Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
January 2013 Volume 42 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January 2013 Volume 42 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Signaling pathways in follicular cell-derived thyroid carcinomas (Review)

  • Authors:
    • Mírian Romitti
    • Lucieli Ceolin
    • Débora Rodrigues Siqueira
    • Carla Vaz Ferreira
    • Simone Magagnin Wajner
    • Ana Luiza Maia
  • View Affiliations / Copyright

    Affiliations: Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
  • Pages: 19-28
    |
    Published online on: October 29, 2012
       https://doi.org/10.3892/ijo.2012.1681
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Thyroid carcinoma is the most common malignant endocrine neoplasia. Differentiated thyroid carcinomas (DTCs) represent more than 90% of all thyroid carcinomas and comprise the papillary and follicular thyroid carcinoma subtypes. Anaplastic thyroid carcinomas correspond to less than 1% of all thyroid tumors and can arise de novo or by dedifferentiation of a differentiated tumor. The etiology of DTCs is not fully understood. Several genetic events have been implicated in thyroid tumorigenesis. Point mutations in the BRAF or RAS genes or rearranged in transformation (RET)/papillary thyroid carcinoma (PTC) gene rearrangements are observed in approximately 70% of papillary cancer cases. Follicular carcinomas commonly harbor RAS mutations and paired box gene 8 (PAX8)-peroxisome proliferator-activated receptor γ (PPARγ) rearrangements. Anaplastic carcinomas may have a wide set of genetic alterations, that include gene effectors in the mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) and/or β-catenin signaling pathways. These distinct genetic alterations constitutively activate the MAPK, PI3K and β-catenin signaling pathways, which have been implicated in thyroid cancer development and progression. In this context, the evaluation of specific genes, as well as the knowledge of their effects on thyroid carcinogenesis may provide important information on disease presentation, prognosis and therapy, through the development of specific tyrosine kinase targets. In this review, we aimed to present an updated and comprehensive review of the recent advances in the understanding of the genetic basis of follicular cell-derived thyroid carcinomas, as well as the molecular mechanisms involved in tumor development and progression.
View Figures

Figure 1

View References

1. 

Hegedus L: Clinical practice. The thyroid nodule N Engl J Med. 351:1764–1771. 2004.

2. 

Howlader N, Noone AM, Krapcho M, et al: SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). National Cancer Institute; Bethesda, MD: http://seer.cancer.gov/csr/1975_2009_pops09/. Based on November 2011 SEER data submission, posted to the SEER web site, April 2012.

3. 

Wiseman SM, Loree TR, Rigual NR, et al: Anaplastic transformation of thyroid cancer: review of clinical, pathologic, and molecular evidence provides new insights into disease biology and future therapy. Head Neck. 25:662–670. 2003. View Article : Google Scholar

4. 

DeLellis R, Lloyd R, Heitz P and Eng C: Pathology and genetics of tumours of endocrine origin. World Health Organization Classification of Tumours. IARC Press; Lyon: pp. 3202004

5. 

Harach HR and Ceballos GA: Thyroid cancer, thyroiditis and dietary iodine: a review based on the Salta, Argentina model. Endocr Pathol. 19:209–220. 2008. View Article : Google Scholar : PubMed/NCBI

6. 

Nikiforov YE: Is ionizing radiation responsible for the increasing incidence of thyroid cancer? Cancer. 116:1626–1628. 2010. View Article : Google Scholar : PubMed/NCBI

7. 

Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE and Fagin JA: High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63:1454–1457. 2003.

8. 

Frattini M, Ferrario C, Bressan P, et al: Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene. 23:7436–7440. 2004. View Article : Google Scholar : PubMed/NCBI

9. 

Adeniran AJ, Zhu Z, Gandhi M, et al: Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 30:216–222. 2006. View Article : Google Scholar

10. 

