Open Access

Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma

  • Authors:
    • Fujimasa Tada
    • Masanori Abe
    • Masashi Hirooka
    • Yoshiou Ikeda
    • Yoichi Hiasa
    • Yoon  Lee
    • Nam-Chul Jung
    • Woo-Bok Lee
    • Hyun-Soo Lee
    • Yong-Soo Bae
    • Morikazu Onji
  • View Affiliations

  • Published online on: September 11, 2012     https://doi.org/10.3892/ijo.2012.1626
  • Pages: 1601-1609
  • Copyright: © Tada et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Dendritic cells (DCs) are increasingly used as adjuvants for vaccination strategies; however, there has been very little development in DC vaccines for patients with hepatocellular carcinoma (HCC). In this study, we assessed the safety, feasibility and efficacy of a multiple tumor-associated antigen (TAA)-pulsed DC vaccine in 5 patients with advanced HCC. DCs were generated by culturing blood monocytes in the presence of granulocyte macrophage-colony stimulating factor and interleukin-4 for 5 days. The DC vaccine was prepared by pulsing DCs with cytoplasmic transduction peptide-attached α-fetoprotein, glypican-3 and MAGE-1 recombinant fusion proteins and cultivating them in the presence of maturation cocktail. DCs were injected subcutaneously near the inguinal lymph nodes, followed by topical application of toll-like receptor-7 agonist around the injection site. We showed that our DC vaccine was safe and well-tolerated over 6 vaccinations in 5 patients. All 5 patients showed T cell responses against TAAs. Clinical benefit was observed in one of the 5 patients. In conclusion, the feasibility, safety and immune activity of DCs pulsed with TAAs were confirmed in HCC patients. However, clinical response was detected only in one patient. Future trials may consider applying this therapy in a less advanced stage to obtain better clinical responses.

Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant diseases worldwide (1). Many locoregional therapeutic approaches, including surgical resection, radio-frequency ablation (RFA), percutaneous ethanol injection (PEI), and transcatheter hepatic arterial chemoembolization (TACE) have been applied in the search for curative treatments for HCC. Although current advances in therapeutic modalities have improved the prognosis of patients with HCC, the survival rate is still unsatisfactory (2). One reason for the poor prognosis is the high rate of recurrence after treatment (35). Current therapeutic approaches do not prevent tumor recurrence efficiently.

Patients with HCC demonstrate some dysfunctions in their immune system, including abnormal innate and adaptive immune responses (6). Therefore, one strategy to reduce tumor recurrence is to enhance antitumor immune responses that may induce sufficient inhibitory effects to prevent tumor cell growth and survival. Dendritic cells (DCs) are professional antigen presenting cells that play a central role in the immune system by initiating an antigen-specific cytotoxic T lymphocyte (CTL) response (7,8). DCs acquire antigens through endocytosis and phagocytosis in peripheral tissues in their immature state and become mature. Subsequently, mature DCs migrate via blood and lymphatics to the secondary lymphoid organs, where they prime T cells. Due to their unique capacity to regulate T cell immunity, DCs are increasingly used as adjuvants for vaccination strategies. Recently, several studies have been performed using DC generated ex vivo from peripheral blood, and no significant toxicities were observed in the majority of patients. In addition, induction or enhancement of cellular immune responses against tumor antigens was found after DC vaccination (9,10).

Although immunotherapy strategies to eliminate HCC have consistently demonstrated high efficacy in animal models, very limited efficacy has been demonstrated in patients (1120). There are possible explanations that may explain this discrepancy, but one major limitation for clinical trials is obtaining adequate amounts of immunogenic tumor-associated antigens (TAAs). DC loaded with autologous tumor or tumor lysates, which contain TAAs, are most frequently used for clinical trials (1113,16). Another approach is to use apoptotic or necrotic tumor cells, which are induced by the standard treatments for HCC, as tumor antigens. Previous studies have shown that these cells effectively cross-prime the T cell response and induce potent immunity (14,15,18,20).However, ideal protocols to induce antigen-specific immunity involve DC loaded with TAAs themselves if such TAAs have been defined. Although many specific proteins have been identified with differential expression profiles in HCC cells, appropriate antigens for incorporation into DC vaccines for HCC have not been defined. α-fetoprotein (AFP) is a potential candidate antigen, and Butterfield et al reported that DC pulsed with HLA-A0201-restricted peptides induced AFP-specific T cell responses, though no clinical responses were observed (17).

