|
1.
|
Gianni L, Grasselli G, Cresta S, Locatelli
A, Vigano L and Minotti G: Anthracyclines. Cancer Chemother Biol
Response Modif. 21:29–40. 2003. View Article : Google Scholar
|
|
2.
|
Abu Ajaj K, Graeser R, Fichtner I and
Kratz F: In vitro and in vivo study of an albumin-binding prodrug
of doxorubicin that is cleaved by cathepsin B. Cancer Chemother
Pharmacol. 64:413–418. 2009.PubMed/NCBI
|
|
3.
|
Ogura M: Adriamycin (doxorubicin). Gan To
Kagaku Ryoho. 28:1331–1338. 2001.(In Japanese).
|
|
4.
|
Granados-Principal S, Quiles JL,
Ramirez-Tortosa CL, Sanchez-Rovira P and Ramirez-Tortosa MC: New
advances in molecular mechanisms and the prevention of adriamycin
toxicity by antioxidant nutrients. Food Chem Toxicol. 48:1425–1438.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
5.
|
Herman EH, Ferrans VJ, Jordan W and
Ardalan B: Reduction of chronic daunorubicin cardiotoxicity by
ICRF-187 in rabbits. Res Commun Chem Pathol Pharmacol. 31:85–97.
1981.PubMed/NCBI
|
|
6.
|
Wexler LH, Andrich MP, Venzon D, et al:
Randomized trial of the cardioprotective agent ICRF-187 in
pediatric sarcoma patients treated with doxorubicin. J Clin Oncol.
14:362–372. 1996.PubMed/NCBI
|
|
7.
|
Lipshultz SE: Dexrazoxane for protection
against cardiotoxic effects of anthracyclines in children. J Clin
Oncol. 14:328–331. 1996.PubMed/NCBI
|
|
8.
|
Cattel L, Ceruti M and Dosio F: From
conventional to stealth liposomes: a new frontier in cancer
chemotherapy. Tumori. 89:237–249. 2003.PubMed/NCBI
|
|
9.
|
Li J, Wu C, Dai Y, Zhang R, Wang X, Fu D
and Chen B: Doxorubicin-CdS nanoparticles: a potential anticancer
agent for enhancing the drug uptake of cancer cells. J Nanosci
Nanotechnol. 7:435–439. 2007.PubMed/NCBI
|
|
10.
|
Ascensao A, Lumini-Oliveira J, Machado NG,
et al: Acute exercise protects against calcium-induced cardiac
mitochondrial permeability transition pore opening in
doxorubicin-treated rats. Clin Sci. 120:37–49. 2011. View Article : Google Scholar
|
|
11.
|
Yeung TK, Hopewell JW, Simmonds RH, et al:
Reduced cardiotoxicity of doxorubicin given in the form of
N-(2-hydroxypropyl) methacrylamide conjugates: and experimental
study in the rat. Cancer Chemother Pharmacol. 29:105–111. 1991.
View Article : Google Scholar
|
|
12.
|
Shao LH, Liu SP, Hou JX, et al: Cathepsin
B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at
reduced toxicity in treating gastric cancer peritoneal
carcinomatosis: an experimental study. Cancer. 118:2986–2996. 2011.
View Article : Google Scholar
|
|
13.
|
Kratz F, Warnecke A, Schmid B, Chung DE
and Gitzel M: Prodrugs of anthracyclines in cancer chemotherapy.
Curr Med Chem. 13:477–523. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14.
|
Muller MB, Keck ME, Binder EB, et al:
ABCB1 (MDR1)-type P-glycoproteins at the blood-brain barrier
modulate the activity of the hypothalamic-pituitary-adrenocortical
system: implications for affective disorder.
Neuropsychopharmacology. 28:1991–1999. 2003. View Article : Google Scholar
|
|
15.
|
Gottesman MM, Fojo T and Bates SE:
Multidrug resistance in cancer: role of ATP-dependent transporters.