Nikiforova MN, Lynch RA, Biddinger PW, et al: RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 88:2318–2326. 2003. View Article : Google Scholar

11. 

Garcia-Rostan G, Costa AM, Pereira-Castro I, et al: Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 65:10199–10207. 2005. View Article : Google Scholar : PubMed/NCBI

12. 

Kondo T, Ezzat S and Asa SL: Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 6:292–306. 2006. View Article : Google Scholar : PubMed/NCBI

13. 

Ricarte-Filho JC, Ryder M, Chitale DA, et al: Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69:4885–4893. 2009. View Article : Google Scholar

14. 

Liu Z, Hou P, Ji M, et al: Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 93:3106–3116. 2008. View Article : Google Scholar

15. 

Nikiforov YE: Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol. 21(Suppl 2): S37–S43. 2008. View Article : Google Scholar : PubMed/NCBI

16. 

Paes JE and Ringel MD: Dysregulation of the phosphatidylinositol 3-kinasepathway in thyroid neoplasia. Endocrinol Metab Clin North Am. 37:375–387. 2008. View Article : Google Scholar : PubMed/NCBI

17. 

Davies L and Welch HG: Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 295:2164–2167. 2006.

18. 

Franceschi S, Boyle P, Maisonneuve P, et al: The epidemiology of thyroid carcinoma. Crit Rev Oncog. 4:25–52. 1993.

19. 

Pacini F, Cetani F, Miccoli P, et al: Outcome of 309 patients with metastatic differentiated thyroid carcinoma treated with radioiodine. World J Surg. 18:600–604. 1994. View Article : Google Scholar : PubMed/NCBI

20. 

Cohen Y, Rosenbaum E, Clark DP, et al: Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res. 10:2761–2765. 2004. View Article : Google Scholar : PubMed/NCBI

21. 

Xing M: BRAF mutation in thyroid cancer. Endocr Relat Cancer. 12:245–262. 2005. View Article : Google Scholar : PubMed/NCBI

22. 

Gutkind JS: Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci STKE. 2000:re12000.PubMed/NCBI

23. 

McKay MM and Morrison DK: Integrating signals from RTKs to ERK/MAPK. Oncogene. 26:3113–3121. 2007. View Article : Google Scholar : PubMed/NCBI

24. 

Ciampi R, Knauf JA, Kerler R, et al: Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 115:94–101. 2005. View Article : Google Scholar : PubMed/NCBI

25. 

Carta C, Moretti S, Passeri L, et al: Genotyping of an Italian papillary thyroid carcinoma cohort revealed high prevalence of BRAF mutations, absence of RAS mutations and allowed the detection of a new mutation of BRAF oncoprotein (BRAF(V599lns)). Clin Endocrinol (Oxf). 64:105–109. 2006. View Article : Google Scholar

26. 

Hou P, Liu D and Xing M: Functional characterization of the T1799-1801del and A1799-1816ins BRAF mutations in papillary thyroid cancer. Cell Cycle. 6:377–379. 2007. View Article : Google Scholar : PubMed/NCBI

27. 

Lupi C, Giannini R, Ugolini C, et al: Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab. 92:4085–4090. 2007. View Article : Google Scholar : PubMed/NCBI

28. 

Basolo F, Torregrossa L, Giannini R, et al: Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J Clin Endocrinol Metab. 95:4197–4205. 2010. View Article : Google Scholar : PubMed/NCBI

29. 

Knauf JA, Ma X, Smith EP, et al: Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 65:4238–4245. 2005. View Article : Google Scholar : PubMed/NCBI

30. 

Franco AT, Malaguarnera R, Refetoff S, et al: Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc Natl Acad Sci USA. 108:1615–1620. 2011. View Article : Google Scholar : PubMed/NCBI

31. 

Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL, Bollag G, Kolesnick R, Thin TH, Rosen N, Zanzonico P, Larson SM, Refetoff S, Ghossein R and Fagin JA: Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 121:4700–4711. 2011. View Article : Google Scholar : PubMed/NCBI

32. 

