|
1.
|
Setoyama T, Ling H, Natsugoe S and Calin
GA: Non-coding RNAs for medical practice in oncology. Keio J Med.
60:106–113. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2.
|
Carninci P, Kasukawa T, Katayama S, et al:
The transcriptional landscape of the mammalian genome. Science.
309:1559–1563. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3.
|
Kapranov P, Drenkow J, Cheng J, Long J,
Helt G, Dike S and Gingeras TR: Examples of the complex
architecture of the human transcriptome revealed by RACE and
high-density tiling arrays. Genome Res. 15:987–997. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
Mercer TR, Dinger ME and Mattick JS: Long
non-coding RNAs: insights into functions. Nat Rev Genet.
10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5.
|
Taft RJ, Pang KC, Mercer TR, Dinger M and
Mattick JS: Non-coding RNAs: regulators of disease. J Pathol.
220:126–139. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6.
|
Gupta RA, Shah N, Wang KC, et al: Long
non-coding RNA HOTAIR reprograms chromatin state to promote cancer
meta-stasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Friedman RC, Farh KK, Burge CB and Bartel
DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome
Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8.
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
9.
|
Bartel DP and Chen CZ: Micromanagers of
gene expression: the potentially widespread influence of metazoan
microRNAs. Nat Rev Genet. 5:396–400. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang
XJ and Qi Y: A complex system of small RNAs in the unicellular
green alga Chlamydomonas reinhardtii. Genes Dev. 21:1190–1203.
2007. View Article : Google Scholar
|
|
11.
|
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek
SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II.
EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12.
|
Borchert GM, Lanier W and Davidson BL: RNA
polymerase III transcribes human microRNAs. Nat Struct Mol Biol.
13:1097–1101. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13.
|
Hu HY, Yan Z, Xu Y, et al: Sequence
features associated with microRNA strand selection in humans and
flies. BMC Genomics. 10:4132009. View Article : Google Scholar : PubMed/NCBI
|
|
14.
|
Fabian MR, Sonenberg N and Filipowicz W:
Regulation of mRNA translation and stability by microRNAs. Annu Rev
Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15.
|
Fiorucci G, Chiantore MV, Mangino G,
Percario ZA, Affabris E and Romeo G: Cancer regulator microRNA:
potential relevance in diagnosis, prognosis and treatment of
cancer. Curr Med Chem. 19:461–474. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Zen K and Zhang CY: Circulating microRNAs:
a novel class of biomarkers to diagnose and monitor human cancers.
Med Res Rev. 32:326–348. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Weber JA, Baxter DH, Zhang S, et al: The
microRNA spectrum in 12 body fluids. Clin Chem. 56:1733–1741. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
18.
|
Wang K, Zhang S, Weber J, Baxter D and
Galas DJ: Export of microRNAs and microRNA-protective protein by
mammalian cells. Nucleic Acids Res. 38:7248–7259. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Zubakov D, Boersma AW, Choi Y, van Kuijk
PF, Wiemer EA and Kayser M: MicroRNA markers for forensic body
fluid identification obtained from microarray screening and
quantitative RT-PCR confirmation. Int J Legal Med. 124:217–226.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Hanson EK, Lubenow H and Ballantyne J:
Identification of forensically relevant body fluids using a panel
of differentially expressed microRNAs. Anal Biochem. 387:303–314.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Weickmann JL and Glitz DG: Human
ribonucleases. Quantitation of pancreatic-like enzymes in serum,
urine, and organ preparations. J Biol Chem. 257:8705–8710.
1982.PubMed/NCBI
|
|
22.
|
Gibbings DJ, Ciaudo C, Erhardt M and
Voinnet O: Multivesicular bodies associate with components of miRNA
effector complexes and modulate miRNA activity. Nat Cell Biol.
11:1143–1149. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23.
|
Valadi H, Ekstrom K, Bossios A, Sjostrand
M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24.
|
Iguchi H, Kosaka N and Ochiya T: Secretory
microRNAs as a versatile communication tool. Commun Integr Biol.
3:478–481. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Camussi G, Deregibus MC, Bruno S,
Cantaluppi V and Biancone L: Exosomes/microvesicles as a mechanism
of cell-to-cell communication. Kidney Int. 78:838–848. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
26.
|
Muralidharan-Chari V, Clancy JW, Sedgwick
A and D’Souza-Schorey C: Microvesicles: mediators of extracellular
communication during cancer progression. J Cell Sci. 123:1603–1611.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
27.
|
Cortez MA, Bueso-Ramos C, Ferdin J,
Lopez-Berestein G, Sood AK and Calin GA: MicroRNAs in body fluids -
the mix of hormones and biomarkers. Nat Rev Clin Oncol. 8:467–477.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Etheridge A, Lee I, Hood L, Galas D and
Wang K: Extracellular microRNA: a new source of biomarkers. Mutat
Res. 717:85–90. 2011.PubMed/NCBI
|
|
29.
|
Skog J, Wurdinger T, van Rijn S, et al:
Glioblastoma microvesicles transport RNA and proteins that promote
tumour growth and provide diagnostic biomarkers. Nat Cell Biol.
10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30.
|
Hunter MP, Ismail N, Zhang X, et al:
Detection of microRNA expression in human peripheral blood
microvesicles. PLoS One. 3:e36942008. View Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Michael A, Bajracharya SD, Yuen PS, Zhou
H, Star RA, Illei GG and Alevizos I: Exosomes from human saliva as
a source of microRNA biomarkers. Oral Dis. 16:34–38.