Nat Rev Cancer. 2:48–58. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Lu Y, Yang J and Sega E: Issues related to
targeted delivery of proteins and peptides. AAPS J. 8:E466–E478.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Juillerat-Jeanneret L and Schmitt F:
Chemical modification of therapeutic drugs or drug vector systems
to achieve targeted therapy: looking for the grail. Med Res Rev.
27:574–590. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
18.
|
Calderon M, Graeser R, Kratz F and Haag R:
Development of enzymatically cleavable prodrugs derived from
dendritic polyglycerol. Bioorg Med Chem Lett. 19:3725–3728. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Haag R and Kratz F: Polymer therapeutics:
concepts and applications. Angew Chem Int Ed Engl. 45:1198–1215.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Duncan R: Polymer conjugates as anticancer
nanomedicines. Nat Rev Cancer. 6:688–701. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Vicent MJ, Dieudonne L, Carbajo RJ and
Pineda-Lucena A: Polymer conjugates as therapeutics: future trends,
challenges and opportunities. Expert Opin Drug Deliv. 5:593–614.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Kiick KL: Materials science. Polymer
therapeutics. Science. 317:1182–1183. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23.
|
Schilsky RL: Pharmacology and clinical
status of capecitabine. Oncology. 14:1297–1306; discussion
1309–1311, 2000.
|
|
24.
|
Basu SK: Receptor-mediated endocytosis of
macromolecular conjugates in selective drug delivery. Biochem
Pharmacol. 40:1941–1946. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Noguchi Y, Wu J, Duncan R, Strohalm J,
Ulbrich K, Akaike T and Maeda H: Early phase tumor accumulation of
macromolecules: a great difference in clearance rate between tumor
and normal tissues. Jpn J Cancer Res. 89:307–314. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
26.
|
Shiah JJ, Sun Y, Peterson CM and Kopecek
J: Biodistribution of free and N-(2-hydroxypropyl)methacrylamide
copolymer-bound mesochlorin e(6) and adriamycin in nude mice
bearing human ovarian carcinoma OVCAR-3 xenografts. J Control
Release. 61:145–157. 1999. View Article : Google Scholar
|
|
27.
|
Bogdanov A Jr, Wright SC, Marecos EM,
Bogdanova A, Martin C, Petherick P and Weissleder R: A
long-circulating co-polymer in ‘passive targeting’ to solid tumors.
J Drug Target. 4:321–330. 1997.PubMed/NCBI
|
|
28.
|
Kopecek J, Sprincl L and Lim D: New types
of synthetic infusion solutions. I. Investigation of the effect of
solutions of some hydrophilic polymers on blood. J Biomed Mater
Res. 7:179–191. 1973. View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Sprincl L, Exner J, Sterba O and Kopecek
J: New types of synthetic infusion solutions. III. Elimination and
retention of poly-[N-(2-hydroxypropyl)methacrylamide] in a test
organism. J Biomed Mater Res. 10:953–963. 1976.PubMed/NCBI
|
|
30.
|
Etrych T, Kovar L, Strohalm J, Chytil P,
Rihova B and Ulbrich K: Biodegradable star HPMA polymer-drug
conjugates: biodegradability, distribution and anti-tumor efficacy.
J Control Release. 154:241–248. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Satchi-Fainaro R, Puder M, Davies JW, et
al: Targeting angio-genesis with a conjugate of HPMA copolymer and
TNP-470. Nat Med. 10:255–261. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Satchi-Fainaro R, Mamluk R, Wang L, et al:
Inhibition of vessel permeability by TNP-470 and its polymer
conjugate, caplostatin. Cancer Cell. 7:251–261. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Kasuya Y, Lu ZR, Kopeckova P, Minko T,
Tabibi SE and Kopecek J: Synthesis and characterization of HPMA
copolymeraminopropylgeldanamycin conjugates. J Control Release.
