|
1.
|
Hegedus L: Clinical practice. The thyroid
nodule N Engl J Med. 351:1764–1771. 2004.
|
|
2.
|
Howlader N, Noone AM, Krapcho M, et al:
SEER Cancer Statistics Review, 1975–2009 (Vintage 2009
Populations). National Cancer Institute; Bethesda, MD: http://seer.cancer.gov/csr/1975_2009_pops09/.
Based on November 2011 SEER data submission, posted to the SEER web
site, April 2012.
|
|
3.
|
Wiseman SM, Loree TR, Rigual NR, et al:
Anaplastic transformation of thyroid cancer: review of clinical,
pathologic, and molecular evidence provides new insights into
disease biology and future therapy. Head Neck. 25:662–670. 2003.
View Article : Google Scholar
|
|
4.
|
DeLellis R, Lloyd R, Heitz P and Eng C:
Pathology and genetics of tumours of endocrine origin. World Health
Organization Classification of Tumours. IARC Press; Lyon: pp.
3202004
|
|
5.
|
Harach HR and Ceballos GA: Thyroid cancer,
thyroiditis and dietary iodine: a review based on the Salta,
Argentina model. Endocr Pathol. 19:209–220. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6.
|
Nikiforov YE: Is ionizing radiation
responsible for the increasing incidence of thyroid cancer? Cancer.
116:1626–1628. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Kimura ET, Nikiforova MN, Zhu Z, Knauf JA,
Nikiforov YE and Fagin JA: High prevalence of BRAF mutations in
thyroid cancer: genetic evidence for constitutive activation of the
RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma.
Cancer Res. 63:1454–1457. 2003.
|
|
8.
|
Frattini M, Ferrario C, Bressan P, et al:
Alternative mutations of BRAF, RET and NTRK1 are associated with
similar but distinct gene expression patterns in papillary thyroid
cancer. Oncogene. 23:7436–7440. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
9.
|
Adeniran AJ, Zhu Z, Gandhi M, et al:
Correlation between genetic alterations and microscopic features,
clinical manifestations, and prognostic characteristics of thyroid
papillary carcinomas. Am J Surg Pathol. 30:216–222. 2006.
View Article : Google Scholar
|
|
10.
|
Nikiforova MN, Lynch RA, Biddinger PW, et
al: RAS point mutations and PAX8-PPAR gamma rearrangement in
thyroid tumors: evidence for distinct molecular pathways in thyroid
follicular carcinoma. J Clin Endocrinol Metab. 88:2318–2326. 2003.
View Article : Google Scholar
|
|
11.
|
Garcia-Rostan G, Costa AM, Pereira-Castro
I, et al: Mutation of the PIK3CA gene in anaplastic thyroid cancer.
Cancer Res. 65:10199–10207. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12.
|
Kondo T, Ezzat S and Asa SL: Pathogenetic
mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer.
6:292–306. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13.
|
Ricarte-Filho JC, Ryder M, Chitale DA, et
al: Mutational profile of advanced primary and metastatic
radioactive iodine-refractory thyroid cancers reveals distinct
pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res.
69:4885–4893. 2009. View Article : Google Scholar
|
|
14.
|
Liu Z, Hou P, Ji M, et al: Highly
prevalent genetic alterations in receptor tyrosine kinases and
phosphatidylinositol 3-kinase/akt and mitogen-activated protein
kinase pathways in anaplastic and follicular thyroid cancers. J
Clin Endocrinol Metab. 93:3106–3116. 2008. View Article : Google Scholar
|
|
15.
|
Nikiforov YE: Thyroid carcinoma: molecular
pathways and therapeutic targets. Mod Pathol. 21(Suppl 2): S37–S43.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Paes JE and Ringel MD: Dysregulation of
the phosphatidylinositol 3-kinasepathway in thyroid neoplasia.
Endocrinol Metab Clin North Am. 37:375–387. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Davies L and Welch HG: Increasing
incidence of thyroid cancer in the United States, 1973–2002. JAMA.