To overcome these problems, we conducted a phase I/II clinical study using DC vaccine prepared as follows: i) TAA-pulsed mature DCs were used together with topical application of toll-like receptor (TLR)-7 agonist; ii) recombinant proteins, instead of epitope peptides, were used as a source of TAA to overcome the restriction of HLA type; iii) 3 different HCC antigens were used to cover the broad spectrum of HCC heterogeneity; iv) for efficient delivery of antigens into the cytoplasm of DC, cytoplasmic transduction protein (CTP)-mediated transduction system (21) was used. The primary objective of this study was to assess the safety, feasibility and immune activity of multiple TAA-pulsed DC therapy. The efficacy of this therapy was also evaluated.

Patients and methods

Patient selection

The clinical trial protocol was approved by the Institutional Review Board of Ehime University Hospital (Approval ID #0809003). Patients were informed of the investigative nature of this study, and written consent in accordance with institutional regulations was obtained prior to study entry. Eligibility criteria included radiological diagnosis of primary HCC by computed tomography (CT), classified in stage II and III according to the tumor-node-metastasis (TNM) classification; age over 20 years/both male and female; Eastern Cooperative Oncology Group scale 0–1; and indicatiors of acceptable hematological (hemoglobin ≥8.5 g/dl, white blood cells ≥2,000/mm3, platelet ≥50,000/mm3), hepatic (Child Pugh score ≤7, alanine aminotransferase, aspartate aminotransferase ≤5x upper normal limit) and renal (creatinine ≤1.5 mg/dl) function. Important exclusion criteria consisted of organ transplantation; a medical history of autoimmune disease, immunodeficiency, or autoimmune disease that might be aggravated by immunotherapy; not exceeding 2 weeks after antibiotic treatment needed due to a serious infectious disease; seropositivity for human immunodeficiency virus antigen; use of immunosuppressive drug such as cyclosporin A and azathioprine; any cardiopulmonary disability judged by the investigator; a medical history of psychological disease or epilepsy; and evidence of another active malignant neoplasm.

Preparation of recombinant hepatocellular carcinoma antigens

cDNAs encoding AFP, MAGE-1 or glypican-3 (GPC3) were cloned into the pCTP vector (21). These 3 antigens were expressed in the form of 6x-His-attached fusion proteins in E. coli BL21 (DE3) and purified using nickel-nitrilotriacetic acid (Ni-NTA) column chromatography (Qiagen, Hilden, Germany). The recombinant antigen production and purification were performed at Good Manufacturing Practice (GMP)-compliant facility following the Korean Food and Drug Administration (KFDA) guideline. Each antigen was certified through the process of quality control: purity >95% in SDS-PAGE analysis and endotoxin <1.0 EU/μg in Limulus amebocyte lysate test.

Autologous DC generation

DCs were generated from blood monocytes, as reported previously (22), with modifications. White blood cells obtained from the HCC patients through leukapheresis. DCs were prepared in a GMP-compliant facility at Ehime University Hospital (Ehime, Japan). Peripheral blood mononuclear cells (PBMCs) were separated from WBC by Ficoll-Paque™ PLUS (Amersham Biosciences, Uppsala, Sweden) density gradient centrifugation. PBMCs were stored in a liquid nitrogen tank until necessary for DC generation. PBMCs thawed, washed with Hanks’ Balanced Salt Solutions, resuspended in RPMI-1640 medium (Lonza, Basel, Switzerland) supplemented with autologous heat-inactivated plasma, and then incubated in CellSTACK Culture Chambers (Corning, Corning, NY, USA). After 0.5–1 h incubation at 37°C in a 5% CO2 incubator, non-adherent cells were removed by gentle washes.

The adherent monocytes were cultured in X-VIVO15 (Cambrex, East Rutherford, NJ, USA) supplemented with 100 ng/ml of granulocyte macrophage-colony stimulating factor (GMP grade: LG Life Science, Seoul, Korea) and 300 ng/ml of interleukin (IL)-4 (JW CreaGene Inc., Seongnam, Korea) for 5 days. On day 5, nonattached immature DCs were harvested and pulsed with CTP-fused human AFP, MAGE-1 and GPC-3 recombinant proteins at a final concentration of 5 μg/ml each. Antigen-pulsed dendritic cells were matured in the presence of cytokine cocktail, IL-6 (Peprotech, Rocky Hill, NJ, USA), IL-1β (Peprotech), tumor necrosis factor (TNF)-α (Peprotech), prostaglandin E2 (PGE2) (Sigma Chemical Co., St. Louis, MO, USA), interferon (IFN)-γ (LG Life Science), OK432 (Chugai Pharmaceutical Co., Tokyo, Japan), and poly I:C (Sigma) for 1 or 2 days depending on surface phenotypes and cell population. On day 6–7, the DCs were harvested, washed, and resuspended in 1.2 ml of cryopreserving solution containing 5% dimethyl sulfoxide (Bioniche Pharma USA, Lake Forest, IL, USA). Finally fully equipped DCs were packed into a sterile glass vial (4×107 cells/vial), sealed with a snap-cap, and stored at an ultralow freezer for >12 h.