Romitti M, Wajner SM, Zennig N, Goemann IM, Bueno AL, Meyer EL and Maia AL: Increased type 3 deiodinase expression in papillary thyroid carcinoma. Thyroid. 22:897–904. 2012. View Article : Google Scholar : PubMed/NCBI

33. 

Meyer EL, Dora JM, Wagner MS and Maia AL: Decreased type 1 iodothyronine deiodinase expression might be an early and discrete event in thyroid cell dedifferentiation towards papillary carcinoma. Clin Endocrinol (Oxf). 62:672–678. 2005. View Article : Google Scholar

34. 

Xing M, Westra WH, Tufano RP, et al: BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 90:6373–6379. 2005. View Article : Google Scholar : PubMed/NCBI

35. 

Handkiewicz-Junak D, Czarniecka A and Jarzab B: Molecular prognostic markers in papillary and follicular thyroid cancer: current status and future directions. Mol Cell Endocrinol. 322:8–28. 2010. View Article : Google Scholar : PubMed/NCBI

36. 

Motti ML, De Marco C, Califano D, et al: Loss of p27 expression through RAS-->BRAF-->MAP kinase-dependent pathway in human thyroid carcinomas. Cell Cycle. 6:2817–2825. 2007.

37. 

Mesa C Jr, Mirza M, Mitsutake N, et al: Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res. 66:6521–6529. 2006. View Article : Google Scholar : PubMed/NCBI

38. 

Ahmed M, Uddin S, Hussain AR, et al: FoxM1 and its association with matrix metalloproteinases (MMP) signaling pathway in papillary thyroid carcinoma. J Clin Endocrinol Metab. 97:E1–E13. 2011. View Article : Google Scholar : PubMed/NCBI

39. 

Bommarito A, Richiusa P, Carissimi E, et al: BRAFV600E mutation, TIMP-1 upregulation, and NF-kappaB activation: closing the loop on the papillary thyroid cancer trilogy. Endocr Relat Cancer. 18:669–685. 2011. View Article : Google Scholar : PubMed/NCBI

40. 

Palona I, Namba H, Mitsutake N, et al: BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor kappaB activation. Endocrinology. 147:5699–5707. 2006. View Article : Google Scholar : PubMed/NCBI

41. 

Lee SJ, Lee MH, Kim DW, et al: Cross-regulation between oncogenic BRAF(V600E) kinase and the MST1 pathway in papillary thyroid carcinoma. PLoS One. 6:e161802011. View Article : Google Scholar : PubMed/NCBI

42. 

Ceolin L, Siqueira DR, Romitti M, Ferreira CV and Maia AL: Molecular basis of medullary thyroid carcinoma: the role of RET polymorphisms. Int J Mol Sci. 13:221–239. 2012. View Article : Google Scholar : PubMed/NCBI

43. 

Fugazzola L, Pilotti S, Pinchera A, et al: Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res. 55:5617–5620. 1995.PubMed/NCBI

44. 

Nikiforov YE: RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 13:3–16. 2002. View Article : Google Scholar : PubMed/NCBI

45. 

Zhu Z, Ciampi R, Nikiforova MN, Gandhi M and Nikiforov YE: Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab. 91:3603–3610. 2006. View Article : Google Scholar : PubMed/NCBI

46. 

Tallini G and Asa SL: RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol. 8:345–354. 2001. View Article : Google Scholar : PubMed/NCBI

47. 

Grieco M, Santoro M, Berlingieri MT, et al: PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 60:557–563. 1990. View Article : Google Scholar : PubMed/NCBI

48. 

Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H and Fagin JA: Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 57:1690–1694. 1997.

49. 

Tallini G, Santoro M, Helie M, et al: RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res. 4:287–294. 1998.

50. 