295:2164–2167. 2006.
|
|
18.
|
Franceschi S, Boyle P, Maisonneuve P, et
al: The epidemiology of thyroid carcinoma. Crit Rev Oncog. 4:25–52.
1993.
|
|
19.
|
Pacini F, Cetani F, Miccoli P, et al:
Outcome of 309 patients with metastatic differentiated thyroid
carcinoma treated with radioiodine. World J Surg. 18:600–604. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Cohen Y, Rosenbaum E, Clark DP, et al:
Mutational analysis of BRAF in fine needle aspiration biopsies of
the thyroid: a potential application for the preoperative
assessment of thyroid nodules. Clin Cancer Res. 10:2761–2765. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Xing M: BRAF mutation in thyroid cancer.
Endocr Relat Cancer. 12:245–262. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Gutkind JS: Regulation of
mitogen-activated protein kinase signaling networks by G
protein-coupled receptors. Sci STKE. 2000:re12000.PubMed/NCBI
|
|
23.
|
McKay MM and Morrison DK: Integrating
signals from RTKs to ERK/MAPK. Oncogene. 26:3113–3121. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
24.
|
Ciampi R, Knauf JA, Kerler R, et al:
Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway
activation in thyroid cancer. J Clin Invest. 115:94–101. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Carta C, Moretti S, Passeri L, et al:
Genotyping of an Italian papillary thyroid carcinoma cohort
revealed high prevalence of BRAF mutations, absence of RAS
mutations and allowed the detection of a new mutation of BRAF
oncoprotein (BRAF(V599lns)). Clin Endocrinol (Oxf). 64:105–109.
2006. View Article : Google Scholar
|
|
26.
|
Hou P, Liu D and Xing M: Functional
characterization of the T1799-1801del and A1799-1816ins BRAF
mutations in papillary thyroid cancer. Cell Cycle. 6:377–379. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
27.
|
Lupi C, Giannini R, Ugolini C, et al:
Association of BRAF V600E mutation with poor clinicopathological
outcomes in 500 consecutive cases of papillary thyroid carcinoma. J
Clin Endocrinol Metab. 92:4085–4090. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Basolo F, Torregrossa L, Giannini R, et
al: Correlation between the BRAF V600E mutation and tumor
invasiveness in papillary thyroid carcinomas smaller than 20
millimeters: analysis of 1060 cases. J Clin Endocrinol Metab.
95:4197–4205. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Knauf JA, Ma X, Smith EP, et al: Targeted
expression of BRAFV600E in thyroid cells of transgenic mice results
in papillary thyroid cancers that undergo dedifferentiation. Cancer
Res. 65:4238–4245. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30.
|
Franco AT, Malaguarnera R, Refetoff S, et
al: Thyrotrophin receptor signaling dependence of Braf-induced
thyroid tumor initiation in mice. Proc Natl Acad Sci USA.
108:1615–1620. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Chakravarty D, Santos E, Ryder M, Knauf
JA, Liao XH, West BL, Bollag G, Kolesnick R, Thin TH, Rosen N,
Zanzonico P, Larson SM, Refetoff S, Ghossein R and Fagin JA:
Small-molecule MAPK inhibitors restore radioiodine incorporation in
mouse thyroid cancers with conditional BRAF activation. J Clin
Invest. 121:4700–4711. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Romitti M, Wajner SM, Zennig N, Goemann
IM, Bueno AL, Meyer EL and Maia AL: Increased type 3 deiodinase
expression in papillary thyroid carcinoma. Thyroid. 22:897–904.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Meyer EL, Dora JM, Wagner MS and Maia AL:
Decreased type 1 iodothyronine deiodinase expression might be an
early and discrete event in thyroid cell dedifferentiation towards
papillary carcinoma. Clin Endocrinol (Oxf). 62:672–678. 2005.