Quality control of dendritic cell vaccine
Safety test

For safety, endotoxin, germ-free and mycoplasma-free tests were performed according to the KFDA-approved JW CreaGene standard and test guidelines. Endotoxin was evaluated using gel-clot techniques. The endotoxin of the product should be less than 10 EU/ml per 1.2-ml vial. Mycoplasma test was performed by both direct culture and PCR methods using e-Myco™ Mycoplasma PCR detection kit (Intron Biotechnology, Seongnam, Korea), which contains primer sets specifically designed to detect major contaminants of Mycoplasma in cell cultures such as M. arginini, M. faucium, M. fermentans, M. hyorhinis, M. orale, and A. laidlawii as well as other broad spectrum of mycoplasma.

Cell size and granularity

During the differentiation from monocytes to dendritic cells, cell size and granularity increase. Based on these principles, the cell size and granularity of each DC vaccine were assessed by flow cytometric analysis. PBMCs were used for gating control.

Phenotypic analysis

The phenotype of DC vaccine was determined by flow cytometry using a FACSCalibur™ flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). The following monoclonal antibodies were used: i) fluorescein isothiocyanate-conjugated mouse antihuman IgG2a isotype control; ii) phycoerythrin-conjugated mouse antihuman IgG1 isotype control; iii) anti-CD14, anti-CD19, anti-CD40, anti-CD80, anti-D86, anti-HLA-ABC, and anti-HLA-DR (BD Pharmingen, San Diego, CA, USA).

Viability

The viability of DC vaccine was assessed by propidium iodide (PI) staining. PI (BD Pharmingen) was added to a sample and kept in the dark at room temperature for 20 min. Cell viability was examined by flow cytometry using a FACSCalibur™ (Becton Dickinson). Viability was represented as 100-[(PI+ of sample)−(PI+ of control)] (%).

Lymphocyte proliferation assay

One vial from each DC vaccine lot was used to test of T cell stimulation capacity according to the standard lymphocyte proliferation assay. T cells were isolated from cryopreserved PBMC using nylon wool column (Polysciences, Warrington, PA, USA). Purified T cells (1×105) were cultured with serially diluted DC vaccine (starting from 1×104 cells to 0.33×103 cells) at 37°C for 5 days. T cell proliferation was assessed by 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, yellow tetrazole: MTT) assay following manufacturer’s protocol (CellTiter 96 Non-Radioactive proliferation assay kit; Promega, Madison, WI, USA). R2 represent the standard curve of MTT assay for the validation of a data set.

Cytokine production assay

Either culture supernatant of each antigen-pulsed DC or co-cultured medium of T cells/DC at the ratio of 10:1 was collected and stored at −80°C until this assay. The concentration of IL-12p70, IL-10, IFN-γ, and IL-4 was measured with corresponding human immunoassay kits (BD OptEIA kit, BD Pharmingen) based on the manufacturer’s instruction. Each experiment was performed 3 times and the result was described as the mean ± standard deviation.

Treatment protocol (Fig. 1)

The screening evaluation was performed 3 weeks before the start of immunotherapy and consisted of the following: complete history, thorough physical examination, chest X-ray, electrocardiogram, urine analysis, hematological and immunological parameters, serum chemistry, tumor markers [AFP and protein induced by vitamin K absence or antagonists-II (PIVKA-II)], ultrasonography and abdominal CT scan. Eligible patients underwent TACE 2 weeks before the start of the vaccination. PBMC collection by leukapheresis was performed 1 week before the first planned vaccination. Tumor antigen-pulsed DCs were injected subcutaneously into the thigh near the inguinal lymph nodes. Topical TLR-7 agonist (imiquimod; Aldara Cream; Mochida Pharmaceutical Co., Tokyo, Japan) applied around the injection site from 2 consecutive days before injection. During the first cycle, 4 vaccinations were administered at biweekly intervals. Medical history and standard blood tests and urine analysis were performed at each vaccination. Vital signs were monitored during and after each injection. Response evaluation was performed 4 weeks after fourth vaccination (10 weeks after first vaccination), and TACE was repeated. Two further vaccinations were administered at biweekly intervals, and final response evaluation was performed at 18 weeks after first vaccination. Tumor markers and serological tests for autoantibodies, including anti-nuclear antibody, were evaluated every 4 weeks.

Clinical response and toxicity assessment

Clinical responses to vaccination were evaluated according to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria (23). Complete response was defined as disappearance of all target lesions. Partial response was defined as 30% decrease in the sum of the longest diameter of target lesions. Progressive disease was 20% increase in the sum of the longest diameter of target lesions. Stable disease was defined as small changes that do not meet above criteria. Toxities were classified according to the National Cancer Institute Common Toxicity Criteria.