Smyth P, Finn S, Cahill S, et al: ret/PTC and BRAF act as distinct molecular, time-dependant triggers in a sporadic Irish cohort of papillary thyroid carcinoma. Int J Surg Pathol. 13:1–8. 2005. View Article : Google Scholar : PubMed/NCBI

51. 

Viglietto G, Chiappetta G, Martinez-Tello FJ, et al: RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene. 11:1207–1210. 1995.PubMed/NCBI

52. 

Sugg SL, Ezzat S, Rosen IB, Freeman JL and Asa SL: Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab. 83:4116–4122. 1998.PubMed/NCBI

53. 

Jhiang SM, Sagartz JE, Tong Q, et al: Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 137:375–378. 1996.PubMed/NCBI

54. 

Powell DJ Jr, Russell J, Nibu K, et al: The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res. 58:5523–5528. 1998.PubMed/NCBI

55. 

Kawamoto Y, Takeda K, Okuno Y, et al: Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem. 279:14213–14224. 2004. View Article : Google Scholar : PubMed/NCBI

56. 

Salvatore D, Barone MV, Salvatore G, et al: Tyrosines 1015 and 1062 are in vivo autophosphorylation sites in ret and ret-derived oncoproteins. J Clin Endocrinol Metab. 85:3898–3907. 2000.PubMed/NCBI

57. 

Knauf JA, Kuroda H, Basu S and Fagin JA: RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene. 22:4406–4412. 2003. View Article : Google Scholar : PubMed/NCBI

58. 

Vasko V, Saji M, Hardy E, et al: Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet. 41:161–170. 2004. View Article : Google Scholar : PubMed/NCBI

59. 

Melillo RM, Castellone MD, Guarino V, et al: The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest. 115:1068–1081. 2005. View Article : Google Scholar : PubMed/NCBI

60. 

Gujral TS, van Veelen W, Richardson DS, et al: A novel RET kinase-beta-catenin signaling pathway contributes to tumorigenesis in thyroid carcinoma. Cancer Res. 68:1338–1346. 2008. View Article : Google Scholar : PubMed/NCBI

61. 

Castellone MD, De Falco V, Rao DM, et al: The beta-catenin axis integrates multiple signals downstream from RET/papillary thyroid carcinoma leading to cell proliferation. Cancer Res. 69:1867–1876. 2009. View Article : Google Scholar : PubMed/NCBI

62. 

Pradeep A, Sharma C, Sathyanarayana P, et al: Gastrin-mediated activation of cyclin D1 transcription involves beta-catenin and CREB pathways in gastric cancer cells. Oncogene. 23:3689–3699. 2004. View Article : Google Scholar : PubMed/NCBI

63. 

Peifer M and Polakis P: Wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus. Science. 287:1606–1609. 2000. View Article : Google Scholar : PubMed/NCBI

64. 

Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW and Harris PE: Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf). 50:529–535. 1999. View Article : Google Scholar : PubMed/NCBI

65. 

Zhu Z, Gandhi M, Nikiforova MN, Fischer AH and Nikiforov YE: Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 120:71–77. 2003. View Article : Google Scholar : PubMed/NCBI

66. 

Santarpia L, Myers JN, Sherman SI, Trimarchi F, Clayman GL and El-Naggar AK: Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer. 116:2974–2983. 2010. View Article : Google Scholar

67. 

Hara H, Fulton N, Yashiro T, Ito K, DeGroot LJ and Kaplan EL: N-ras mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery. 116:1010–1016. 1994.PubMed/NCBI

68. 

Djakiew D, Delsite R, Pflug B, Wrathall J, Lynch JH and Onoda M: Regulation of growth by a nerve growth factor-like protein which modulates paracrine interactions between a neoplastic epithelial cell line and stromal cells of the human prostate. Cancer Res. 51:3304–3310. 1991.

69. 

Bongarzone I, Vigneri P, Mariani L, Collini P, Pilotti S and Pierotti MA: RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin Cancer Res. 4:223–228. 1998.PubMed/NCBI

70. 