View Article : Google Scholar
|
|
34.
|
Xing M, Westra WH, Tufano RP, et al: BRAF
mutation predicts a poorer clinical prognosis for papillary thyroid
cancer. J Clin Endocrinol Metab. 90:6373–6379. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Handkiewicz-Junak D, Czarniecka A and
Jarzab B: Molecular prognostic markers in papillary and follicular
thyroid cancer: current status and future directions. Mol Cell
Endocrinol. 322:8–28. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36.
|
Motti ML, De Marco C, Califano D, et al:
Loss of p27 expression through RAS-->BRAF-->MAP
kinase-dependent pathway in human thyroid carcinomas. Cell Cycle.
6:2817–2825. 2007.
|
|
37.
|
Mesa C Jr, Mirza M, Mitsutake N, et al:
Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells
is associated with gene expression profiles that predict a
preferential role of BRAF in extracellular matrix remodeling.
Cancer Res. 66:6521–6529. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38.
|
Ahmed M, Uddin S, Hussain AR, et al: FoxM1
and its association with matrix metalloproteinases (MMP) signaling
pathway in papillary thyroid carcinoma. J Clin Endocrinol Metab.
97:E1–E13. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Bommarito A, Richiusa P, Carissimi E, et
al: BRAFV600E mutation, TIMP-1 upregulation, and NF-kappaB
activation: closing the loop on the papillary thyroid cancer
trilogy. Endocr Relat Cancer. 18:669–685. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Palona I, Namba H, Mitsutake N, et al:
BRAFV600E promotes invasiveness of thyroid cancer cells through
nuclear factor kappaB activation. Endocrinology. 147:5699–5707.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
41.
|
Lee SJ, Lee MH, Kim DW, et al:
Cross-regulation between oncogenic BRAF(V600E) kinase and the MST1
pathway in papillary thyroid carcinoma. PLoS One. 6:e161802011.
View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Ceolin L, Siqueira DR, Romitti M, Ferreira
CV and Maia AL: Molecular basis of medullary thyroid carcinoma: the
role of RET polymorphisms. Int J Mol Sci. 13:221–239. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
43.
|
Fugazzola L, Pilotti S, Pinchera A, et al:
Oncogenic rearrangements of the RET proto-oncogene in papillary
thyroid carcinomas from children exposed to the Chernobyl nuclear
accident. Cancer Res. 55:5617–5620. 1995.PubMed/NCBI
|
|
44.
|
Nikiforov YE: RET/PTC rearrangement in
thyroid tumors. Endocr Pathol. 13:3–16. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Zhu Z, Ciampi R, Nikiforova MN, Gandhi M
and Nikiforov YE: Prevalence of RET/PTC rearrangements in thyroid
papillary carcinomas: effects of the detection methods and genetic
heterogeneity. J Clin Endocrinol Metab. 91:3603–3610. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Tallini G and Asa SL: RET oncogene
activation in papillary thyroid carcinoma. Adv Anat Pathol.
8:345–354. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
47.
|
Grieco M, Santoro M, Berlingieri MT, et
al: PTC is a novel rearranged form of the ret proto-oncogene and is
frequently detected in vivo in human thyroid papillary carcinomas.
Cell. 60:557–563. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
48.
|
Nikiforov YE, Rowland JM, Bove KE,
Monforte-Munoz H and Fagin JA: Distinct pattern of ret oncogene
rearrangements in morphological variants of radiation-induced and
sporadic thyroid papillary carcinomas in children. Cancer Res.
57:1690–1694. 1997.
|
|
49.
|
Tallini G, Santoro M, Helie M, et al:
RET/PTC oncogene activation defines a subset of papillary thyroid
carcinomas lacking evidence of progression to poorly differentiated
or undifferentiated tumor phenotypes. Clin Cancer Res. 4:287–294.
