Seprase, a membrane-bound protease, is
overexpressed by invasive ductal carcinoma cells of human breast
cancers. Mod Pathol. 11:855–863. 1998.PubMed/NCBI
|
|
29.
|
Ariga N, Sato E, Ohuchi N, Nagura H and
Ohtani H: Stromal expression of fibroblast activation
protein/seprase, a cell membrane serine proteinase and gelatinase,
is associated with longer survival in patients with invasive ductal
carcinoma of breast. Int J Cancer. 95:67–72. 2001. View Article : Google Scholar
|
|
30.
|
Goodman JD, Rozypal TL and Kelly T:
Seprase, a membrane-bound protease, alleviates the serum growth
requirement of human breast cancer cells. Clin Exp Metastasis.
20:459–470. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Huang Y, Wang S and Kelly T: Seprase
promotes rapid tumor growth and increased microvessel density in a
mouse model of human breast cancer. Cancer Res. 64:2712–2716. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Kennedy A, Dong H, Chen D and Chen WT:
Elevation of seprase expression and promotion of an invasive
phenotype by collagenous matrices in ovarian tumor cells. Int J
Cancer. 124:27–35. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Abbott CA, Yu DM, Woollatt E, Sutherland
GR, McCaughan GW and Gorrell MD: Cloning, expression and
chromosomal localization of a novel human dipeptidyl peptidase
(DPP) IV homolog, DPP8. Eur J Biochem. 267:6140–6150. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Yu DM, Yao TW, Chowdhury S, Nadvi NA,
Osborne B, Church WB, McCaughan GW and Gorrell MD: The dipeptidyl
peptidase IV family in cancer and cell biology. FEBS J.
277:1126–1144. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Dubois V, Van Ginneken C, De Cock H,
Lambeir AM, Van der Veken P, Augustyns K, Chen X, Scharpe S and De
Meester I: Enzyme activity and immunohistochemical localization of
dipeptidyl Peptidase 8 and 9 in male reproductive tissues. J
Histochem Cytochem. 57:531–541. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36.
|
Yao TW, Kim WS, Yu DM, Sharbeen G,
McCaughan GW, Choi KY, Xia P and Gorrell MD: A novel role of
dipeptidyl peptidase 9 in epidermal growth factor signaling. Mol
Cancer Res. 9:948–959. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Sulda ML, Abbott CA, Macardle PJ, Hall RK
and Kuss BJ: Expression and prognostic assessment of dipeptidyl
peptidase IV and related enzymes in B-cell chronic lymphocytic
leukemia. Cancer Biol Ther. 10:180–189. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38.
|
Yu DM, Ajami K, Gall MG, Park J, Lee CS,
Evans KA, McLaughlin EA, Pitman MR, Abbott CA, McCaughan GW and
Gorrell MD: The in vivo expression of dipeptidyl peptidases 8 and
9. J Histochem Cytochem. 57:1025–1040. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Stremenova J, Mares V, Lisa V, Hilser M,
Krepela E, Vanickova Z, Syrucek M, Soula O and Sedo A: Expression
of dipeptidyl peptidase-IV activity and/or structure homologs in
human meningiomas. Int J Oncol. 36:351–358. 2010.PubMed/NCBI
|
|
40.
|
Stremenova J, Krepela E, Mares V, Trim J,
Dbaly V, Marek J, Vanickova Z, Lisa V, Yea C and Sedo A: Expression
and enzymatic activity of dipeptidyl peptidase-IV in human
astrocytic tumours are associated with tumour grade. Int J Oncol.
31:785–792. 2007.PubMed/NCBI
|
|
41.
|
Soule HD, Vazguez J, Long A, Albert S and
Brennan M: A human cell line from a pleural effusion derived from a
breast carcinoma. J Natl Cancer Inst. 51:1409–1416. 1973.PubMed/NCBI
|
|
42.
|
Zajchowski DA, Bartholdi MF, Gong Y,
Webster L, Liu HL, Munishkin A, Beauheim C, Harvey S, Ethier SP and
Johnson PH: Identification of gene expression profiles that predict
the aggressive behavior of breast cancer cells. Cancer Res.
61:5168–5178. 2001.PubMed/NCBI
|
|
43.
|
Crow MJ, Grant G, Provenzale JM and Wax A:
Molecular imaging and quantitative measurement of epidermal growth
factor receptor expression in live cancer cells using immunolabeled
gold nanoparticles. AJR Am J Roentgenol. 192:1021–1028. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
44.
|
Lau KM, Mok SC and Ho SM: Expression of
human estrogen receptor-alpha and -beta, progesterone receptor, and
androgen receptor mRNA in normal and malignant ovarian epithelial
cells. Proc Natl Acad Sci USA. 96:5722–5727. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Takai N, Jain A, Kawamata N, Popoviciu LM,
Said JW, Whittaker S, Miyakawa I, Agus DB and Koeffler HP: 2C4, a
monoclonal antibody against HER2, disrupts the HER kinase signaling
pathway and inhibits ovarian carcinoma cell growth. Cancer.