Musholt TJ, Musholt PB, Khaladj N, Schulz D, Scheumann GF and Klempnauer J: Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery. 128:984–993. 2000. View Article : Google Scholar : PubMed/NCBI

71. 

Martin-Zanca D, Mitra G, Long LK and Barbacid M: Molecular characterization of the human trk oncogene. Cold Spring Harb Symp Quant Biol. 51:983–992. 1986. View Article : Google Scholar

72. 

Russell JP, Powell DJ, Cunnane M, et al: The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene. 19:5729–5735. 2000. View Article : Google Scholar : PubMed/NCBI

73. 

Fedele M, Palmieri D, Chiappetta G, et al: Impairment of the p27kip1 function enhances thyroid carcinogenesis in TRK-T1 transgenic mice. Endocr Relat Cancer. 16:483–490. 2009. View Article : Google Scholar : PubMed/NCBI

74. 

Passler C, Scheuba C, Prager G, et al: Prognostic factors of papillary and follicular thyroid cancer: differences in an iodine-replete endemic goiter region. Endocr Relat Cancer. 11:131–139. 2004. View Article : Google Scholar : PubMed/NCBI

75. 

Gulcelik MA, Gulcelik NE, Kuru B, Camlibel M and Alagol H: Prognostic factors determining survival in differentiated thyroid cancer. J Surg Oncol. 96:598–604. 2007. View Article : Google Scholar : PubMed/NCBI

76. 

Verburg FA, Mader U, Luster M and Reiners C: Histology does not influence prognosis in differentiated thyroid carcinoma when accounting for age, tumour diameter, invasive growth and metastases. Eur J Endocrinol. 160:619–624. 2009. View Article : Google Scholar : PubMed/NCBI

77. 

Lemoine NR, Mayall ES, Wyllie FS, et al: High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 4:159–164. 1989.PubMed/NCBI

78. 

Garcia-Rostan G, Zhao H, Camp RL, et al: ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 21:3226–3235. 2003. View Article : Google Scholar : PubMed/NCBI

79. 

Namba H, Rubin SA and Fagin JA: Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol. 4:1474–1479. 1990. View Article : Google Scholar : PubMed/NCBI

80. 

Bond JA, Wyllie FS, Rowson J, Radulescu A and Wynford-Thomas D: In vitro reconstruction of tumour initiation in a human epithelium. Oncogene. 9:281–290. 1994.PubMed/NCBI

81. 

Vitagliano D, Portella G, Troncone G, et al: Thyroid targeting of the N-ras(Gln61Lys) oncogene in transgenic mice results in follicular tumors that progress to poorly differentiated carcinomas. Oncogene. 25:5467–5474. 2006. View Article : Google Scholar

82. 

Kiaris H and Spandidos DA: Mutations of ras genes in human tumours. Int J Oncol. 7:413–429. 1995.

83. 

Malumbres M and Barbacid M: RAS oncogenes: the first 30 years. Nat Rev Cancer. 3:459–465. 2003.PubMed/NCBI

84. 

Miller KA, Yeager N, Baker K, Liao XH, Refetoff S and Di Cristofano A: Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo. Cancer Res. 69:3689–3694. 2009. View Article : Google Scholar : PubMed/NCBI

85. 

Vojtek AB and Der CJ: Increasing complexity of the Ras signaling pathway. J Biol Chem. 273:19925–19928. 1998. View Article : Google Scholar : PubMed/NCBI

86. 

Krasilnikov MA: Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc). 65:59–67. 2000.PubMed/NCBI

87. 

Damante G, Tell G and Di Lauro R: A unique combination of transcription factors controls differentiation of thyroid cells. Prog Nucleic Acid Res Mol Biol. 66:307–356. 2001. View Article : Google Scholar : PubMed/NCBI

88. 