1998.
|
|
50.
|
Smyth P, Finn S, Cahill S, et al: ret/PTC
and BRAF act as distinct molecular, time-dependant triggers in a
sporadic Irish cohort of papillary thyroid carcinoma. Int J Surg
Pathol. 13:1–8. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
51.
|
Viglietto G, Chiappetta G, Martinez-Tello
FJ, et al: RET/PTC oncogene activation is an early event in thyroid
carcinogenesis. Oncogene. 11:1207–1210. 1995.PubMed/NCBI
|
|
52.
|
Sugg SL, Ezzat S, Rosen IB, Freeman JL and
Asa SL: Distinct multiple RET/PTC gene rearrangements in multifocal
papillary thyroid neoplasia. J Clin Endocrinol Metab. 83:4116–4122.
1998.PubMed/NCBI
|
|
53.
|
Jhiang SM, Sagartz JE, Tong Q, et al:
Targeted expression of the ret/PTC1 oncogene induces papillary
thyroid carcinomas. Endocrinology. 137:375–378. 1996.PubMed/NCBI
|
|
54.
|
Powell DJ Jr, Russell J, Nibu K, et al:
The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas
in murine thyroids. Cancer Res. 58:5523–5528. 1998.PubMed/NCBI
|
|
55.
|
Kawamoto Y, Takeda K, Okuno Y, et al:
Identification of RET autophosphorylation sites by mass
spectrometry. J Biol Chem. 279:14213–14224. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56.
|
Salvatore D, Barone MV, Salvatore G, et
al: Tyrosines 1015 and 1062 are in vivo autophosphorylation sites
in ret and ret-derived oncoproteins. J Clin Endocrinol Metab.
85:3898–3907. 2000.PubMed/NCBI
|
|
57.
|
Knauf JA, Kuroda H, Basu S and Fagin JA:
RET/PTC-induced dedifferentiation of thyroid cells is mediated
through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene.
22:4406–4412. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
58.
|
Vasko V, Saji M, Hardy E, et al: Akt
activation and localisation correlate with tumour invasion and
oncogene expression in thyroid cancer. J Med Genet. 41:161–170.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
59.
|
Melillo RM, Castellone MD, Guarino V, et
al: The RET/PTC-RAS-BRAF linear signaling cascade mediates the
motile and mitogenic phenotype of thyroid cancer cells. J Clin
Invest. 115:1068–1081. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Gujral TS, van Veelen W, Richardson DS, et
al: A novel RET kinase-beta-catenin signaling pathway contributes
to tumorigenesis in thyroid carcinoma. Cancer Res. 68:1338–1346.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
61.
|
Castellone MD, De Falco V, Rao DM, et al:
The beta-catenin axis integrates multiple signals downstream from
RET/papillary thyroid carcinoma leading to cell proliferation.
Cancer Res. 69:1867–1876. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62.
|
Pradeep A, Sharma C, Sathyanarayana P, et
al: Gastrin-mediated activation of cyclin D1 transcription involves
beta-catenin and CREB pathways in gastric cancer cells. Oncogene.
23:3689–3699. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Peifer M and Polakis P: Wnt signaling in
oncogenesis and embryogenesis-a look outside the nucleus. Science.
287:1606–1609. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
64.
|
Esapa CT, Johnson SJ, Kendall-Taylor P,
Lennard TW and Harris PE: Prevalence of Ras mutations in thyroid
neoplasia. Clin Endocrinol (Oxf). 50:529–535. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Zhu Z, Gandhi M, Nikiforova MN, Fischer AH
and Nikiforov YE: Molecular profile and clinical-pathologic
features of the follicular variant of papillary thyroid carcinoma.
An unusually high prevalence of ras mutations. Am J Clin Pathol.
120:71–77. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Santarpia L, Myers JN, Sherman SI,
Trimarchi F, Clayman GL and El-Naggar AK: Genetic alterations in
the RAS/RAF/mitogen-activated protein kinase and
phosphatidylinositol 3-kinase/Akt signaling pathways in the
follicular variant of papillary thyroid carcinoma. Cancer.
116:2974–2983. 2010. View Article : Google Scholar
|
|
67.
|
Hara H, Fulton N, Yashiro T, Ito K,
DeGroot LJ and Kaplan EL: N-ras mutation: an independent prognostic
factor for aggressiveness of papillary thyroid carcinoma. Surgery.