104:2701–2708. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Xu F, Yu Y, Le XF, Boyer C, Mills GB and
Bast RC: The outcome of heregulin-induced activation of ovarian
cancer cells depends on the relative levels of HER-2 and HER-3
expression. Clin Cancer Res. 5:3653–3660. 1999.PubMed/NCBI
|
|
47.
|
Hua W, Christianson T, Rougeot C,
Rochefort H and Clinton GM: SKOV3 ovarian carcinoma cells have
functional estrogen receptor but are growth-resistant to estrogen
and antiestrogens. J Steroid Biochem Mol Biol. 55:279–289. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
48.
|
Hu G, Liu W, Mendelsohn J, Ellis LM,
Radinsky R, Andreeff M and Deisseroth AB: Expression of epidermal
growth factor receptor and human papillomavirus E6/E7 proteins in
cervical carcinoma cells. J Natl Cancer Inst. 89:1271–1276. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Monje P and Boland R: Expression and
cellular localization of naturally occurring beta estrogen
receptors in uterine and mammary cell lines. J Cell Biochem.
86:136–144. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Lossos IS, Czerwinski DK, Wechser MA and
Levy R: Optimization of quantitative real-time RT-PCR parameters
for the study of lymphoid malignancies. Leukemia. 17:789–795. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
51.
|
Maes MB, Dubois V, Brandt I, Lambeir AM,
Van der Veken P, Augustyns K, Cheng JD, Chen X, Scharpe S and De
Meester I: Dipeptidyl peptidase 8/9-like activity in human
leukocytes. J Leukocyte Biol. 81:1252–1257. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52.
|
Abbott CA and Gorrell MD: The family of
CD26/DPIV related ectopeptidases. Ectopeptidases:
CD13/Aminopeptidase N and CD26/Dipeptidylpeptidase IV in Medicine
and Biology. Langner J and Ansorge S: Kluwer/Plenum; New York: pp.
171–195. 2002, View Article : Google Scholar
|
|
53.
|
Balaziova E, Busek P, Stremenova J,
Sromova L, Krepela E, Lizcova L and Sedo A: Coupled expression of
dipeptidyl peptidase-IV and fibroblast activation protein-alpha in
transformed astrocytic cells. Mol Cell Biochem. 354:283–289. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
54.
|
Ajami K, Abbott CA, McCaughan GW and
Gorrell MD: Dipeptidyl peptidase 9 has two forms, a broad tissue
distribution, cytoplasmic localization and DPIV-like peptidase
activity. Biochim Biophys Acta. 1679:18–28. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55.
|
Pitman MR, Menz RI and Abbott CA:
Hydrophilic residues surrounding the S1 and S2 pockets contribute
to dimerisation and catalysis in human dipeptidyl peptidase 8
(DP8). Biol Chem. 391:959–972. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56.
|
Bank U, Heimburg A, Wohlfarth A, Koch G,
Nordhoff K, Julius H, Helmuth M, Breyer D, Reinhold D, Tager M and
Ansorge S: Outside or inside: role of the subcellular localization
of DP4-like enzymes for substrate conversion and inhibitor effects.
Biol Chem. 392:169–187. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57.
|
Ansorge S, Nordhoff K, Bank U, Heimburg A,
Julius H, Breyer D, Thielitz A, Reinhold D and Tager M: Novel
aspects of cellular action of dipeptidyl peptidase IV/CD26. Biol
Chem. 392:153–168. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58.
|
Kikkawa F, Kajiyama H, Ino K, Shibata K
and Mizutani S: Increased adhesion potency of ovarian carcinoma
cells to mesothelial cells by overexpression of dipeptidyl
peptidase IV. Int J Cancer. 105:779–783. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
59.
|
Huang Y, Simms AE, Mazur A, Wang S, Leon
NR, Jones B, Aziz N and Kelly T: Fibroblast activation
protein-alpha promotes tumor growth and invasion of breast cancer
cells through non-enzymatic functions. Clin Exp Metastasis.
28:567–579. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Aertgeerts K, Levin I, Shi L, Snell GP,
Jennings A, Prasad GS, Zhang Y, Kraus ML, Salakian S, Sridhar V,
Wijnands R and Tennant MG: Structural and kinetic analysis of the
substrate specificity of human fibroblast activation protein alpha.