2010.PubMed/NCBI
|
|
32.
|
Dimov I, Velickovic L and Stefanovic V:
Urinary exosomes. Sci World J. 9:1107–1118. 2009. View Article : Google Scholar
|
|
33.
|
Blanchard N, Lankar D, Faure F, Regnault
A, Dumont C, Raposo G and Hivroz C: TCR activation of human T cells
induces the production of exosomes bearing the TCR/CD3/zeta
complex. J Immunol. 168:3235–3241. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Raposo G, Nijman HW, Stoorvogel W,
Liejendekker R, Harding CV, Melief CJ and Geuze HJ: B lymphocytes
secrete antigen-presenting vesicles. J Exp Med. 183:1161–1172.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Thery C, Regnault A, Garin J, et al:
Molecular characterization of dendritic cell-derived exosomes.
Selective accumulation of the heat shock protein hsc73. J Cell
Biol. 147:599–610. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
36.
|
Mears R, Craven RA, Hanrahan S, et al:
Proteomic analysis of melanoma-derived exosomes by two-dimensional
polyacrylamide gel electrophoresis and mass spectrometry.
Proteomics. 4:4019–4031. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
O’Neill HC and Quah BJ: Exosomes secreted
by bacterially infected macrophages are proinflammatory. Sci
Signal. 1:82008.PubMed/NCBI
|
|
38.
|
Taylor DD and Gercel-Taylor C: MicroRNA
signatures of tumor-derived exosomes as diagnostic biomarkers of
ovarian cancer. Gynecol Oncol. 110:13–21. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Denzer K, Kleijmeer MJ, Heijnen HF,
Stoorvogel W and Geuze HJ: Exosome: from internal vesicle of the
multivesicular body to intercellular signaling device. J Cell Sci.
113:3365–3374. 2000.PubMed/NCBI
|
|
40.
|
Huber V, Filipazzi P, Iero M, Fais S and
Rivoltini L: More insights into the immunosuppressive potential of
tumor exosomes. J Transl Med. 6:632008. View Article : Google Scholar : PubMed/NCBI
|
|
41.
|
Xiang X, Poliakov A, Liu C, et al:
Induction of myeloid-derived suppressor cells by tumor exosomes.
Int J Cancer. 124:2621–2633. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Vallhov H, Gutzeit C, Johansson SM, et al:
Exosomes containing glycoprotein 350 released by EBV-transformed B
cells selectively target B cells through CD21 and block EBV
infection in vitro. J Immunol. 186:73–82. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43.
|
Shen J, Todd NW, Zhang H, et al: Plasma
microRNAs as potential biomarkers for non-small-cell lung cancer.
Lab Invest. 91:579–587. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44.
|
Mitchell PS, Parkin RK, Kroh EM, et al:
Circulating microRNAs as stable blood-based markers for cancer
detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Gilad S, Meiri E, Yogev Y, et al: Serum
microRNAs are promising novel biomarkers. PLoS One. 3:e31482008.
View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Kosaka N, Iguchi H, Yoshioka Y, Takeshita
F, Matsuki Y and Ochiya T: Secretory mechanisms and intercellular
transfer of microRNAs in living cells. J Biol Chem.
285:17442–17452. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47.
|
Turchinovich A, Weiz L, Langheinz A and
Burwinkel B: Characterization of extracellular circulating
microRNA. Nucleic Acids Res. 39:7223–7233. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48.
|
Chen X, Ba Y, Ma L, et al:
Characterization of microRNAs in serum: a novel class of biomarkers
for diagnosis of cancer and other diseases. Cell Res. 18:997–1006.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Li J, Smyth P, Flavin R, et al: Comparison
of miRNA expression patterns using total RNA extracted from matched
samples of formalin-fixed paraffin-embedded (FFPE) cells and
snap-frozen cells. BMC Biotechnol. 7:362007. View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Xie Y, Todd NW, Liu Z, Zhan M and Fang H:
Altered miRNA expression in sputum for diagnosis of non-small cell
lung cancer. Lung Cancer. 67:170–176. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51.
|
Tsujiura M, Ichikawa D, Komatsu S, et al:
Circulating microRNAs in plasma of patients with gastric cancers.
Br J Cancer. 102:1174–1179. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52.
|
Huang Z, Huang D, Ni S, Peng Z, Sheng W
and Du X: Plasma microRNAs are promising novel biomarkers for early
detection of colorectal cancer. Int J Cancer. 127:118–126. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
53.
|
Xi Y, Nakajima G, Gavin E, et al:
Systematic analysis of microRNA expression of RNA extracted from
fresh frozen and formalin-fixed paraffin-embedded samples. RNA.
13:1668–1674. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54.
|
Schöler N, Langer C and Kuchenbauer F:
Circulating microRNAs as biomarkers - true blood? Genome Med.
3:722011.PubMed/NCBI
|
|
55.
|
Wang G, Tam LS, Li EK, et al: Serum and
urinary free microRNA level in patients with systemic lupus
erythematosus. Lupus. 20:493–500. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56.
|
Shaoqing Y, Ruxin Z, Guojun L, Zhiqiang Y,
Hua H, Shudong Y and Jie Z: Microarray analysis of differentially
expressed microRNAs in allergic rhinitis. Am J Rhinol Allergy.