Analysis of IFN-γ-producing cells using enzyme-linked immunospot (ELISPOT) assay

The ELISPOT assay was adopted to detect and enumerate individual cells that secrete IFN-γ in vitro upon HCC-specific or -associated tumor antigens. Human IFN-γ ELISPOT pair antibodies were purchased from BD Pharmingen, and ELISPOT assay was performed according to the manufacturer’s instruction. In brief, PBMC (2×105 cells) treated with each antigen (3–5 μg/ml) or antigen mixtures were loaded on a flat-bottomed 96-well ELISPOT plate (Millipore, Danvers, MA, USA) precoated with capture antibody. The plate was incubated for 20 h at 37°C CO2 incubator. After washing, detection antibody was added to each well and incubated for 2 h at room temperature. Avidinhorseradish peroxidase conjugate was added to each well, and the plate was developed with 3-amino-9-ethyl-carbazole substrate reagent set. Visible spots were enumerated using an automated ELISPOT reader (CTL, USA) and default program.

Results

Patients

Treatment was performed at Ehime University, in 2009 (Ehime, Japan). Baseline characteristic of the 5 patients enrolled are shown in Table I. The basis of the diagnosis of HCC was histological and/or radiolgical for all patients. All patients were male with age range 46–64 years. Two and 3 patients were infected with hepatitis B virus and hepatitis C virus, respectively. All patients were previously treated with TACE.

Table I.

Patient characteristics and treatments.

Table I.

Patient characteristics and treatments.

A
Patient no.SexAge (years)EtiologyTNM stageNo. of tumorsLargest tumorChild-Pugh
1M65HCVIII222.1A
2M58HBVIII215.9A
3M59HCVII16.6A
4M64HBVII112.4A
5M46HCVII930.3B
B
AFP (<ng/m)
PIVKA-II (mAU/ml)
Outcome
Patient no.Previous treatmentPrePostPrePost
1TACE23.756.78423,109PD
2TACE12.416.8421,189PD
3TACE27.423.25367SD
4TACE30.5181.459192PD
5TACE854.1660.010,70730,615PD

[i] HBV, hepatitis B virus; HCV, hepatitis C virus; TACE, transcatheter hepatic arterial chemoembolization; AFP, α-fetoprotein; PIVKA-II, protein induced by vitamin K absence or antagonists-II; PD, progressive disease; SD, stable disease.

DC vaccine

DC vaccine was generated successfully from the 5 patients with HCC. One vial from each lot of frozen DC vaccines was thawed and used for quality control. DC vaccine demonstrated typical features of mature DC morphology under a microscope. The cell population in DC gate in the FACS analysis was over 90% on the basis of the cell size and granularity, with a median value of 94.4% (Fig. 2A). The analysis of lineage markers revealed that the contamination of B cells (CD19) and monocytes (CD14) was less than 10% (Fig. 2B). Over 95% of DCs demonstrated MHC class I (HLA-ABC) high, MHC class II (HLA-DR) high, and costimulatory molecules (CD86, CD80, and CD40) high (Fig. 2C). These characteristics were commonly maintained in all 5 different DC vaccines, which were generated under the same culture conditions. Viability is one of the most important issues in DC vaccine. The viabilities of DC vaccines ranged from 86.2% to 93.5% and median value was 92.3% (Fig. 2D), indicating that the frozen DCs can be used as a therapeutic vaccine. The frozen DC vaccine was stable for longer than 6 months (data not shown). The purity, cell viability and surface phenotypes of 5 different DC vaccines are summarized in Table II.

Table II.

Quality control results of 5 different DC vaccines.

Table II.

Quality control results of 5 different DC vaccines.

Patient no.No. 1No. 2No.3No. 4No. 5
Sterility
  IPassPassPassPassPass
  IIPassPassPassPassPass
Mycoplasma
  I (PCR)PassPassPassPassPass
  II (Direct culture)PassPassPassPassPass
Endotoxin (<10 EU/ml)PassPassPassPassPass
Viability (%)86.291.292.793.592.3a
Identification
  Size & granularity (%)93.794.894.497.390.0
  Cell surface phenotypes (%)
    HLA-DR99.899.098.999.799.7
    HLA-ABC99.599.899.999.899.9
    CD8699.698.999.499.999.8
    CD8095.698.998.999.499.1
    CD4087.997.298.995.097.9
Purity test
  CD148.57.13.13.52.1
  CD190.90.61.60.81.3
Total cell number (×107)4.14.084.244.224.25
T cell proliferation
  DC 1×104 cellsNot testedNot tested0.7770.8490.908
  DC 0.33×103 cells0.3490.4390.343
  Coefficient factor (R2)*0.9890.9480.993

a Bold letter represents median value of each test set.