74:203–211. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Nishiyama N, Nori A, Malugin A, Kasuya Y,
Kopeckova P and Kopecek J: Free and
N-(2-hydroxypropyl)methacrylamide copolymer-bound geldanamycin
derivative induce different stress responses in A2780 human ovarian
carcinoma cells. Cancer Res. 63:7876–7882. 2003.
|
|
35.
|
Etrych T, Mrkvan T, Rihova B and Ulbrich
K: Star-shaped immunoglobulin-containing HPMA-based conjugates with
doxorubicin for cancer therapy. J Control Release. 122:31–38. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
36.
|
Vasey PA, Kaye SB, Morrison R, et al:
Phase I clinical and pharmacokinetic study of PK1
[N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first
member of a new class of chemo-therapeutic agents-drug-polymer
conjugates. Cancer Research Campaign Phase I/II Committee. Clin
Cancer Res. 5:83–94. 1999.
|
|
37.
|
Bilim V: Technology evaluation: PK1,
Pfizer/Cancer Research UK. Curr Opin Mol Ther. 5:326–330.
2003.PubMed/NCBI
|
|
38.
|
Seymour LW, Ferry DR, Kerr DJ, et al:
Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the
treatment of breast, lung and colorectal cancer. Int J Oncol.
34:1629–1636. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Thomson AH, Vasey PA, Murray LS, Cassidy
J, Fraier D, Frigerio E and Twelves C: Population pharmacokinetics
in phase I drug development: a phase I study of PK1 in patients
with solid tumours. Br J Cancer. 81:99–107. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Julyan PJ, Seymour LW, Ferry DR, et al:
Preliminary clinical study of the distribution of HPMA copolymers
bearing doxorubicin and galactosamine. J Control Release.
57:281–290. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
41.
|
Seymour LW, Ferry DR, Anderson D, et al:
Hepatic drug targeting: phase I evaluation of polymer-bound
doxorubicin. J Clin Oncol. 20:1668–1676. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Seymour LW, Ulbrich K, Wedge SR, Hume IC,
Strohalm J and Duncan R: N-(2-hydroxypropyl)methacrylamide
copolymers targeted to the hepatocyte galactose-receptor:
pharmacokinetics in DBA2 mice. Br J Cancer. 63:859–866. 1991.
View Article : Google Scholar
|
|
43.
|
Meerum Terwogt JM, ten Bokkel Huinink WW,
Schellens JH, et al: Phase I clinical and pharmacokinetic study of
PNU166945, a novel water-soluble polymer-conjugated prodrug of
paclitaxel. Anticancer Drugs. 12:315–323. 2001.PubMed/NCBI
|
|
44.
|
Rice JR, Gerberich JL, Nowotnik DP and
Howell SB: Preclinical efficacy and pharmacokinetics of AP5346, a
novel diaminocyclohexane-platinum tumor-targeting drug delivery
system. Clin Cancer Res. 12:2248–2254. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Nowotnik DP and Cvitkovic E: ProLindac
(AP5346): a review of the development of an HPMA DACH platinum
polymer therapeutic. Adv Drug Deliv Rev. 61:1214–1219. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Campone M, Rademaker-Lakhai JM, Bennouna
J, Howell SB, Nowotnik DP, Beijnen JH and Schellens JH: Phase I and
pharmacokinetic trial of AP5346, a DACH-platinum-polymer conjugate,
administered weekly for three out of every 4 weeks to advanced
solid tumor patients. Cancer Chemother Pharmacol. 60:523–533. 2007.
View Article : Google Scholar
|
|
47.
|
Van der Schoot SC, Nuijen B, Sood P,
Thurmond KB II, Stewart DR, Rice JR and Beijnen JH: Pharmaceutical
development, quality control, stability and compatibility of a
parenteral lyophilized formulation of the investigational
polymer-conjugated platinum antineoplastic agent AP5346. Pharmazie.
61:835–844. 2006.
|
|
48.
|
Sood P, Thurmond KB II, Jacob JE, Waller
LK, Silva GO, Stewart DR and Nowotnik DP: Synthesis and
characterization of AP5346, a novel polymer-linked
diaminocyclohexyl platinum chemotherapeutic agent. Bioconjug Chem.