25:242–246. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57.
|
Zahm AM, Thayu M, Hand NJ, Horner A,
Leonard MB and Friedman JR: Circulating microRNA is a biomarker of
pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 53:26–33.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
58.
|
Wu F, Guo NJ, Tian H, et al: Peripheral
blood microRNAs distinguish active ulcerative colitis and Crohn’s
disease. Inflamm Bowel Dis. 17:241–250. 2011.PubMed/NCBI
|
|
59.
|
Zampetaki A, Kiechl S, Drozdov I, et al:
Plasma microRNA profiling reveals loss of endothelial miR-126 and
other microRNAs in type 2 diabetes. Circ Res. 107:810–817. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Karolina DS, Armugam A, Tavintharan S,
Wong MTK, Lim SC, Sum CF and Jeyase K: MicroRNA 144 impairs insulin
signaling by inhibiting the expression of insulin receptor
substrate 1 in type 2 diabetes mellitus. PLos One. 6:e228392011.
View Article : Google Scholar : PubMed/NCBI
|
|
61.
|
Cogswell JP, Ward J, Taylor IA, et al:
Identification of miRNA changes in Alzheimer’s disease brain and
CSF yields putative biomarkers and insights into disease pathways.
J Alzheimers Dis. 14:27–41. 2008.
|
|
62.
|
Geekiyanage H, Jicha GA, Nelson PT and
Chan C: Blood serum miRNA: non-invasive biomarkers for Alzheimer’s
disease. Exp Neurol. 235:491–496. 2012.
|
|
63.
|
Beveridge NJ and Cairns MJ: MicroRNA
dysregulation in schizophrenia. Neurobiol Dis. 46:263–271. 2012.
View Article : Google Scholar
|
|
64.
|
Mizuno H, Nakamura A, Aoki Y, et al:
Identification of muscle-specific microRNAs in serum of muscular
dystrophy animal models: promising novel blood-based markers for
muscular dystrophy. PLoS One. 6:e183882011. View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Laterza OF, Lim L, Garrett-Engele PW, et
al: Plasma microRNAs as sensitive and specific biomarkers of tissue
injury. Clin Chem. 55:1977–1983. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Xu J, Zhao J, Evan G, Xiao C, Cheng Y and
Xiao J: Circulating microRNAs: novel biomarkers for cardiovascular
diseases. J Mol Med (Berl). 90:865–875. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67.
|
Li H, Guo L, Wu Q, Lu J, Ge Q and Lu Z: A
comprehensive survey of maternal plasma miRNAs expression profiles
using high-throughput sequencing. Clin Chim Acta. 413:568–576.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
68.
|
Chim SS, Shing TK, Hung EC, et al:
Detection and characterization of placental microRNAs in maternal
plasma. Clin Chem. 54:482–490. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
69.
|
Gunel T, Zeybek YG, Akçakaya P, Kalelioğlu
I, Benian A, Ermis H and Aydinli K: Serum microRNA expression in
pregnancies with preeclampsia. Genet Mol Res. 10:4034–4040. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
70.
|
Calin GA, Sevignani C, Dumitru CD, et al:
Human microRNA genes are frequently located at fragile sites and
genomic regions involved in cancers. Proc Natl Acad Sci USA.
101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71.
|
Asaga S, Kuo C, Nguyen T, Terpenning M,
Giuliano AE and Hoon DS: Direct serum assay for microRNA-21
concentrations in early and advanced breast cancer. Clin Chem.
57:84–91. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72.
|
Cho WC: MicroRNAs in cancer-from research
to therapy. Biochim Biophys Acta. 1805:209–217. 2010.PubMed/NCBI
|
|
73.
|
Cho WC: MicroRNAs: potential biomarkers
for cancer diagnosis, prognosis and targets for therapy. Int J
Biochem Cell Biol. 42:1273–1281. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74.
|
Lu J, Getz G, Miska EA, et al: MicroRNA
expression profiles classify human cancers. Nature. 435:834–838.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
75.
|
Chan JA, Krichevsky AM and Kosik KS:
MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.
Cancer Res. 65:6029–6033. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
76.
|
Iorio MV, Ferracin M, Liu CG, et al:
MicroRNA gene expression deregulation in human breast cancer.
Cancer Res. 65:7065–7070. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77.
|
Markou A, Tsaroucha EG, Kaklamanis L, et
al: Prognostic value of mature microRNA-21 and microRNA-205
overexpression in nonsmall cell lung cancer by quantitative
real-time RT-PCR. Clin Chem. 54:1696–1704. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78.
|
Schetter AJ, Leung SY, Sohn JJ, et al:
MicroRNA expression profiles associated with prognosis and
therapeutic outcome in colon adenocarcinoma. JAMA. 299:425–436.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
79.
|
Huang YS, Dai Y, Yu XF, et al: Microarray
analysis of microRNA expression in hepatocellular carcinoma and
non-tumorous tissues without viral hepatitis. J Gastroenterol
Hepatol. 23:87–94. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
80.
|
Ladeiro Y, Couchy G, Balabaud C, et al:
MicroRNA profiling in hepatocellular tumors is associated with
clinical features and oncogene/tumor suppressor gene mutations.