Desvergne B and Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 20:649–688. 1999.PubMed/NCBI

89. 

Kroll TG, Sarraf P, Pecciarini L, et al: PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science. 289:1357–1360. 2000.

90. 

Cheung L, Messina M, Gill A, et al: Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 88:354–357. 2003. View Article : Google Scholar : PubMed/NCBI

91. 

Marques AR, Espadinha C, Catarino AL, et al: Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 87:3947–3952. 2002.PubMed/NCBI

92. 

Lacroix L, Mian C, Barrier T, et al: PAX8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues. Eur J Endocrinol. 151:367–374. 2004. View Article : Google Scholar : PubMed/NCBI

93. 

Klemke M, Drieschner N, Belge G, Burchardt K, Junker K and Bullerdiek J: Detection of PAX8-PPARG fusion transcripts in archival thyroid carcinoma samples by conventional RT-PCR. Genes Chromosomes Cancer. 51:402–408. 2012. View Article : Google Scholar : PubMed/NCBI

94. 

Gregory Powell J, Wang X, Allard BL, et al: The PAX8/PPARgamma fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARgamma inhibition. Oncogene. 23:3634–3641. 2004.

95. 

Lui WO, Foukakis T, Liden J, et al: Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a PAX8-PPAR(gamma) fusion oncogene. Oncogene. 24:1467–1476. 2005. View Article : Google Scholar : PubMed/NCBI

96. 

Reddi HV, McIver B, Grebe SK and Eberhardt NL: The paired box-8/peroxisome proliferator-activated receptor-gamma oncogene in thyroid tumorigenesis. Endocrinology. 148:932–935. 2007. View Article : Google Scholar : PubMed/NCBI

97. 

Farrow B and Evers BM: Activation of PPARgamma increases PTEN expression in pancreatic cancer cells. Biochem Biophys Res Commun. 301:50–53. 2003. View Article : Google Scholar : PubMed/NCBI

98. 

Chinnadurai G: CtBP, an unconventional transcriptional core-pressor in development and oncogenesis. Mol Cell. 9:213–224. 2002. View Article : Google Scholar : PubMed/NCBI

99. 

Neff RL, Farrar WB, Kloos RT and Burman KD: Anaplastic thyroid cancer. Endocrinol Metab Clin North Am. 37:525–538. 2008. View Article : Google Scholar

100. 

Ain KB: Anaplastic thyroid carcinoma: behavior, biology, and therapeutic approaches. Thyroid. 8:715–726. 1998. View Article : Google Scholar : PubMed/NCBI

101. 

Giuffrida D and Gharib H: Anaplastic thyroid carcinoma: current diagnosis and treatment. Ann Oncol. 11:1083–1089. 2000. View Article : Google Scholar : PubMed/NCBI

102. 

Kitamura Y, Shimizu K, Nagahama M, et al: Immediate causes of death in thyroid carcinoma: clinicopathological analysis of 161 fatal cases. J Clin Endocrinol Metab. 84:4043–4049. 1999. View Article : Google Scholar

103. 

Smallridge RC, Marlow LA and Copland JA: Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer. 16:17–44. 2009. View Article : Google Scholar : PubMed/NCBI

104. 

Kim TY, Kim KW, Jung TS, et al: Prognostic factors for Korean patients with anaplastic thyroid carcinoma. Head Neck. 29:765–772. 2007. View Article : Google Scholar : PubMed/NCBI

105. 

Nikiforov YE: Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol. 15:319–327. 2004. View Article : Google Scholar : PubMed/NCBI

106. 

Hou P, Liu D, Shan Y, et al: Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 13:1161–1170. 2007. View Article : Google Scholar

107. 

Nikiforova MN, Kimura ET, Gandhi M, et al: BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 88:5399–5404. 2003. View Article : Google Scholar

108. 

Costa AM, Herrero A, Fresno MF, et al: BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf). 68:618–634. 2008. View Article : Google Scholar : PubMed/NCBI

109. 