Cytokine production assay

To determine whether DC vaccine was functionally active to induce Th1 immune responses, we examined IL-12 and IL-10 production from DC induced by each specific antigen such as AFP, GPC-3, or MAGE-1. As a result, IL-12 was highly produced whereas the amount of IL-10 production was almost a basal level (Table IIIA). Furthermore, predominant IFN-γ level in T cell/DC co-cultured supernatant from those five HCC patients was also confirmed, while the level of IL-4 production was <15 pg/ml (Table IIIB).

Table III.

Cytokine production assay results of 5 different DC vaccines.

Table III.

Cytokine production assay results of 5 different DC vaccines.

A

Patient no.AntigensIL-12p70 (ng/ml)IL-10 (ng/ml)
1AFP35.3±3.50.13±0.03
GPC-332.3±3.00.014±0.002
MAGE-158.8±3.00.65±0.15
2AFP3.3±0.50.04±0.01
GPC-35.5±0.60.05±0.01
MAGE-131.1±4.90.34±0.15
3AFP9.0±0.80.013±0.006
GPC-313.4±1.00.04±0.01
MAGE-143.9±4.40.23±0.06
4AFP1.9±0.30.09±0.02
GPC-32.0±0.40.09±0.04
MAGE-111.0±1.40.37±0.07
5AFP3.1±0.50.53±0.06
GPC-32.6±0.60.07±0.01
MAGE-12.3±0.40.08±0.05
B

Patient no.IFN-γ (ng/ml)
116.5±0.9
210.4±2.9
320.5±3.3
49.3±0.8
518.9±2.3
Positive control23.5±3.3
Negative control0.1±0.04

[i] (A) IL-12 and IL-10 production in DC culture supernatant which was derived from 5 individual HCC patients. The amount of cytokine production induced by each specific antigen was measured. (B) Cytokine levels in T cell/DC co-cultured supernatant from 5 HCC patients. Positive control was from T cell/keyhole limpet hemocyanin (KLH)-pulsed DC co-culture supernatant, and the negative control was from the supernatant which was cultured with T cell alone. Each experiment was performed 3 times and the result was described as the mean ± standard deviation (n=3).

Toxicity assignment

Injection of DC vaccine was safe and well tolerated. Toxicity was mild and no grade III/IV serious adverse events occurred in a total of 30 instances of cell injection (Table IV). No hematological, hepatic or renal toxicities or de novo autoantibody formation were observed in any patient.

Table IV.

Toxicity profiles by patients.

Table IV.

Toxicity profiles by patients.

ToxitiesGrade 1Grade 2Grade 3Grade 4
Injection site reaction5/5---
Fever4/51/5--
Clinical response assessment

One patient (patient no. 3) achieved disease stabilization during the follow-up period (Fig. 3), however, no tumor response was observed in the other 4 patients (Table I). Serum AFP levels decreased in 2 patients; however, serum PIVKA-II levels increased in all patients.

T cell responses after DC vaccination

After DC vaccination, all 5 patients demonstrated strong T cell responses against HCC antigens compared with the samples obtained before vaccination. The stimulation index (SI) shown in Fig. 4 illustrates the high reactivity of AFP antigen in all 5 patients after vaccination, while GPC-3 or MAGE-1 antigens were moderate in their capacity to induce T cell responses. AFP-specific IFN-γ-producing cells peaked 10 weeks after the first vaccination in 2 patients, and 18 weeks in 2 patients.

Discussion

HCC is one of the major malignancies in Asian countries including China, Korea and Japan (1). Screenings based on imaging studies, such as ultrasonography and CT, and serum tumor markers have improved HCC detection in high-risk patients at a relatively early stage. Such patients may have some benefits by curative treatments for inhibition of local recurrence in the liver; however, the surrounding non-tumor liver tissues exhibit a high carcinogenic potential, such as liver cirrhosis and chronic hepatitis. The high rate of intrahepatic recurrence is a key feature correlated with poor prognosis, and its prevention is an issue for urgent investigation (5).

HCC is a potentially ideal tumor for targeting by immune-based therapies (2426). However, the observation of tumor progress in HCC despite the presence of tumor-specific immune responses suggests that development of HCC leads to a number of immune suppressor mechanisms, including increase of regulatory T cells (27), myeloid-derived suppressor cells (28), and impairment of antigen-presenting cells. DCs are the most potent antigen-presenting cells effective to induce appropriate adaptive immune responses (7,8). However, DC function is suppressed in patients with HCC (29,30), and may lead to a failure of the induction and maintenance of antitumor immunity. Therefore, these observations provide a rationale for activating DC in vitro and infusing them into patients to overcome tumor-related immunosuppression to induce sufficient anti-tumor immunity. A series of clinical trials using DC-based vaccines demonstrated evidence of safety and immune activity; however, clinical benefits have shown to be limited (1120). Therefore, clinical trials with a well established DC vaccination protocol are highly recommended in the field of DC-based immunotherapy.