Hepatology. 47:1955–1963. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81.
|
Bandrés E, Cubedo E, Agirre X, et al:
Identification by real-time PCR of 13 mature microRNAs
differentially expressed in colorectal cancer and non-tumoral
tissues. Mol Cancer. 5:292006.PubMed/NCBI
|
|
82.
|
Slaby O, Svoboda M, Fabian P, et al:
Altered expression of miR-21, miR-31, miR-143 and miR-145 is
related to clinicopathologic features of colorectal cancer.
Oncology. 72:397–402. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83.
|
Motoyama K, Inoube H, Takatsuno Y, et al:
Over- and under-expressed microRNAs in human colorectal cancer. Int
J Oncol. 34:1069–1075. 2009.PubMed/NCBI
|
|
84.
|
Wang CJ, Zhou ZG, Wang L, et al:
Clinicopathological significance of microRNA-31, -143 and -145
expression in colorectal cancer. Dis Markers. 26:27–34. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
85.
|
Yan LIX, Huang XF, Shao Q, et al: MicroRNA
miR-21 overexpression in human breast cancer is associated with
advanced clinical stage, lymph node metastasis and patient poor
prognosis. RNA. 14:2348–2360. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86.
|
Valastyan S, Reinhardt F, Benaich N, et
al: A pleiotropically acting microRNA, miR-31, inhibits breast
cancer metastasis. Cell. 137:1032–1046. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87.
|
Guo J, Miao Y, Xiao B, et al: Differential
expression of microRNA species in human gastric cancer versus
non-tumorous tissues. J Gastroenterol Hepatol. 24:652–657. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
88.
|
Veerla S, Lindgren D, Kvist A, et al:
MiRNA expression in urothelial carcinomas: important roles of
miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and
metastasis, and frequent homozygous losses of miR-31. Int J Cancer.
124:2236–2242. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
89.
|
Rosenfeld N, Aharonov R, Meiri E, et al:
MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol.
26:462–469. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90.
|
He JF, Luo YM, Wan XH and Jiang D:
Biogenesis of miRNA-195 and its role in biogenesis, the cell cycle,
and apoptosis. J Biochem Mol Toxicol. 25:404–408. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91.
|
Donzelli S, Fontemaggi G, Fazi F, et al:
MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing
mutant p53 gain of function. Cell Death Differ. 19:1038–1048. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
92.
|
Yin R, Bao W, Xing Y, Xi T and Gou S:
MiR-19b-1 inhibits angiogenesis by blocking cell cycle progression
of endothelial cells. Biochem Biophys Res Commun. 417:771–776.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
93.
|
Enkelmann A, Heinzelmann J, von Eggeling
F, et al: Specific protein and miRNA patterns characterise
tumour-associated fibroblasts in bladder cancer. J Cancer Res Clin
Oncol. 137:751–759. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94.
|
Schaar DG, Medina DJ, Moore DF, Strair RK
and Ting YI: miR-320 targets transferrin receptor 1 (CD71) and
inhibits cell proliferation. Exp Hematol. 37:245–255. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
95.
|
Ichimi T, Enokida H, Okuno Y, et al:
Identification of novel microRNA targets based on microRNA
signatures in bladder cancer. Int J Cancer. 125:345–352. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
96.
|
Chiyomaru T, Enokida H, Tatarano S, et al:
miR-145 and miR-133a function as tumour suppressors and directly
regulate FSCN1 expression in bladder cancer. Br J Cancer.
102:883–891. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97.
|
Ostenfeld MS, Bramsen JB, Lamy P, et al:
miR-145 induces caspase-dependent and -independent cell death in
urothelial cancer cell lines with targeting of an expression
signature present in Ta bladder tumors. Oncogene. 29:1073–1084.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
98.
|
Aprelikova O, Yu X, Palla J, et al: The
role of miR-31 and its target gene SATB2 in cancer-associated
fibroblasts. Cell Cycle. 9:4387–4398. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
99.
|
Rana TM: Illuminating the silence:
understanding the structure and function of small RNAs. Nat Rev Mol
Cell Biol. 8:23–36. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
100.
|
Bullock MD, Sayan AE, Packham GK and
Mirnezami AH: microRNAs: critical regulators of epithelial to
mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in
cancer progression. Biol Cell. 104:3–12. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
101.
|
Avila-Moreno F, Urrea F and Ortiz-Quintero
B: MicroRNAs in diagnosis and prognosis in lung cancer. Rev Invest
Clin. 63:516–535. 2011.PubMed/NCBI
|
|
102.
|
Segura MF, Belitskaya-Lévy I, Rose AE, et
al: Melanoma microRNA signature predicts post-recurrence survival.
Clin Cancer Res. 16:1577–1586. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103.
|
Yu SL, Chen HY, Chang GC, et al: MicroRNA
signature predicts survival and relapse in lung cancer. Cancer
Cell. 13:48–57. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
104.
|
Zhou N and Mo YY: Roles of microRNAs in
cancer stem cells. Front Biosci. 4:810–818. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105.
|
Ho AS, Huang X, Cao H, et al: Circulating
miR-210 as a novel hypoxia marker in pancreatic cancer. Transl
Oncol. 3:109–113. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
106.
|
Resnick KE, Alder H, Hagan JP, et al: The
detection of differentially expressed microRNAs from the serum of
ovarian cancer patients using a novel real-time PCR platform.