J Biol Chem. 280:19441–19444. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61.
|
Chiravuri M, Agarraberes F, Mathieu SL,
Lee H and Huber BT: Vesicular localization and characterization of
a novel post-proline-cleaving aminodipeptidase, quiescent cell
proline dipeptidase. J Immunol. 165:5695–5702. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
62.
|
Tang HK, Tang HY, Hsu SC, Chu YR, Chien
CH, Shu CH and Chen X: Biochemical properties and expression
profile of human prolyl dipeptidase DPP9. Arch Biochem Biophys.
485:120–127. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Leiting B, Pryor KD, Wu JK, Marsilio F,
Patel RA, Craik CS, Ellman JA, Cummings RT and Thornberry NA:
Catalytic properties and inhibition of proline-specific dipeptidyl
peptidases II, IV and VII. Biochem J. 371:525–532. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64.
|
Maes MB, Martinet W, Schrijvers DM, Van
der Veken P, De Meyer GR, Augustyns K, Lambeir AM, Scharpe S and De
Meester I: Dipeptidyl peptidase II and leukocyte cell death.
Biochem Pharmacol. 72:70–79. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Danilova O, Li B, Szardenings AK, Huber BT
and Rosenblum JS: Synthesis and activity of a potent, specific
azabicyclo[3.3.0]-octane-based DPP II inhibitor. Bioorg Med Chem
Lett. 17:507–510. 2007.
|
|
66.
|
Hui M and Hui KS: A novel aminopeptidase
with highest preference for lysine. Neurochem Res. 31:95–102. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
67.
|
Claperon C, Banegas-Font I, Iturrioz X,
Rozenfeld R, Maigret B and Llorens-Cortes C: Identification of
threonine 348 as a residue involved in aminopeptidase A substrate
specificity. J Biol Chem. 284:10618–10626. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68.
|
Fukasawa KM, Hirose J, Hata T and Ono Y:
Aspartic acid 405 contributes to the substrate specificity of
aminopeptidase B. Biochemistry. 45:11425–11431. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69.
|
Drag M, Bogyo M, Ellman JA and Salvesen
GS: Aminopeptidase fingerprints, an integrated approach for
identification of good substrates and optimal inhibitors. J Biol
Chem. 285:3310–3318. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70.
|
Tenorio-Laranga J, Venalainen JI, Mannisto
PT and Garcia-Horsman JA: Characterization of membrane-bound prolyl
endopeptidase from brain. FEBS J. 275:4415–4427. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71.
|
Edosada CY, Quan C, Tran T, Pham V,
Wiesmann C, Fairbrother W and Wolf BB: Peptide substrate profiling
defines fibroblast activation protein as an endopeptidase of strict
Gly(2)-Pro(1)-cleaving specificity. FEBS Lett. 580:1581–1586. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
72.
|
Cheng JQ, Lindsley CW, Cheng GZ, Yang H
and Nicosia SV: The Akt/PKB pathway: molecular target for cancer
drug discovery. Oncogene. 24:7482–7492. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
73.
|
Hernandez-Aya LF and Gonzalez-Angulo AM:
Targeting the phosphatidylinositol 3-kinase signaling pathway in
breast cancer. Oncologist. 16:404–414. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74.
|
Zagouri F, Dimopoulos MA, Bournakis E and
Papadimitriou CA: Molecular markers in epithelial ovarian cancer:
their role in prognosis and therapy. Eur J Gynaecol Oncol.
31:268–277. 2010.PubMed/NCBI
|
|
75.
|
Mazzoletti M and Broggini M: PI3K/AKT/mTOR
inhibitors in ovarian cancer. Curr Med Chem. 17:4433–4447. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
76.
|
Dickson RB, Thompson EW and Lippman ME:
Regulation of proliferation, invasion and growth factor synthesis
in breast cancer by steroids. J Steroid Biochem Mol Biol.
37:305–316. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
77.
|
Kim HJ, Cui X, Hilsenbeck SG and Lee AV:
Progesterone receptor loss correlates with human epidermal growth
factor receptor 2 overexpression in estrogen receptor-positive
breast cancer. Clin Cancer Res. 12:S1013–S1018. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78.
|
Yager JD and Davidson NE: Estrogen
carcinogenesis in breast cancer. N Engl J Med. 354:270–282. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
79.
|
Oakman C, Viale G and Di Leo A: Management
of triple negative breast cancer. Breast. 19:312–321. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
80.
|
Rao BR, Slotman BJ, Geldof AA and Dinjens
WN: Correlation between tumor histology, steroid receptor status,
and adenosine deaminase complexing protein immunoreactivity in
ovarian cancer. Int J Gynecol Pathol. 9:47–54. 1990. View Article : Google Scholar
|