We investigated the safety and efficacy of the autologous DC-based tumor vaccine charged with HCC-specific/associated recombinant antigens in 5 patients with advanced HCC. No technical hardships were encountered with blood procurement or the subsequent generation of DC vaccine. No severe treatment-related complications were noted (Table IV), and antigen-specific immunity was induced in all patients (Fig. 4). A clinical response, defined as stable disease (SD) was achieved in one patient (Fig. 3). These results indicate that DC vaccine used in this study is well tolerated and able to induce anti-tumor immunity in patients with HCC that may be associated with clinical benefits.

Our DC vaccine protocol for the treatment of the patients with HCC comprises major modifications from the previous studies in several points. First, we used mature DCs which were antigen-charged and stimulated with a cytokine mixture, poly I:C, and OK432 (Fig. 2 and Table II). Immature DCs have been used in several clinical trials (1118). Evidence suggests that mature DCs are better in inducing clinical impact in DC-based cancer immunotherapy (31). Recently, Nakamoto et al(20) demonstrated that infusion of mature DCs, but not immature DCs, during the TACE procedures prolonged recurrence-free survival. Antigen uptake assay was not exactly preceded because of shortage of PBMC. However, based on another set of experiments which were performed using DC derived from HCC patients, the result of antigen uptake capacity of DC vaccine was always >70% evaluated by FITC-dextran uptake assay (data not shown). Second, topical application of imiquimod, a TLR7 ligand, was also used to enhance anti-tumor immunity in synergy with DC vaccine (32). Aldara™ Cream (5% imiquimod) is a new type of treatment in the category of medicines known as immune response modifiers and is indicated for the treatment of condyloma acuminate. In this study, we demonstrated the feasibility and safety of DC vaccine designed to have synergistic effects with imiquimod in HCC patients. Third, we used a novel approach for the delivery of tumor antigens into DCs. CTP has a strong membrane transduction potential (21), and was very efficient for the delivery of antigens into the cytoplasm of DCs. DC vaccine pulsed with CTP-conjugated antigens elicited a robust Th1-mediated immunity and antigen-specific CTL responses when compared with antigen alone, which is probably attributable to the CTP technology. The feasibility was confirmed in this clinical trial. Finally, we used 3 different recombinant proteins as a source of HCC antigens for the generation of DC vaccine. Because any single antigen is ubiquitously expressed in HCC, we selected AFP, GPC-3 and MAGE-1 as target antigens for DC vaccine through the analysis of the tissue array of a tumor tissues obtained from 412 patients with HCC in Korea (data not shown). AFP has been studied as a possible candidate antigen for anti-HCC immunotherapy. T-cell responses to AFP-CTL epitope peptides were strongly induced in patients with HCC (33,34). In addition, the overexpression of GPC-3 specifically in human HCC has been reported (35), and DC expressing GPC-3 induced protective immunity against highly meta-static cancer (36). Furthermore, the MAGE-1 was reported to be expressed in 30% to 78% in HCC tissue samples (37,38). An advantage of this approach is that recombinant proteins were used for equipping DC vaccine to overcome the HLA restriction of epitope peptides. In this study, AFP-specific T cell response was significantly induced in all 5 patients after DC vaccination, but those against GPC-3 and MAGE-1 were moderate even after DC vaccination (Fig. 4). Moderate responses to GPC-3 and MAGE-1 in the vaccine remain to be further characterized, but are likely, at least in part, attributable to the limited immunogenicity of each antigens in vivo. The recombinant protein CTP-GPC-3 does not have trans-membrane and cytoplasmic domains, latter of which contains immunogenic epitopes (39).

We could not investigate the expression pattern of each tumor antigen in HCC nodules for the limitations of biopsy samples. Therefore, we were not able to analyze correlation between TAA expression and TAA-specific T cell response after vaccination. Further studies are necessary in this regard. However, the results of the present study confirmed the feasibility, safety and immune activity of recombinant tumor antigen-pulsed DC vaccine for therapeutic use in HCC patients. Genome profiling studies of HCC have revealed that HCC is a very heterogeneous tumor (40). Furthermore, HCC demonstrates multicentric carcinogenesis and develops at different time points. These data indicate that the identification of many more target antigens and their optimization is necessary to evoke better clinical responses.