Gynecol Oncol. 112:55–59. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
107.
|
Ng EK, Chong WW, Jin H, et al:
Differential expression of microRNAs in plasma of patients with
colorectal cancer: a potential marker for colorectal cancer
screening. Gut. 58:1375–1381. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
108.
|
Wentz-Hunter KK and Potashkin JA: The role
of miRNAs as key regulators in the neoplastic microenvironment. Mol
Biol Int. 2011:8398722011.PubMed/NCBI
|
|
109.
|
Kosaka N, Iguchi H and Ochiya T:
Circulating microRNA in body fluid: a new potential biomarker for
cancer diagnosis and prognosis. Cancer Sci. 101:2087–2092. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
110.
|
Roth C, Rack B, Muller V, Janni W, Pantel
K and Schwarzenbach H: Circulating microRNAs as blood-based markers
for patients with primary and metastatic breast cancer. Breast
Cancer Res. 12:R902010. View Article : Google Scholar : PubMed/NCBI
|
|
111.
|
Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu
Z and Jiang F: Early detection of lung adenocarcinoma in sputum by
a panel of microRNA markers. Int J Cancer. 127:2870–2878. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
112.
|
Xing L, Todd NW, Yu L, Fang H and Jiang F:
Early detection of squamous cell lung cancer in sputum by a panel
of microRNA markers. Mod Pathol. 8:1157–1164. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
113.
|
Pezzolesi MG, Platzer P, Waite KA and Eng
C: Differential expression of PTEN-targeting microRNAs miR-19a and
miR-21 in Cowden syndrome. Am J Hum Genet. 82:1141–1149. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
114.
|
Zhu S, Si ML, Wu H and Mo YY: MicroRNA-21
targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol
Chem. 282:14328–14336. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
115.
|
Du Rieu MC, Torrisani J, Selves J, et al:
MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma
precursor lesions. Clin Chem. 56:603–612. 2010.PubMed/NCBI
|
|
116.
|
Zhang HL, Yang LF, Zhu Y, et al: Serum
miRNA-21: elevated levels in patients with metastatic
hormone-refractory prostate cancer and potential predictive factor
for the efficacy of docetaxel-based chemotherapy. Prostate.
71:326–331. 2011. View Article : Google Scholar
|
|
117.
|
Shen J, Liu Z, Todd NW, et al: Diagnosis
of lung cancer in individuals with solitary pulmonary nodules by
plasma microRNA biomarkers. BMC Cancer. 11:3742011. View Article : Google Scholar : PubMed/NCBI
|
|
118.
|
Wei J, Gao W, Zhu CJ, Liu YQ, Mei Z, Cheng
T and Shu YQ: Identification of plasma micro-RNA-21 as a biomarker
for early detection and chemosensitivity of non-small cell lung
cancer. Chin J Cancer. 30:407–414. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
119.
|
Oh HK, Tan AL, Das K, et al: Genomic loss
of miR-486 regulates tumor progression and the OLFM4 anti-apoptotic
factor in gastric cancer. Clin Cancer Res. 17:2657–2667. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
120.
|
Mees ST, Mardin WA, Sielker S, et al:
Involvement of CD40 targeting miR-224 and miR-486 on the
progression of pancreatic ductal adenocarcinomas. Ann Surg Oncol.
16:2339–2350. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
121.
|
Bansal A, Lee IH, Hong X, et al:
Feasibility of microRNAs as biomarkers for Barrett’s esophagus
progression: a pilot cross-sectional, phase 2 biomarker study. Am J
Gastroenterol. 106:1055–1063. 2011.PubMed/NCBI
|
|
122.
|
Huang X, Ding L, Bennewith KL, et al:
Hypoxia-inducible mir-210 regulates normoxic gene expression
involved in tumor initiation. Mol Cell. 35:856–867. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
123.
|
Roth C, Kasimir-Bauer S, Pantel K and
Schwarzenbach H: Screening for circulating nucleic acids and
caspase activity in the peripheral blood as potential diagnostic
tools in lung cancer. Mol Oncol. 5:281–291. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
124.
|
Zheng D, Haddadin S, Wang Y, Gu LQ, Perry
MC, Freter CE and Wang MX: Plasma microRNAs as novel biomarkers for
early detection of lung cancer. Int J Clin Exp Pathol. 4:575–586.
2011.PubMed/NCBI
|
|
125.
|
Heegaard NH, Schetter AJ, Welsh JA, Yoneda
M, Bowman ED and Harris CC: Circulating microRNA expression
profiles in early stage non-small cell lung cancer. Int J Cancer.
130:1378–1386. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
126.
|
Bianchi F, Nicassio F, Marzi M, et al: A
serum circulating miRNA diagnostic test to identify asymptomatic
high-risk individuals with early stage lung cancer. EMBO Mol Med.
3:495–503. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
127.
|
Bockmeyer CL, Christgen M, Müller M, et
al: MicroRNA profiles of healthy basal and luminal mammary
epithelial cells are distinct and reflected in different breast
cancer subtypes. Breast Cancer Res Treat. 130:735–745. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
128.
|
Blenkiron C, Goldstein LD, Thorne NP, et
al: MicroRNA expression profiling of human breast cancer identifies
new markers of tumor subtype. Genome Biol. 8:2142007. View Article : Google Scholar : PubMed/NCBI
|
|
129.
|
Adams BD, Guttilla IK and White BA:
Involvement of microRNAs in breast cancer. Semin Reprod Med.