17:1270–1279. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Rademaker-Lakhai JM, Terret C, Howell SB,
et al: A Phase I and pharmacological study of the platinum polymer
AP5280 given as an intravenous infusion once every 3 weeks in
patients with solid tumors. Clin Cancer Res. 10:3386–3395. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Tibben MM, Rademaker-Lakhai JM, Rice JR,
Stewart DR, Schellens JH and Beijnen JH: Determination of total
platinum in plasma and plasma ultrafiltrate, from subjects dosed
with the platinum-containing N-(2-hydroxypropyl)methacrylamide
copolymer AP5280, by use of graphite-furnace Zeeman
atomic-absorption spectrometry. Anal Bioanal Chem. 373:233–236.
2002. View Article : Google Scholar
|
|
51.
|
Lin X, Zhang Q, Rice JR, Stewart DR,
Nowotnik DP and Howell SB: Improved targeting of platinum
chemotherapeutics. the antitumour activity of the HPMA copolymer
platinum agent AP5280 in murine tumour models. Eur J Cancer.
40:291–297. 2004.PubMed/NCBI
|
|
52.
|
Podgorski I and Sloane BF: Cathepsin B and
its role(s) in cancer progression. Biochem Soc Symp. 70:263–276.
2003.PubMed/NCBI
|
|
53.
|
Calkins CC, Sameni M, Koblinski J, Sloane
BF and Moin K: Differential localization of cysteine protease
inhibitors and a target cysteine protease, cathepsin B, by
immuno-confocal microscopy. J Histochem Cytochem. 46:745–751. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
54.
|
Kovar M, Strohalm J, Etrych T, Ulbrich K
and Rihova B: Star structure of antibody-targeted HPMA
copolymer-bound doxorubicin: a novel type of polymeric conjugate
for targeted drug delivery with potent antitumor effect. Bioconjug
Chem. 13:206–215. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
55.
|
Thanou M and Duncan R: Polymer-protein and
polymer-drug conjugates in cancer therapy. Curr Opin Investig
Drugs. 4:701–709. 2003.PubMed/NCBI
|
|
56.
|
Mai J, Waisman DM and Sloane BF: Cell
surface complex of cathepsin B/annexin II tetramer in malignant
progression. Biochim Biophys Acta. 1477:215–230. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
57.
|
Kratz F, Muller IA, Ryppa C and Warnecke
A: Prodrug strategies in anticancer chemotherapy. ChemMedChem.
3:20–53. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
58.
|
Trouet A, Masquelier M, Baurain R and
Deprez-De Campeneere D: A covalent linkage between daunorubicin and
proteins that is stable in serum and reversible by lysosomal
hydro-lases, as required for a lysosomotropic drug-carrier
conjugate: in vitro and in vivo studies. Proc Natl Acad Sci USA.
79:626–629. 1982. View Article : Google Scholar
|
|
59.
|
Omelyanenko V, Kopeckova P, Gentry C and
Kopecek J: Targetable HPMA copolymer-adriamycin conjugates.
Recognition, internalization and subcellular fate. J Control
Release. 53:25–37. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Carl PL, Chakravarty PK and
Katzenellenbogen JA: A novel connector linkage applicable in
prodrug design. J Med Chem. 24:479–480. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
61.
|
Seymour LW, Ulbrich K, Steyger PS,
Brereton M, Subr V, Strohalm J and Duncan R: Tumour tropism and
anti-cancer efficacy of polymer-based doxorubicin prodrugs in the
treatment of subcutaneous murine B16F10 melanoma. Br J Cancer.
70:636–641. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
62.
|
Duncan R, Kopeckova P, Strohalm J, Hume
IC, Lloyd JB and Kopecek J: Anticancer agents coupled to
N-(2-hydroxypropyl) methacrylamide copolymers. II. Evaluation of
daunomycin conjugates in vivo against L1210 leukaemia. Br J Cancer.
57:147–156. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Duncan R, Kopeckova-Rejmanova P, Strohalm
J, et al: Anticancer agents coupled to
N-(2-hydroxypropyl)methacrylamide copolymers. I. Evaluation of
daunomycin and puromycin conjugates in vitro. Br J Cancer.