116:1010–1016. 1994.PubMed/NCBI
|
|
68.
|
Djakiew D, Delsite R, Pflug B, Wrathall J,
Lynch JH and Onoda M: Regulation of growth by a nerve growth
factor-like protein which modulates paracrine interactions between
a neoplastic epithelial cell line and stromal cells of the human
prostate. Cancer Res. 51:3304–3310. 1991.
|
|
69.
|
Bongarzone I, Vigneri P, Mariani L,
Collini P, Pilotti S and Pierotti MA: RET/NTRK1 rearrangements in
thyroid gland tumors of the papillary carcinoma family: correlation
with clinicopathological features. Clin Cancer Res. 4:223–228.
1998.PubMed/NCBI
|
|
70.
|
Musholt TJ, Musholt PB, Khaladj N, Schulz
D, Scheumann GF and Klempnauer J: Prognostic significance of RET
and NTRK1 rearrangements in sporadic papillary thyroid carcinoma.
Surgery. 128:984–993. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
71.
|
Martin-Zanca D, Mitra G, Long LK and
Barbacid M: Molecular characterization of the human trk oncogene.
Cold Spring Harb Symp Quant Biol. 51:983–992. 1986. View Article : Google Scholar
|
|
72.
|
Russell JP, Powell DJ, Cunnane M, et al:
The TRK-T1 fusion protein induces neoplastic transformation of
thyroid epithelium. Oncogene. 19:5729–5735. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
73.
|
Fedele M, Palmieri D, Chiappetta G, et al:
Impairment of the p27kip1 function enhances thyroid carcinogenesis
in TRK-T1 transgenic mice. Endocr Relat Cancer. 16:483–490. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
74.
|
Passler C, Scheuba C, Prager G, et al:
Prognostic factors of papillary and follicular thyroid cancer:
differences in an iodine-replete endemic goiter region. Endocr
Relat Cancer. 11:131–139. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
75.
|
Gulcelik MA, Gulcelik NE, Kuru B, Camlibel
M and Alagol H: Prognostic factors determining survival in
differentiated thyroid cancer. J Surg Oncol. 96:598–604. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
76.
|
Verburg FA, Mader U, Luster M and Reiners
C: Histology does not influence prognosis in differentiated thyroid
carcinoma when accounting for age, tumour diameter, invasive growth
and metastases. Eur J Endocrinol. 160:619–624. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77.
|
Lemoine NR, Mayall ES, Wyllie FS, et al:
High frequency of ras oncogene activation in all stages of human
thyroid tumorigenesis. Oncogene. 4:159–164. 1989.PubMed/NCBI
|
|
78.
|
Garcia-Rostan G, Zhao H, Camp RL, et al:
ras mutations are associated with aggressive tumor phenotypes and
poor prognosis in thyroid cancer. J Clin Oncol. 21:3226–3235. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
79.
|
Namba H, Rubin SA and Fagin JA: Point
mutations of ras oncogenes are an early event in thyroid
tumorigenesis. Mol Endocrinol. 4:1474–1479. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
80.
|
Bond JA, Wyllie FS, Rowson J, Radulescu A
and Wynford-Thomas D: In vitro reconstruction of tumour initiation
in a human epithelium. Oncogene. 9:281–290. 1994.PubMed/NCBI
|
|
81.
|
Vitagliano D, Portella G, Troncone G, et
al: Thyroid targeting of the N-ras(Gln61Lys) oncogene in transgenic
mice results in follicular tumors that progress to poorly
differentiated carcinomas. Oncogene. 25:5467–5474. 2006. View Article : Google Scholar
|
|
82.
|
Kiaris H and Spandidos DA: Mutations of
ras genes in human tumours. Int J Oncol. 7:413–429.