26:522–536. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
130.
|
Enerly E, Steinfeld I, Kleivi K, et al:
miRNA-mRNA integrated analysis reveals roles for miRNAs in primary
breast tumors. PLoS One. 6:e169152011. View Article : Google Scholar : PubMed/NCBI
|
|
131.
|
Yu F, Yao H, Zhu P, et al: let-7 regulates
self renewal and tumorigenicity of breast cancer cells. Cell.
131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
132.
|
Tavazoie SF, Alarcón C, Oskarsson T, et
al: Endogenous human microRNAs that suppress breast cancer
metastasis. Nature. 451:147–152. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
133.
|
Hurteau GJ, Carlson JA, Spivack SD and
Brock GJ: Overexpression of the microRNA hsa-miR-200c leads to
reduced expression of transcription factor 8 and increased
expression of E-cadherin. Cancer Res. 67:7972–7976. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
134.
|
Bertos NR and Park M: Breast cancer - one
term, many entities? J Clin Invest. 121:3789–3796. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
135.
|
Heneghan HM, Miller N and Kerin MJ:
Circulating microRNAs: promising breast cancer. Breast Cancer Res.
13:4022011. View Article : Google Scholar : PubMed/NCBI
|
|
136.
|
Ratajczak J, Wysoczynski M, Hayek F,
Janowska-Wieczorek A and Ratajczak MZ: Membrane-derived
microvesicles: important and underappreciated mediators of
cell-to-cell communication. Leukemia. 20:1487–1495. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
137.
|
Ohshima K, Inoue K, Fujiwara A, et al:
Let-7 microRNA family is selectively secreted into the
extracellular environment via exosomes in a metastatic gastric
cancer cell line. PLoS One. 5:e132472010. View Article : Google Scholar : PubMed/NCBI
|
|
138.
|
Gourzones C, Gelin A, Bombik I, et al:
Extra-cellular release and blood diffusion of BART viral micro-RNAs
produced by EBV-infected nasopharyngeal carcinoma cells. Virol J.
7:2712010. View Article : Google Scholar : PubMed/NCBI
|
|
139.
|
Luo SS, Ishibashi O, Ishikawa G, et al:
Human villous trophoblasts express and secrete placenta-specific
microRNAs into maternal circulation via exosomes. Biol Reprod.
81:717–729. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
140.
|
Yang M, Chen J, Su F, et al: Microvesicles
secreted by macrophages shuttle invasion-potentiating microRNAs
into breast cancer cells. Mol Cancer. 10:1172011. View Article : Google Scholar : PubMed/NCBI
|
|
141.
|
Sarasin-Filipowicz M, Krol J, Markiewicz
I, Heim MH and Filipowicz W: Decreased levels of microRNA miR-122
in individuals with hepatitis C responding poorly to interferon
therapy. Nat Med. 15:31–33. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
142.
|
Morita K, Taketomi A, Shirabe K, et al:
Clinical significance and potential of hepatic microRNA-122
expression in hepatitis C. Liver Int. 31:474–484. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
143.
|
Wang K, Zhang S, Marzolf B, et al:
Circulating microRNAs, potential biomarkers for drug-induced liver
injury. Proc Natl Acad Sci USA. 106:4402–4407. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
144.
|
Zhang Y, Jia Y, Zheng R, et al: Plasma
microRNA-122 as a biomarker for viral-, alcohol-, and
chemical-related hepatic diseases. Clin Chem. 56:1830–1838. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
145.
|
Xu J, Wu C, Che X, et al: Circulating
microRNAs, miR-21, miR-122, and miR-223, in patients with
hepatocellular carcinoma or chronic hepatitis. Mol Carcinog.
50:136–142. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
146.
|
Tomimaru Y, Eguchi H, Nagano H, et al:
Circulating microRNA-21 as a novel biomarker for hepatocellular
carcinoma. J Hepatol. 56:167–175. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
147.
|
Cermelli S, Ruggieri A, Marrero JA,
Ioannou GN and Beretta L: Circulating microRNAs in patients with
chronic hepatitis C and non-alcoholic fatty liver disease. PLoS
One. 6:e239372011. View Article : Google Scholar : PubMed/NCBI
|
|
148.
|
Qi P, Cheng SQ, Wang H, Li N, Chen YF and
Gao CF: Serum microRNAs as biomarkers for hepatocellular carcinoma
in Chinese patients with chronic hepatitis B virus infection. PLoS
One. 6:e284862011. View Article : Google Scholar : PubMed/NCBI
|
|
149.
|
Ikeda Y, Tanji E, Makino N, Kawata S and
Furukawa T: MicroRNAs associated with mitogen-activated protein
kinase in human pancreatic cancer. Mol Cancer Res. 10:259–269.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
150.
|
Habbe N, Koorstra J, Mendell J, et al:
MicroRNA miR-155 is a biomarker of early pancreatic neoplasia.
Cancer Biol Ther. 8:340–346. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
151.
|
La Conti JL, Shivapurkar N, Preet A, et
al: Tissue and serum microRNAs in the KrasG12D transgenic animal
model and in patients with pancreatic cancer. PLoS One.