Sobrinho-Simoes M, Maximo V, Rocha AS, et al: Intragenic mutations in thyroid cancer. Endocrinol Metab Clin North Am. 37:333–362. 2008. View Article : Google Scholar : PubMed/NCBI

110. 

Begum S, Rosenbaum E, Henrique R, Cohen Y, Sidransky D and Westra WH: BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol. 17:1359–1363. 2004. View Article : Google Scholar : PubMed/NCBI

111. 

Santarpia L, El-Naggar AK, Cote GJ, Myers JN and Sherman SI: Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab. 93:278–284. 2008. View Article : Google Scholar : PubMed/NCBI

112. 

Saavedra HI, Knauf JA, Shirokawa JM, et al: The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene. 19:3948–3954. 2000. View Article : Google Scholar : PubMed/NCBI

113. 

Sansal I and Sellers WR: The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 22:2954–2963. 2004. View Article : Google Scholar : PubMed/NCBI

114. 

Frisk T, Foukakis T, Dwight T, et al: Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer. 35:74–80. 2002. View Article : Google Scholar : PubMed/NCBI

115. 

Hou P, Ji M and Xing M: Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer. 113:2440–2447. 2008. View Article : Google Scholar : PubMed/NCBI

116. 

Ringel MD, Hayre N, Saito J, et al: Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res. 61:6105–6111. 2001.PubMed/NCBI

117. 

Petitjean A, Mathe E, Kato S, et al: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI

118. 

Ito T, Seyama T, Mizuno T, et al: Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 52:1369–1371. 1992.PubMed/NCBI

119. 

Cerrato A, Fulciniti F, Avallone A, Benincasa G, Palombini L and Grieco M: Beta- and gamma-catenin expression in thyroid carcinomas. J Pathol. 185:267–272. 1998. View Article : Google Scholar : PubMed/NCBI

120. 

Garcia-Rostan G, Tallini G, Herrero A, D’Aquila TG, Carcangiu ML and Rimm DL: Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res. 59:1811–1815. 1999.PubMed/NCBI

121. 

Motti ML, Califano D, Baldassarre G, et al: Reduced E-cadherin expression contributes to the loss of p27kip1-mediated mechanism of contact inhibition in thyroid anaplastic carcinomas. Carcinogenesis. 26:1021–1034. 2005. View Article : Google Scholar : PubMed/NCBI

122. 

Naito A, Iwase H, Kuzushima T, Nakamura T and Kobayashi S: Clinical significance of E-cadherin expression in thyroid neoplasms. J Surg Oncol. 76:176–180. 2001. View Article : Google Scholar : PubMed/NCBI

123. 

Von Wasielewski R, Rhein A, Werner M, et al: Immunohistochemical detection of E-cadherin in differentiated thyroid carcinomas correlates with clinical outcome. Cancer Res. 57:2501–2507. 1997.PubMed/NCBI

124. 

Maia AL, Ward LS, Carvalho GA, Graf H, Maciel RM, Maciel LM, Rosário PW and Vaisman M: Thyroid nodules and differentiated thyroid cancer: Brazilian consensus. Arq Bras Endocrinol Metabol. 51:867–893. 2007.PubMed/NCBI

125. 

Cooper DS, Doherty GM, Haugen BR, et al: Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 19:1167–1214. 2009. View Article : Google Scholar : PubMed/NCBI

126. 

Fernandes JK, Day TA, Richardson MS and Sharma AK: Overview of the management of differentiated thyroid cancer. Curr Treat Options Oncol. 6:47–57. 2005. View Article : Google Scholar : PubMed/NCBI

127. 

Kloos RT, Ringel MD, Knopp MV, et al: Phase II trial of soafenib in metastatic thyroid cancer. J Clin Oncol. 27:1675–1684. 2009. View Article : Google Scholar : PubMed/NCBI

128. 