1995.
|
|
83.
|
Malumbres M and Barbacid M: RAS oncogenes:
the first 30 years. Nat Rev Cancer. 3:459–465. 2003.PubMed/NCBI
|
|
84.
|
Miller KA, Yeager N, Baker K, Liao XH,
Refetoff S and Di Cristofano A: Oncogenic Kras requires
simultaneous PI3K signaling to induce ERK activation and transform
thyroid epithelial cells in vivo. Cancer Res. 69:3689–3694. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
85.
|
Vojtek AB and Der CJ: Increasing
complexity of the Ras signaling pathway. J Biol Chem.
273:19925–19928. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
86.
|
Krasilnikov MA: Phosphatidylinositol-3
kinase dependent pathways: the role in control of cell growth,
survival, and malignant transformation. Biochemistry (Mosc).
65:59–67. 2000.PubMed/NCBI
|
|
87.
|
Damante G, Tell G and Di Lauro R: A unique
combination of transcription factors controls differentiation of
thyroid cells. Prog Nucleic Acid Res Mol Biol. 66:307–356. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
88.
|
Desvergne B and Wahli W: Peroxisome
proliferator-activated receptors: nuclear control of metabolism.
Endocr Rev. 20:649–688. 1999.PubMed/NCBI
|
|
89.
|
Kroll TG, Sarraf P, Pecciarini L, et al:
PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma
[corrected]. Science. 289:1357–1360. 2000.
|
|
90.
|
Cheung L, Messina M, Gill A, et al:
Detection of the PAX8-PPAR gamma fusion oncogene in both follicular
thyroid carcinomas and adenomas. J Clin Endocrinol Metab.
88:354–357. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
91.
|
Marques AR, Espadinha C, Catarino AL, et
al: Expression of PAX8-PPAR gamma 1 rearrangements in both
follicular thyroid carcinomas and adenomas. J Clin Endocrinol
Metab. 87:3947–3952. 2002.PubMed/NCBI
|
|
92.
|
Lacroix L, Mian C, Barrier T, et al: PAX8
and peroxisome proliferator-activated receptor gamma 1 gene
expression status in benign and malignant thyroid tissues. Eur J
Endocrinol. 151:367–374. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
93.
|
Klemke M, Drieschner N, Belge G, Burchardt
K, Junker K and Bullerdiek J: Detection of PAX8-PPARG fusion
transcripts in archival thyroid carcinoma samples by conventional
RT-PCR. Genes Chromosomes Cancer. 51:402–408. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94.
|
Gregory Powell J, Wang X, Allard BL, et
al: The PAX8/PPARgamma fusion oncoprotein transforms immortalized
human thyrocytes through a mechanism probably involving wild-type
PPARgamma inhibition. Oncogene. 23:3634–3641. 2004.
|
|
95.
|
Lui WO, Foukakis T, Liden J, et al:
Expression profiling reveals a distinct transcription signature in
follicular thyroid carcinomas with a PAX8-PPAR(gamma) fusion
oncogene. Oncogene. 24:1467–1476. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
96.
|
Reddi HV, McIver B, Grebe SK and Eberhardt
NL: The paired box-8/peroxisome proliferator-activated
receptor-gamma oncogene in thyroid tumorigenesis. Endocrinology.
148:932–935. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
97.
|
Farrow B and Evers BM: Activation of
PPARgamma increases PTEN expression in pancreatic cancer cells.
Biochem Biophys Res Commun. 301:50–53. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
98.
|
Chinnadurai G: CtBP, an unconventional
transcriptional core-pressor in development and oncogenesis. Mol
Cell. 9:213–224. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
99.
|
Neff RL, Farrar WB, Kloos RT and Burman
KD: Anaplastic thyroid cancer. Endocrinol Metab Clin North Am.
37:525–538. 2008. View Article : Google Scholar
|
|
100.
|
Ain KB: Anaplastic thyroid carcinoma:
behavior, biology, and therapeutic approaches. Thyroid. 8:715–726.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
101.
|
Giuffrida D and Gharib H: Anaplastic
thyroid carcinoma: current diagnosis and treatment. Ann Oncol.