55:165–174. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
64.
|
Hopewel JW, Duncan R, Wilding D and
Chakrabarti K: Preclinical evaluation of the cardiotoxicity of PK2:
a novel HPMA copolymer-doxorubicin-galactosamine conjugate
antitumour agent. Hum Exp Toxicol. 20:461–470. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Minko T, Kopeckova P, Pozharov V and
Kopecek J: HPMA copolymer bound adriamycin overcomes MDR1 gene
encoded resistance in a human ovarian carcinoma cell line. J
Control Release. 54:223–233. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Minko T, Kopeckova P and Kopecek J:
Chronic exposure to HPMA copolymer-bound adriamycin does not induce
multidrug resistance in a human ovarian carcinoma cell line. J
Control Release. 59:133–148. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
67.
|
Tijerina M, Fowers KD, Kopeckova P and
Kopecek J: Chronic exposure of human ovarian carcinoma cells to
free or HPMA copolymer-bound mesochlorin e6 does not induce
P-glycoprotein-mediated multidrug resistance. Biomaterials.
21:2203–2210. 2000. View Article : Google Scholar
|
|
68.
|
Minko T, Kopeckova P and Kopecek J:
Efficacy of the chemo-therapeutic action of HPMA copolymer-bound
doxorubicin in a solid tumor model of ovarian carcinoma. Int J
Cancer. 86:108–117. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
69.
|
Duncan R: Drug-polymer conjugates:
potential for improved chemotherapy. Anticancer Drugs. 3:175–210.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
70.
|
Kovar L, Strohalm J, Chytil P, et al: The
same drug but a different mechanism of action: comparison of free
doxorubicin with two different N-(2-hydroxypropyl)methacrylamide
copolymer-bound doxorubicin conjugates in EL-4 cancer cell line.
Bioconjug Chem. 18:894–902. 2007. View Article : Google Scholar
|
|
71.
|
Satchi R, Connors TA and Duncan R: PDEPT:
polymer-directed enzyme prodrug therapy. I. HPMA
copolymer-cathepsin B and PK1 as a model combination. Br J Cancer.
85:1070–1076. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
72.
|
Paul A, Vicent MJ and Duncan R: Using
small-angle neutron scattering to study the solution conformation
of N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin
conjugates. Biomacromolecules. 8:1573–1579. 2007. View Article : Google Scholar
|
|
73.
|
Pimm MV, Perkins AC, Strohalm J, Ulbrich K
and Duncan R: Gamma scintigraphy of a 123I-labelled
N-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin conjugate
containing galactosamine following intravenous administration to
nude mice bearing hepatic human colon carcinoma. J Drug Target.
3:385–390. 1996.
|
|
74.
|
Duncan R, Seymour LC, Scarlett L, Lloyd
JB, Rejmanova P and Kopecek J: Fate of
N-(2-hydroxypropyl)methacrylamide copolymers with pendent
galactosamine residues after intravenous administration to rats.
Biochim Biophys Acta. 880:62–71. 1986. View Article : Google Scholar
|
|
75.
|
Virgolini I, Muller C, Klepetko W,
Angelberger P, Bergmann H, O’Grady J and Sinzinger H: Decreased
hepatic function in patients with hepatoma or liver metastasis
monitored by a hepatocyte specific galactosylated radioligand. Br J
Cancer. 61:937–941. 1990. View Article : Google Scholar
|
|
76.
|
Schlepper-Schafer J, Hulsmann D, Djovkar
A, Meyer HE, Herbertz L, Kolb H and Kolb-Bachofen V: Endocytosis
via galactose receptors in vivo. Ligand size directs uptake by
hepatocytes and/or liver macrophages. Exp Cell Res. 165:494–506.
1986.PubMed/NCBI
|
|
77.
|
Shiah JG, Dvorak M, Kopeckova P, Sun Y,
Peterson CM and Kopecek J: Biodistribution and antitumour efficacy
of long-circulating N-(2-hydroxypropyl)methacrylamide
copolymer-doxorubicin conjugates in nude mice. Eur J Cancer.
37:131–139. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
78.
|
Rihova B, Bilej M, Vetvicka V, Ulbrich K,
Strohalm J, Kopecek J and Duncan R: Biocompatibility of
N-(2-hydroxypropyl) methacrylamide copolymers containing
adriamycin. Immunogenicity and effect on haematopoietic stem cells
in bone marrow in vivo and mouse splenocytes and human peripheral
blood lymphocytes in vitro. Biomaterials. 10:335–342. 1989.