Hoftijzer H, Heemstra KA, Morreau H, et al: Beneficial effects of sorafenib on tumor progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur J Endocrinol. 161:923–931. 2009. View Article : Google Scholar : PubMed/NCBI

129. 

Gupta-Abramson V, Troxel AB, Nellore A, et al: Phase II trial of sorafenib inadvanced thyroid cancer. J Clin Oncol. 26:4714–4719. 2008. View Article : Google Scholar : PubMed/NCBI

130. 

Flaherty KT, Puzanov I, Kim KB, et al: Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 363:809–819. 2010. View Article : Google Scholar : PubMed/NCBI

131. 

Cohen EE, Rosen LS, Vokes EE, et al: Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 26:4708–4713. 2008. View Article : Google Scholar : PubMed/NCBI

132. 

Bible KC, Suman VJ, Molina JR, et al: Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 11:962–972. 2010. View Article : Google Scholar

133. 

Sherman SI, Wirth LJ, Droz JP, et al: Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 359:31–42. 2008. View Article : Google Scholar : PubMed/NCBI

134. 

Pennell NA, Daniels GH, Haddad RI, et al: A phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid. 18:317–323. 2008. View Article : Google Scholar : PubMed/NCBI

135. 

Hayes DN, Lucas AS, Tanvetyanon T, et al: Phase II efficacy and pharmacogenomic study of Selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements. Clin Cancer Res. 18:2056–2065. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Romitti M, Ceolin L, Siqueira DR, Ferreira CV, Wajner SM and Maia AL: Signaling pathways in follicular cell-derived thyroid carcinomas (Review). Int J Oncol 42: 19-28, 2013.
APA
Romitti, M., Ceolin, L., Siqueira, D.R., Ferreira, C.V., Wajner, S.M., & Maia, A.L. (2013). Signaling pathways in follicular cell-derived thyroid carcinomas (Review). International Journal of Oncology, 42, 19-28. https://doi.org/10.3892/ijo.2012.1681
MLA
Romitti, M., Ceolin, L., Siqueira, D. R., Ferreira, C. V., Wajner, S. M., Maia, A. L."Signaling pathways in follicular cell-derived thyroid carcinomas (Review)". International Journal of Oncology 42.1 (2013): 19-28.
Chicago
Romitti, M., Ceolin, L., Siqueira, D. R., Ferreira, C. V., Wajner, S. M., Maia, A. L."Signaling pathways in follicular cell-derived thyroid carcinomas (Review)". International Journal of Oncology 42, no. 1 (2013): 19-28. https://doi.org/10.3892/ijo.2012.1681
Copy and paste a formatted citation
x
Spandidos Publications style
Romitti M, Ceolin L, Siqueira DR, Ferreira CV, Wajner SM and Maia AL: Signaling pathways in follicular cell-derived thyroid carcinomas (Review). Int J Oncol 42: 19-28, 2013.
APA
Romitti, M., Ceolin, L., Siqueira, D.R., Ferreira, C.V., Wajner, S.M., & Maia, A.L. (2013). Signaling pathways in follicular cell-derived thyroid carcinomas (Review). International Journal of Oncology, 42, 19-28. https://doi.org/10.3892/ijo.2012.1681
MLA
Romitti, M., Ceolin, L., Siqueira, D. R., Ferreira, C. V., Wajner, S. M., Maia, A. L."Signaling pathways in follicular cell-derived thyroid carcinomas (Review)". International Journal of Oncology 42.1 (2013): 19-28.
Chicago
Romitti, M., Ceolin, L., Siqueira, D. R., Ferreira, C. V., Wajner, S. M., Maia, A. L."Signaling pathways in follicular cell-derived thyroid carcinomas (Review)". International Journal of Oncology 42, no. 1 (2013): 19-28. https://doi.org/10.3892/ijo.2012.1681
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team