11:1083–1089. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
102.
|
Kitamura Y, Shimizu K, Nagahama M, et al:
Immediate causes of death in thyroid carcinoma: clinicopathological
analysis of 161 fatal cases. J Clin Endocrinol Metab. 84:4043–4049.
1999. View Article : Google Scholar
|
|
103.
|
Smallridge RC, Marlow LA and Copland JA:
Anaplastic thyroid cancer: molecular pathogenesis and emerging
therapies. Endocr Relat Cancer. 16:17–44. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
104.
|
Kim TY, Kim KW, Jung TS, et al: Prognostic
factors for Korean patients with anaplastic thyroid carcinoma. Head
Neck. 29:765–772. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
105.
|
Nikiforov YE: Genetic alterations involved
in the transition from well-differentiated to poorly differentiated
and anaplastic thyroid carcinomas. Endocr Pathol. 15:319–327. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
106.
|
Hou P, Liu D, Shan Y, et al: Genetic
alterations and their relationship in the phosphatidylinositol
3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res.
13:1161–1170. 2007. View Article : Google Scholar
|
|
107.
|
Nikiforova MN, Kimura ET, Gandhi M, et al:
BRAF mutations in thyroid tumors are restricted to papillary
carcinomas and anaplastic or poorly differentiated carcinomas
arising from papillary carcinomas. J Clin Endocrinol Metab.
88:5399–5404. 2003. View Article : Google Scholar
|
|
108.
|
Costa AM, Herrero A, Fresno MF, et al:
BRAF mutation associated with other genetic events identifies a
subset of aggressive papillary thyroid carcinoma. Clin Endocrinol
(Oxf). 68:618–634. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
109.
|
Sobrinho-Simoes M, Maximo V, Rocha AS, et
al: Intragenic mutations in thyroid cancer. Endocrinol Metab Clin
North Am. 37:333–362. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
110.
|
Begum S, Rosenbaum E, Henrique R, Cohen Y,
Sidransky D and Westra WH: BRAF mutations in anaplastic thyroid
carcinoma: implications for tumor origin, diagnosis and treatment.
Mod Pathol. 17:1359–1363. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
111.
|
Santarpia L, El-Naggar AK, Cote GJ, Myers
JN and Sherman SI: Phosphatidylinositol 3-kinase/akt and
ras/raf-mitogen-activated protein kinase pathway mutations in
anaplastic thyroid cancer. J Clin Endocrinol Metab. 93:278–284.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
112.
|
Saavedra HI, Knauf JA, Shirokawa JM, et
al: The RAS oncogene induces genomic instability in thyroid PCCL3
cells via the MAPK pathway. Oncogene. 19:3948–3954. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
113.
|
Sansal I and Sellers WR: The biology and
clinical relevance of the PTEN tumor suppressor pathway. J Clin
Oncol. 22:2954–2963. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
114.
|
Frisk T, Foukakis T, Dwight T, et al:
Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid
cancer. Genes Chromosomes Cancer. 35:74–80. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
115.
|
Hou P, Ji M and Xing M: Association of
PTEN gene methylation with genetic alterations in the
phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid
tumors. Cancer. 113:2440–2447. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
116.
|
Ringel MD, Hayre N, Saito J, et al:
Overexpression and overactivation of Akt in thyroid carcinoma.
Cancer Res. 61:6105–6111. 2001.PubMed/NCBI
|
|
117.
|
Petitjean A, Mathe E, Kato S, et al:
Impact of mutant p53 functional properties on TP53 mutation
patterns and tumor phenotype: lessons from recent developments in
the IARC TP53 database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
118.
|
Ito T, Seyama T, Mizuno T, et al: Unique
association of p53 mutations with undifferentiated but not with
differentiated carcinomas of the thyroid gland. Cancer Res.