6:e206872011.PubMed/NCBI
|
|
152.
|
Morimura R, Komatsu S, Ichikawa D, et al:
Novel diagnostic value of circulating miR-18a in plasma of patients
with pancreatic cancer. Br J Cancer. 105:1733–1740. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
153.
|
Liu R, Chen X, Du Y, et al: Serum microRNA
expression profile as a biomarker in the diagnosis and prognosis of
pancreatic cancer. Clin Chem. 58:610–618. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
154.
|
Hwang JH, Voortman J, Giovannetti E, et
al: Identification of microRNA-21 as a biomarker for
chemoresistance and clinical outcome following adjuvant therapy in
resectable pancreatic cancer. PLoS One. 5:e106302010. View Article : Google Scholar : PubMed/NCBI
|
|
155.
|
Shigehara K, Yokomuro S, Ishibashi O, et
al: Real-time PCR-based analysis of the human bile microRNAome
identifies miR-9 as a potential diagnostic biomarker for biliary
tract cancer. PLoS One. 6:e235842011. View Article : Google Scholar : PubMed/NCBI
|
|
156.
|
Komatsu S, Ichikawa D, Takeshita H, et al:
Circulating microRNAs in plasma of patients with oesophageal
squamous cell carcinoma. Br J Cancer. 105:104–111. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
157.
|
Chiang Y, Zhou X, Wang Z, et al:
Expression levels of microRNA-192 and -215 in gastric carcinoma.
Pathol Oncol Res. 18:585–591. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
158.
|
Wang J, Zhang J, Wu J, et al: MicroRNA-610
inhibits the migration and invasion of gastric cancer cells by
suppressing the expression of vasodilator-stimulated
phosphoprotein. Eur J Cancer. [Epub ahead of print].
2011.PubMed/NCBI
|
|
159.
|
Liu H, Zhu L, Liu B, et al: Genome-wide
microRNA profiles identify miR-378 as a serum biomarker for early
detection of gastric cancer. Cancer Lett. 316:196–203. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
160.
|
Wu J, Wu G, Lv L, et al: MicroRNA-34a
inhibits migration and invasion of colon cancer cells via targeting
to Fra-1. Carcinogenesis. 33:519–528. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
161.
|
Nugent M, Miller N and Kerin MJ: MicroRNAs
in colorectal cancer: function, dysregulation and potential as
novel biomarkers. Eur J Surg Oncol. 37:649–654. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
162.
|
Cheng H, Zhang L, Cogdell DE, et al:
Circulating plasma MiR-141 is a novel biomarker for metastatic
colon cancer and predicts poor prognosis. PLoS One. 6:e177452011.
View Article : Google Scholar : PubMed/NCBI
|
|
163.
|
Wulfken LM, Moritz R, Ohlmann C, et al:
MicroRNAs in renal cell carcinoma: diagnostic implications of serum
miR-1233 levels. PLoS One. 6:e257872011. View Article : Google Scholar : PubMed/NCBI
|
|
164.
|
Mahn R, Heukamp LC, Rogenhofer S, von
Ruecker A, Müller SC and Ellinger J: Circulating microRNAs (miRNA)
in serum of patients with prostate cancer. Urology. 77:9–16. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
165.
|
Lodes MJ, Caraballo M, Suciu D, Munro S,
Kumar A and Anderson B: Detection of cancer with serum miRNAs on an
oligonucleotide microarray. PLoS One. 4:e62292009. View Article : Google Scholar : PubMed/NCBI
|
|
166.
|
Brase JC, Johannes M, Schlomm T, et al:
Circulating miRNAs are correlated with tumor progression in
prostate cancer. Int J Cancer. 128:608–616. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
167.
|
Moltzahn F, Olshen AB, Baehner L, et al:
Microfluidic-based multiplex qRT-PCR identifies diagnostic and
prognostic microRNA signatures in the sera of prostate cancer
patients. Cancer Res. 71:550–560. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
168.
|
Wach S, Nolte E, Szczyrba J, et al:
MicroRNA profiles of prostate carcinoma detected by multiplatform
microRNA screening. Int J Cancer. 130:611–621. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
169.
|
Kuwabara Y, Ono K, Horie T, et al:
Increased microRNA-1 and microRNA-133a levels in serum of patients
with cardiovascular disease indicate the existence of myocardial
damage. Circ Cardiovasc Genet. 4:446–454. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
170.
|
Hanke M, Hoefig K, Merz H, et al: A robust
methodology to study urine microRNA as tumor marker: microRNA-126
and microRNA-182 are related to urinary bladder cancer. Urol Oncol.
28:655–661. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
171.
|
Selth LA, Townley S, Gillis JL, et al:
Discovery of circulating microRNAs associated with human prostate
cancer using a mouse model of disease. Int J Cancer. 131:652–661.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
172.
|
Gonzales JC, Fink LM, Goodman OB Jr,
Symanowski JT, Vogelzang NJ and Ward DC: Comparison of circulating
MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and
prostate-specific antigen for determining treatment response in
patients with metastatic prostate cancer. Clin Genitourin Cancer.