In conclusion, we conducted a phase I/II clinical trial using DC vaccine in 5 patients with advanced HCC and liver cirrhosis. DC vaccine was well tolerated in all patients and induced anti-tumor immune responses in vaccine, but clinical response was detected only in 1 patient (patient 3) with advanced HCC and liver cirrhosis. The tumor-load of this patient was relatively smaller compared to those of other 4 patients (Table I). Including our study, most of DC-based immunotherapies have been studied in patients with advanced stage disease, resulting in poor clinical responses. Future trials in less advanced disease may accompany better clinical responses. DC-based tumor immunotherapy will be a good indication as an adjuvant setting to radical therapy, such as surgical resection or RFA, to prevent tumor recurrences in patients with HCC.

Acknowledgements

We thank Ms. Sawa Yamamoto and Ms. Sakiko Sugawasa for their excellent technical assistance. This work was supported in part by the Japanese Ministry of Education, Culture, Sports, Science and Technology (JSPS KAKENHI 21790669) to M.A and Korean Ministry of Health and Welfare Bio New Drug Grants (A110054).

References

1. 

HB El-SeragHepatocellular carcinomaN Engl J Med36511181127201110.1056/NEJMra100168321992124

2. 

I IkaiM KudoS AriiReport of the 18th follow-up survey of primary liver cancer in JapanHepatol Res4010431059201010.1111/j.1872-034X.2010.00731.x

3. 

R LencioniLoco-regional treatment of hepatocellular carcinomaHepatology52762773201010.1002/hep.2372520564355

4. 

Y OkuwakiT NakazawaA ShibuyaIntrahepatic distant recurrence after radiofrequency ablation for a single small hepatocellular carcinoma: risk factors and patternsJ Gastroenterol437178200810.1007/s00535-007-2123-z

5. 

N IzumiPrediction and prevention of intrahepatic recurrence of hepatocellular carcinomaHepatol Res42226232201210.1111/j.1872-034X.2011.00922.x22181559

6. 

F KorangyB HöchstMP MannsTF GretenImmune responses in hepatocellular carcinomaDig Dis28150154201010.1159/00028207920460904

7. 

J BanchereauRM SteinmanDendritic cells and the control of immunityNature392245252199810.1038/32588

8. 

M OnjiSM AkbarDendritic Cells in Clinics2nd editionSpringerTokyo2008

9. 

J BanchereauAK PaluckaDendritic cells as therapeutic vaccines against cancerNat Rev Immunol5296306200510.1038/nri159215803149

10. 

FO NestleA FarkasC ConradDendritic-cell-based therapeutic vaccination against cancerCurr Opin Immunol17163169200510.1016/j.coi.2005.02.00315766676

11. 

A LadhamsC SchmidtG SingTreatment of nonresectable hepatocellular carcinoma with autologous tumor-pulsed dendritic cellsJ Gastroenterol Hepatol17889896200210.1046/j.1440-1746.2002.02817.x12164965

12. 

Y IwashitaK TaharaS GotoA phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancerCancer Immunol Immunother52155161200312649744

13. 

A StiftJ FriedlP DubskyDendritic cell-based vaccination in solid cancerJ Clin Oncol21135142200310.1200/JCO.2003.02.13512506182

14. 

T KumagiSM AkbarN HoriikeAdministration of dendritic cells in cancer nodules in hepatocellular carcinomaOncol Rep14969973200516142359

15. 

KH ChiSJ LiuCP LiCombination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatomaJ Immunother28129135200510.1097/01.cji.0000154248.74383.5e15725956

16. 

WC LeeHC WangCF HungPF HuangCR LiaMF ChenVaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trialJ Immunother28496504200510.1097/01.cji.0000171291.72039.e216113606

17. 

LH ButterfieldA RibasVB DissetteA phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptidesClin Cancer Res1228172825200610.1158/1078-0432.CCR-05-2856

18. 

Y NakamotoE MizukoshiH TsujiCombined therapy of transcatheter hepatic arterial embolization with intratumoral dendritic cell infusion for hepatocellular carcinoma: clinical safetyClin Exp Immunol147296305200710.1111/j.1365-2249.2006.03290.x

19. 

DH PalmerRS MidgleyN MirzaA phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinomaHepatology49124132200910.1002/hep.2262618980227

20. 

Y NakamotoE MizukoshiM KitaharaProlonged recurrence-free survival following OK432-stimulated dendritic cell transfer into hepatocellular carcinoma during transarterial embolizationClin Exp Immunol163165177201110.1111/j.1365-2249.2010.04246.x

21. 

D KimC JeonJH KimCytoplasmic transduction peptide (CTP): new approach for the delivery of biomolecules into cytoplasm in vitro and in vivoExp Cell Res31212771288200610.1016/j.yexcr.2005.12.02916466653

22. 

JH KimY LeeYS BaePhase I/II study of immunotherapy using autologous tumor lysate-pulsed dendritic cells in patients with metastatic renal cell carcinomaClin Immunol125257267200710.1016/j.clim.2007.07.01417916447

23. 