52:1369–1371. 1992.PubMed/NCBI
|
|
119.
|
Cerrato A, Fulciniti F, Avallone A,
Benincasa G, Palombini L and Grieco M: Beta- and gamma-catenin
expression in thyroid carcinomas. J Pathol. 185:267–272. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
120.
|
Garcia-Rostan G, Tallini G, Herrero A,
D’Aquila TG, Carcangiu ML and Rimm DL: Frequent mutation and
nuclear localization of beta-catenin in anaplastic thyroid
carcinoma. Cancer Res. 59:1811–1815. 1999.PubMed/NCBI
|
|
121.
|
Motti ML, Califano D, Baldassarre G, et
al: Reduced E-cadherin expression contributes to the loss of
p27kip1-mediated mechanism of contact inhibition in thyroid
anaplastic carcinomas. Carcinogenesis. 26:1021–1034. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
122.
|
Naito A, Iwase H, Kuzushima T, Nakamura T
and Kobayashi S: Clinical significance of E-cadherin expression in
thyroid neoplasms. J Surg Oncol. 76:176–180. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
123.
|
Von Wasielewski R, Rhein A, Werner M, et
al: Immunohistochemical detection of E-cadherin in differentiated
thyroid carcinomas correlates with clinical outcome. Cancer Res.
57:2501–2507. 1997.PubMed/NCBI
|
|
124.
|
Maia AL, Ward LS, Carvalho GA, Graf H,
Maciel RM, Maciel LM, Rosário PW and Vaisman M: Thyroid nodules and
differentiated thyroid cancer: Brazilian consensus. Arq Bras
Endocrinol Metabol. 51:867–893. 2007.PubMed/NCBI
|
|
125.
|
Cooper DS, Doherty GM, Haugen BR, et al:
Revised American thyroid association management guidelines for
patients with thyroid nodules and differentiated thyroid cancer.
Thyroid. 19:1167–1214. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
126.
|
Fernandes JK, Day TA, Richardson MS and
Sharma AK: Overview of the management of differentiated thyroid
cancer. Curr Treat Options Oncol. 6:47–57. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
127.
|
Kloos RT, Ringel MD, Knopp MV, et al:
Phase II trial of soafenib in metastatic thyroid cancer. J Clin
Oncol. 27:1675–1684. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
128.
|
Hoftijzer H, Heemstra KA, Morreau H, et
al: Beneficial effects of sorafenib on tumor progression, but not
on radioiodine uptake, in patients with differentiated thyroid
carcinoma. Eur J Endocrinol. 161:923–931. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
129.
|
Gupta-Abramson V, Troxel AB, Nellore A, et
al: Phase II trial of sorafenib inadvanced thyroid cancer. J Clin
Oncol. 26:4714–4719. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
130.
|
Flaherty KT, Puzanov I, Kim KB, et al:
Inhibition of mutated, activated BRAF in metastatic melanoma. N
Engl J Med. 363:809–819. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
131.
|
Cohen EE, Rosen LS, Vokes EE, et al:
Axitinib is an active treatment for all histologic subtypes of
advanced thyroid cancer: results from a phase II study. J Clin
Oncol. 26:4708–4713. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
132.
|
Bible KC, Suman VJ, Molina JR, et al:
Efficacy of pazopanib in progressive, radioiodine-refractory,
metastatic differentiated thyroid cancers: results of a phase 2
consortium study. Lancet Oncol. 11:962–972. 2010. View Article : Google Scholar
|
|
133.
|
Sherman SI, Wirth LJ, Droz JP, et al:
Motesanib diphosphate in progressive differentiated thyroid cancer.
N Engl J Med. 359:31–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
134.
|
Pennell NA, Daniels GH, Haddad RI, et al:
A phase II study of gefitinib in patients with advanced thyroid
cancer. Thyroid. 18:317–323. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
135.
|
Hayes DN, Lucas AS, Tanvetyanon T, et al:
Phase II efficacy and pharmacogenomic study of Selumetinib
(AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid
carcinoma with or without follicular elements. Clin Cancer Res.
18:2056–2065. 2012. View Article : Google Scholar : PubMed/NCBI
|