View Article : Google Scholar
|
|
79.
|
Omelyanenko V, Kopeckova P, Gentry C,
Shiah JG and Kopecek J: HPMA copolymer-anticancer drug-OV-TL16
antibody conjugates. 1. influence of the method of synthesis on the
binding affinity to OVCAR-3 ovarian carcinoma cells in vitro. J
Drug Target. 3:357–373. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
80.
|
Omelyanenko V, Gentry C, Kopeckova P and
Kopecek J: HPMA copolymer-anticancer drug-OV-TL16 antibody
conjugates. II. Processing in epithelial ovarian carcinoma cells in
vitro. Int J Cancer. 75:600–608. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
81.
|
Kunath K, Kopeckova P, Minko T and Kopecek
J: HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. 3.
The effect of free and polymer-bound adriamycin on the expression
of some genes in the OVCAR-3 human ovarian carcinoma cell line. Eur
J Pharm Biopharm. 49:11–15. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
82.
|
Jensen KD, Kopeckova P, Bridge JH and
Kopecek J: The cytoplasmic escape and nuclear accumulation of
endocytosed and microinjected HPMA copolymers and a basic kinetic
study in Hep G2 cells. AAPS PharmSci. 3:E322001. View Article : Google Scholar : PubMed/NCBI
|
|
83.
|
David A, Kopeckova P, Kopecek J and
Rubinstein A: The role of galactose, lactose and galactose valency
in the biorecognition of N-(2-hydroxypropyl)methacrylamide
copolymers by human colon adenocarcinoma cells. Pharm Res.
19:1114–1122. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
84.
|
David A, Kopeckova P, Rubinstein A and
Kopecek J: Enhanced biorecognition and internalization of HPMA
copolymers containing multiple or multivalent carbohydrate
side-chains by human hepatocarcinoma cells. Bioconjug Chem.
12:890–899. 2001. View Article : Google Scholar
|
|
85.
|
Irimura T, Matsushita Y, Sutton RC, et al:
Increased content of an endogenous lactose-binding lectin in human
colorectal carcinoma progressed to metastatic stages. Cancer Res.
51:387–393. 1991.
|
|
86.
|
Bresalier RS, Mazurek N, Sternberg LR,
Byrd JC, Yunker CK, Nangia-Makker P and Raz A: Metastasis of human
colon cancer is altered by modifying expression of the
beta-galactoside-binding protein galectin 3. Gastroenterology.
115:287–296. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
87.
|
Ohannesian DW, Lotan D, Thomas P, Jessup
JM, Fukuda M, Gabius HJ and Lotan R: Carcinoembryonic antigen and
other glycoconjugates act as ligands for galectin-3 in human colon
carcinoma cells. Cancer Res. 55:2191–2199. 1995.PubMed/NCBI
|
|
88.
|
Lotz MM, Andrews CW Jr, Korzelius CA, Lee
EC, Steele GD Jr, Clarke A and Mercurio AM: Decreased expression of
Mac-2 (carbohydrate binding protein 35) and loss of its nuclear
localization are associated with the neoplastic progression of
colon carcinoma. Proc Natl Acad Sci USA. 90:3466–3470. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
89.
|
Castronovo V, Campo E, van den Brule FA,
et al: Inverse modulation of steady-state messenger RNA levels of
two non-integrin laminin-binding proteins in human colon carcinoma.