P TherasseSG ArbuckEA EisenhauerNew guidelines to evaluate the response to treatment in solid tumors European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of CanadaJ Natl Cancer Inst92205216200010.1093/jnci/92.3.205

24. 

LH ButterfieldImmunotherapeutic strategies for hepatocellular carcinomaGastroenterology127Suppl 1S232S241200410.1053/j.gastro.2004.09.03815508089

25. 

TF GretenMP MannsF KorangyImmunotherapy of HCCRev Recent Clin Trials33139200810.2174/157488708783330549

26. 

P MatarL AlanizV RozadosImmunotherapy for liver tumors: present status and future prospectsJ Biomed Sci1630200910.1186/1423-0127-16-3019272130

27. 

LA OrmandyT HillemannH WedemeyerMP MannsTF GretenF KorangyIncreased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinomaCancer Res6524572464200510.1158/0008-5472.CAN-04-323215781662

28. 

B HoechstLA OrmandyM BallmaierA new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cellsGastroenterology135234243200818485901

29. 

T NinomiyaSM AkbarT MasumotoN HoriikeM OnjiDendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinomaJ Hepatol31323331199910.1016/S0168-8278(99)80231-110453947

30. 

S KakumuS ItoT IshikawaDecreased function of peripheral blood dendritic cells in patients with hepatocellular carcinoma with hepatitis B and C virus infectionJ Gastroenterol Hepatol15431436200010.1046/j.1440-1746.2000.02161.x10824889

31. 

D McIlroyM GregoireOptimizing dendritic cell-based anticancer immunotherapy: maturation state does have clinical impactCancer Immunol Immunother52583591200310.1007/s00262-003-0414-712827310

32. 

RM PrinsN CraftKW BruhnThe TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunityJ Immunol176157164200610.4049/jimmunol.176.1.157

33. 

LH ButterfieldA RibasWS MengT-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancerClin Cancer Res9590259082003

34. 

E MizukoshiY NakamotoK AraiComparative analysis of various tumor-associated antigen-specific T-cell responses in patients with hepatocellular carcinomaHepatology5312061216201110.1002/hep.2414921480325

35. 

T NakatsuraY YoshitakeS SenjuGlypican-3, over-expressed specifically in human hepatocellular carcinoma, is a novel tumor markerBiochem Biophys Res Commun3061625200310.1016/S0006-291X(03)00908-212788060

36. 

Y MotomuraS SenjuT NakatsuraEmbryonic stem cell-derived dendritic cells expressing glypican-3, a recently identified oncofetal antigen, induce protective immunity against highly metastatic mouse melanoma, B16-F10Cancer Res6624142422200610.1158/0008-5472.CAN-05-2090

37. 

K SuzukiS TsujitaniI KonishiY YamaguchiY HirookaN KaibaraExpression of MAGE genes and survival in patients with hepatocellular carcinomaInt J Oncol1512271232199910568832

38. 

K KariyamaT HigashiY KobayashiExpression of MAGE-1 and -3 genes and gene products in human hepatocellular carcinomaBr J Cancer8110801087199910.1038/sj.bjc.669081010576668

39. 

J O’BeirneF FarzanehPM HarrisonGeneration of functional CD8+ T cells by human dendritic cells expressing glypican-3 epitopesJ Exp Clin Cancer Res29482010

40. 

JS LeeSS ThorgeirssonGenome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targetsGastroenterology127Suppl 1S51S55200410.1053/j.gastro.2004.09.01515508103

Related Articles

Journal Cover

November 2012
Volume 41 Issue 5

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Tada F, Abe M, Hirooka M, Ikeda Y, Hiasa Y, Lee Y, Jung N, Lee W, Lee H, Bae Y, Bae Y, et al: Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int J Oncol 41: 1601-1609, 2012
APA
Tada, F., Abe, M., Hirooka, M., Ikeda, Y., Hiasa, Y., Lee, Y. ... Onji, M. (2012). Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. International Journal of Oncology, 41, 1601-1609. https://doi.org/10.3892/ijo.2012.1626
MLA
Tada, F., Abe, M., Hirooka, M., Ikeda, Y., Hiasa, Y., Lee, Y., Jung, N., Lee, W., Lee, H., Bae, Y., Onji, M."Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma". International Journal of Oncology 41.5 (2012): 1601-1609.
Chicago
Tada, F., Abe, M., Hirooka, M., Ikeda, Y., Hiasa, Y., Lee, Y., Jung, N., Lee, W., Lee, H., Bae, Y., Onji, M."Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma". International Journal of Oncology 41, no. 5 (2012): 1601-1609. https://doi.org/10.3892/ijo.2012.1626