9:39–45. 2011. View Article : Google Scholar
|
|
173.
|
Lin SC, Liu CJ, Lin JA, et al: miR-24
up-regulation in oral carcinoma: positive association from clinical
and in vitro analysis. Oral Oncol. 46:204–208. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
174.
|
Park NJ, Zhou H, Elashoff D, Henson BS,
Kastratovic DA, Abemayor E and Wong DT: Salivary microRNA:
discovery, characterization, and clinical utility for oral cancer
detection. Clin Cancer Res. 15:5473–5477. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
175.
|
Lawrie CH, Gal S, Dunlop HM, et al:
Detection of elevated levels of tumour-associated microRNAs in
serum of patients with diffuse large B-cell lymphoma. Br J
Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
176.
|
Cheng AM, Byrom MW, Shelton J and Ford LP:
Antisense inhibition of human miRNAs and indications for an
involvement of miRNA in cell growth and apoptosis. Nucleic Acids
Res. 33:1290–1297. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
177.
|
Si ML, Zhu S, Wu H, Lu Z, Wu F and Mo YY:
miR-21-mediated tumor growth. Oncogene. 26:2799–2803. 2006.
|
|
178.
|
Stamatopoulos B, Meuleman N, Haibe-Kains
B, et al: MicroRNA29c and microRNA-223 downregulation has in vivo
significance in chronic lymphocytic leukemia and improves disease
risk stratification. Blood. 113:5237–5245. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
179.
|
Moussay E, Wang K, Cho JH, et al: MicroRNA
as biomarkers and regulators in B-cell chronic lymphocytic
leukemia. Proc Natl Acad Sci USA. 108:6573–6578. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
180.
|
Fulci V, Chiaretti S, Goldoni M, et al:
Quantitative technologies establish a novel microRNA profile of
chronic lymphocytic leukemia. Blood. 109:4944–4951. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
181.
|
Huang J and Mo YY: Role of microRNAs in
leukemia stem cells. Front Biosci (Schol Ed). 4:799–809. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
182.
|
Zhu YD, Wang L, Sun C, et al: Distinctive
microRNA signature is associated with the diagnosis and prognosis
of acute leukemia. Med Oncol. [Epub ahead of print]. 2011.
|
|
183.
|
Tanaka M, Oikawa K, Takanashi M, et al:
Down-regulation of miR-92 in human plasma is a novel marker for
acute leukemia patients. PLoS One. 4:e55322009. View Article : Google Scholar : PubMed/NCBI
|
|
184.
|
Aqeilan RI, Calin GA and Croce CM: miR-15a
and miR-16-1 in cancer: discovery, function and future
perspectives. Cell Death Differ. 17:215–220. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
185.
|
Cammarata G, Augugliaro L, Salemi D, et
al: Differential expression of specific microRNA and their targets
in acute myeloid leukemia. Am J Hematol. 85:331–339.
2010.PubMed/NCBI
|
|
186.
|
Tsang WP and Kwok TT: Let-7a microRNA
suppresses therapeutics-induced cancer cell death by targeting
caspase-3. Apoptosis. 13:1215–1222. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
187.
|
Calin GA, Dumitru CD, Shimizu M, et al:
Frequent deletions and down-regulation of micro-RNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci
USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
188.
|
Pons A, Nomdedeu B, Navarro A, et al:
Hematopoiesis-related microRNA expression in myelodysplastic
syndromes. Leuk Lymphoma. 50:1854–1859. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
189.
|
Zuo Z, Calin GA, De Paula HM, et al:
Circulating microRNAs let-7a and miR-16 predict progression-free
survival and overall survival in patients with myelodysplastic
syndrome. Blood. 118:413–415. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
190.
|
Huang JJ, Yu J, Li JY, Liu YT and Zhong
RQ: Circulating microRNA expression is associated with genetic
subtype and survival of multiple myeloma. Med Oncol. [Epub ahead of
print]. 2012.PubMed/NCBI
|
|
191.
|
Yu DC, Li QG, Ding LXW and Ding YT:
Circulating microRNAs: potential biomarkers for cancer. Int J Mol
Sci. 12:2055–2063. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
192.
|
Duttagupta R, Jiang R, Gollub J, Getts RC
and Jones KE: Impact of cellular miRNAs on circulating miRNA
biomarker signatures. PLoS One. 6:e207692011. View Article : Google Scholar : PubMed/NCBI
|
|
193.
|
Pritchard CC, Kroh E, Wood B, et al: Blood
cell origin of circulating microRNAs: a cautionary note for cancer
biomarker studies. Cancer Prev Res (Phila). 5:492–497. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
194.
|
McDonald JS, Milosevic D, Reddi HV, Grebe
SK and Algeciras-Schimnich A: Analysis of circulating microRNA:
preanalytical and analytical challenges. Clin Chem. 57:833–840.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
195.
|
Reid G, Kirschner MB and van Zandwijk N:
Circulating microRNAs: association with disease and potential use
as biomarkers. Crit Rev Oncol Hematol. 80:193–208. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
196.
|
Wang Y, Zheng D, Tan Q, Wang MX and Gu LQ:
Nanopore-based detection of circulating microRNAs in lung cancer
patients. Nat Nanotechnol. 6:668–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
197.
|
Spiegel JC, Lorenzen JM and Thum T: Role
of microRNAs in immunity and organ transplantation. Expert Rev Mol
Med. 13:e372011. View Article : Google Scholar : PubMed/NCBI
|
|
198.
|
Benner SA: Extracellular ‘communicator
RNA’. FEBS Lett. 233:225–228. 1988.
|
|
199.
|
D’Alessandra Y, Pompilio G and Capogrossi
MC: MicroRNAs and myocardial infarction. Curr Opin Cardiol.
27:228–235. 2012.
|
|
200.
|
Ha TY: The role of microRNAs in regulatory
T cells and in the immune response. Immune Netw. 11:11–41. 2011.
View Article : Google Scholar : PubMed/NCBI
|