J Natl Cancer Inst. 84:1161–1169. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
90.
|
David A, Kopeckova P, Minko T, Rubinstein
A and Kopecek J: Design of a multivalent galactoside ligand for
selective targeting of HPMA copolymer-doxorubicin conjugates to
human colon cancer cells. Eur J Cancer. 40:148–157. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
91.
|
Etrych T, Strohalm J, Chytil P, Cernoch P,
Starovoytova L, Pechar M and Ulbrich K: Biodegradable star HPMA
polymer conjugates of doxorubicin for passive tumor targeting. Eur
J Pharm Sci. 42:527–539. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
92.
|
Dvorak M, Kopeckova P and Kopecek J:
High-molecular weight HPMA copolymer-adriamycin conjugates. J
Control Release. 60:321–332. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
93.
|
Etrych T, Jelinkova M, Rihova B and
Ulbrich K: New HPMA copolymers containing doxorubicin bound via
pH-sensitive linkage: synthesis and preliminary in vitro and in
vivo biological properties. J Control Release. 73:89–102. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
94.
|
Schmid B, Chung DE, Warnecke A, Fichtner I
and Kratz F: Albumin-binding prodrugs of camptothecin and
doxorubicin with an Ala-Leu-Ala-Leu-linker that are cleaved by
cathepsin B: synthesis and antitumor efficacy. Bioconjug Chem.
18:702–716. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
95.
|
Kratz F, Warnecke A, Scheuermann K, et al:
Probing the cysteine-34 position of endogenous serum albumin with
thiol-binding doxorubicin derivatives. Improved efficacy of an
acid-sensitive doxorubicin derivative with specific albumin-binding
properties compared to that of the parent compound. J Med Chem.
45:5523–5533. 2002. View Article : Google Scholar
|
|
96.
|
Warnecke A and Kratz F:
Maleimide-oligo(ethylene glycol) derivatives of camptothecin as
albumin-binding prodrugs: synthesis and antitumor efficacy.
Bioconjug Chem. 14:377–387. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
97.
|
Kratz F and Beyer U: Serum proteins as
drug carriers of anti-cancer agents: a review. Drug Deliv.
5:281–299. 1998. View Article : Google Scholar
|
|
98.
|
Elzoghby AO, Samy WM and Elgindy NA:
Albumin-based nanoparticles as potential controlled release drug
delivery systems. J Control Release. 157:168–182. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99.
|
Kratz F: Albumin as a drug carrier: design
of prodrugs, drug conjugates and nanoparticles. J Control Release.
132:171–183. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100.
|
Lebrecht D, Geist A, Ketelsen UP,
Haberstroh J, Setzer B, Kratz F and Walker UA: The
6-maleimidocaproyl hydrazone derivative of doxorubicin (DOXO-EMCH)
is superior to free doxorubicin with respect to cardiotoxicity and
mitochondrial damage. Int J Cancer. 120:927–934. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
101.
|
Unger C, Haring B, Medinger M, Drevs J,
Steinbild S, Kratz F and Mross K: Phase I and pharmacokinetic study
of the (6-maleimidocaproyl)hydrazone derivative of doxorubicin.
Clin Cancer Res. 13:4858–4866. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
102.
|
Dubowchik GM and Firestone RA: Cathepsin
B-sensitive dipeptide prodrugs. 1. A model study of structural
requirements for efficient release of doxorubicin. Bioorg Med Chem
Lett. 8:3341–3346. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
103.
|
Dubowchik GM, Mosure K, Knipe JO and
Firestone RA: Cathepsin B-sensitive dipeptide prodrugs. 2. Models
of anti-cancer drugs paclitaxel (Taxol), mitomycin C and
doxorubicin. Bioorg Med Chem Lett. 8:3347–3352. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
104.
|
Dubowchik GM, Firestone RA, Padilla L, et
al: Cathepsin B-labile dipeptide linkers for lysosomal release of
doxorubicin from internalizing immunoconjugates: model studies of
enzymatic drug release and antigen-specific in vitro anticancer
activity. Bioconjug Chem. 13:855–869. 2002. View Article : Google Scholar
|
|
105.
|
Calderón M, Quadir MA, Strumia M and Haag
R: Functional dendritic polymer architectures as stimuli-responsive
nano-carriers. Biochimie. 92:1242–1251. 2010.PubMed/NCBI
|
|
106.
|
De Groot FM, Broxterman HJ, Adams HP, et
al: Design, synthesis and biological evaluation of a dual
tumor-specific motive containing integrin-targeted
plasmin-cleavable doxorubicin prodrug. Mol Cancer Ther. 1:901–911.
2002.
|